1
|
Cho M, Been N, Son HS. Analysis of protein determinants of genotype-specific properties of group a rotaviruses using machine learning. Comput Biol Med 2025; 191:110143. [PMID: 40203739 DOI: 10.1016/j.compbiomed.2025.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Group A rotaviruses (RVAs) are the leading cause of viral diarrhoea across various host species, including mammals and birds. The VP7 and VP4 proteins of these viruses play critical roles in determining genotype specificity, influencing viral infectivity and host adaptation. This study employed machine-learning techniques to classify RVA genotypes based on the molecular and physicochemical properties of these proteins. A dataset of 94 VP7 and 68 VP4 protein sequences was collected from various host species. Seven machine-learning algorithms-Naïve Bayes (NB), logistic regression (LR), decision tree (DT), random forest (RF), k-nearest neighbour (kNN), support vector machine (SVM), and artificial neural network (ANN)-were used for genotype classification. Feature subsets were configured using ranking-based attribute selection, and classification performance was evaluated using accuracy (ACC), precision, recall, Matthews' correlation coefficient (MCC), and the area under the curve (AUC). kNN demonstrated the highest classification accuracy for both VP7 (ACC = 97.87 %) and VP4 (ACC = 100 %), outperforming NB, LR, DT, RF, SVM, and ANN. For VP7 sequences, key properties influencing genotype classification included hydrophobicity, normalised van der Waals volume, and leucine composition. For VP4, polarity, normalised van der Waals volume, and polarizability were the most significant factors. In summary, the genotype-specific molecular features of VP7 and VP4 proteins served as reliable markers for RVA classification. Our findings highlight the potential of machine-learning approaches to predict RVA genotypes based on the physicochemical properties of amino acids, providing valuable insights into the molecular mechanisms that drive viral evolution, host specificity, and immune evasion.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Nara Been
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyeon S Son
- Laboratory of Computational Virology & Viroinformatics, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Public Health AI Lab, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
El-Gbily S, Eldokmak MM, Diabb R, Abas OM, Ata EB, Kamal S, Hassan SMH. Severe lamb diarrhea outbreak: Clinical features, identification of the causative agent, and a prophylactic approach. Comp Immunol Microbiol Infect Dis 2025; 118:102318. [PMID: 39933285 DOI: 10.1016/j.cimid.2025.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Lamb diarrhea is an important problem and has a significance impact on the ovine sector productivity. This study aimed to identify the causative agent related to a severe diarrhea outbreak in neonatal lambs in Egypt. A total number of 30 lambs representing different farms were investigated. Faecal samples were obtained for parasitological, bacteriological, and virological examination. Tissue samples were obtained for histopathology. While blood was obtained for measuring haematological parameters and humeral immune response against the used Entero-3 vaccine®, respectively. The obtained results cleared presence of significant clinical symptoms of diarrhea, dehydration and inflammation of the large intestine which was filled with watery fluid content. Parasitological causative agents were not recorded. Enterococcus sp. was successfully isolated from 30 % of the samples (seven isolates E. faecium and two E. gallinarum) with detection of the Asa and Esp virulence genes. While E. coli was detected in 26.6 % of the cases, they were identified as O124:K72, O111:K58, O78:K80, O26:K60 with successful amplification of the Sta and F5 (K99) virulence genes. The obtained isolates were susceptible to the Amikacin . Using vaccination as a prophylactic approach resulted in decreasing mortality rates with presence of a protective seroconversion rate in the vaccinated animals. The haematological parameters showed presence of neutrophilia and lymphocytosis. Histopathologically, desquamations of the villi' enterocytes were the most common lesion. In conclusion, this study highlights the roles of bacterial and viral infection in causing severe lamb enteritis and high mortalities which necessitate establishing of ewe's vaccination programs.
Collapse
Affiliation(s)
- Shaimaa El-Gbily
- Virology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Marwa M Eldokmak
- Bacteriology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Rasha Diabb
- Immunity Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| | - Osama M Abas
- Animal Medicine Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Emad Beshir Ata
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Egypt.
| | - Safwat Kamal
- Veterinary Serum and Vaccine Research Institute (VSVRI), Egypt
| | - Shahenaz M H Hassan
- Clinical Pathology Department. Alexandria Regional Lab., Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| |
Collapse
|
3
|
Vizzi E, Rosales RE, Piñeros O, Fernández R, Inaty D, López K, Peña L, De Freitas-Linares A, Navarro D, Neri S, Durán O, Liprandi F. Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses 2025; 17:410. [PMID: 40143336 PMCID: PMC11946648 DOI: 10.3390/v17030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Rotavirus alphagastroenteritidis is the leading cause of acute gastroenteritis worldwide in young humans and animals. In 2023-2024, a relatively high rotavirus detection rate (34.5%) was detected in children with diarrhea in Caracas. All rotavirus strains were typed as P[8], using a multiplex RT-PCR assay, while the G-type was not identified. This unusual pattern, not previously observed in Venezuela, prompted the VP7 gene sequencing of nineteen strains, which displayed a high sequence identity (99.3-100%) compatible with the G3 genotype. These strains clustered into a well-supported lineage IX encompassing human reassortants of equine-like G3P[8] strains described elsewhere, showing a very close genetic relationship (99.0-99.9%). Old G3 rotavirus isolates obtained from diarrheic samples in the past were included in the analysis and grouped into lineage I together with ancestral reference G3 strains. The novel G3P[8]s carry amino acid changes in VP7-neutralizing epitopes, compared with the RotaTeq-WI78-8-vaccine strain. Full genome sequencing of a representative strain revealed a genotype constellation including an equine-like G3P[8] in a DS-1-like backbone (I2-R2-C2-M2-A2-N2-T2-E2-H2), confirming the role of animal strains as a source of diversification, and the importance of unceasingly revising molecular typing strategies and vaccine efficacy to guarantee their success.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rita E. Rosales
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Oscar Piñeros
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - David Inaty
- Departamento de Pediatría, Clínica Las Ciencias, Caracas 1040, Venezuela;
| | - Karolina López
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Laura Peña
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Angela De Freitas-Linares
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Dianora Navarro
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Sandra Neri
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Osmary Durán
- Hospital Militar Universitario “Dr. Carlos Arvelo”, Caracas 1020, Venezuela;
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| |
Collapse
|
4
|
Tsukamoto M, Akutsu H. Comparative gastrointestinal organoid models across species: A Zoobiquity approach for precision medicine. Regen Ther 2025; 28:314-320. [PMID: 39885871 PMCID: PMC11779682 DOI: 10.1016/j.reth.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) health underpins systemic well-being, yet the complexity of gut physiology poses significant challenges to understanding disease mechanisms and developing effective, personalized therapies. Traditional models often fail to capture the intricate interplay between epithelial, mesenchymal, immune, and neuronal cells that govern gut homeostasis and disease. Over the past five years, advances in organoid technology have created physiologically relevant, three-dimensional GI models that replicate native tissue architecture and function. These models have revolutionized the study of autoimmune disorders, homeostatic dysfunction, and pathogen infections, such as norovirus and Salmonella, which affect millions of humans and animals globally. In this review, we explore how organoids, derived from intestinal and pluripotent stem cells, are transforming our understanding of GI development, disease etiology, and therapeutic innovation. Through the "Zoobiquity" paradigm and "One Health" framework, we highlight the integration of companion animal organoids, which provide invaluable insights into shared disease mechanisms and preclinical therapeutic development. Despite their promise, challenges remain in achieving organoid maturation, expanding immune and neuronal integration, and bridging the gap between organoid responses and in vivo outcomes. By refining these cutting-edge platforms, we can advance human and veterinary medicine alike, fostering a holistic approach to health and disease.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
5
|
Cao Z, Yang Y, Zhang S, Zhang T, Lü P, Chen K. Liquid-liquid phase separation in viral infection: From the occurrence and function to treatment potentials. Colloids Surf B Biointerfaces 2025; 246:114385. [PMID: 39561518 DOI: 10.1016/j.colsurfb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biomacromolecules, as a widespread cellular functional mechanism, is closely related to life processes, and is also commonly present in the lifecycle of viruses. Viral infection often leads to the recombination and redistribution of intracellular components to form biomacromolecule condensates assembled from viral replication-related proteins and intracellular components, which plays an important role in the process of viral infection. In this review, the key and influencing factors of LLPS are generalized, which mainly depend on various molecular interactions and environmental conditions in solution. Meanwhile, some examples of viruses utilizing LLPS are summarized, which are conducive to further understanding the subtle and complex biological regulatory processes between phase condensation and viruses. Finally, some representative antiviral drugs targeting phase separation that have been discovered are also outlined. In conclusion, in-depth study of the role of LLPS in viral infection is helpful to understand the mechanisms of virus-related diseases from a new perspective, and also provide a new therapeutic strategy for future treatments.
Collapse
Affiliation(s)
- Zhaoxiao Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Simeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Tiancheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Ghonaim AH, Rouby SR, Nageeb WM, Elgendy AA, Xu R, Jiang C, Ghonaim NH, He Q, Li W. Insights into recent advancements in human and animal rotavirus vaccines: Exploring new frontiers. Virol Sin 2025; 40:1-14. [PMID: 39672271 PMCID: PMC11962973 DOI: 10.1016/j.virs.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Rotavirus infections cause severe gastroenteritis and dehydration in young children and animals worldwide, leading to high rates of morbidity and mortality, predominantly in low- and middle-income countries. In the past decade, substantial progress has been made in the development and implementation of rotavirus vaccines, which have been essential in alleviating the global burden of this disease, not only in human being but also in livestock species like calves and piglets, where these infections can cause significant economic losses. By synthesizing the latest research and real-world evidence, this review article is designated to provide deep insights into the current state of rotavirus vaccine technology and its global implementation as well as the application of rotavirus vaccines in veterinary settings and their importance in controlling zoonotic transmission and maintaining food security.
