1
|
Wang M, An Q, Li Z, Huang Z, Huang K, Li G, Ma Q, Zhao L. The alkylglycerone phosphate synthase sustains the resistance of gastric cancer cells to ferroptosis induced by Apatinib. Gastric Cancer 2025; 28:579-597. [PMID: 40186794 DOI: 10.1007/s10120-025-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Apatinib is a targeted therapy used in the treatment of advanced gastric cancer. However, many gastric cancer patients develop resistance to Apatinib, and the mechanisms underlying this resistance remain unclear. Previous studies have shown that Apatinib can induce ferroptosis in gastric cancer cells. More recent research suggests that polyunsaturated ether phospholipids are closely associated with tumor cell sensitivity to ferroptosis, and may represent key molecules involved in the resistance of tumor cells to ferroptosis. METHODS We established Apatinib-resistant gastric cancer cell lines and assessed their tolerance to ferroptosis. We identified key enzymes responsible for the ferroptosis tolerance observed in drug-resistant cells using lipidomics and transcriptomics analysis. Molecular and biological experiments were conducted to elucidate the molecular mechanisms underlying Apatinib resistance mediated by ferroptosis tolerance in gastric cancer cells. RESULTS Apatinib resistance is closely linked to ferroptosis resistance, which is driven by a reduction in the levels of polyunsaturated ether phospholipids-phospholipids that are particularly susceptible to oxidation and induce ferroptosis. The downregulation of key enzymes involved in polyunsaturated ether phospholipid synthesis, such as AGPS, mediates tolerance to both ferroptosis and Apatinib in gastric cancer cells, both in vitro and in vivo. Mechanistically, the expression of AGPS in tumor cells is regulated by the transcription factor ELK1. Drug-resistant cells acquire Apatinib tolerance by downregulating both ELK1 and AGPS expression. CONCLUSIONS Apatinib-resistant gastric cancer cells exhibit reduced expression of the transcription factor ELK1, which regulates the expression of AGPS. This reduction contributes to the resistance and malignancy of gastric cancer cells.
Collapse
Affiliation(s)
- Minghao Wang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiyuan An
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhicheng Huang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kaihua Huang
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoxin Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Ma
- Department of Biopharmaceutics, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Liying Zhao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Xie Z, Zhou Z, Chen S, Li Y, He X, Chen G. GLUT1 sensitizes tumor cells to EGFR-TKIs by binding with activated EGFR and regulating its downstream signaling pathways. Cell Commun Signal 2025; 23:247. [PMID: 40437580 PMCID: PMC12121033 DOI: 10.1186/s12964-025-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND We have previously demonstrated that GLUT1 can interact with phosphorylated EGFR and has an oncogenic role in lung cancer. Here, we aim to investigate their binding region and its signaling pathways. METHODS The AlphaFold 3 prediction, Co-immunoprecipitation, and Western blot were used to uncover the interaction conditions of GLUT1 and EGFR. The RNA-seq data was analyzed to evaluate the difference in signaling pathways between wild-type EGFR and activated mutated EGFR. The xenograft tumor model was established to determine the therapy effect of the combination of GLUT1 inhibitor BAY-876 and EGFR TKI Osimertinib. RESULTS We found that the interaction ability of GLUT1 and EGFR depended on the activation of EGFR. GLUT1 interacted with EGFRvIII (loss 2-7 exons) but not with EGFRvI (loss 1-16 exons), so GLUT1 interacts with EGFR in the EGFR extracellular transmembrane region. GLUT1 regulated EGFR downstream signaling pathways. GLUT1 inhibitor BAY-876 can sensitize tumor cells to EGFR TKI Osimertinib. CONCLUSIONS GLUT1 participates in tumor progression by interacting with phosphor-EGFR, suggesting that inhibition of the GLUT1-EGFR axis may be a potential therapeutic strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Zhangrong Xie
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiaoniu He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, SUSTech Homeostatic Medicine Institute, School of Medicine,Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
An C, Jiang C, Pei W, Li A, Wang M, Wang Y, Wang H, Zuo L. Intestinal epithelial cells in health and disease. Tissue Barriers 2025:2504744. [PMID: 40401816 DOI: 10.1080/21688370.2025.2504744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
This comprehensive review delves into the pivotal role of intestinal epithelial cells in the context of various diseases. It provides an in-depth analysis of the diverse types and functions of these cells, explores the influence of multiple signaling pathways on their differentiation, and elucidates their critical roles in a spectrum of diseases. The significance of the gastrointestinal tract in maintaining overall health is extremely important and cannot be exaggerated. This complex and elongated organ acts as a crucial link between the internal and external environments, making it vulnerable to various harmful influences. Preserving the normal structure and function of the gut is essential for well-being. Intestinal epithelial cells serve as the primary defense mechanism within the gastrointestinal tract and play a crucial role in preventing harmful substances from infiltrating the body. As the main components of the digestive system, they not only participate in the absorption and secretion of nutrients and the maintenance of barrier function but also play a pivotal role in immune defense. Therefore, the health of intestinal epithelial cells is of vital importance for overall health.
Collapse
Affiliation(s)
- Chenchen An
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Chonggui Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Wangxiang Pei
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Ao Li
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Minghui Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune- Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Stachyra P, Grzybowska-Szatkowska L. Signaling Pathways in Gliomas. Genes (Basel) 2025; 16:600. [PMID: 40428422 PMCID: PMC12110932 DOI: 10.3390/genes16050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Changes in cell signaling pathways, which in normal conditions determine the maintenance of cell homeostasis and the correctness of its basic processes, may cause the transformation of a normal cell into a cancer cell. Alterations in cellular metabolism leading to oncogenesis are considered to be a hallmark of cancer cells. Therefore, a thorough understanding of cellular enzymes affecting metabolism and respiration, as well as intracellular pathways connected with them, seems crucial. These changes may be both prognostic and predictive factors, especially in terms of using molecularly targeted therapies. Aberrations in the pathways responsible for cell growth and angiogenesis are considered particularly important in the process of oncogenesis. Gliomas are the most common primary malignant tumors of the brain. The most important molecular disorders determining their particularly malignant nature are aberrations in the pathways responsible for cell growth and angiogenesis, such as the PI3K/Akt or RAS/MAPK/ERK signaling pathway, as well as excessive activity of enzymes, like hexokinases, which play a key role in glycolysis, autophagy, and apoptosis. The multitude of alterations detected in glioma cells, high heterogeneity, and the immunosuppressive environment within the tumor are the main features causing failures in the attempts to implement modern therapies.
Collapse
Affiliation(s)
- Paulina Stachyra
- II Department of Oncology and Clinical Immunology with Day Chemotherapy, Oncology Centre of the Lublin Region, Jaczewskiego 7, 20-090 Lublin, Poland
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | | |
Collapse
|
5
|
Dong Y, Liao H, Huang F, Bao Y, Guo W, Tan Z. Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence. Sci Rep 2025; 15:15815. [PMID: 40328883 PMCID: PMC12056120 DOI: 10.1038/s41598-025-99258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematological malignancy characterized by high recurrence rates, especially in pediatric patients, highlighting the need for reliable prognostic markers. This study proposes methylation signatures associated with AML recurrence using computational methods. DNA methylation data from 696 newly diagnosed and 194 relapsed pediatric AML patients were analyzed. Feature selection algorithms, including Boruta, least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection, were employed to screen and rank methylation sites strongly correlated with AML recurrence. Incremental Feature Selection was performed to evaluate these results, and optimal subsets were identified using Decision Tree and Random Forest methods. Several important methylation features, such as modifications in SLC45A4, S100PBP, TSPAN9, PTPRG, ERBB4, and PRKCZ, emerged from the intersection of all feature selection algorithms. Functional enrichment analysis indicated these genes participate in biological processes, including calcium-mediated signaling and regulation of binding. These findings are consistent with existing literature, suggesting that identified methylation features likely contribute to AML progression through alterations in gene expression levels. Therefore, this study provides a valuable reference for enhancing recurrence risk prediction models in AML and clarifying disease pathogenesis, as well as offering broader insights into mechanisms underlying other major diseases.
