1
|
Zhang Q, Qiao W, Liu X, Lu J, Benish F, Li S, Liu X. Inhibition of PDK modulates radiotherapy resistance in gastric cancer. Discov Oncol 2025; 16:887. [PMID: 40410508 PMCID: PMC12102042 DOI: 10.1007/s12672-025-02635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
To explore the effect of sodium dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, on the progression of gastric cancer and resistance to radiotherapy, we analyzed histopathological microarrays from 60 gastric cancer and paracancerous tissues to determine PDK expression and its prognostic significance. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay and Transwell migration assay were used to investigate the effects of PDK inhibition on gastric cancer cell proliferation and migration. Flow cytometry revealed that PDK inhibition promoted apoptosis and induced G1 phase cell cycle arrest. Colony formation assay combined with radiation was performed to calculate radiobiological parameters, while Western blot detected the expression of phosphorylated histone H2AX (γ-H2AX), a DNA double-strand break marker. Reactive oxygen species (ROS) generation was measured using the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Our results showed that PDK was highly expressed in gastric cancer tissues and correlated with poor patient prognosis. PDK inhibition suppressed proliferation and migration of gastric cancer cells, promoted apoptosis and G1 phase arrest, and enhanced γ-H2AX accumulation and ROS generation, thereby increasing radiosensitivity. These findings demonstrate that targeting PDK inhibits gastric cancer progression and sensitizes tumor cells to radiotherapy.
Collapse
Affiliation(s)
- Qi Zhang
- Xi'an International Medical Center Hospital, Xian, 710018, Shanxi, China
| | - Wanjia Qiao
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaoyu Liu
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jun Lu
- Xi'an International Medical Center Hospital, Xian, 710018, Shanxi, China
| | | | - Shuping Li
- Lanzhou University Third Clinical Medical College, No. 204, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - Xiaojun Liu
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment, National Health and Wellness Commission, Lanzhou, 730000, Gansu, China.
- Lanzhou University Third Clinical Medical College, No. 204, Donggang West Road, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Chen L, He Y, Jiang X, Kow ASF, Lee YZ, Tham CL, Yusof R, Lee MT. Regulation of elevated expression of Mcl-1 in hepatocellular carcinoma - a review. J Recept Signal Transduct Res 2025:1-11. [PMID: 40366802 DOI: 10.1080/10799893.2025.2503393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. Mcl-1 (myeloid cell leukemia-1) is highly expressed in HCC cells and plays a critical role in chemotherapy resistance and is a major contributor to chemotherapy failure in HCC. The purpose of this study is to review the recent research progress that explores the key factors in regulating Mcl-1 overexpression in HCC cells, contributing to chemotherapy resistance. The related studies from the past decade on agents targeting Mcl-1 to inhibit HCC were also reviewed to provide insights into overcoming chemotherapy resistance in HCC. Mcl-1 overexpression in HCC is mainly regulated by transcription factors (such as STAT3, p53), non-coding RNAs (such as miRNA, lncRNA), cell cycle proteins, mitochondrial dynamics, and the hypoxic microenvironment. Targeting Mcl-1, alongside multi-target combination therapies, may overcome HCC chemotherapy resistance and improve outcomes. Future research should focus on strategies addressing multiple pathways to minimize monotherapy resistance risks and offer enhanced treatment options for the betterment of human health.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | - Yuwei He
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | - Xudong Jiang
- Department of Pharmacology, College of Medicine, Guangxi University of Science and Technology, Liuzhou, PR China
| | | | - Yu Zhao Lee
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
- UCSI Wellbeing Research Centre, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Liu N, Liu Y, Wang X, Liu M, Wang Y, Feng C, Piao M. N-Acety-L-Cysteine Alleviates Isoflurane-Triggered Neuronal Cell Parthanatos by Suppressing Reactive Oxygen Species Accumulation Through the Induction of c-Jun N-Terminal Kinase Signaling Pathway Inhibition. J Biochem Mol Toxicol 2025; 39:e70268. [PMID: 40269590 PMCID: PMC12018870 DOI: 10.1002/jbt.70268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