Collapse
Affiliation(s)
- Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Desert Research Center, Cairo 11435, Egypt
| | - Sherin R Rouby
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wedad M Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
| | - Ashraf Ahmed Elgendy
- Department of Immunology, Faculty of Medicine, New Kaser Al-Aini Teaching Hospital, Cairo University, 11435, Egypt
| | - Rong Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Changsheng Jiang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Noha H Ghonaim
- Family Medicine Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
7
|
Díaz Alarcón RG, Salvatierra K, Gómez Quintero E, Liotta DJ, Parreño V, Miño SO. Complete Genome Classification System of Rotavirus alphagastroenteritidis: An Updated Analysis. Viruses 2025; 17:211. [PMID: 40006966 PMCID: PMC11860323 DOI: 10.3390/v17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rotavirus alphagastroenteritidis is the major causative agent of acute gastroenteritis in both children under the age of 5 and young mammals and birds globally. RVAs are non-enveloped viruses with a genome comprising 11 double-stranded RNA segments. In 2008, the Rotavirus Classification Working Group pioneered a comprehensive and complete RVA genome classification system, establishing a specific threshold, which measures the genetic distances between homologous genes. The aim of this study was to perform an updated systematic analysis of the genetic variability across all RVA genes. Our investigation involved assessing the established cutoff values for each RVA genome segment and determining the need for any updates. To achieve this objective, multiple sequence alignments were constructed for all 11 genes and one for each genotype with discrepancies. Also, pairwise distances along with their cutoff values were evaluated. The analyses provided insights into the current relevance of cutoff values, which remain applicable for the majority of genotypes. In conclusion, this study fortifies the current classification system by highlighting its robustness and accurate genotyping of Rotavirus alphagastroenteritidis.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Council for Scientific and Technical Research (CONICET), Av. Mariano Moreno 1375, Lab 105, Posadas CP3300, Misiones, Argentina
| | - Karina Salvatierra
- Laboratory “MADAR”, National University of Misiones (UNaM), Ruta 12, Km 7 y ½, Posadas CP3300, Misiones, Argentina;
| | - Emiliano Gómez Quintero
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú CP3370, Misiones, Argentina
| | - Viviana Parreño
- National Institute of Agricultural Technology (INTA), IncuINTA, De Las Cabañas y De los Reseros s/n, Hurlingham CP1816, Buenos Aires, Argentina;
| | - Samuel Orlando Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas CP3300, Misiones, Argentina; (R.G.D.A.); (E.G.Q.); (D.J.L.)
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul CP3313, Misiones, Argentina
| |
Collapse
|
8
|
Nour I, Mohanty SK. Avian Reovirus: From Molecular Biology to Pathogenesis and Control. Viruses 2024; 16:1966. [PMID: 39772272 PMCID: PMC11728826 DOI: 10.3390/v16121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver. In broilers and turkeys, ARVs can induce severe arthritis/tenosynovitis, characterized by swollen hock joints and lesions in the gastrocnemius tendons. Additionally, ARVs have been implicated in other diseases, although their precise role in these conditions remains to be fully elucidated. In recent years, ARV cases have surged in the United States, emphasizing the need for effective control measures. Routine vaccination with commercial or autogenous vaccines is currently the primary strategy for mitigating ARV's impact. Future research efforts should focus on enhancing our understanding of ARV-induced pathogenesis, identifying host factors that influence disease severity, and developing novel vaccines based on ongoing surveillance of circulating ARV strains. This review aims to explore the molecular aspects of ARV, including virus structure, replication, molecular epidemiology, the roles of its encoded proteins in host pathogenesis, and the immune response to ARV infection. Furthermore, we discuss the diagnostic approaches of avian reovirus and the potential biosecurity measures and vaccination trials in combating ARV and developing effective antiviral strategies.
Collapse
Affiliation(s)
| | - Sujit K. Mohanty
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA;
| |
Collapse
|
9
|
Kostanić V, Kunić V, Prišlin Šimac M, Lolić M, Sukalić T, Brnić D. Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus. Vet Sci 2024; 11:671. [PMID: 39729011 DOI: 10.3390/vetsci11120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice.
Collapse
Affiliation(s)
- Vjekoslava Kostanić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Valentina Kunić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | | | - Marica Lolić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 32100 Vinkovci, Croatia
| | - Tomislav Sukalić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 48260 Križevci, Croatia
| | - Dragan Brnić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Mahmoud AE, Zaki MES, Mohamed EH, Fahmy EM, Hamam SSM, Alsayed MA. Study of rotavirus genotypes G and P in one Egyptian center-cross-sectional study. Ital J Pediatr 2024; 50:247. [PMID: 39543754 PMCID: PMC11566636 DOI: 10.1186/s13052-024-01810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Rotavirus-associated gastroenteritis is a common health problem in children, different variations of rotavirus genotypes differ according to geographic locations and the practice of wide-scale vaccination. Therefore, the present study aimed to detect both the G and P genotypes of rotavirus in children ≤ 5 years old in one center in Egypt as a cross-sectional study, to correlate the genotypes with various demographic and clinical data in infected children and to evaluate the common mixed genotypes G and P in infected children. METHOD The cross-sectional study included children with acute gastroenteritis ≤ 5 years old from January 2023 till March 2024 recruited from Mansoura University Children's Hospital, Egypt based upon laboratory diagnosis by exclusion of bacterial and protozoa pathogens. The stool samples were obtained from each child and subjected to detection of rotavirus antigen by enzyme-linked immunosorbent assay (ELISA) followed by genotypes identification of G and P genotypes by nested polymerase chain reaction (PCR). RESULT A nested PCR study for rotavirus genotypes revealed that G1 was the most common genotype (24.7%) followed by G2 (21.1%), G3 (20%), G9 (20%), and G4 (14.1%). The genotyping of the P genotype revealed that P9 was the commonest genotype (24.7%), followed by P4 (21.2%), P10 (20%), P8 (17.6%) and P6 (16.5%). The commonest combined genotypes of G and P were G1P4 (85.7%), G3P8(88.2%), followed by G2P6 (77.8%) and G9P9(76.5%) and G4P9 (66.7%) followed by G4P10 (33.3%), G9P10(23.5%), G2P10(22.2%), G1P10 (14.3%), G3P10(11.8%). The distribution was significant (P = 0.001). The positive rotavirus antigen was more frequently detected in females (55.3%) than males (44.7%, Odd ratio 0.2, 95% CI 0.22-0.71, P = 0.001). There was a significant association between the summer season and positive rotavirus antigen (P = 0.001) and rural residence of the patients (Odd ratio 6,9 95%CI 3,5-13.5, P = 0.001). The significant associated clinical sign with positive rotavirus antigen was fever (Odd ratio 3,3, 95%CI 1,8-6.05, P = 0.001). The genotypes G and P were significantly associated with positive rotavirus antigen as all cases positive by antigen had been detected by nested PCR with the commonest genotypes G4 (24.7%, P = 0.001) and genotype P9 (24.7%, P = 0.001). CONCLUSION The present study highlights the common genotypes of rotavirus at one center in Egypt, G1, G2, and G3 were the commonest G genotypes. As regard genotype P the commonest genotypes were P9, P4, and P10. The commonest combined genotypes were G1P4, G3P8, G2P6. There was no effect of the practice of rotavirus vaccination at limited rates at private health sections as the rotavirus is still a major pathogen of acute gastroenteritis in children. There is a need for the inclusion of rotavirus vaccination in the national program of children vaccination in Egypt.
Collapse
Affiliation(s)
| | - Maysaa El Sayed Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Hamdy Mohamed
- Clinical Pathology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Ehab M Fahmy
- Medical Microbiology and Immunology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | | | |
Collapse
|
11
|
Suzuki Y, Yaeshiro M, Uehara D, Ishihara R. Shared clusters between phylogenetic trees for genomic segments of Rotavirus A with distinct genotype constellations. GENE REPORTS 2024; 36:101956. [DOI: 10.1016/j.genrep.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Šenica P, Žele Vengušt D, Vengušt G, Kuhar U. Genomic revelations: investigating rotavirus a presence in wild ruminants and its zoonotic potential. Front Vet Sci 2024; 11:1429654. [PMID: 39211480 PMCID: PMC11358691 DOI: 10.3389/fvets.2024.1429654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Rotaviruses A (RVA) are a major cause of acute viral gastroenteritis in humans worldwide and are responsible for about two million hospitalizations per year. They can also infect other mammals such as pigs, calves, goats, lambs, and horses, in which they are also considered a major cause of viral diarrhea. While RVA is well studied in humans and domestic animals, its occurrence in wild ruminants is not well known. The RVA genome is a double-stranded RNA consisting of 11 segments, and genotyping is based on the VP7 (G) and VP4 (P) segments. Currently, there are 42G genotypes and 58P genotypes. RVA has a high mutation rate, and some combinations of G and P genotypes can infect different animal species, leading to speculation about the potential for zoonotic transmission. Materials and methods A total of 432 fecal samples were collected from roe deer, red deer, chamois, mouflon and Alpine ibex in Slovenia between 2017 and 2021. To investigate the presence of RVA in wild ruminants, real-time RT-PCR was used. Positive samples were subjected to next generation sequencing (NGS) using RIP-seq method. Results and discussion In total, 7 samples were RVA positive. Complete genomes were determined and phylogenetically analyzed for all 7 RVAs. Four different genotype constellations were present in 7 positive RVA animals: G8-P[14]-I2- R2-C2-M2-A3-N2-T6-E2-H3, G6-P [14]-I2-R2-C2-M2-A11-N2-T6-E2-H3, G10-P [15]-I2-R2-C2-M2-A3-N2-T6-E2-H3 and G10-P [15]-I2-R2-C2-M2-A11- N2-T6-E2-H3. Genotypes G6P[14] and G10P[15] were found in both roe deer and red deer, representing the first confirmed occurrence of RVA in red deer. In addition, genotype G8P[14] was found in chamois, representing the first known case of positive RVA in this species. Some of these genotypes have also been found in humans, indicating the potential for zoonotic transmission.