Collapse
Affiliation(s)
- Yushuang Dong
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | | | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - YuSheng Bao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhen Tan
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
6
|
Masullo LA, Kowalewski R, Honsa M, Heinze L, Xu S, Steen PR, Grabmayr H, Pachmayr I, Reinhardt SCM, Perovic A, Kwon J, Oxley EP, Dickins RA, Bastings MMC, Parish IA, Jungmann R. Spatial and stoichiometric in situ analysis of biomolecular oligomerization at single-protein resolution. Nat Commun 2025; 16:4202. [PMID: 40328783 PMCID: PMC12056017 DOI: 10.1038/s41467-025-59500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
Latest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1-20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states. We demonstrate SPINNA in silico, in vitro, and in cells. In particular, we quantitatively assess the oligomerization of the epidermal growth factor receptor (EGFR) upon EGF treatment and investigate the dimerization of CD80 and PD-L1, key surface ligands involved in immune cell signaling. Importantly, we offer an open-source Python implementation and a GUI to facilitate SPINNA's widespread use in the scientific community.
Collapse
Affiliation(s)
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Monique Honsa
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Larissa Heinze
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Shuhan Xu
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Heinrich Grabmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Isabelle Pachmayr
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Ethan P Oxley
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Ross A Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Maartje M C Bastings
- Institute of Materials and Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
7
|
Barbe-Richaud JB, Fattori A, Lindner V, Schuster C, Malouf G, Pencreach E, Somme L. EGFR-Mutant Urothelial Carcinoma Harboring an Ala750_Ile759delinsGlyGly Alteration with a Primary Resistance to Polychemotherapy and a Sensitivity to Osimertinib: A Literature Review on EGFR Alterations and Response to EGFR Tyrosine Kinase Inhibitors in Cancers. J Clin Med 2025; 14:3129. [PMID: 40364160 PMCID: PMC12072851 DOI: 10.3390/jcm14093129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Urothelial carcinoma is three to four times more common in men than in women, with a 73-year old mean age at diagnosis which is older than the average age at diagnosis of all cancers. Urothelial carcinoma is rare in people under 40 years of age. Smoking, exposure to industrial chemicals, and family history influence the development of bladder cancer, but age remains one of the most important risk factors. It is well established that women are more likely to be diagnosed with an advanced disease, impacting the prognosis and a higher stage-for-stage mortality compared to men. A gender difference is also observed when considering molecular features; for example, there a higher male/female ratio in Fibroblast Growth Factor Receptor 3 (FGFR3)-mutated bladder cancer. Epidermal Growth Factor Receptor (EGFR) amplifications, which are roughly depicted in 25-50% of urothelial carcinoma, have been correlated with a worse prognosis. Genomic alterations of clinical interest are mainly Human Epidermal Growth Factor Receptor 2 mutations and amplifications, as well as FGFR 3 alterations; however, no EGFR mutation has been routinely reported despite the frequency of its amplifications. Recurrently, no targeted inhibitors have demonstrated a benefit compared to platinum-based chemotherapy. We report a rare case of a 35-year-old woman presenting bone, hepatic, and lymph node metastatic urothelial carcinoma, harboring a deletion of 24 nucleotides in exon 19 of the EGFR gene with a 5-month response to osimertinib, a third-generation EGFR tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Jean-Baptiste Barbe-Richaud
- Oncology Department, Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200 Strasbourg, France; (J.-B.B.-R.); (C.S.); (G.M.)
| | - Antonin Fattori
- Pathological Department, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France; (A.F.); (V.L.)
| | - Véronique Lindner
- Pathological Department, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France; (A.F.); (V.L.)
| | - Caroline Schuster
- Oncology Department, Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200 Strasbourg, France; (J.-B.B.-R.); (C.S.); (G.M.)
| | - Gabriel Malouf
- Oncology Department, Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200 Strasbourg, France; (J.-B.B.-R.); (C.S.); (G.M.)
| | - Erwan Pencreach
- Molecular Departement, Hôpital de Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France;
| | - Laura Somme
- Oncology Department, Institut de Cancérologie Strasbourg Europe, 17 Rue Albert Calmette, 67200 Strasbourg, France; (J.-B.B.-R.); (C.S.); (G.M.)
| |
Collapse
|
8
|
Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, Yu Z, Zhao L, He M, Wang Y, Fu C, Wei M, Yu L. Antibody-Drug Conjugates (ADCs): current and future biopharmaceuticals. J Hematol Oncol 2025; 18:51. [PMID: 40307936 PMCID: PMC12044742 DOI: 10.1186/s13045-025-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel class of biopharmaceuticals comprising monoclonal antibodies covalently conjugated to cytotoxic agents via engineered chemical linkers. This combination enables targeted delivery of cytotoxic agents to tumor site through recognizing target antigens by antibody while minimizing off-target effects on healthy tissues. Clinically, ADCs overcome the limitations of traditional chemotherapy, which lacks target specificity, and enhance the therapeutic efficacy of monoclonal antibodies, providing higher efficacy and fewer toxicity anti-tumor biopharmaceuticals. ADCs have ushered in a new era of targeted cancer therapy, with 15 drugs currently approved for clinical use. Additionally, ADCs are being investigated as potential therapeutic candidates for autoimmune diseases, persistent bacterial infections, and other challenging indications. Despite their therapeutic benefits, the development and application of ADCs face significant challenges, including antibody immunogenicity, linker instability, and inadequate control over the release of cytotoxic agent. How can ADCs be designed to be safer and more efficient? What is the future development direction of ADCs? This review provides a comprehensive overview of ADCs, summarizing the structural and functional characteristics of the three core components, antibody, linker, and payload. Furthermore, we systematically assess the advancements and challenges associated with the 15 approved ADCs in cancer therapy, while also exploring the future directions and ongoing challenges. We hope that this work will provide valuable insights into the design and optimization of next-generation ADCs for wider clinical applications.
Collapse
Grants
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- No. U20A20413, China NSFC-Liaoning joint fund key program
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- 2023JH2/20200126 Liaoning Province Scientific Research Foundation
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
- NSFC, No. 81903658, 82272797, 82304564, China National Natural Science Foundation of China
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ziyu Pan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chongxia Mo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Guojia Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ping Hou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qi Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhao Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenjia Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110000, China.
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
9
|
Salbini M, Formato A, Mongiardi MP, Levi A, Falchetti ML. Kinase-Targeted Therapies for Glioblastoma. Int J Mol Sci 2025; 26:3737. [PMID: 40332381 PMCID: PMC12027600 DOI: 10.3390/ijms26083737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these enzymes is associated with various diseases, predominantly cancers. Synthetic and natural single- and multiple-kinase inhibitors are currently being used as targeted therapies for different tumors, including glioblastoma. Glioblastoma IDH-wild-type is the most aggressive brain tumor in adults, with a median overall survival of 15 months. The great majority of glioblastoma patients present mutations in receptor tyrosine kinase (RTK) signaling pathways responsible for tumor initiation and/or progression. Despite this, the multi-kinase inhibitor regorafenib has only recently been approved for glioblastoma patients in some countries. In this review, we analyze the history of kinase inhibitor drugs in glioblastoma therapy.
Collapse
Affiliation(s)
| | | | | | | | - Maria Laura Falchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Via Ercole Ramarini 32, Monterotondo, 00015 Rome, Italy; (M.S.); (A.F.); (M.P.M.); (A.L.)
| |
Collapse
|
10
|
Bhanja KK, Patra N. Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach. J Phys Chem B 2025; 129:3610-3629. [PMID: 40053865 DOI: 10.1021/acs.jpcb.4c07651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inhibitors faces challenges like resistance and stopping over phosphorylation. Notably AIs have been introduced to overcome this resistance and increase inhibitory potency that binds to pockets other than the ATP-binding site (orthosteric site). Recently, fourth-generation AIs, EAI045, have been discovered to potently and selectively inhibit various EGFR mutations but limited antiproliferative effects in the absence of the antibody cetuximab. The purpose of this work is to identify nontoxic, potent small AIs through various screening pipelines and explore their molecular mechanism. In the discovery of AIs, structural similarity search, high-throughput virtual screening, and machine learning-guided QSAR modeling, several candidates were identified. Machine learning was employed to guide the QSAR model based on 2D descriptors and DFT-derived quantum chemical descriptors followed by a PCA reduction technique, which enabled the prediction of the biological activity (IC50) of screened drugs against various EGFR mutations such as T790M/L858R/C797S and T790M/L858R. In addition, multinanosecond (ns) and microsecond (μs) classical molecular dynamics (MD) simulations run on protein-ligand binding complex to check the stability of binding dynamics for T790M/L858R/C797S and T790M/L858R mutations with lower IC50 and higher docking score compounds. The molecular mechanics generalized Boltzmann surface area (MM/GBSA) calculation revealed that the five hit allosteric molecules for T790M/C797S/L858R and two for T790M/L858R mutations had a high binding affinity. The results were corroborated further by MM/GBSA employing the normal-mode analysis entropy method to perform additional screening. Furthermore, the compounds' efficacy was confirmed using path-dependent ligand unbinding free energy techniques such as Jarzynski averaged free energy profiles obtained from adaptive steered MD, relative residence time, and umbrella sampling simulations, which were compared to a reference inhibitor. However, path-independent alchemical approaches like streamlined alchemical free energy perturbation and binding free energy estimator 2 (BFEE2) were employed to validate the results and identify potent compounds. These findings pave the way to identification of novel potential fourth-generation AIs, which require further experimental validation.