In recent years, the potential neurotoxicity of inhaled anesthetics on the developing brain has increasingly garnered attention, yet its mechanism remains unclear. Parthanatos is a newly discovered form of programmed cell death dependent on PARP-1, and it is believed to be closely associated with cellular oxidative stress response. However, it is still to be proven whether isoflurane, a commonly used clinical anesthetic, can induce parthanatos in developing brain neurons and whether it activates the oxidative stress signaling pathway in neuronal cells. In this study, we treated SH-SY5Y cells and rat hippocampus neuron cells (RN-h) with isoflurane, measured cell viability using the MTT assay, examined the activation of the parthanatos-related PARP-1/AIF/PAR signaling pathway using western blot analysis, detected the accumulation of ROS using DCFH-DA, detected mitochondrial membrane potential (Δψm) by a JC-1 assay, and assessed the activation of the oxidative stress-related JNK signaling pathway using western blot. In vivo, we examined the damaging effects of inhaled isoflurane on neonatal rat hippocampal neurons using HE staining. The results showed that 2% and 4% concentrations of isoflurane significantly inhibited cell survival and upregulated the expression levels of PARP-1, AIF, and PAR in both types of neuronal cells. Moreover, isoflurane significantly enhanced ROS levels and decreased Δψm, and activated the JNK signaling pathway in both cell types. Importantly, we found that pretreatment with N-Acetylcysteine (NAC) could inhibit isoflurane-induced parthanatos and the accumulation of ROS in cells, as well as the activation of the JNK pathway. The experimental results in neonatal rats also demonstrated that isoflurane led to significant neuronal death in the hippocampal CA1 region. However, pretreatment with NAC significantly increased the survival rate of pyramidal neurons in this region. In summary, through our experiments, we confirmed that isoflurane can induce parthanatos in neuronal cells, and NAC can decrease ROS accumulation in neuronal cells and thus mitigate the damage isoflurane causes to neuronal cells.
Collapse
Affiliation(s)
- Nan Liu
- Department of Nutrition and Food SafetySchool of Public Health, Jilin UniversityChangchunChina
- Department of Anesthesiologythe First Hospital of Jilin UniversityChangchunChina
| | - Ya Liu
- Department of Nutrition and Food SafetySchool of Public Health, Jilin UniversityChangchunChina
| | - Xuedong Wang
- Department of Anesthesiologythe First Hospital of Jilin UniversityChangchunChina
| | - Ming Liu
- Department of NeurosurgeryQianwei Hospital of Jilin ProvinceChangchunChina
| | - Yingying Wang
- Department of AnesthesiologyCancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Chunsheng Feng
- Department of Anesthesiologythe First Hospital of Jilin UniversityChangchunChina
| | - Meihua Piao
- Department of Anesthesiologythe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Parhira S, Simanurak O, Pansooksan K, Somran J, Wangteeraprasert A, Jiang Z, Bai L, Nangngam P, Pekthong D, Srisawang P. Cerbera odollam fruit extracts enhance anti-cancer activity of sorafenib in HCT116 and HepG2 cells. CHINESE HERBAL MEDICINES 2025; 17:108-126. [PMID: 39949813 PMCID: PMC11814254 DOI: 10.1016/j.chmed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Objective While higher therapeutic doses of toxic cardiac glycosides derived from Cerbera odollam are frequently employed in cases of suicide or homicide, ongoing research is investigating the potential anticancer properties of low-concentration extracts obtained from the fruits of C. odollam. The present study aimed to determine the enhanced anticancer effects and minimize potential side effects of combining extracts from C. odollam fruits from Thailand with sorafenib against HCT116 and HepG2 cells. Methods The dried powder of fresh green fruits of C. odollam was fractionated, and its phytochemical contents, including total cardiac glycosides, phenolics, flavonoids, and triterpenoids, were quantified. The cytotoxic effects of these fractions were evaluated against HCT116 and HepG2 cells using the MTT assay. The fractions showing the most significant response in HCT116 and HepG2 cells were subsequently combined with sorafenib to examine their synergistic effects. Apoptosis induction, cell cycle progression, and mitochondrial membrane potential (MMP) were then assessed. The underlying mechanism of the apoptotic effect was further investigated by analyzing reactive oxygen species (ROS) generation and the expression levels of antioxidant proteins. Results Phytochemical analysis showed that C. odollam-ethyl acetate fraction (COEtOAc) was rich in cardiac glycosides, phenolics, and flavonoids, while the dichloromethane fraction (CODCM) contained high levels of triterpenoids and saponins. Following 24 h treatment, HCT116 showed the most significant response to COEtOAc, while HepG2 responded well to CODCM with IC50 values of (42.04 ± 16.94) μg/mL and (123.75 ± 14.21) μg/mL, respectively. Consequently, COEtOAc (20 μg/mL) or CODCM (30 μg/mL), both administered at sub-IC50 concentrations, were combined with sorafenib at 6 μmol/L for HCT116 cells and 2 μmol/L for HepG2 cells, incubated for 24 h. This combination resulted in a significant suppression in cell viability by approximately 50%. The combination of treatments markedly enhanced apoptosis, diminished MMP, and triggered G0/G1 phase cell cycle arrest compared to the effects of each treatment administered individually. Concurrently, increased formation of ROS and decreased expression of the antioxidant enzymes superoxide dismutase 2 and catalase supported the proposed mechanism of apoptosis induction by the combination treatment. Importantly, the anticancer effect demonstrated a specific targeted action with a favorable safety profile, as evidenced by HFF-1 cells displaying IC50 values 2-3 times higher than those of the cancer cells. Conclusion Utilizing sub-IC50 concentrations of COEtOAc or CODCM in combination with sorafenib can enhance targeted anticancer effects beyond those achieved with single-agent treatments, while mitigating opposing side effects. Future research will focus on extracting and characterizing active constituents, especially cardiac glycosides, to enhance the therapeutic potential of anticancer compounds derived from toxic plants.
Collapse
Affiliation(s)
- Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Khemmachat Pansooksan
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Liping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China
| | - Pranee Nangngam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
Zhang X, Tao Y, Xu Z, Jiang B, Yang X, Huang T, Tan W. Sorafenib and SIAIS361034, a novel PROTAC degrader of BCL-x L, display synergistic antitumor effects on hepatocellular carcinoma with minimal hepatotoxicity. Biochem Pharmacol 2024; 230:116542. [PMID: 39284500 DOI: 10.1016/j.bcp.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The overexpression of BCL-xL is closely associated with poor prognosis in hepatocellular carcinoma (HCC). While the strategy of combination of BCL-xL and MCL-1 for treating solid tumors has been reported, it presents significant hepatotoxicity. SIAIS361034, a novel proteolysis targeting chimera (PROTAC) agent, selectively induces the ubiquitination and subsequent proteasomal degradation of BCL-xL through the CRBN-E3 ubiquitin ligase. When combined with sorafenib, SIAIS361034 showed a potent synergistic effect in inhibiting hepatocellular carcinoma development both in vitro and in vivo. Since SIAIS361034 exhibits a high degree of selectivity for degrading BCL-xL in hepatocellular carcinoma, the hepatotoxicity typically associated with the combined inhibition of BCL-xL and MCL-1 is significantly reduced, thereby greatly enhancing safety. Mechanistically, BCL-xL and MCL-1 sequester the BH3-only protein BIM on mitochondria at baseline. Treatment with SIAIS361034 and sorafenib destabilizes BIM/BCL-xL and BIM/MCL1 association, resulting in the liberation of more BIM proteins to trigger apoptosis. Additionally, we discovered a novel compensatory regulation mechanism in hepatocellular carcinoma cells. BIM can rapidly respond to changes in the balance between BCL-xL and MCL-1 through their co-transcription factor MEF2C to maintain apoptosis resistance. In summary, the combination therapy of SIAIS361034 and sorafenib represents an effective and safe approach for inhibiting hepatocellular carcinoma progression. The novel balancing mechanism may also provide insights for combination and precision therapies in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yachuan Tao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongli Xu
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., No. 99 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201210, China.