Collapse
Affiliation(s)
- Petra Šenica
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Gorazd Vengušt
- Veterinary Faculty, Institute of Pathology, Wild Animals, Fish and Bees, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Kuri PR, Goswami P. Reverse vaccinology-based multi-epitope vaccine design against Indian group A rotavirus targeting VP7, VP4, and VP6 proteins. Microb Pathog 2024; 193:106775. [PMID: 38960216 DOI: 10.1016/j.micpath.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvβ3 and αIIbβ3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Suh DC, Lance SL, Park AW. Abiotic and biotic factors jointly influence the contact and environmental transmission of a generalist pathogen. Ecol Evol 2024; 14:e70167. [PMID: 39157664 PMCID: PMC11329300 DOI: 10.1002/ece3.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
The joint influence of abiotic and biotic factors is important for understanding the transmission of generalist pathogens. Abiotic factors such as temperature can directly influence pathogen persistence in the environment and will also affect biotic factors, such as host community composition and abundance. At intermediate spatial scales, the effects of temperature, community composition, and host abundance are expected to contribute to generalist pathogen transmission. We use a simple transmission model to explain and predict how host community composition, host abundance, and environmental pathogen persistence times can independently and jointly influence transmission. Our transmission model clarifies how abiotic and biotic factors can synergistically support the transmission of a pathogen. The empirical data show that high community competence, high abundance, and low temperatures correlate with high levels of transmission of ranavirus in larval amphibian communities. Discrete wetlands inhabited by larval amphibians in the presence of ranavirus provide a compelling case study comprising distinct host communities at a spatial scale anticipated to demonstrate abiotic and biotic influence on transmission. We use these host communities to observe phenomena demonstrated in our theoretical model. These findings emphasize the importance of considering both abiotic and biotic factors, and concomitant direct and indirect mechanisms, in the study of pathogen transmission and should extend to other generalist pathogens with the capacity for environmental transmission.
Collapse
Affiliation(s)
- Daniel C. Suh
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Stacey L. Lance
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Andrew W. Park
- Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Infectious Diseases, College of Veterinary MedicineUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
15
|
Fujii Y, Masatani T, Nishiyama S, Takahashi T, Okajima M, Izumi F, Sakoda Y, Takada A, Ozawa M, Sugiyama M, Ito N. Molecular characterization of an avian rotavirus a strain detected from a large-billed crow (Corvus macrorhynchos) in Japan. Virology 2024; 596:110114. [PMID: 38781709 DOI: 10.1016/j.virol.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Avian rotaviruses A (RVAs) are occasionally transmitted to animals other than the original hosts across species barriers. Information on RVAs carried by various bird species is important for identifying the origin of such interspecies transmission. In this study, to facilitate an understanding of the ecology of RVAs from wild birds, we characterized all of the genes of an RVA strain, JC-105, that was detected in a fecal sample of a large-billed crow (Corvus macrorhynchos) in Japan. All of the genes of this strain except for the VP4 and VP7 genes, which were classified as novel genotypes (P[56] and G40, respectively), were closely related to those of the avian-like RVA strain detected from a raccoon, indicating the possibility that crows had been involved in the transmission of avian RVAs to raccoons. Our findings highlight the need for further viral investigations in wild birds and mammals to understand the mechanisms of avian-to-mammal RVA transmission.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
16
|
Wu L, Jing Z, Pan Y, Guo L, Li Z, Feng L, Tian J. Emergence of a novel pathogenic porcine G1P[7] rotavirus in China. Virology 2024; 598:110185. [PMID: 39096775 DOI: 10.1016/j.virol.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024]
Abstract
Among group A rotaviruses (RVAs), the G1 genotype is the main genotype causing diarrhea in children, but it has rarely been reported in pigs. During our epidemiological investigation, we detected G1P[7] rotavirus infection in piglets across several provinces in China and then isolated a porcine G1P[7] rotavirus strain (CN1P7). Sequencing revealed that the virus constellation was G1-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analyses revealed that CN1P7 most likely emerged due to genetic reassortment among porcine, human, giant panda and dog rotavirus strains. In vivo experiments were conducted on two-day-old piglets, which revealed that the CN1P7 strain was pathogenic to piglets. The virus was shed through the digestive tract and respiratory tract. In addition to the intestine, the CN1P7 strain displayed extraintestinal tropisms in piglets. Histopathological analysis revealed that the lung and small intestine were the targets of CN1P7. This study is the first to explore the molecular and pathogenic characterization of a pig-origin G1P[7] rotavirus.
Collapse
Affiliation(s)
- Ling Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yudi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Longjun Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zixin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| | - Jin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.
| |
Collapse
|
17
|
Barua SR, Das T, Rakib TM, Nath BK, Gupta SD, Sarker S, Chowdhury S, Raidal SR, Das S. Complete genome constellation of a dominant Bovine rotavirus genotype circulating in Bangladesh reveals NSP4 intragenic recombination with human strains. Virology 2024; 598:110195. [PMID: 39089050 DOI: 10.1016/j.virol.2024.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.
Collapse
Affiliation(s)
- Shama Ranjan Barua
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh; Department of Livestock Services, Ministry of Fisheries and Livestock, Bangladesh
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Babu Kanti Nath
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD-4814, Australia
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia; Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW-2678, Australia.
| |
Collapse
|
18
|
Hoa-Tran TN, Nakagomi T, Vu HM, Nguyen TTT, Dao ATH, Nguyen AT, Bines JE, Thomas S, Grabovac V, Kataoka-Nakamura C, Taichiro T, Hasebe F, Kodama T, Kaneko M, Dang HTT, Duong HT, Anh DD, Nakagomi O. Evolution of DS-1-like G8P[8] rotavirus A strains from Vietnamese children with acute gastroenteritis (2014-21): Adaptation and loss of animal rotavirus-derived genes during human-to-human spread. Virus Evol 2024; 10:veae045. [PMID: 38952820 PMCID: PMC11215986 DOI: 10.1093/ve/veae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.
Collapse
Affiliation(s)
- Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hung Manh Vu
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Trang Thu Thi Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh Thi Hai Dao
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Anh The Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Sarah Thomas
- Enteric Diseases Group, Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Varja Grabovac
- Vaccine-Preventable Diseases and Immunization Unit, Division of Programmes for Disease Control, World Health Organization Regional Office for the Western Pacific, Manila 1000, Philippines
| | - Chikako Kataoka-Nakamura
- Center Surveillance Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka 768-0065, Japan
| | - Takemura Taichiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Futoshi Hasebe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Vietnam Research Station, National Institute of Hygiene and Epidemiology-Nagasaki University, Hanoi 100000, Vietnam
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Miho Kaneko
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Huyen Thi Thanh Dang
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Hong Thi Duong
- National office for Expanded Program on Immunization, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
19
|
Carter MH, Gribble J, Diller JR, Denison MR, Mirza SA, Chappell JD, Halasa NB, Ogden KM. Human Rotaviruses of Multiple Genotypes Acquire Conserved VP4 Mutations during Serial Passage. Viruses 2024; 16:978. [PMID: 38932271 PMCID: PMC11209247 DOI: 10.3390/v16060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.
Collapse
Affiliation(s)
- Maximilian H. Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara A. Mirza
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natasha B. Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
20
|
Yaman Y, Kişi YE, Şengül SS, Yıldırım Y, Bay V. Unveiling genetic signatures associated with resilience to neonatal diarrhea in lambs through two GWAS approaches. Sci Rep 2024; 14:13072. [PMID: 38844604 PMCID: PMC11156902 DOI: 10.1038/s41598-024-64093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
Neonatal diarrhea presents a significant global challenge due to its multifactorial etiology, resulting in high morbidity and mortality rates, and substantial economic losses. While molecular-level studies on genetic resilience/susceptibility to neonatal diarrhea in farm animals are scarce, prior observations indicate promising research directions. Thus, the present study utilizes two genome-wide association approaches, pKWmEB and MLM, to explore potential links between genetic variations in innate immunity and neonatal diarrhea in Karacabey Merino lambs. Analyzing 707 lambs, including 180 cases and 527 controls, revealed an overall prevalence rate of 25.5%. The pKWmEB analysis identified 13 significant SNPs exceeding the threshold of ≥ LOD 3. Moreover, MLM detected one SNP (s61781.1) in the SLC22A8 gene (p-value, 1.85eE-7), which was co-detected by both methods. A McNemar's test was conducted as the final assessment to identify whether there are any major effective markers among the detected SNPs. Results indicate that four markers-oar3_OAR1_122352257, OAR17_77709936.1, oar3_OAR18_17278638, and s61781.1-have a substantial impact on neonatal diarrhea prevalence (odds ratio: 2.03 to 3.10; statistical power: 0.88 to 0.99). Therefore, we propose the annotated genes harboring three of the associated markers, TIAM1, YDJC, and SLC22A8, as candidate major genes for selective breeding against neonatal diarrhea.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Türkiye.
| | - Yiğit Emir Kişi
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Serkan S Şengül
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Yasin Yıldırım
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, 35100, Türkiye
| |
Collapse
|
21
|
Wu Q, Liu X, Wang J, Xu S, Zeng F, Chen L, Zhang G, Wang H. An isothermal nucleic acid amplification-based enzymatic recombinase amplification method for dual detection of porcine epidemic diarrhea virus and porcine rotavirus A. Virology 2024; 594:110062. [PMID: 38522136 DOI: 10.1016/j.virol.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/μL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.
Collapse
Affiliation(s)
- Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Fanliang Zeng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China
| | - Ling Chen
- Ganzhou Quannan County Agriculture and Rural Bureau, Ganzhou, 341800, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Lin Q, Goldberg EE, Leitner T, Molina-París C, King AA, Romero-Severson EO. The Number and Pattern of Viral Genomic Reassortments are not Necessarily Identifiable from Segment Trees. Mol Biol Evol 2024; 41:msae078. [PMID: 38648521 PMCID: PMC11152448 DOI: 10.1093/molbev/msae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.
Collapse
Affiliation(s)
- Qianying Lin
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Emma E Goldberg
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Thomas Leitner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carmen Molina-París
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Aaron A King
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Ethan O Romero-Severson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
23
|
Chamsai E, Charoenkul K, Udom K, Jairak W, Chaiyawong S, Amonsin A. Genetic characterization and evidence for multiple reassortments of rotavirus A G3P[3] in dogs and cats in Thailand. Front Vet Sci 2024; 11:1415771. [PMID: 38855413 PMCID: PMC11157116 DOI: 10.3389/fvets.2024.1415771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024] Open
Abstract
Rotavirus A (RVA) causes gastroenteritis in humans and animals. The zoonotic potential of RVA has been reported and raises major concerns, especially in animal-human interface settings. The study aimed to characterize and investigate the genetic diversity among RVAs in dogs and cats in Thailand. We collected 572 rectal swab samples from dogs and cats in Bangkok animal hospitals from January 2020 to June 2021. The one-step RT-PCR assay detected RVAs in 1.92% (11/572) of the samples, with 2.75% (8/290) in dogs and 1.06% (3/282) in cats. Two canine RVA and one feline RVA were subjected to whole genome sequencing. Our results showed that all three viruses were identified as RVA genotype G3P[3]. The genetic constellation of RVAs is unique for different species. For canine RVAs is G3-P [3]-I3-R3-C3-M3-A9-N2-T3-E3-H6, while Feline RVA is G3-P [3]-I8-R3-C3-M3-A9-N3-T3-E3-H6. Notably, both canine and feline RVAs contained the AU-1 genetic constellation with multiple reassortments. The results of phylogenetic, genetic, and bootscan analyses showed that canine RVAs may have reassorted from dog, human, and cat RVAs. While feline RVA was closely related to RVAs in humans, bats, and simians. This study provided genetic characteristics and diversity of RVAs in dogs and cats and suggested possible multiple reassortments, suggesting the zoonotic potential of the viruses. Thus, public health awareness should be raised regarding the zoonotic potential of RVAs in dogs and cats. Further studies on RVAs on a larger scale in dogs and cats in Thailand are needed.