Collapse
Affiliation(s)
- Kousik K Bhanja
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Dhanbad 826004, India
| |
Collapse
|
11
|
Cao JF, Zhang X, Xia Q, Hang K, Men J, Tian J, Liao D, Xia Z, Li K. Insights into curcumin's anticancer activity in pancreatic ductal adenocarcinoma: Experimental and computational evidence targeting HRAS, CCND1, EGFR and AKT1. Bioorg Chem 2025; 157:108264. [PMID: 39954354 DOI: 10.1016/j.bioorg.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Curcumin, as a natural polyphenolic compound, possesses antitumor, antioxidant properties and anti-inflammatory. Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, and there is a lack of molecular mechanisms and therapeutic options regarding relevant therapeutic agents. Therefore, we investigated the mechanism of curcumin inhibiting pancreatic cancer growth by modulating proliferation of cells and cellular metabolism. METHODS Bioinformatics analysis was involved in analyzing the intersecting targets of curcumin and pancreatic ductal adenocarcinoma. The effect of curcumin on proliferation of PANC-1 cells was tested by CCK-8, and total RNA from PANC-1 was also analysed by transcriptome sequencing. Molecular docking was involved in verifying binding stability of curcumin to protein targets. Molecular dynamics simulated and evaluated binding free energy, hydrogen bonds and root mean square fluctuation of the complex. RESULTS PPI, GO and KEGG were involved in screening and analysing key interacting protein targets. 40 μg/mL curcumin significantly inhibited the growth and proliferation of PANC-1. Transcriptome sequencing results showed gene expression of Cyclin D1 (CCND1), AKT serine/threonine kinase 1 (AKT1), HRas proto-oncogene (HRAS), epidermal growth factor receptor (EGFR) was significantly down-regulated by curcumin treatment. Result of molecular dynamics and molecular docking inhibited the free binding energies of CCND1/Curcumin, HRAS/Curcumin, AKT1/Curcumin and EGFR/Curcumin were -21.13 ± 3.41 kcal/mol, -21.84 ± 4.38 kcal/mol, -20.61 ± 1.82 kcal/mol and -27.37 ± 1.94 kcal/mol, respectively. CONCLUSION We found curcumin may not only regulate cell cycle progression in PDAC and apoptosis by down-regulating HRAS, thereby inhibiting CCND1 and its downstream signaling pathways, but also inhibit energy metabolism reprogramming, Ras-RAF-MEK-ERK and other downstream signalling pathways by down-regulating EGFR and AKT1, thereby affecting tumor cell metastasis, survival and proliferation.
Collapse
Affiliation(s)
- Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu 610500 Sichuan, China
| | - Qingjie Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kuan Hang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Men
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Jin Tian
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Dunshui Liao
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zengliang Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
12
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
13
|
Li X, Zhang X, Yin S, Nie J. Challenges and prospects in HER2-positive breast cancer-targeted therapy. Crit Rev Oncol Hematol 2025; 207:104624. [PMID: 39826885 DOI: 10.1016/j.critrevonc.2025.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Breast cancer remains the most prevalent malignancy among women globally and ranks as the leading cause of cancer-related mortality in this demographic. Approximately 13 %-15 % of all breast cancer cases are classified as HER2-positive, a subtype associated with a particularly unfavorable prognosis. A large number of patients with HER2-positive breast cancer continue to face disease progression after receiving standardized treatment. Given these challenges, a thorough exploration into the mechanisms underlying drug resistance in HER2-targeted therapy is imperative. This review focuses on the factors related to drug resistance in HER2-targeted therapy, including tumor heterogeneity, antibody-binding efficacy, variations in the tumor microenvironment, and abnormalities in signal activation and transmission. Additionally, corresponding strategies to counteract these resistance mechanisms are discussed, to advance therapeutic efficacy and clinical benefits in the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiyin Li
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| | - Xueying Zhang
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650118, China.
| | - Jianyun Nie
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| |
Collapse
|
14
|
T J G, Athish KK, Rani C K. Epidermal Growth Factor Mutation Analysis in Patients With Bronchogenic Adenocarcinoma: Prevalence and Clinical Profile-Outlook From a Tertiary Care Center in India. Cureus 2025; 17:e79100. [PMID: 40104451 PMCID: PMC11918489 DOI: 10.7759/cureus.79100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Epidermal growth factor receptor (EGFR) mutation analysis has become an important part of the initial workup of non-squamous non-small cell lung cancer (NS-NSCLC) patients as it is now recognized both as a prognostic and predictive marker for therapy with EGFR tyrosine kinase inhibitors (TKIs). The data on the prevalence of mutation and its clinical profile in bronchogenic adenocarcinoma are vastly available from Eastern Asian and European countries. The frequency of EGFR mutations in India however remains sparsely explored. Activating EGFR mutations in the tyrosine kinase region have been shown to underlie response to these inhibitors. However, the frequency of EGFR mutations and their clinical response in most other ethnic populations, including India, remains to be explored. In addition to providing information on the stage of the disease and the Eastern Cooperative Oncology Group (ECOG) performance scale at presentation, this is one of the rare studies from the subcontinent where EGFR mutation was performed in a single laboratory using a standardized procedure. The aims and objectives of the study are to estimate the prevalence of EGFR gene mutation in adenocarcinoma of the lung and to assess the clinical profile that correlates with EGFR gene status. Material and methods This single-center-based cross-sectional study was conducted at R.L. Jalappa Hospital, Kolar, India, over eight months (October 2023 to June 2024). The study included patients diagnosed with NSCLC adenocarcinoma whose participation was secured through informed consent. These tissues had been tested for EGFR mutational status. EGFR mutation analysis will be done on extracted DNA with real-time polymerase chain reaction to estimate the prevalence of EGFR mutation in adenocarcinoma of the lung. All data were entered in a Microsoft Excel sheet (Redmond, WA, USA) and statistical analysis will be performed using SPSS statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY). Categorical data were represented in the form of frequencies and proportions. To check the association between qualitative data, Chi-square was applied with a level of significance defined as a p-value < 0.05. Continuous data was represented as mean and standard deviation. Results Of the 61 patients included in the study, the mean age of prevalence of EGFR mutation in adenocarcinoma was 58.13 years, with a prevalence rate of 31.1%. EGFR mutation was positive in 11 (42.3%) females and eight (22.8%) males. The prevalence of exon 19 deletion was the most common and was higher in females (seven (26.4%)) compared to males (eight (22.9%)). However, among those with an ECOG score of 3, one (2.3%) had EXON 18 G719S G719A G719C, and 14 (31.8%) had EXON 19 deletion. There was a significant difference (p-value<0.008) in the type of mutations concerning the ECOG performance scale. Conclusion The prevalence of activating EGFR mutations and their clinical correlations in our study are comparable with those previously published and Indian patients with EGFR mutations. In line with data already available from previously published studies, EGFR mutation is also a common finding in patients with lung adenocarcinoma, especially among women, and the exon 19 deletion is the most common variation. Incorporating EGFR mutation testing into early diagnostic protocols remains crucial for optimizing treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Guruprasad T J
- Respiratory Medicine, Sri Devaraj Urs Medical College/R.L. Jalappa Hospital, Kolar, IND
| | - K K Athish
- Internal Medicine, Sri Devaraj Urs Medical College/R.L. Jalappa Hospital, Kolar, IND
| | - Kavya Rani C
- Obstetrics and Gynecology, Sri Devaraj Urs Medical College/R.L. Jalappa Hospital, Kolar, IND
| |
Collapse
|
15
|
Gough R, Treffy RW, Krucoff MO, Desai R. Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging. Cancers (Basel) 2025; 17:124. [PMID: 39796751 PMCID: PMC11720166 DOI: 10.3390/cancers17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glioblastoma is the most common primary brain tumor in adult patients, and despite standard-of-care treatment, median survival has remained less than two years. Advances in our understanding of molecular mutations have led to changes in the diagnostic criteria of glioblastoma, with the WHO classification integrating important mutations into the grading system in 2021. We sought to review the basics of the important genetic mutations associated with glioblastoma, including known mechanisms and roles in disease pathogenesis/treatment. We also examined new advances in image processing as well as less invasive and noninvasive diagnostic tools that can aid in the diagnosis and surveillance of those undergoing treatment for glioblastoma. Our review is intended to serve as an overview of the current state-of-the-art in the diagnosis and management of glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Rupen Desai
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.G.); (R.W.T.); (M.O.K.)