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
6
|
Kamble OS, Chatterjee R, Abishek KG, Chandra J, Alsayari A, Wahab S, Sahebkar A, Kesharwani P, Dandela R. Small molecules targeting mitochondria as an innovative approach to cancer therapy. Cell Signal 2024; 124:111396. [PMID: 39251050 DOI: 10.1016/j.cellsig.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cellular death evasion is a defining characteristic of human malignancies and a significant contributor to therapeutic inefficacy. As a result of oncogenic inhibition of cell death mechanisms, established therapeutic regimens seems to be ineffective. Mitochondria serve as the cellular powerhouses, but they also function as repositories of self-destructive weaponry. Changes in the structure and activities of mitochondria have been consistently documented in cancer cells. In recent years, there has been an increasing focus on using mitochondria as a targeted approach for treating cancer. Considerable attention has been devoted to the development of delivery systems that selectively aim to deliver small molecules called "mitocans" to mitochondria, with the ultimate goal of modulating the physiology of cancer cells. This review summarizes the rationale and mechanism of mitochondrial targeting with small molecules in the treatment of cancer, and their impact on the mitochondria. This paper provides a concise overview of the reasoning and mechanism behind directing treatment towards mitochondria in cancer therapy, with a particular focus on targeting using small molecules. This review also examines diverse small molecule types within each category as potential therapeutic agents for cancer.
Collapse
Affiliation(s)
- Omkar S Kamble
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - K G Abishek
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India.
| |
Collapse
|
7
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
8
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
9
|
Yang Q, Li F, Jia G, Liu R. Aged black garlic extract inhibits the growth of estrogen receptor-positive breast cancer cells by downregulating MCL-1 expression through the ROS-JNK pathway. PLoS One 2023; 18:e0286454. [PMID: 37352173 PMCID: PMC10289325 DOI: 10.1371/journal.pone.0286454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/05/2023] [Indexed: 06/25/2023] Open
Abstract
The black garlic is produced from the raw garlic by Milliard reaction at high temperature (~60-90°C) and humidity (~70-90%). In this process, the pungent odor and gastrointestinal irritation effects of the raw garlic are reduced. At the same time, unstable compounds such as allicin are converted into stable organosulfur compounds with antioxidant activity. Previous studies have confirmed that black garlic extract has anti-tumor effects and could inhibit the proliferation of various tumor cells, including breast cancer cells MCF-7. However, the mechanisms of the anti-tumor effects remain unclear. In this study, we found that the black garlic extract could inhibit the proliferation, invasion, and metastasis of estrogen receptor-positive breast cancer cells, promote their apoptosis, and inhibit their epithelial-mesenchymal transition. Mechanistically, the black garlic extract reduced the expression of the anti-apoptotic protein MCL-1, which was achieved by modulating the ROS-JNK signaling pathway. In addition, the black garlic extract also decreased the expression of BCL-2 and increased the expression of BAX and BIM. We also found that the black garlic extract, in combination with venetoclax, a BCL-2 inhibitor, synergistically kills the estrogen receptor-positive breast cancer cells. These results suggested that black garlic extract has great therapeutic value and prospects for estrogen receptor-positive breast cancer treatment.
Collapse
Affiliation(s)
- Qiwei Yang
- Inner Mongolia Medical University Third Clinical Medical College, Inner Mongolia Autonomous Region, Baotou, China
| | - Fang Li
- Department of Experimental Center, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Baotou, China
| | - Guohui Jia
- Department of Laboratory, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Baotou, China
| | - Rui Liu
- Department of General Surgery, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Baotou, China
| |
Collapse
|
10
|
Marco-Brualla J, de Miguel D, Martínez-Lostao L, Anel A. DR5 Up-Regulation Induced by Dichloroacetate Sensitizes Tumor Cells to Lipid Nanoparticles Decorated with TRAIL. J Clin Med 2023; 12:jcm12020608. [PMID: 36675536 PMCID: PMC9864242 DOI: 10.3390/jcm12020608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Cancer resistance to treatments is a challenge that researchers constantly seek to overcome. For instance, TNF-related apoptosis-inducing ligand (TRAIL) is a potential good prospect as an anti-cancer therapy, as it attacks tumor cells but not normal cells. However, treatments based in soluble TRAIL provided incomplete clinical results and diverse formulations have been developed to improve its bioactivity. In previous works, we generated a new TRAIL formulation based in its attachment to the surface of unilamellar nanoliposomes (LUV-TRAIL). This formulation greatly increased apoptosis in a wide selection of tumor cell types, albeit a few of them remained resistant. On the other hand, it has been described that a metabolic shift in cancer cells can also alter its sensitivity to other treatments. In this work, we sought to increase the sensitivity of several tumor cell types resistant to LUV-TRAIL by previous exposure to the metabolic drug dichloroacetate (DCA), which forces oxidative phosphorylation. Results showed that DCA + LUV-TRAIL had a synergistic effect on both lung adenocarcinoma A549, colorectal HT29, and breast cancer MCF7 cells. Despite DCA inducing intracellular changes in a cell-type specific way, the increase in cell death by apoptosis was clearly correlated with an increase in death receptor 5 (DR5) surface expression in all cell lines. Therefore, DCA-induced metabolic shift emerges as a suitable option to overcome TRAIL resistance in cancer cells.