Collapse
Affiliation(s)
- Ekkapat Chamsai
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitikhun Udom
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Waleemas Jairak
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Njifon HLM, Kenmoe S, Ahmed SM, Roussel Takuissu G, Ebogo-Belobo JT, Njile DK, Bowo-Ngandji A, Mbaga DS, Kengne-Nde C, Mouiche MMM, Njouom R, Perraut R, Leung DT. Epidemiology of Rotavirus in Humans, Animals, and the Environment in Africa: A Systematic Review and Meta-analysis. J Infect Dis 2024; 229:1470-1480. [PMID: 37962924 PMCID: PMC11095554 DOI: 10.1093/infdis/jiad500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Globally, rotavirus infections are the most common cause of diarrhea-related deaths, especially among children under 5 years of age. This virus can be transmitted through the fecal-oral route, although zoonotic and environmental contributions to transmission are poorly defined. The purpose of this study is to determine the epidemiology of rotavirus in humans, animals, and the environment in Africa, as well as the impact of vaccination. METHODS We searched PubMed, Web of Science, Africa Index Medicus, and African Journal Online, identifying 240 prevalence data points from 224 articles between 2009 and 2022. RESULTS Human rotavirus prevalence among patients with gastroenteritis was 29.8% (95% confidence interval [CI], 28.1%-31.5%; 238 710 participants), with similar estimates in children under 5 years of age, and an estimated case fatality rate of 1.2% (95% CI, .7%-2.0%; 10 440 participants). Prevalence was estimated to be 15.4% and 6.1% in patients with nongastroenteritis illnesses and apparently healthy individuals, respectively. Among animals, prevalence was 9.3% (95% CI, 5.7%-13.7%; 6115 animals), and in the environmental water sources, prevalence was 31.4% (95% CI, 17.7%-46.9%; 2530 samples). DISCUSSION Our findings highlight the significant burden of rotavirus infection in Africa, and underscore the need for a One Health approach to limiting the spread of this disease.
Collapse
Affiliation(s)
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Sharia M Ahmed
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Guy Roussel Takuissu
- Centre for Food, Food Security, and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Cyprien Kengne-Nde
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | | | - Richard Njouom
- Department of Virology, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Ronald Perraut
- Annex of Garoua, Centre Pasteur du Cameroon, Garoua, Cameroon
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Amimo JO, Michael H, Chepngeno J, Jung K, Raev SA, Paim FC, Lee MV, Damtie D, Vlasova AN, Saif LJ. Maternal immunization and vitamin A sufficiency impact sow primary adaptive immunity and passive protection to nursing piglets against porcine epidemic diarrhea virus infection. Front Immunol 2024; 15:1397118. [PMID: 38812505 PMCID: PMC11133611 DOI: 10.3389/fimmu.2024.1397118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes a highly contagious enteric disease with major economic losses to swine production worldwide. Due to the immaturity of the neonatal piglet immune system and given the high virulence of PEDV, improving passive lactogenic immunity is the best approach to protect suckling piglets against the lethal infection. We tested whether oral vitamin A (VA) supplementation and PEDV exposure of gestating and lactating VA-deficient (VAD) sows would enhance their primary immune responses and boost passive lactogenic protection against the PEDV challenge of their piglets. We demonstrated that PEDV inoculation of pregnant VAD sows in the third trimester provided higher levels of lactogenic protection of piglets as demonstrated by >87% survival rates of their litters compared with <10% in mock litters and that VA supplementation to VAD sows further improved the piglets' survival rates to >98%. We observed significantly elevated PEDV IgA and IgG antibody (Ab) titers and Ab-secreting cells (ASCs) in VA-sufficient (VAS)+PEDV and VAD+VA+PEDV sows, with the latter maintaining higher Ab titers in blood prior to parturition and in blood and milk throughout lactation. The litters of VAD+VA+PEDV sows also had the highest serum PEDV-neutralizing Ab titers at piglet post-challenge days (PCD) 0 and 7, coinciding with higher PEDV IgA ASCs and Ab titers in the blood and milk of their sows, suggesting an immunomodulatory role of VA in sows. Thus, sows that delivered sufficient lactogenic immunity to their piglets provided the highest passive protection against the PEDV challenge. Maternal immunization during pregnancy (± VA) and VA sufficiency enhanced the sow primary immune responses, expression of gut-mammary gland trafficking molecules, and passive protection of their offspring. Our findings are relevant to understanding the role of VA in the Ab responses to oral attenuated vaccines that are critical for successful maternal vaccination programs against enteric infections in infants and young animals.
Collapse
Affiliation(s)
- Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sergei A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Francine C. Paim
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Marcia V. Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Tao R, Cheng X, Gu L, Zhou J, Zhu X, Zhang X, Guo R, Wang W, Li B. Lipidomics reveals the significance and mechanism of the cellular ceramide metabolism for rotavirus replication. J Virol 2024; 98:e0006424. [PMID: 38488360 PMCID: PMC11019908 DOI: 10.1128/jvi.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
As one of the most important causative agents of severe gastroenteritis in children, piglets, and other young animals, species A rotaviruses have adversely impacted both human health and the global swine industry. Vaccines against rotaviruses (RVs) are insufficiently effective, and no specific treatment is available. To understand the relationships between porcine RV (PoRV) infection and enterocytes in terms of the cellular lipid metabolism, we performed an untargeted liquid chromatography mass spectrometry (LC-MS) lipidomics analysis of PoRV-infected IPEC-J2 cells. Herein, a total of 451 lipids (263 upregulated lipids and 188 downregulated lipids), spanning sphingolipid, glycerolipid, and glycerophospholipids, were significantly altered compared with the mock-infected group. Interestingly, almost all the ceramides among these lipids were upregulated during PoRV infection. LC-MS analysis was used to validated the lipidomics data and demonstrated that PoRV replication increased the levels of long-chain ceramides (C16-ceramide, C18-ceramide, and C24-ceramide) in cells. Furthermore, we found that these long-chain ceramides markedly inhibited PoRV infection and that their antiviral actions were exerted in the replication stage of PoRV infection. Moreover, downregulation of endogenous ceramides with the ceramide metabolic inhibitors enhanced PoRV propagation. Increasing the levels of ceramides by the addition of C6-ceramide strikingly suppressed the replication of diverse RV strains. We further found that the treatment with an apoptotic inhibitor could reverse the antiviral activity of ceramide against PoRV replication, demonstrating that ceramide restricted RV infection by inducing apoptosis. Altogether, this study revealed that ceramides played an antiviral role against RV infection, providing potential approaches for the development of antiviral therapies.IMPORTANCERotaviruses (RVs) are among the most important zoonosis viruses, which mainly infected enterocytes of the intestinal epithelium causing diarrhea in children and the young of many mammalian and avian species. Lipids play an essential role in viral infection. A comprehensive understanding of the interaction between RV and lipid metabolism in the enterocytes will be helpful to control RV infection. Here, we mapped changes in enterocyte lipids following porcine RV (PoRV) infection using an untargeted lipidomics approach. We found that PoRV infection altered the metabolism of various lipid species, especially ceramides (derivatives of the sphingosine). We further demonstrated that PoRV infection increased the accumulation of ceramides and that ceramides exerted antiviral effects on RV replication by inducing apoptosis. Our findings fill a gap in understanding the alterations of lipid metabolism in RV-infected enterocytes and highlight the antiviral effects of ceramides on RV infection, suggesting potential approaches to control RV infection.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xi Cheng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Laqiang Gu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, Jiangsu, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
27
|
Fukuda Y, Kusuhara H, Takai-Todaka R, Haga K, Katayama K, Tsugawa T. Human transmission and outbreaks of feline-like G6 rotavirus revealed with whole-genome analysis of G6P[9] feline rotavirus. J Med Virol 2024; 96:e29565. [PMID: 38558056 DOI: 10.1002/jmv.29565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.
Collapse
Affiliation(s)
- Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hajime Kusuhara
- Mie Prefecture Health and Environment Research Institute, Mie, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kei Haga
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UBR, Parreño V. Equine Rotavirus A under the One Health Lens: Potential Impacts on Public Health. Viruses 2024; 16:130. [PMID: 38257830 PMCID: PMC10819593 DOI: 10.3390/v16010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Group A rotaviruses are a well-known cause of viral gastroenteritis in infants and children, as well as in many mammalian species and birds, affecting them at a young age. This group of viruses has a double-stranded, segmented RNA genome with high genetic diversity linked to point mutations, recombination, and, importantly, reassortment. While initial molecular investigations undertaken in the 1900s suggested host range restriction among group A rotaviruses based on the fact that different gene segments were distributed among different animal species, recent molecular surveillance and genome constellation genotyping studies conducted by the Rotavirus Classification Working Group (RCWG) have shown that animal rotaviruses serve as a source of diversification of human rotavirus A, highlighting their zoonotic potential. Rotaviruses occurring in various animal species have been linked with contributing genetic material to human rotaviruses, including horses, with the most recent identification of equine-like G3 rotavirus A infecting children. The goal of this article is to review relevant information related to rotavirus structure/genomic organization, epidemiology (with a focus on human and equine rotavirus A), evolution, inter-species transmission, and the potential zoonotic role of equine and other animal rotaviruses. Diagnostics, surveillance and the current status of human and livestock vaccines against RVA are also reviewed.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Maria Aldana Vissani
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maria E. Barrandeguy
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar, Buenos Aires B1630AHU, Argentina; (M.A.V.); (M.E.B.)