| |
Collapse
|
16
|
Chou CL, Jayatissa NU, Kichula ET, Ou SM, Limbutara K, Knepper MA. Phosphoproteomic response to epidermal growth factor in native rat inner medullary collecting duct. Am J Physiol Renal Physiol 2025; 328:F29-F47. [PMID: 39508840 PMCID: PMC11918369 DOI: 10.1152/ajprenal.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Epidermal growth factor (EGF) has important effects in the renal collecting duct to regulate salt and water transport. To identify elements of EGF-mediated signaling in the rat renal inner medullary collecting duct (IMCD), we carried out phosphoproteomic analysis. Biochemically isolated rat IMCD suspensions were treated with 1 µM of EGF or vehicle for 30 min. We performed comprehensive quantitative phosphoproteomics using tandem mass tag (TMT)-labeling of tryptic peptides followed by protein mass spectrometry. We present a data resource reporting all detected phosphorylation sites and their changes in response to EGF. For a total of 29,881 unique phosphorylation sites, 135 sites were increased and 119 sites were decreased based on stringent statistical analysis. The data are provided to users at https://esbl.nhlbi.nih.gov/Databases/EGF-phospho/. The analysis demonstrated that EGF signals through canonical EGF pathways in the renal IMCD. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which EGF-regulated phosphoproteins are over-represented in native rat IMCD cells confirmed mapping to RAF-MEK-extracellular signal-regulated kinase (ERK) signaling but also pointed to a role for EGF in the regulation of protein translation. A large number of phosphoproteins regulated by EGF contained PDZ domains that are key elements of epithelial polarity determination. We also provide a collecting duct EGF-network map as a user-accessible web resource at https://esbl.nhlbi.nih.gov/Databases/EGF-network/. Overall, the phosphoproteomic data presented provide a useful resource for experimental design and modeling of signaling in the renal collecting duct.NEW & NOTEWORTHY EGF negatively regulates transepithelial water and salt transport across the kidney collecting duct. This study identified phosphoproteins affected by EGF stimulation in normal rat collecting ducts, providing insights into global cell signaling mechanisms. Bioinformatic analyses highlighted enhanced canonical ERK signaling alongside a diminished activity in the PI3K-Akt pathway, which is crucial for cell proliferation and survival. This EGF response differs somewhat from prior studies where both pathways were prominently activated.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Nipun U Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elena T Kichula
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shuo-Ming Ou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
17
|
Zhou F, Tao J, Gou H, Liu S, Yu D, Zhang J, Ji J, Lin N, Wang Y. FSTL1 sustains glioma stem cell stemness and promotes immunosuppressive macrophage polarization in glioblastoma. Cancer Lett 2024; 611:217400. [PMID: 39722404 DOI: 10.1016/j.canlet.2024.217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) play a crucial role in glioblastoma (GBM) progression by interacting with glioma stem cells (GSCs). These interactions lead to the polarization of TAMs toward an M2 phenotype, which, in turn, enhances the stem-like traits and malignant progression of GSCs. Our study shows that FSTL1, a protein released by GSCs, is significantly elevated in gliomas and linked to the progression of the disease. By suppressing FSTL1 in a mouse model, we observed reduced tumor growth and a decrease in M2 macrophages. In vitro studies show that FSTL1 from GSCs promotes M2 polarization and infiltration. Importantly, GSCs utilize autocrine FSTL1 to interact with TLR2, which inhibits the endocytosis-lysosomal degradation pathway mediated by EGFR, resulting in the activation of the PI3K-AKT signaling pathway that is critical for maintaining their self-renewal. These findings underscore the importance of FSTL1 in GSC maintenance and M2 macrophage polarization, suggesting that interventions targeting the FSTL1/TLR2 pathway could provide a novel therapeutic approach for GBM patients.
Collapse
Affiliation(s)
- Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jincheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiqing Gou
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Shuheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxiong Ji
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, Anhui, China.
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Sisto M, Lisi S. Updates on Inflammatory Molecular Pathways Mediated by ADAM17 in Autoimmunity. Cells 2024; 13:2092. [PMID: 39768182 PMCID: PMC11674862 DOI: 10.3390/cells13242092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
ADAM17 is a member of the disintegrin and metalloproteinase (ADAM) family of transmembrane proteases with immunoregulatory activity in multiple signaling pathways. The functional ADAM17 is involved in the shedding of the ectodomain characterizing many substrates belonging to growth factors, cytokines, receptors, and adhesion molecules. The ADAM17-dependent pathways are known to be crucial in tumor development and progression and in the modulation of many pathological and physiological processes. In the last decade, ADAM17 was considered the driver of several autoimmune pathologies, and numerous substrate-mediated signal transduction pathways were identified. However, the discoveries made to date have led researchers to try to clarify the multiple mechanisms in which ADAM17 is involved and to identify any molecular gaps between the different transductional cascades. In this review, we summarize the most recent updates on the multiple regulatory activities of ADAM17, focusing on reported data in the field of autoimmunity.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
19
|
Peterson KJ, Slepchenko BM, Loew LM. Bridging molecular to cellular scales for models of membrane receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626844. [PMID: 39677765 PMCID: PMC11643039 DOI: 10.1101/2024.12.04.626844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biochemical interactions at membranes are the starting points for cell signaling networks. But bimolecular reaction kinetics are difficult to experimentally measure on 2-dimensional membranes and are usually measured in volumetric in vitro assays. Membrane tethering produces confinement and steric effects that will significantly impact binding rates in ways that are not readily estimated from volumetric measurements. Also, there are situations when 2D reactions do not conform to simple kinetics. Here we show how highly coarse-grained molecular simulations using the SpringSaLaD software can be used to estimate membrane- tethered rate constants from experimentally determined volumetric kinetics. The approach is validated using an analytical solution for dimerization of binding sites anchored via stiff linkers. This approach can provide 2-dimensional bimolecular rate constants to parameterize cell-scale models of receptor-mediated signaling. We explore how factors such as molecular reach, steric effects, disordered domains, local concentration and diffusion affect the kinetics of binding. We find that for reaction-limited cases, the key determinant in converting 3D to 2D rate constant is the distance of the binding sites from the membrane. On the other hand, the mass action rate law may no longer be obeyed for diffusion-limited reaction on surfaces; the simulations reveal when this situation pertains. We then apply our approach to epidermal growth factor receptor (EGFR) mediated activation of the membrane-bound small GTPase Ras. The analysis reveals how prior binding of Ras to the allosteric site of SOS, a guanine nucleotide exchange factor (GEF) that is recruited to EGFR, significantly accelerates its catalytic activity.