Collapse
Affiliation(s)
- Joaquín Marco-Brualla
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Aragon Health Research Institute (IIS-Aragón) & University of Zaragoza, 50009 Zargoza, Spain
| | - Diego de Miguel
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Aragon Health Research Institute (IIS-Aragón) & University of Zaragoza, 50009 Zargoza, Spain
| | | | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Aragon Health Research Institute (IIS-Aragón) & University of Zaragoza, 50009 Zargoza, Spain
- Correspondence:
| |
Collapse
|
11
|
Zhou CC, He YQ, Qiu YS, Ni CX, Shen FM, Li DJ. Zinc supplementation ameliorates sorafenib-induced cognitive impairment through ROS/JNK signaling pathway. Biol Trace Elem Res 2023; 201:324-337. [PMID: 35129807 DOI: 10.1007/s12011-022-03142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023]
Abstract
Sorafenib, a multiple kinase inhibitor, is widely used in cancer patients. Recently, clinical studies highlighted the relationship between cognitive deficits and sorafenib exposure. Zinc abundant in the body has been reported to exert neuroprotective activities. However, the effects of zinc supplementation on sorafenib-induced cognitive impairment are still unknown. In the current study, we verified that mice challenged with sorafenib displayed characteristic features of cognitive impairment. However, zinc treatment effectively improved these changes. Histopathological staining also showed that zinc significantly alleviated hippocampal microstructural and ultrastructural damages induced by sorafenib. Meanwhile, zinc significantly reduced sorafenib-induced ROS production and neuronal cells apoptosis in vivo and vitro. Additionally, we also investigated whether zinc protected against sorafenib-induced neuronal cells apoptosis via ROS/JNK pathway through treating SH-SY5Y cells with the NAC or the specific JNK activator anisomycin. The results indicated that NAC performed the same protective effects as zinc in sorafenib-challenged SH-SY5Y cells and activation of JNK by anisomycin partly abolished the protective effects of zinc. Collectively, the present study suggested that inhibition of oxidative stress and the JNK pathway might contribute to the protective effects of zinc against sorafenib-caused cognitive impairment in vivo and vitro.