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviana Parreño
- Instituto de Virología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires B1686LQF, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
29
|
Arnold M, Echtermann T, Nathues H. Infectious Enteric Diseasses in Pigs. PRODUCTION DISEASES IN FARM ANIMALS 2024:223-269. [DOI: 10.1007/978-3-031-51788-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Kozyra I, Kocki J, Rzeżutka A. Detection of Porcine–Human Reassortant and Zoonotic Group A Rotaviruses in Humans in Poland. Transbound Emerg Dis 2024; 2024. [DOI: 10.1155/2024/4232389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 01/05/2025]
Abstract
Group A rotaviruses (RVAs) are widespread in humans and many animal species and represent the most epidemiologically important rotavirus group. The aim of the study was the identification of the genotype pattern of human RVA strains circulating in Poland, assessment of their phylogenetic relationships to pig RVAs and identification of reassortant and zoonotic virus strains. Human stool samples which were RVA positive (n = 166) were collected from children and adults at the age of 1 month to 74 years with symptoms of diarrhoea. Identification of the G and P genotypes of human RVAs as well as the complete genotype of reassortant and zoonotic virus strains was performed by the use of an RT‐PCR method. The G (G1–G4, G8 or G9) and/or P (P[4], P[6], P[8] or P[9]) genotypes were determined for 148 (89.2%) out of 166 RVA strains present in human stool. G1P[8] RVA strains prevailed, and G4P[8] (20.5%), G9P[8] (15.7%) and G2P[4] (13.3%) human RVA strains were also frequently identified. The full genome analysis of human G4P[6] as well as pig G1P[8] and G5P[6] RVAs revealed the occurrence of porcine–human reassortants and zoonotic RVAs. Detection of G4P[6] in pigs confirms their role as a reservoir of zoonotic RVAs.
Collapse
|
31
|
Gao L, Shen H, Zhao S, Chen S, Zhu P, Lin W, Chen F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Rotavirus Strain. Viruses 2023; 16:21. [PMID: 38257722 PMCID: PMC10819142 DOI: 10.3390/v16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Group A rotaviruses (RVAs) are the primary cause of severe intestinal diseases in piglets. Porcine rotaviruses (PoRVs) are widely prevalent in Chinese farms, resulting in significant economic losses to the livestock industry. However, isolation of PoRVs is challenging, and their pathogenicity in piglets is not well understood. (2) Methods: We conducted clinical testing on a farm in Jiangsu Province, China, and isolated PoRV by continuously passaging on MA104 cells. Subsequently, the pathogenicity of the isolated strain in piglets was investigated. The piglets of the PoRV-infection group were orally inoculated with 1 mL of 1.0 × 106 TCID50 PoRV, whereas those of the mock-infection group were fed with an equivalent amount of DMEM. (3) Results: A G5P[23] genotype PoRV strain was successfully isolated from one of the positive samples and named RVA/Pig/China/JS/2023/G5P[23](JS). The genomic constellation of this strain was G5-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Sequence analysis revealed that the genes VP3, VP7, NSP2, and NSP4 of the JS strain were closely related to human RVAs, whereas the remaining gene segments were closely related to porcine RVAs, indicating a reassortment between porcine and human strains. Furthermore, infection of 15-day-old piglets with the JS strain resulted in a diarrheal rate of 100% (8 of 8) and a mortality rate of 37.5% (3 of 8). (4) Conclusions: The isolated G5P[23] genotype rotavirus strain, which exhibited strong pathogenicity in piglets, may have resulted from recombination between porcine and human strains. It may serve as a potential candidate strain for developing vaccines, and its immunogenicity can be tested in future studies.
Collapse
Affiliation(s)
- Liguo Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Hanqin Shen
- Wen’s Food Group, Yunfu 527300, China;
- Guangdong Jingjie Inspection and Testing Co., Ltd., Yunfu 527300, China
| | - Sucan Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Sheng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Puduo Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| |
Collapse
|
32
|
Wang Y, Liu Y, Bao H, Chen Y, Kou G, Wang M, Fu S, Huo W, Guan W, Cheng Y, Zhou X, Li X. Application of the cell-based RT-qPCR assay (C-QPA) for potency detection of the novel trivalent rotavirus vaccine in China. J Clin Lab Anal 2023; 37:e24989. [PMID: 37975330 PMCID: PMC10756945 DOI: 10.1002/jcla.24989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Because of the deficiencies of traditional methods in multivalent rotavirus vaccine potency detection, a cell-based quantitative RT-qPCR assay (C-QPA) was established and validated for specificity, precision, and accuracy. METHODS In order to further validate the robustness of this method in actual titer detection, the linear range and the practical application under different conditions were tested using monovalent and trivalent rotavirus samples and standards. RESULTS Results showed that the linear range was 2.0-6.5, 3.9-8.3, and 3.5-8.1 UI (unit of infectivity) for G2, G3, and G4, respectively. Besides, unknown sample with high titer exceeding the linear range can be calculated by dilution. The UIs of serotypes G2, G3, and G4 in monovalent and trivalent rotavirus samples showed a relative deviation ≤4.10%, and the monovalent samples of the same serotype with or without protective agents showed a relative deviation ≤4.28%; the coefficient of variation (CV) of at least 176 tests (548 individual runs) of 3 in vitro-transcribed RNA standards with certain concentrations was not higher than 6.50%; the results of the trivalent samples tested by more than 149 times in 5 years (467 individual runs) showed the CVs lower than 12.66%; 15 samples detected by one laboratory showed a CV lower than 9.83%, while other three samples tested by two independent laboratories showed a CV lower than 6.90%. CONCLUSION In summary, the C-QPA has good linearity, durability, repeatability, and reproducibility in practical application and has been proved by the authority to be widely used in the production, quality control and release of the recently licensed trivalent vaccine in China.
Collapse
Affiliation(s)
- Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - YueYue Liu
- National Institutes for Food and Drug ControlBeijingChina
| | - Hong Bao
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Yueru Chen
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Guiying Kou
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Mingqiang Wang
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Shengfang Fu
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Wen Huo
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Wenzhu Guan
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| | - Xu Zhou
- Shanghai Institute of Biological Products Co., Ltd.ShanghaiChina
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd.LanzhouChina
| |
Collapse
|
33
|
Yi B, Deng Q, Guo C, Li X, Wu Q, Zha R, Wang X, Lu J. Evaluating the zoonotic potential of RNA viromes of rodents provides new insight into rodent-borne zoonotic pathogens in Guangdong, China. One Health 2023; 17:100631. [PMID: 38024253 PMCID: PMC10665145 DOI: 10.1016/j.onehlt.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging and re-emerging infectious diseases have been on the rise, with a significant proportion being zoonotic. Rodents, as the natural reservoirs of numerous diverse zoonotic viruses, pose a substantial threat to human health. To investigate the diversity of known and unknown viruses harbored by rodents in Guangdong (southern province of China), we conducted a comprehensive analysis of viral genomes through metagenomic sequencing of organs from 194 rodents. Our analysis yielded 2163 viral contigs that were assigned to 25 families known to infect a wide range of hosts, including vertebrates, invertebrates, amoebas, and plants. The viral compositions vary considerably among different organs, but not in rodent species. We also assessed and prioritized zoonotic potential of those detected viruses. Ninety-two viral species that are either known to infect vertebrates and invertebrates or only vertebrates were identified, among which 21 are considered high-risk to humans. The high-risk viruses included members of the Hantavirus, Picobirnaviruses, Astroviruses and Pestivirus. The phylogenetic trees of four zoonotic viruses revealed features of novel viral genomes that seem to fit evolutionarily into a zone of viruses that potentially pose a risk of transmission to humans. Recognizing that zoonotic diseases are a One Health issue, we approached the problem of identifying the zoonotic risk from rodent-transmitted disease in the Guangdong province by performing next-generation sequencing to look for potentially zoonotic viruses in these animals.
Collapse
Affiliation(s)
- Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York 10032, USA
| | - Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qin Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Renyun Zha
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xianhua Wang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou 571199, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
34
|
Neira V, Melgarejo C, Urzúa-Encina C, Berrios F, Valdes V, Mor S, Brito-Rodriguez B, Ramirez-Toloza GA. Identification and characterization of porcine Rotavirus A in Chilean swine population. Front Vet Sci 2023; 10:1240346. [PMID: 38026647 PMCID: PMC10652281 DOI: 10.3389/fvets.2023.1240346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Rotavirus A (RVA) is a common cause of diarrhea in newborn pigs, leading to significant economic losses. RVA is considered a major public health concern due to genetic evolution, high prevalence, and pathogenicity in humans and animals. The objective of this study was to identify and characterize RVA in swine farms in Chile. A total of 154 samples (86 oral fluids and 68 fecal samples) were collected, from 22 swine farms. 58 (38%) samples belonging to 14 farms were found positive for RVA by real-time RT-PCR. The samples with low Ct values (21) and the two isolates were selected for whole genome sequencing. Nearly complete genomes were assembled from both isolates and partial genomes were assembled from five clinical samples. BLAST analysis confirmed that these sequences are related to human and swine-origin RVA. The genomic constellation was G5/G3-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analysis showed that VP4, VP1, VP2, NSP2, NSP3, NSP4, and NSP5 sequences were grouped in monophyletic clusters, suggesting a single introduction. The phylogenies for VP7, VP6, VP3, and NSP1 indicated two different origins of the Chilean sequences. The phylogenetic trees showed that most of the Chilean RVA sequences are closely related to human and swine-origin RVA detected across the world. The results highlight the potential zoonotic nature of RVA circulating in Chilean swine farms. Therefore, it is important to continue RVA whole genome sequencing globally to fully understand its complex epidemiology and early detection and characterization of zoonotic strains.