Collapse
Affiliation(s)
- Kelvin J. Peterson
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| | - Boris M. Slepchenko
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT USA
| |
Collapse
|
20
|
Puchała Ł, Gonkowski S, Rytel L, Wojtkiewicz J, Grzegorzewski WJ. Distribution and neurochemical characterisation of neurons containing neuregulin 1 in the enteric nervous system within the porcine small intestine. J Vet Res 2024; 68:623-632. [PMID: 39776680 PMCID: PMC11702255 DOI: 10.2478/jvetres-2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine. Material and Methods Fragments were excised from the duodenum, jejunum and ileum of five euthanised Piétrain × Duroc sows, 18-20 kg in weight and eight weeks of age. Paraformaldehyde-fixed and dehydrated tissue was sectioned and double-labelling immunofluorescence was performed using Alexa Fluor-conjugated secondary antibodies to visualise neuregulin 1 and its colocalisation with vasoactive intestinal polypeptide (VIP), galanin (GAL), and the neuronal isoform of nitric oxide synthase (nNOS) in the myenteric and inner and outer submucosal plexuses, with PGP 9.5 serving as a pan-neuronal marker. Results Neuregulin 1 was observed in all enteric plexuses in each segment of the small intestine. The percentage of NRG 1-positive neurons ranged from 8.38 ± 0.55% of all neurons in the jejunal inner submucous plexus to 21.52 ± 0.98% in the duodenal myenteric plexus. Cells which were NRG 1-positive also contained VIP, GAL and nNOS in all segments of the small intestine to a degree which varied by small intestine segment and enteric plexus type. Conclusion The results indicate that NRG 1-positive neurons are present in the ENS of the porcine small intestine and differ significantly neurochemically, which may suggest a multifaceted role for NRG-1 in the controlling of the small intestine activity.
Collapse
Affiliation(s)
| | | | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082Olsztyn, Poland
| | | |
Collapse
|
21
|
Pathoor NN, Ganesh PS, Gopal RK. Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression. World J Microbiol Biotechnol 2024; 40:398. [PMID: 39612015 DOI: 10.1007/s11274-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has long been recognized primarily as a hospital-acquired pathogen. However, recent studies have uncovered a potential link between this bacterium and oral cancer, necessitating a deeper exploration of this relationship. This review examines the relevance of A. baumannii biofilms in the context of oral cancer development. By synthesizing current knowledge, we seek to provide a comprehensive understanding of this emerging area of research and identify critical directions for future investigations. The review emphasizes the remarkable adaptability, environmental resilience, and antibiotic resistance of A. baumannii, delves into the molecular mechanisms of biofilm formation, and their potential connection to oral cancer progression. The review also evaluates how biofilm colonization on oral surfaces and medical devices, along with its role in chronic infections, inflammation, and increased antimicrobial resistance, could contribute to creating a microenvironment favourable for tumor development. This review underscores the broader healthcare implications of A. baumannii biofilms, evaluates current strategies for their prevention and eradication, and calls for interdisciplinary research in this emerging field. By shedding light on the complex interactions between A. baumannii biofilms and oral cancer, it aims to stimulate further research and guide the development of new diagnostic, preventive, and therapeutic strategies in both microbiology and oncology.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
22
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
23
|
Jin LL, Lu HJ, Shao JK, Wang Y, Lu SP, Huang BF, Hu GN, Jin HC, Wang CQ. Relevance and mechanism of STAT3/miR-221-3p/Fascin-1 axis in EGFR TKI resistance of triple-negative breast cancer. Mol Cell Biochem 2024; 479:3037-3047. [PMID: 38145448 DOI: 10.1007/s11010-023-04907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023]
Abstract
The epidermal growth factor receptor 1 (EGFR) plays a crucial role in the progression of various malignant tumors and is considered a potential target for treating triple-negative breast cancer (TNBC). However, the effectiveness of representative tyrosine kinase inhibitors (TKIs) used in EGFR-targeted therapy is limited in TNBC patients. In our study, we observed that the TNBC cell lines MDA-MB-231 and MDA-MB-468 exhibited resistance to Gefitinib. Treatment with Gefitinib caused an upregulation of Fascin-1 (FSCN1) protein expression and a downregulation of miR-221-3p in these cell lines. However, sensitivity to Gefitinib was significantly improved in both cell lines with either inhibition of FSCN1 expression or overexpression of miR-221-3p. Our luciferase reporter assay confirmed that FSCN1 is a target of miR-221-3p. Moreover, Gefitinib treatment resulted in an upregulation of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in MDA-MB-231 cells. Using Stattic, a small-molecule inhibitor of STAT3, we observed a significant enhancement in the inhibitory effect of Gefitinib on the growth, migration, and invasion of MDA-MB-231 cells. Additionally, Stattic treatment upregulated miR-221-3p expression and downregulated FSCN1 mRNA and protein expression. A strong positive correlation was noted between the expression of STAT3 and FSCN1 in breast cancer tissues. Furthermore, patients with high expression levels of both STAT3 and FSCN1 had a worse prognosis. Our findings suggest that elevated FSCN1 expression is linked to primary resistance to EGFR TKIs in TNBC. Moreover, we propose that STAT3 regulates the expression of miR-221-3p/FSCN1 and therefore modulates resistance to EGFR TKI therapy in TNBC. Combining EGFR TKI therapy with inhibition of FSCN1 or STAT3 may offer a promising new therapeutic option for TNBC.
Collapse
Affiliation(s)
- Lu-Lu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hua-Jun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jun-Kang Shao
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Ping Lu
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, 60 Wu Ning Xi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
24
|
Kundu D, Min X, Wang S, Peng L, Tian X, Wang M, Kim KM. Transactivation of the EGF receptor as a novel desensitization mechanism for G protein-coupled receptors, illustrated by dopamine D2-like and β 2 adrenergic receptors. Cell Mol Biol Lett 2024; 29:132. [PMID: 39468452 PMCID: PMC11514929 DOI: 10.1186/s11658-024-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Transactivation of epidermal growth factor receptors (EGFR) provides intricate control over multiple regulatory cellular processes that merge the diversity of G protein-coupled receptors (GPCRs) with the robust signaling capacities of receptor tyrosine kinases. Contrary to the typical assertions, our findings demonstrate that EGFR transactivation contributes to the desensitization of GPCRs. Repeated agonist stimulation of certain GPCRs enhanced EGFR transactivation, triggering a series of cellular events associated with GPCR desensitization. This effect was observed in receptors undergoing desensitization (D3R, K149C-D2R, β2AR) but not in those resistant to desensitization (D2R, C147K-D3R, D4R, β2AR mutants lacking GRK2 or GRK6 phosphorylation sites). The EGFR inhibitor AG1478 prevented both desensitization and the associated cellular events. Similarly, these cellular events were also observed when cells were treated with EGF, but only in GPCRs that undergo desensitization. These findings suggest that EGFR transactivation diversifies pathways involved in ERK activation through the EGFR signaling system and also mediates GPCR desensitization. Alongside the widely accepted steric hindrance model, these findings offer new insights into understanding the mechanisms of GPCR desensitization, which occurs through complex cellular processes.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Lulu Peng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Xinru Tian
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Mengling Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Korea.
| |
Collapse
|
25
|
Chen HY, Chen CH, Liao WC, Lin YC, Chen HJ, Hsia TC, Cheng WC, Tu CY. Optimal first-line treatment for EGFR-mutated NSCLC: a comparative analysis of osimertinib and second-generation EGFR-TKIs. BMC Pulm Med 2024; 24:517. [PMID: 39415161 PMCID: PMC11481380 DOI: 10.1186/s12890-024-03336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Osimertinib is an irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI). It is the preferred first-line treatment for EGFR-mutated non-small cell lung cancer (NSCLC) compared to first-generation EGFR-TKIs. However, limited research has compared its clinical effectiveness with second-generation (2nd G) EGFR-TKIs. MATERIALS AND METHODS This study recruited patients diagnosed with stage IIIb-IV EGFR-mutated NSCLC who received first-line treatment with either 2nd G EGFR-TKIs (afatinib and dacomitinib) or osimertinib between April 2020 and April 2023. RESULTS The final analysis included 168 patients, of whom 113 received 2nd G EGFR-TKIs (afatinib or dacomitinib) and 55 received osimertinib. The median progression-free survival (PFS) did not differ significantly between 2nd G EGFR-TKIs and osimertinib (del 19: 17.6 months; L858R: 20.0 months vs. 28.3 months, p = 0.081). In patients with the EGFR exon 19 deletion, osimertinib conferred a longer median PFS (28.3 vs. 17.6 months, p = 0.118) and time to treatment failure (30.2 vs. 22.7 months, p = 0.722) than 2nd G EGFR-TKIs. However, the differences were not statistically significant. In patients with with the EGFR exon 19 deletion and central nervous system metastasis, the median PFS did not differ significantly between those treated with osimertinib (14.3 months) and those treated with 2nd G EGFR-TKIs (17.6 months; p = 0.881). Multivariate regression analysis revealed that the NSCLC stage was the only independent negative predictor of PFS. The treatment patterns in the second line also differed significantly between groups (p = 0.008). CONCLUSIONS This study found comparable effectiveness between osimertinib and 2nd G EGFR-TKIs as first-line treatment for advanced EGFR-mutated NSCLC, with only the NSCLC stage identified as a negative predictor of PFS. However, whether the different second-line treatments affect overall survival should be examined.