Collapse
Affiliation(s)
- Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Shuang Qiu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chen-Xu Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
12
|
Lam SK, Yan S, Lam JSM, Feng Y, Khan M, Chen C, Ko FCF, Ho JCM. Disturbance of the Warburg effect by dichloroacetate and niclosamide suppresses the growth of different sub-types of malignant pleural mesothelioma in vitro and in vivo. Front Pharmacol 2022; 13:1020343. [PMID: 36304150 PMCID: PMC9592830 DOI: 10.3389/fphar.2022.1020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Inhalation of asbestos fibers is the most common cause of malignant pleural mesothelioma (MPM). In 2004, the United States Food and Drug Administration approved a combination of cisplatin with pemetrexed to treat unresectable MPM. Nonetheless novel treatment is urgently needed. The objective of this study is to report the combination effect of dichloroacetate (DCA) or niclosamide (Nic) Nic in MPM. Materials and methods: The effect of a combination of DCA and Nic was studied using a panel of MPM cell lines (H28, MSTO-211H, H226, H2052, and H2452). Cell viability was monitored by MTT assay. Glycolysis, oxidative phosphorylation, glucose, glycogen, pyruvate, lactate, citrate, succinate and ATP levels were determined by corresponding ELISA. Apoptosis, mitochondrial transmembrane potential, cell cycle analysis, hydrogen peroxide and superoxide were investigated by flow cytometry. Cell migration and colony formation were investigated by transwell migration and colony formation assays respectively. The in vivo effect was confirmed using 211H and H226 nude mice xenograft models. Results and conclusion: Cell viability was reduced. Disturbance of glycolysis and/or oxidative phosphorylation resulted in downregulation of glycogen, citrate and succinate. DCA and/or Nic increased apoptosis, mitochondrial transmembrane depolarization, G2/M arrest and reactive oxygen species. Moreover, DCA and/or Nic suppressed cell migration and colony formation. Furthermore, a better initial tumor suppressive effect was induced by the DCA/Nic combination compared with either drug alone in both 211H and H226 xenograft models. In H226 xenografts, DCA/Nic increased median survival of mice compared with single treatment. Single drug and/or a combination disturbed the Warburg effect and activated apoptosis, and inhibition of migration and proliferation in vivo. In conclusion, dichloroacetate and/or niclosamide showed a tumor suppressive effect in MPM in vitro and in vivo, partially mediated by disturbance of glycolysis/oxidative phosphorylation, apoptosis, ROS production, G2/M arrest, and suppression of migration and proliferation.
Collapse
|
13
|
Yang W, Wang Y, Zhang P, Sun X, Chen X, Yu J, Shi L, Yin Y, Tao K, Li R. Immune-responsive gene 1 protects against liver injury caused by concanavalin A via the activation Nrf2/HO-1 pathway and inhibition of ROS activation pathways. Free Radic Biol Med 2022; 182:108-118. [PMID: 35231555 DOI: 10.1016/j.freeradbiomed.2022.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/02/2023]
Abstract
Itaconate is produced by an enzyme encoded by the immune-responsive gene 1 (IRG1) and exerts antibacterial, anti-inflammatory, and antioxidant effects via multiple mechanisms. However, the role of IRG1/itaconate in liver injury caused by Concanavalin A (Con A) is not fully understood. In this study, we explored the therapeutic effect of IRG1/four-octyl itaconate (4-OI), a derivative of itaconate, on liver injury caused by Con A and its possible underlying mechanisms. In vivo experiments, we found that Con A promoted IRG1 expression in the liver tissue. Deletion of IRG1 in mice aggravated Con A-induced liver injury. Compared to wild-type (WT) mice, the inflammatory response, hepatocyte apoptosis, and serum cytokine levels were significantly increased, while the antioxidant capacity was significantly attenuated in IRG1-/- mice. In addition, we found that Con A promoted the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome, caspase-1, and gasdermin D activation, and pyroptosis was more obvious in IRG1-/- mice, while 4-OI inhibited pyroptosis. In vivo experiments showed that Con A promoted hepatocyte apoptosis by promoting reactive oxygen species (ROS) expression, and 4-OI reduced ROS-mediate apoptosis in NCTC 1469 cells. In RAW264.7 cells, we demonstrated that 4-OI inhibited the inflammatory response by promoting the nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and inhibiting the nuclear factor-kappa B (NF-κB)/mitogen-activated protein kinases signaling pathway. To further confirm that Nrf2 is the target of itaconate, we pretreated WT mice with ML385, an Nrf2 inhibitor, and found that ML385 could weaken the protection of 4-OI in Con A-induced liver injury mouse model. Furthermore, when we knocked down the Nrf2 gene in NCTC 1469 and RAW264.7 cells, the effect of 4-OI in inhibiting inflammation and apoptosis also decreased. In conclusion, our study shows the importance of IRG1 in inflammation and oxidative stress, and suggests that it plays a vital protective role in Con A-induced liver injury. These findings indicate IRG1/itaconate is a potential therapeutic strategy for immune liver injury, which requires further clinical exploration.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiong Sun
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxian Yu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|