Collapse
Affiliation(s)
- Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Cristián Melgarejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Constanza Urzúa-Encina
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Valentina Valdes
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sunil Mor
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | | | - Galia Andrea Ramirez-Toloza
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Memon AM, Chen F, Khan SB, Guo X, Khan R, Khan FA, Zhu Y, He Q. Development and evaluation of polyclonal antibodies based antigen capture ELISA for detection of porcine rotavirus. Anim Biotechnol 2023; 34:1807-1814. [PMID: 35593671 DOI: 10.1080/10495398.2022.2052304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rotaviruses are rising as zoonotic viruses worldwide, causing the lethal dehydrating diarrhea in children, piglets, and other livestock of economic importance. A simple, swift, cost-effective, highly specific, and sensitive antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed for detection of porcine rotavirus-A (PoRVA) by employing rabbit (capture antibody) and murine polyclonal antibodies (detector antibody) produced against VP6 of PoRVA (RVA/Pig-tc/CHN/TM-a/2009/G9P23). Reactivity of the both polyclonal antibodies was confirmed by using an indirect ELISA, western-blot analysis and indirect fluorescence assay against rVP6 protein and PoRVA. The detection limit of AC-ELISA was found 50 ng/ml of PoRVA protein. The relative sensitivity and specificity of this in-house AC-ELISA were evaluated for detection of PoRVA from 295 porcine diarrhea samples, and results were compared with that of RT-PCR and TaqMan RT-qPCR. The relative sensitivity and specificity of AC-ELISA compared with those of TaqMan RT-qPCR were found as 94.4 and 99.2%, respectively, with the strong agreement (κ -0.58) between these two techniques. Furthermore, AC-ELISA could not detect any cross-reactivity with porcine epidemic diarrhea virus, transmissible gastro-enteritis virus, pseudo rabies virus and porcine circovirus-2. This in-house AC-ELISA efficiently detected PoRVA from clinical samples, which suggests that this technique can be used for large-scale surveillance and timely detection of rotavirus infection in the porcine farms.
Collapse
Affiliation(s)
- Atta Muhammad Memon
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Sher Bahadar Khan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaozhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Farhan Anwar Khan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Akari Y, Hatazawa R, Kuroki H, Ito H, Negoro M, Tanaka T, Miwa H, Sugiura K, Umemoto M, Tanaka S, Ogawa M, Ito M, Fukuda S, Murata T, Taniguchi K, Suga S, Kamiya H, Nakano T, Taniguchi K, Komoto S. Full genome-based characterization of an Asian G3P[6] human rotavirus strain found in a diarrheic child in Japan: Evidence for porcine-to-human zoonotic transmission. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105507. [PMID: 37757900 DOI: 10.1016/j.meegid.2023.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Human rotavirus strains having the unconventional G3P[6] genotype have been sporadically detected in diarrheic patients in different parts of the world. However, the full genomes of only three human G3P[6] strains from Asian countries (China, Indonesia, and Vietnam) have been sequenced and characterized, and thus the exact origin and evolution of G3P[6] strains in Asia remain to be elucidated. Here, we sequenced and characterized the full genome of a G3P[6] strain (RVA/Human-wt/JPN/SO1199/2020/G3P[6]) found in a stool sample from a 3-month-old infant admitted with acute gastroenteritis in Japan. On full genomic analysis, strain SO1199 was revealed to have a unique Wa-like genogroup configuration: G3-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H1. VP6 genotype I5 and NSP1 genotype A8 are commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis demonstrated that all 11 genes of strain SO1199 were closely related to those of porcine and/or porcine-like human rotaviruses and thus appeared to be of porcine origin. Thus, strain SO1199 was shown to possess a porcine-like genomic backbone and thus is likely to be the result of interspecies transmission of a porcine rotavirus strain. Of note is that all 11 genes of strain SO1199 were phylogenetically located in clusters, distinct from those of the previously identified porcine-like human G3P[6] strains from around the world including Asia, suggesting the occurrence of independent porcine-to-human zoonotic transmission events. To our knowledge, this is the first report on full genome-based characterization of a human G3P[6] strain that has emerged in Japan. Our findings revealed the diversity of unconventional human G3P[6] strains in Asia, and provide important insights into the origin and evolution of G3P[6] strains.
Collapse
Affiliation(s)
- Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruo Kuroki
- Sotobo Children's Clinic, Isumi, Chiba 299-4503, Japan
| | - Hiroaki Ito
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan
| | - Manami Negoro
- Institute for Clinical Research, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Haruna Miwa
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Katsumi Sugiura
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | | | - Shigeki Tanaka
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Masahiro Ogawa
- Department of Pediatrics, Mie Chuo Medical Center, Tsu, Mie 514-1101, Japan
| | - Mitsue Ito
- Department of Pediatrics, Japanese Red Cross Ise Hospital, Ise, Mie 516-8512, Japan
| | - Saori Fukuda
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kiyosu Taniguchi
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Mie Hospital, Tsu, Mie 514-0125, Japan
| | - Hajime Kamiya
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Okayama 700-8505, Japan
| | - Koki Taniguchi
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan; Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
37
|
Hu CT, Diaz K, Yang LC, Sharma A, Greenberg HB, Smith JG. Corrected and republished from: "VP4 Is a Determinant of Alpha-Defensin Modulation of Rotaviral Infection". J Virol 2023; 97:e0096223. [PMID: 37787534 PMCID: PMC10617384 DOI: 10.1128/jvi.00962-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.
Collapse
Affiliation(s)
- Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Linda C. Yang
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Harry B. Greenberg
- Department of Medicine, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
38
|
Phan T, Hikita T, Okitsu S, Akari Y, Komoto S, Hayakawa S, Ushijima H. Whole genome sequencing and genomic characterization of a DS-1-like G2P[4] group A rotavirus in Japan. Virus Genes 2023; 59:688-692. [PMID: 37405556 DOI: 10.1007/s11262-023-02018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
After rotavirus was discovered in 1973, it became the leading pathogen in causing acute gastroenteritis in humans worldwide. In this study, we performed whole genome sequencing and genomic characterization of a DS-1-like G2P[4] group A rotavirus in feces of a Japanese child with acute gastroenteritis who was fully Rotarix® vaccinated. The genomic investigation determined a genomic constellation G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 of this rotavirus strain. Its antigenic epitopes of the VP7 and VP4 proteins had significant mismatches compared with the vaccine strains. Our study is the latest attempt to investigate the evolution of the VP7 and VP4 genes of emerging G2P[4] rotavirus in Japan.
Collapse
Affiliation(s)
- Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Shoko Okitsu
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yuki Akari
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of One Health, Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
39
|
Johne R, Tausch SH, Ulrich RG, Schilling-Loeffler K. Genome analysis of the novel putative rotavirus species K. Virus Res 2023; 334:199171. [PMID: 37433351 PMCID: PMC10410577 DOI: 10.1016/j.virusres.2023.199171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/13/2023]
Abstract
Rotaviruses are causative agents of diarrhea in humans and animals. Currently, the species rotavirus A-J (RVA-RVJ) and the putative species RVK and RVL are defined, mainly based on their genome sequence identities. RVK strains were first identified in 2019 in common shrews (Sorex aranaeus) in Germany; however, only short sequence fragments were available so far. Here, we analyzed the complete coding regions of strain RVK/shrew-wt/GER/KS14-0241/2013, which showed highest sequence identities with RVC. The amino acid sequence identity of VP6, which is used for rotavirus species definition, reached only 51% with other rotavirus reference strains thus confirming classification of RVK as a separate species. Phylogenetic analyses for the deduced amino acid sequences of all 11 virus proteins showed, that for most of them RVK and RVC formed a common branch within the RVA-like phylogenetic clade. Only the tree for the highly variable NSP4 showed a different branching; however, with very low bootstrap support. Comparison of partial nucleotide sequences of other RVK strains from common shrews of different regions in Germany indicated a high degree of sequence variability (61-97% identity) within the putative species. These RVK strains clustered separately from RVC genotype reference strains in phylogenetic trees indicating diversification of RVK independent from RVC. The results indicate that RVK represents a novel rotavirus species, which is most closely related to RVC.
Collapse
Affiliation(s)
- Reimar Johne
- German Federal Institute for Risk Assessment, Berlin 10589, Germany.
| | - Simon H Tausch
- German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, and Partner Site Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), Greifswald-Insel, Riems 17493, Germany
| | | |
Collapse
|
40
|
Zhou X, Wang Y, Chen N, Pang B, Liu M, Cai K, Kobayashi N. Surveillance of Human Rotaviruses in Wuhan, China (2019-2022): Whole-Genome Analysis of Emerging DS-1-like G8P[8] Rotavirus. Int J Mol Sci 2023; 24:12189. [PMID: 37569563 PMCID: PMC10419309 DOI: 10.3390/ijms241512189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Group A rotaviruses (RVAs) are major etiologic agents of gastroenteritis in infants and young children worldwide. To study the prevalence and genetic characteristics of RVAs, a hospital-based surveillance study was conducted in Wuhan, China from June 2019 through May 2022. The detection rates of RVAs were 19.40% (142/732) and 3.51% (8/228) in children and adults, respectively. G9P[8] was the predominant genotype, followed by G8P[8] and G3P[8]. G8P[8] emerged and was dominant in the 2021-2022 epidemic season. The genome constellation of six G8P[8] strains was assigned to G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that the VP7, VP4, VP2, VP3, NSP1, NSP2, NSP3, and NSP5 genes of these G8P[8] strains clustered closely with those of the G8P[8] strains in Asia and were distant from those of the P[8] and G2P[4] strains simultaneously detected in Wuhan. In contrast, the VP1, VP6, and NSP4 genes were closely related to the typical G2P[4] rotavirus, including those of G2P[4] strains simultaneously detected in Wuhan. The detection rate of RVAs decreased in the COVID-19 pandemic era. It was deduced that the G8P[8] rotaviruses that emerged in China may be reassortants, carrying the VP6, VP1, and NSP4 genes derived from the G2P[4] rotavirus in the backbone of the neighboring DS-1-like G8P[8] strains represented by CAU17L-103.
Collapse
Affiliation(s)
- Xuan Zhou
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Yuanhong Wang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Beibei Pang
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Manqing Liu
- Division of Microbiology, Wuhan Center for Disease Control and Prevention, Wuhan 430024, China; (X.Z.); (B.P.); (M.L.)