Collapse
Affiliation(s)
- Hsu-Yuan Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chih Liao
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chao Lin
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Jen Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Cheng
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan.
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Chih-Yen Tu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
26
|
Wu J, Wang Y, Yan L, Dong Y. Expression of CLDN1 and EGFR in PTC. Discov Oncol 2024; 15:562. [PMID: 39404969 PMCID: PMC11480332 DOI: 10.1007/s12672-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) involves complex genetic mechanisms, notably involving CLDN1 and EGFR. This study investigates the expression and variations of these genes and their effects on tumor behavior and patient outcomes. Meta-analysis of CLDN1 and EGFR expression in TCGA-PTC patients and GEO datasets was conducted. cBioPortal was used for clinical analysis. GSEA, GO, KEGG, Hallmark pathways, and cibersort analysis were applied. Cell proliferation, migration, invasion, and apoptosis were assessed in vitro. Co-culturing with CD8+ T cells, MTT assay, ELISA, subcutaneous tumor models, and immunohistochemistry were performed. TGF-β pathway-related proteins were analyzed via Western blot. CLDN1 and EGFR were overexpressed in PTC tumors, correlating with higher-risk patients and reduced CD8+ T cell infiltration. Silencing these genes inhibited tumor cell functions and enhanced CD8+ T cell activity, both in vitro and in vivo. CLDN1 and EGFR are crucial in PTC, linked to tumor invasiveness, EMT, and immune suppression, presenting them as potential therapeutic targets.
Collapse
Affiliation(s)
- JunJie Wu
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YouMei Wang
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - Lei Yan
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YaWen Dong
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
27
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
28
|
Wirth D, Özdemir E, Hristova K. Probing phosphorylation events in biological membranes: The transducer function. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184362. [PMID: 38885782 PMCID: PMC11365757 DOI: 10.1016/j.bbamem.2024.184362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The extracellular environment is sensed by receptors in the plasma membrane. Some of these receptors initiate cytoplasmic signaling cascades involving phosphorylation: the addition of a phosphate group to a specific amino acid, such as tyrosine, in a protein. Receptor Tyrosine Kinases (RTKs) are one large class of membrane receptors that can directly initiate signaling cascades through their intracellular kinase domains, which both catalyze tyrosine phosphorylation and get phosphorylated. In the first step of signaling, the ligands stabilize phosphorylation-competent RTK dimers and oligomers, which leads to the phosphorylation of specific tyrosine residues in the activation loop of the kinases. Here we discuss quantitative measurements of tyrosine phosphorylation efficiencies for RTKs, described by the "transducer function". The transducer function links the phosphorylation (the response) and the binding of the activating ligand to the receptor (the stimulus). We overview a methodology that allows such measurements in direct response to ligand binding. We discuss experiments which demonstrate that EGF is a partial agonist, and that two tyrosines in the intracellular domain of EGFR, Y1068 and Y1173, are differentially phosphorylated in the EGF-bound EGFR dimers.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
29
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
30
|
Zhu M, Yu M, Meng Y, Yang J, Wang X, Li L, Liang Y, Kong F. HER3 receptor and its role in the therapeutic management of metastatic breast cancer. J Transl Med 2024; 22:665. [PMID: 39020378 PMCID: PMC11253420 DOI: 10.1186/s12967-024-05445-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.
Collapse
Affiliation(s)
- Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Minghui Yu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Longhui Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Anshanxi Road, Nankai District, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
31
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Xu T, Liu K, Zhang Y, Chen Y, Yin D. EGFR and Hippo signaling pathways are involved in organophosphate esters-induced proliferation and migration of triple-negative breast cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41939-41952. [PMID: 38856849 DOI: 10.1007/s11356-024-33872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 μM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 μM TPHP, 10-25 μM TDCIPP, and 1-10 μM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Kaiyue Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Post-doctoral Research Station of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
33
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
34
|
Périco LL, Vegso AJ, Baggio CH, MacNaughton WK. Protease-activated receptor 2 drives migration in a colon cancer cell line but not in noncancerous human epithelial cells. Am J Physiol Gastrointest Liver Physiol 2024; 326:G525-G542. [PMID: 38440826 DOI: 10.1152/ajpgi.00284.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.
Collapse
Affiliation(s)
- Larissa Lucena Périco
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Vegso
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H Baggio
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Smith SF, Brewer DS, Hurst R, Cooper CS. Applications of Urinary Extracellular Vesicles in the Diagnosis and Active Surveillance of Prostate Cancer. Cancers (Basel) 2024; 16:1717. [PMID: 38730670 PMCID: PMC11083542 DOI: 10.3390/cancers16091717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer among men in the UK, causing significant health and economic burdens. Diagnosis and risk prognostication can be challenging due to the genetic and clinical heterogeneity of prostate cancer as well as uncertainties in our knowledge of the underlying biology and natural history of disease development. Urinary extracellular vesicles (EVs) are microscopic, lipid bilayer defined particles released by cells that carry a variety of molecular cargoes including nucleic acids, proteins and other molecules. Urine is a plentiful source of prostate-derived EVs. In this narrative review, we summarise the evidence on the function of urinary EVs and their applications in the evolving field of prostate cancer diagnostics and active surveillance. EVs are implicated in the development of all hallmarks of prostate cancer, and this knowledge has been applied to the development of multiple diagnostic tests, which are largely based on RNA and miRNA. Common gene probes included in multi-probe tests include PCA3 and ERG, and the miRNAs miR-21 and miR-141. The next decade will likely bring further improvements in the diagnostic accuracy of biomarkers as well as insights into molecular biological mechanisms of action that can be translated into opportunities in precision uro-oncology.
Collapse
Affiliation(s)
- Stephanie F. Smith
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
- Department of Urology, Norfolk and Norwich University Hospitals, Norwich NR4 7UY, UK
| | - Daniel S. Brewer
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Rachel Hurst
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| | - Colin S. Cooper
- Metabolic Health Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK (C.S.C.)
| |
Collapse
|
36
|
Sharifi M, Alizadeh AA, Mivehroud MH, Dastmalchi S. Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging. Biotechnol Lett 2024; 46:147-159. [PMID: 38184487 DOI: 10.1007/s10529-023-03455-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/08/2024]
Abstract
There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT2 phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.
Collapse
Affiliation(s)
- Mehdi Sharifi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Hamzeh Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Po. Box: 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
37
|
Wang Z, Huang C, Fan W, Sun S, Li K, Liu X, Pu J, Zhang G, Li X. Case report: EGFR fusion mutation combined with EGFR amplification responds to EGFR-TKI therapy. Front Oncol 2024; 14:1347282. [PMID: 38595815 PMCID: PMC11003264 DOI: 10.3389/fonc.2024.1347282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Given their good antitumor effects, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are standard first-line therapy for EGFR-sensitive mutations, including exon 19 deletions and exon 21 L858R mutations. EGFR fusion mutations and EGFR amplification are very rare in non-small cell lung cancer (NSCLC). We describe 2 patients with NSCLC harboring EGFR fusion mutations (EGFR-MACF1 and EGFR-GNAT3) combined with EGFR amplification. Both patients received EGFR-TKI treatment, and 1 of them showed an antitumor response.