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China;
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
41
|
Stancu AC, Voia OS, Boldura OM, Pasca SA, Luca I, Hulea AS, Ivan OR, Dragoescu AA, Lungu BC, Hutu I. Unusual Canine Distemper Virus Infection in Captive Raccoons ( Procyon lotor). Viruses 2023; 15:1536. [PMID: 37515222 PMCID: PMC10383698 DOI: 10.3390/v15071536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Canine morbillivirus, also known as canine distemper virus (CDV), is the causative agent of canine distemper (CD), which is a serious contagious disease of canines, large felids, and, occasionally, raccoons. This study included seven raccoons from the Timisoara Zoological Garden, Romania. CDV was detected using RT-qPCR on blood samples, but several other exams were also performed-clinical, bacteriological, immunohistochemistry (IHC) and histopathology, toxicological screening, and necropsy-which confirmed CDV infection. Severe digestive disorders (diarrhea and frequent hematemesis) were observed. The necropsy findings included pseudo membranous gastroenteritis, congestion, and pulmonary edema in two raccoons. Immunohistochemistry showed immunolabeled CDV antigenantibodies on the viral nucleocapsid. Histopathology revealed lymphocyte depletion in mesenteric lymphnodes and intranuclear and intracytoplasmic inclusions in the enterocytes of the small intestine. Based on the RT-qPCR assay, laboratory tests, and the lesions observed, it was established that the raccoons were infected with CDV, which was the cause of death in two cases. The results from the necropsy, histology, and immunohistochemistry in the raccoons are comparable with reported CDV lesions in dogs. In conclusion, several exams may be performed to establish the etiology of possible interspecific viral infection, but only very specific exams can identify aCDV infection. Laboratory analyses must be completed by RT-qPCR assay or IHC to establish infection with uncommon viruses in raccoons with high accuracy.
Collapse
Affiliation(s)
- Adrian Constantin Stancu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Octavian Sorin Voia
- Faculty of Animal Resources Bioengineering, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Oana Maria Boldura
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Sorin Aurelian Pasca
- Faculty of Veterinary Medicine, University of Life Sciences, 700506 Iasi, Romania
| | - Iasmina Luca
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Anca Sofiana Hulea
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | | | - Alina Andreea Dragoescu
- Faculty of Agriculture, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Bianca Cornelia Lungu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| | - Ioan Hutu
- Faculty of Veterinary Medicine, Horia Cernescu Research Unit, University of Life Sciences "King Michael I", 300645 Timisoara, Romania
| |
Collapse
|
42
|
Lagan P, Mooney MH, Lemon K. Genome analyses of species A rotavirus isolated from various mammalian hosts in Northern Ireland during 2013-2016. Virus Evol 2023; 9:vead039. [PMID: 37547380 PMCID: PMC10403756 DOI: 10.1093/ve/vead039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Rotavirus group A (RVA) is the most important cause of acute diarrhoea and severe dehydration in young mammals. Infection in livestock is associated with significant mortality and economic losses and, together with wildlife reservoirs, acts as a potential source of zoonotic transmission. Therefore, molecular surveillance of circulating RVA strains in animal species is necessary to assess the risks posed to humans and their livestock. An RVA molecular epidemiological surveillance study on clinically diseased livestock species revealed high prevalence in cattle and pigs (31 per cent and 18 per cent, respectively) with significant phylogenetic diversity including a novel and divergent ovine artiodactyl DS-1-like constellation G10-P[15]-I2-R2-C2-M2-A11-N2-T6-E2-H3. An RVA gene reassortment occurred in an RVA asymptomatic pig and identified as a G5-P[13] strain, and a non-structural protein (NSP)2 gene had intergenomically reassorted with a human RVA strain (reverse zoonosis) and possessed a novel NSP4 enterotoxin E9 which may relate to the asymptomatic RVA infection. Analysis of a novel sheep G10-P[15] strain viral protein 4 gene imparts a putative homologous intergenic and interspecies recombination event, subsequently creating the new P[15] divergent lineage. While surveillance across a wider range of wildlife and exotic species identified generally negative or low prevalence, a novel RVA interspecies transmission in a non-indigenous pudu deer (zoo origin) with the constellation of G6-P[11]12-R2-C2-M2-A3-N2-T6-E2-H3 was detected at a viral load of 11.1 log10 copies/gram. The detection of novel emerging strains, interspecies reassortment, interspecies infection, and recombination of RVA circulating in animal livestock and wildlife reservoirs is of paramount importance to the RVA epidemiology and evolution for the One Health approach and post-human vaccine introduction era where highly virulent animal RVA genotypes have the potential to be zoonotically transmitted.
Collapse
Affiliation(s)
- Paula Lagan
- Virology, Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast BT4 3SD, UK
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast BT9 5DL, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast BT9 5DL, UK
| | - Ken Lemon
- Virology, Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast BT4 3SD, UK
| |
Collapse
|
43
|
Azevedo LS, Costa FF, Ghani MBA, Viana E, França Y, Medeiros RS, Guiducci R, Morillo SG, Primo D, Lopes RD, Gomes-Gouvêa MS, da Costa AC, Luchs A. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch Virol 2023; 168:176. [PMID: 37306860 DOI: 10.1007/s00705-023-05807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.
Collapse
Affiliation(s)
- Lais Sampaio Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Dieli Primo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratorio de Gastroenterologia e Hepatologia Tropical-LIM07, Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratorio de Parasitologia Médica-LIM46, Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
44
|
Kunić V, Mikuletič T, Kogoj R, Koritnik T, Steyer A, Šoprek S, Tešović G, Konjik V, Roksandić Križan I, Prišlin M, Jemeršić L, Brnić D. Interspecies transmission of porcine-originated G4P[6] rotavirus A between pigs and humans: a synchronized spatiotemporal approach. Front Microbiol 2023; 14:1194764. [PMID: 37283926 PMCID: PMC10239803 DOI: 10.3389/fmicb.2023.1194764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
As a leading viral cause of acute gastroenteritis in both humans and pigs, rotavirus A (RVA) poses a potential public health concern. Although zoonotic spillover of porcine RVA strains to humans is sporadic, it has been detected worldwide. The origin of chimeric human-animal strains of RVA is closely linked to the crucial role of mixed genotypes in driving reassortment and homologous recombination, which play a major role in shaping the genetic diversity of RVA. To better understand how genetically intertwined porcine and zoonotic human-derived G4P[6] RVA strains are, the present study employed a spatiotemporal approach to whole-genome characterization of RVA strains collected during three consecutive RVA seasons in Croatia (2018-2021). Notably, sampled children under 2 years of age and weanling piglets with diarrhea were included in the study. In addition to samples tested by real-time RT-PCR, genotyping of VP7 and VP4 gene segments was conducted. The unusual genotype combinations detected in the initial screening, including three human and three porcine G4P[6] strains, were subjected to next-generation sequencing, followed by phylogenetic analysis of all gene segments, and intragenic recombination analysis. Results showed a porcine or porcine-like origin for each of the eleven gene segments in all six RVA strains. The G4P[6] RVA strains detected in children most likely resulted from porcine-to-human interspecies transmission. Furthermore, the genetic diversity of Croatian porcine and porcine-like human G4P[6] strains was propelled by reassortment events between porcine and porcine-like human G4P[6] RVA strains, along with homologous intragenotype and intergenotype recombinations in VP4, NSP1, and NSP3 segments. Described concurrent spatiotemporal approach in investigating autochthonous human and animal RVA strains is essential in drawing relevant conclusions about their phylogeographical relationship. Therefore, continuous surveillance of RVA, following the One Health principles, may provide relevant data for assessing the impact on the protectiveness of currently available vaccines.
Collapse
Affiliation(s)
- Valentina Kunić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tina Mikuletič
- School of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- School of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Koritnik
- Public Health Microbiology Department, National Laboratory of Health, Environment, and Food, Ljubljana, Slovenia
| | - Andrej Steyer
- Public Health Microbiology Department, National Laboratory of Health, Environment, and Food, Ljubljana, Slovenia
| | - Silvija Šoprek
- Department for Pediatric Infectious Diseases, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Zagreb, Croatia
| | - Goran Tešović
- Department for Pediatric Infectious Diseases, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Marina Prišlin
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Lorena Jemeršić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Zagreb, Croatia
| |
Collapse
|
45
|
Pinheiro MS, Dias JBL, Petrucci MP, Travassos CEPF, Mendes GS, Santos N. Molecular Characterization of Avian Rotaviruses F and G Detected in Brazilian Poultry Flocks. Viruses 2023; 15:v15051089. [PMID: 37243175 DOI: 10.3390/v15051089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Avian rotaviruses (RVs) are important etiologic agents of gastroenteritis in birds. In general, avian RVs are understudied; consequently, there is a paucity of information regarding these viruses. Therefore, the characterization of these viral species is highly relevant because more robust information on genetic, epidemiologic, and evolutionary characteristics can clarify the importance of these infections, and inform efficient prevention and control measures. In this study, we describe partial genome characterizations of two avian RV species, RVF and RVG, detected in asymptomatic poultry flocks in Brazil. Complete or partial sequences of at least one of the genomic segments encoding VP1, VP2, VP4, VP6, VP7, NSP1, NSP4, NSP4, or NSP5 of 23 RVF and 3 RVG strains were obtained, and demonstrated that multiple variants of both RVF and RVG circulate among Brazilian poultry. In this study, new and important information regarding the genomic characteristics of RVF and RVG is described. In addition, the circulation of these viruses in the study region and the genetic variability of the strains detected are demonstrated. Thus, the data generated in this work should help in understanding the genetics and ecology of these viruses. Nonetheless, the availability of a greater number of sequences is necessary to advance the understanding of the evolution and zoonotic potential of these viruses.
Collapse
Affiliation(s)
- Mariana S Pinheiro
- Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21947-902, Brazil
| | - Juliana B L Dias
- Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21947-902, Brazil
| | - Melissa P Petrucci
- Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Sanidade Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil
| | - Carlos E P F Travassos
- Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Sanidade Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, Brazil
| | - Gabriella S Mendes
- Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21947-902, Brazil
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Departamento de Virologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21947-902, Brazil
| |
Collapse
|
46
|
Zhao Q, Liu L, Huang T, Tian Y, Guo X, Liu C, Huang B, Chen Q. Complete genomic analysis of rabbit rotavirus G3P[22] in China. Arch Virol 2023; 168:129. [PMID: 37004683 DOI: 10.1007/s00705-023-05740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/20/2023] [Indexed: 04/04/2023]
Abstract
A rabbit rotavirus Z3171 isolate from diarrheic rabbits was identified and sequenced. The genotype constellation of Z3171 is G3-P[22]-I2-R3-C3-M3-A9-N2-T1-E3-H3, which is different from the constellation observed in previously characterized LRV strains. However, the genome of Z3171 differed substantially from those of the rabbit rotavirus strains N5 and Rab1404 in terms of both gene content and gene sequence. Our study suggests that either a reassortment event occurred between human and rabbit rotavirus strains or there are undetected genotypes circulating in the rabbit population. This is the first report of detection of a G3P[22] RVA strain in rabbits in China.