Collapse
Affiliation(s)
- Zhulin Wang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyao Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbo Fan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaowu Sun
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kaiyuan Li
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangtao Pu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guoqing Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangnan Li
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Maemoto T, Sasaki Y, Okuyama F, Kitai Y, Oritani K, Matsuda T. Potential of targeting signal-transducing adaptor protein-2 in cancer therapeutic applications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:251-259. [PMID: 38745775 PMCID: PMC11090684 DOI: 10.37349/etat.2024.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 05/16/2024] Open
Abstract
Adaptor proteins play essential roles in various intracellular signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that possesses pleckstrin homology (PH) and Src homology 2 (SH2) domains, as well as a YXXQ signal transducer and activator of transcription 3 (STAT3)-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (BRK). STAP-2/BRK expression is deregulated in breast cancers and enhances STAT3-dependent cell proliferation. In prostate cancer cells, STAP-2 interacts with and stabilizes epidermal growth factor receptor (EGFR) after stimulation, resulting in the upregulation of EGFR signaling, which contributes to cancer-cell proliferation and tumor progression. Therefore, inhibition of the interaction between STAP-2 and BRK/EGFR may be a possible therapeutic strategy for these cancers. For this purpose, peptides that interfere with STAP-2/BRK/EGFR binding may have great potential. Indeed, the identified peptide inhibitor successfully suppressed the STAP-2/EGFR protein interaction, EGFR stabilization, and cancer-cell growth. Furthermore, the peptide inhibitor suppressed tumor formation in human prostate- and lung-cancer cell lines in a murine xenograft model. This review focuses on the inhibitory peptide as a promising candidate for the treatment of prostate and lung cancers.
Collapse
Affiliation(s)
- Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Fumiya Okuyama
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Departmrnt of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
39
|
Krishnan A, Waheed SO, Varghese A, Cherilakkudy FH, Schofield CJ, Karabencheva-Christova TG. Unusual catalytic strategy by non-heme Fe(ii)/2-oxoglutarate-dependent aspartyl hydroxylase AspH. Chem Sci 2024; 15:3466-3484. [PMID: 38455014 PMCID: PMC10915816 DOI: 10.1039/d3sc05974j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | - Ann Varghese
- Department of Chemistry, Michigan Technological University Houghton MI 49931 USA
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford OX1 3TA Oxford UK
| | | |
Collapse
|
40
|
Vo TH, EL-Sherbieny Abdelaal E, Jordan E, O'Donovan O, McNeela EA, Mehta JP, Rani S. miRNAs as biomarkers of therapeutic response to HER2-targeted treatment in breast cancer: A systematic review. Biochem Biophys Rep 2024; 37:101588. [PMID: 38088952 PMCID: PMC10711031 DOI: 10.1016/j.bbrep.2023.101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is the most common type of lethal cancer in women globally. Women have a 1 in 8 chance of developing breast cancer in their lifetime. Among the four primary molecular subtypes (luminal A, luminal B, HER2+, and triple-negative), HER2+ accounts for 20-25 % of all breast cancer and is rather aggressive. Although the treatment outcome of HER2+ breast cancer patients has been significantly improved with anti-HER2 agents, primary and acquired drug resistance present substantial clinical issues, limiting the benefits of HER2-targeted treatment. MicroRNAs (miRNAs) play a central role in regulating acquired drug resistance. miRNA are single-stranded, non-coding RNAs of around 20-25 nucleotides, known for essential roles in regulating gene expression at the post-transcriptional level. Increasing evidence has demonstrated that miRNA-mediated alteration of gene expression is associated with tumorigenesis, metastasis, and tumor response to treatment. Comprehensive knowledge of miRNAs as potential markers of drug response can help provide valuable guidance for treatment prognosis and personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Thanh Hoa Vo
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | | | - Emmet Jordan
- Department of Oncology, University Hospital Waterford, Dunmore Road, X91 ER8E, Waterford, Ireland
| | - Orla O'Donovan
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Edel A. McNeela
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| | - Jai Prakash Mehta
- Department of Applied Science, South East Technological University, Kilkenny Road, R93 V960, Carlow, Ireland
| | - Sweta Rani
- Department of Science, School of Science and Computing, South East Technological University, Cork Road, Waterford, X91 K0EK, Ireland
- Pharmaceutical and Molecular Biotechnology Research Center, South East Technological University, Cork Road, X91 K0EK, Waterford, Ireland
| |
Collapse
|
41
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
42
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Mikuličić S, Shamun M, Massenberg A, Franke AL, Freitag K, Döring T, Strunk J, Tenzer S, Lang T, Florin L. ErbB2/HER2 receptor tyrosine kinase regulates human papillomavirus promoter activity. Front Immunol 2024; 15:1335302. [PMID: 38370412 PMCID: PMC10869470 DOI: 10.3389/fimmu.2024.1335302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Merha Shamun
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Annika Massenberg
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Anna-Lena Franke
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tatjana Döring
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Strunk
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Rheinland-Pfalz, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Thorsten Lang
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
44
|
Zhou M, Lin B, Wu P, Ke Y, Huang S, Zhang F, Hei X, Mao Z, Li X, Wan P, Chen T, Yang H, Huang D. SOX9 Induces Orbital Fibroblast Activation in Thyroid Eye Disease Via MAPK/ERK1/2 Pathway. Invest Ophthalmol Vis Sci 2024; 65:25. [PMID: 38345552 PMCID: PMC10866156 DOI: 10.1167/iovs.65.2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose To evaluate the expression of sry-box transcription factor 9 (SOX9) in orbital fibroblasts (OFs) of thyroid eye disease (TED) and to find its potential role and underlying mechanism in orbital fibrosis. Methods OFs were cultured from orbital connective tissues obtained from patients with TED (n = 10) and healthy controls (n = 6). SOX9 was depleted by small interfering RNA or overexpressed through lentivirus transduction in OFs. Fibroblast contractile activity was measured by collagen gel contraction assay and proliferation was examined by EdU assay. Transcriptomic changes were assessed by RNA sequencing. Results The mRNA and protein levels of SOX9 were significantly higher in OFs cultured from patients with TED than those from healthy controls. Extracellular matrix-related genes were down-regulated by SOX9 knockdown and up-regulated by SOX9 overexpression in TED-OFs. SOX9 knockdown significantly decrease the contraction and the antiapoptotic ability of OFs, whereas the overexpression of SOX9 increased the ability of transformation, migration, and proliferation of OFs. SOX9 knockdown suppressed the expression of phosphorylated ERK1/2, whereas its overexpression showed the opposite effect. Epidermal growth factor receptor (EGFR) is one of the notably down-regulated genes screened out by RNA sequencing. Chromatin immunoprecipitation-qPCR demonstrated SOX9 binding to the EGFR promoter. Conclusions A high expression of SOX9 was found in TED-OFs. SOX9 can activate OFs via MAPK/ERK1/2 signaling pathway, which in turn promotes proliferation and differentiation of OFs. EGFR was a downstream target gene of SOX9. SOX9/EGFR can be considered as therapeutic targets for the treatment of orbital fibrosis in TED.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengxia Wan
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tingting Chen
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| |
Collapse
|
45
|
Abbas G, Saluja TS, Kumar D, Agrawal H, Gupta A, Panday G, Singh SK. Antitumor efficacy of synthesized Ag-Au nanocomposite loaded with PEG and ascorbic acid in human lung cancer stem cells. Exp Cell Res 2024; 435:113904. [PMID: 38163564 DOI: 10.1016/j.yexcr.2023.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Lung cancer is the leading cause of mortality worldwide of which non-small cell lung carcinoma constitutes majority of the cases. High mortality is attributed to early metastasis, late diagnosis, ineffective treatment and tumor relapse. Chemotherapy and radiotherapy form the mainstay of its treatment. However, their associated side effects involving kidneys, nervous system, gastrointestinal tract, and liver further adds to dismal outcome. These disadvantages of conventional treatment can be circumvented by use of engineered nanoparticles for improved effectiveness with minimal side effects. In this study we have synthesized silver gold nanocomposite (Ag-Au NC) using polyethylene glycol and l-ascorbic acid as surfactant and reducing agent respectively. Synthesized nanocomposite was characterized by ultraviolet-visible absorption, dynamic light scattering, scanning and transmission electron microscopy. Compositional analysis was carried out by energy dispersive X-ray analysis and average pore diameter was estimated using Barrett-Joyner-Halenda method. In-silico molecular docking analysis of the synthesized NC against active regions of epidermal growth factor receptor revealed good binding energy. Subsequently, we investigated the effect of NC on growth and stem cell attributes of A549 lung cancer cells. Results showed that NC was effective in inhibiting A549 cell proliferation, induced DNA damage, G2/M phase arrest and apoptosis. Further, tumor cell migration and spheroid formation were also negatively affected. NC also enhanced reactive oxygen species generation and mitochondrial depolarization. In addition, the effect of NC on putative cancer stem cells in A549 cells was evaluated. We found that Ag-Au NC at IC50 targeted CD44, CD24, CD166, CD133 and CD326 positive cancer stem cells and induced apoptosis. CD166 positive cells were relatively resistance to apoptosis. Together our results demonstrate the anticancer efficacy of Ag-Au NC mediated by a mechanism involving cell cycle arrest and mitochondrial derangement.