Collapse
Affiliation(s)
- Qiaoya Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu Province, China
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Liping Liu
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Tao Huang
- College of Veterinary Medicine, Southwest University, 402460, Chongqing, China
| | - Ye Tian
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Xiaozhen Guo
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Cunxia Liu
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China
| | - Bing Huang
- Institute of Poultry Sciences, Shandong Academy of Agricultural Sciences, 250023, Jinan, Shandong Province, China.
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, Jiangsu Province, China.
| |
Collapse
|
47
|
Usman M, Ayub A, Habib S, Rana MS, Rehman Z, Zohaib A, Jamal SB, Jaiswal AK, Andrade BS, de Carvalho Azevedo V, Faheem M, Javed A. Vaccinomics Approach for Multi-Epitope Vaccine Design against Group A Rotavirus Using VP4 and VP7 Proteins. Vaccines (Basel) 2023; 11:726. [PMID: 37112638 PMCID: PMC10144065 DOI: 10.3390/vaccines11040726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Rotavirus A is the most common cause of Acute Gastroenteritis globally among children <5 years of age. Due to a segmented genome, there is a high frequency of genetic reassortment and interspecies transmission which has resulted in the emergence of novel genotypes. There are concerns that monovalent (Rotarix: GlaxoSmithKline Biologicals, Rixensart, Belgium) and pentavalent (RotaTeq: MERCK & Co., Inc., Kenilworth, NJ, USA) vaccines may be less effective against non-vaccine strains, which clearly shows the demand for the design of a vaccine that is equally effective against all circulating genotypes. In the present study, a multivalent vaccine was designed from VP4 and VP7 proteins of RVA. Epitopes were screened for antigenicity, allergenicity, homology with humans and anti-inflammatory properties. The vaccine contains four B-cell, three CTL and three HTL epitopes joined via linkers and an N-terminal RGD motif adjuvant. The 3D structure was predicted and refined preceding its docking with integrin. Immune simulation displayed promising results both in Asia and worldwide. In the MD simulation, the RMSD value varied from 0.2 to 1.6 nm while the minimum integrin amino acid fluctuation (0.05-0.1 nm) was observed with its respective ligand. Codon optimization was performed with an adenovirus vector in a mammalian expression system. The population coverage analysis showed 99.0% and 98.47% in South Asia and worldwide, respectively. These computational findings show potential against all RVA genotypes; however, in-vitro/in-vivo screening is essential to devise a meticulous conclusion.
Collapse
Affiliation(s)
- Muhammad Usman
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Department of Virology, National Institute of Health, Islamabad 45500, Pakistan
| | - Aaima Ayub
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sabahat Habib
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | | | - Zaira Rehman
- Department of Virology, National Institute of Health, Islamabad 45500, Pakistan
| | - Ali Zohaib
- Department of Microbiology, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan (M.F.)
| | - Arun Kumar Jaiswal
- Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Bahia 45083-900, Brazil
| | - Vasco de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), PG Program in Bioinformatics, Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan (M.F.)
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
48
|
Malakalinga JJ, Misinzo G, Msalya GM, Shayo MJ, Kazwala RR. Genetic diversity and Genomic analysis of G3P[6] and equine-like G3P[8] in Children Under-five from Southern Highlands and Eastern Tanzania. Acta Trop 2023; 242:106902. [PMID: 36948234 DOI: 10.1016/j.actatropica.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Rotavirus group A genomic characterization is critical for understanding the mechanisms of rotavirus diversity, such as reassortment events and possible interspecies transmission. However, little is known about the genetic diversity and genomic relationship of the rotavirus group A strains circulating in Tanzania. The genetic and genomic relationship of RVA genotypes was investigated in children under the age of five. A total of 169 faecal samples were collected from under-five with diarrhea in Mbeya, Iringa and Morogoro regions of Tanzania. The RVA were screened in children under five with diarrhea using reverse transcription PCR for VP7 and VP4, and the G and P genotypes were determined using Sanger dideoxynucleotide cycle sequencing. Whole-genome sequencing was performed on selected genotypes. The overall RVA rate was 4.7% (8/169). The G genotypes were G3 (7/8) and G6 (1/8) among the 8 RVA positives, while the P genotypes were P[6] (4/8) and P[8] (2), and the other two were untypeable. G3P[6] and G3P[8] were the identified genotype combinations. The genomic analysis reveals that the circulating G3P[8] and G3P[6] isolates from children under the age of five with diarrhea had a DS-1-like genome configuration (I2-R2-C2-M2-Ax-N2-T2-E2-H2). The phylogenic analysis revealed that all 11 segments of G3P[6] were closely related to human G3P[6] identified in neighboring countries such as Uganda, Kenya, and other African countries, implying that G3P[6] strains descended from a common ancestor. Whereas, G3P[8] were closely related to previously identified equine-like G3P[P8] from Kenya, Japan, Thailand, Brazil, and Taiwan, implying that this strain was introduced rather than reassortment events. We discovered amino acid differences at antigenic epitopes and N-linked glycosylation sites between the wild type G3 and P[8] compared to vaccine strains, implying that further research into the impact of these differences on vaccine effectiveness is warranted. The phylogenic analysis of VP7 also identified a bovine-like G6. For the first time in Tanzania, we report the emergence of novel equine-like G3 and bovine-like G6 RVA strains, highlighting the importance of rotavirus genotype monitoring and genomic analysis of representative genotypes.
Collapse
Affiliation(s)
- Joseph J Malakalinga
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania; SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Food and Microbiology Laboratory, Tanzania Bureau of Standards, Ubungo Area, Morogoro Road/Sam Nujoma Road, P.O. Box 9524, Dar es Salaam, Tanzania.
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - George M Msalya
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania
| | - Mariana J Shayo
- Muhimbili University of Health and Allied sciences, Department of Biological and Pre-clinical Studies, PO Box 65001, Dar es Salaam, Tanzania
| | - Rudovick R Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
49
|
Strain-Specific Interactions between the Viral Capsid Proteins VP4, VP7 and VP6 Influence Rescue of Rotavirus Reassortants by Reverse Genetics. Int J Mol Sci 2023; 24:ijms24065670. [PMID: 36982745 PMCID: PMC10054668 DOI: 10.3390/ijms24065670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Rotavirus A (RVA) genome segments can reassort upon co-infection of target cells with two different RVA strains. However, not all reassortants are viable, which limits the ability to generate customized viruses for basic and applied research. To gain insight into the factors that restrict reassortment, we utilized reverse genetics and tested the generation of simian RVA strain SA11 reassortants carrying the human RVA strain Wa capsid proteins VP4, VP7, and VP6 in all possible combinations. VP7-Wa, VP6-Wa, and VP7/VP6-Wa reassortants were effectively rescued, but the VP4-Wa, VP4/VP7-Wa, and VP4/VP6-Wa reassortants were not viable, suggesting a limiting effect of VP4-Wa. However, a VP4/VP7/VP6-Wa triple-reassortant was successfully generated, indicating that the presence of homologous VP7 and VP6 enabled the incorporation of VP4-Wa into the SA11 backbone. The replication kinetics of the triple-reassortant and its parent strain Wa were comparable, while the replication of all other rescued reassortants was similar to SA11. Analysis of the predicted structural protein interfaces identified amino acid residues, which might influence protein interactions. Restoring the natural VP4/VP7/VP6 interactions may therefore improve the rescue of RVA reassortants by reverse genetics, which could be useful for the development of next generation RVA vaccines.
Collapse
|
50
|
Bwogi J, Karamagi C, Byarugaba DK, Tushabe P, Kiguli S, Namuwulya P, Malamba SS, Jere KC, Desselberger U, Iturriza-Gomara M. Co-Surveillance of Rotaviruses in Humans and Domestic Animals in Central Uganda Reveals Circulation of Wide Genotype Diversity in the Animals. Viruses 2023; 15:v15030738. [PMID: 36992447 PMCID: PMC10052166 DOI: 10.3390/v15030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Rotavirus genotypes are species specific. However, interspecies transmission is reported to result in the emergence of new genotypes. A cross-sectional study of 242 households with 281 cattle, 418 goats, 438 pigs, and 258 humans in Uganda was undertaken between 2013 and 2014. The study aimed to determine the prevalence and genotypes of rotaviruses across co-habiting host species, as well as potential cross-species transmission. Rotavirus infection in humans and animals was determined using NSP3 targeted RT-PCR and ProSpecT Rotavirus ELISA tests, respectively. Genotyping of rotavirus-positive samples was by G- and P-genotype specific primers in nested RT-PCR assays while genotyping of VP4 and VP7 proteins for the non-typeable human positive sample was done by Sanger sequencing. Mixed effect logistic regression was used to determine the factors associated with rotavirus infection in animals. The prevalence of rotavirus was 4.1% (95% CI: 3.0–5.5%) among the domestic animals and 0.8% (95% CI: 0.4–1.5%) in humans. The genotypes in human samples were G9P[8] and P[4]. In animals, six G-genotypes, G3(2.5%), G8(10%), G9(10%), G11(26.8%), G10(35%), and G12(42.5%), and nine P-genotypes, P[1](2.4%), P[4](4.9%), P[5](7.3%), P[6](14.6%), P[7](7.3%), P[8](9.8%), P[9](9.8%), P[10](12.2%), and P[11](17.1%), were identified. Animals aged 2 to 18 months were less likely to have rotavirus infection in comparison with animals below 2 months of age. No inter-host species transmission was identified.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI Laboratory, Uganda Virus Research Institute, 51–59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
- Correspondence: or
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Denis Karuhize Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Phionah Tushabe
- EPI Laboratory, Uganda Virus Research Institute, 51–59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Sarah Kiguli
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Prossy Namuwulya
- EPI Laboratory, Uganda Virus Research Institute, 51–59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Samuel S. Malamba
- Northern Uganda Program on Health Sciences, c/o Uganda Virus Research Institute, 51–59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Khuzwayo C. Jere
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre P.O. Box 30096, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre P.O. Box 30184, Malawi
| | | | - Miren Iturriza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|