Collapse
Affiliation(s)
- Gulam Abbas
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Tajindra Singh Saluja
- Baba Jaswant Singh Dental College, Hospital and Research Institute, Ludhiana, Punjab, India; Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dharmendra Kumar
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Hemant Agrawal
- FlowSols Pvt. Ltd. Royal Greens, Sirsi Road, Jaipur, India
| | - Anurag Gupta
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gajanan Panday
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| | - Satyendra Kumar Singh
- Department of Center for Advance Research, Stem Cell/Cell Culture Lab, King George's Medical University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
46
|
Zheng H, Qin X, Zheng Y, Yang X, Tan J, Cai W, He S, Liao H. Addition of bevacizumab to EGFR tyrosine kinase inhibitors in advanced NSCLC: an updated systematic review and meta-analysis. Front Pharmacol 2024; 14:1238579. [PMID: 38269283 PMCID: PMC10807044 DOI: 10.3389/fphar.2023.1238579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Background: The synergistic effects of antiangiogenic inhibitor bevacizumab and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) therapy were encouraging in patients with EGFR-mutant advanced NSCLC, though some controversy remains. The specific subgroup of patients who might benefit most from the EGFR-TKI and bevacizumab combination therapy is yet to be determined. Methods: Randomized clinical trials (RCTs) that had compared the clinical efficacy of EGFR-TKI and bevacizumab combination therapy with EGFR-TKI monotherapy in treating EGFR-mutant advanced NSCLC patients published before 23 December 2022 were searched in the Cochrane, PubMed and Embase. We performed a meta-analysis for the overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events with a grade equal or more than 3 (grade≥3 TRAEs). Subgroup analyses of PFS and OS stratified by clinical characteristics and treatment were conducted. Results: We included 10 RCTs involving 1520 patients. Compared with EGFR-TKI monotherapy, addition of bevacizumab to EGFR-TKI resulted in a significantly higher PFS (hazard ratio (HR) = 0.74, 95% confidence interval (95% CI): 0.62-0.87)) and ORR (risk ratio (RR) = 1.07, 95% CI: 1.01-1.13). However, no significant difference in OS (HR = 0.96, 95% CI: 0.83-1.12) was noticed. Patients with EGFR-mutant advanced NSCLC receiving combination therapy showed PFS improvement regardless of gender (male or female), Eastern Cooperative Oncology Group performance status (0 or 1), baseline central nervous system (CNS) metastasis (presence or absence) and EGFR mutation type (19del or 21L858R). Subgroup analyses showed that, with the treatment of bevacizumab and EGFR-TKI, patients who ever smoked achieved significantly better OS and PFS benefits (HR = 0.68, 95% CI: 0.48-0.95; HR = 0.59, 95% CI: 0.46-0.74, respectively), and those aged <75 years and the Asian population had significantly prolonged PFS (HR = 0.69, 95% CI: 0.52-0.91; HR = 0.71, 95% CI: 0.58-0.87; respectively). The superiority of EGFR-TKI and bevacizumab combination therapy against EGFR-TKI monotherapy in improving PFS was more significant in the erlotinib regimen subgroup. The risk of grade≥3 TRAEs was remarkably higher in the combination therapy group (HR = 1.73, 95% CI: 1.39-2.16). Conclusion: Addition of bevacizumab to EGFR-TKI therapy provided significantly better PFS and ORR for EGFR-mutant advanced NSCLC patients, though with higher risk of grade≥3 TRAEs. Patients who ever smoked, aged <75 years, and Asian population might benefit more from the combination regimen. Systematic Review Registration: This systematic review and meta-analysis was registered in the PROSPERO database (CRD42023401926).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Huang W, Li J, Zhu H, Qin X, Chen C, Wang B, Wei J, Song Y, Lu X, Li Z, Xia W, He A, Cheng L, Yu X, Shu K, Wang W. A novel EGFR variant EGFRx maintains glioblastoma stem cells through STAT5. Neuro Oncol 2024; 26:85-99. [PMID: 37616578 PMCID: PMC10768976 DOI: 10.1093/neuonc/noad153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Glioblastomas are universally lethal brain tumors containing tumor-propagating glioblastoma stem cells (GSCs). EGFR gene amplification or mutation is frequently detected in GBMs and is associated with poor prognosis. However, EGFR variants in GSCs and their role in the maintenance of GSCs and progression of GBM are unclear. METHODS EGFR variants were detected through bioinformatic HISAT-StringTie-Ballgown pipeline and verified through 5' RACE, RT-PCR, ribonuclease protection, and northern blotting assays. EGFRx function was investigated through neurosphere, cell viability, intracranial xenograft and RNA-seq assays. EGFRx-STAT5 signaling was investigated through western blotting, coimmunoprecipitation, immunofluorescence, luciferase reporter, RT-PCR and CUT&Tag assays. RESULTS We identified a novel EGFR variant (EGFRx), that is specifically expressed in GSCs. Unlike the EGFRvIII variant, which lacks exons 2-7, EGFRx is characterized by the absence of exons 2-14, and encodes an EGFR protein that does not possess the entire extracellular ligand-binding domain. We observed that EGFRx exhibits significant glycosylation, is required for GSC self-renewal, proliferation, and tumorigenesis, and highly active in glioblastomas compared to normal brain tissue. Mechanistically, EGFRx constitutively and specifically activates STAT5 in GSCs through spontaneous asymmetric dimerization of the kinase domain. CONCLUSIONS EGFRx plays essential roles in the maintenance of the GSC phenotype through constitutive activation of STAT5 and promotes GBM progression, suggesting that EGFRx-STAT5 signaling represents a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Wei Huang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhui Qin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxia Wei
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyang Song
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Lu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongyu Li
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Xia
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aodi He
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
49
|
Wirth D, Özdemir E, Hristova K. Quantification of ligand and mutation-induced bias in EGFR phosphorylation in direct response to ligand binding. Nat Commun 2023; 14:7579. [PMID: 37989743 PMCID: PMC10663608 DOI: 10.1038/s41467-023-42926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
50
|
Lee Y, Lim S, Kim JA, Chun YH, Lee HJ. Development of Thiol-Ene Reaction-Based HA Hydrogel with Sustained Release of EGF for Enhanced Skin Wound Healing. Biomacromolecules 2023; 24:5342-5352. [PMID: 37734002 DOI: 10.1021/acs.biomac.3c00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This study develops a novel drug delivery system using a hyaluronic acid (HA) hydrogel for controlled release of epidermal growth factor (EGF) to enhance skin wound healing. Conventional hydrogel-based methods suffer from a burst release and limited drug delivery times. To address this, we employ bioconjugation to introduce an acrylate group to EGF, enabling chemical bonding to the HA hydrogel matrix through thiol-ene cross-linking. This approach results in sustained-release delivery of EGF based on the degradation rate of the HA matrix, overcoming diffusion-based limitations. We confirm the introduction of the acrylate group using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We evaluated the hydrogel morphology and rheological properties following binding of acrylate-conjugated EGF to the HA matrix. Assessment of the EGF release profile demonstrates delayed release compared to unconjugated EGF. We evaluate the impact on cells through cell proliferation and scratch assays, indicating the system's efficacy. In a rat wound healing model, the sustained release of EGF from the hydrogel system promotes appropriate tissue healing and restores it to a normal state. These findings suggest that this practical drug delivery system, involving the modification of growth factors or drugs to chemically bind healing factors to hydrogels, can achieve long-lasting effects.
Collapse
Affiliation(s)
- Yerin Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Saebin Lim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Ji An Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|