1
|
Jiang M, Yang K, Zhang C, Xu D. Novel Sensing Strategy for MicroRNA via DSN-RCA Dual Amplification and Optical Tweezer-Assisted Suspension Bead Arrays. Anal Chem 2025; 97:9014-9022. [PMID: 40247710 DOI: 10.1021/acs.analchem.5c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional microRNA detection methods have some limitations that cannot be ignored. Enzyme-catalyzed nucleic acid amplification has gradually become an important method in bioanalysis and is expected to be a substitute for traditional methods. Combining enzymes with different functions provides a wide range of analytical design possibilities to create high-performance sensing strategies. Meanwhile, the optical tweezers that produce the tightly focused laser beam are integrated with a suspension bead array that fully concentrates the signal labels, contributing to stable signal output and improved detection efficiency. Herein, we have developed a novel "DSN-RCA dual amplification and optical tweezer-assisted suspension bead array imaging" sensing strategy for highly efficient detection of microRNA-21 (miRNA-21). The conversion of low abundance targets into bulk fluorescence signal probes was achieved by duplex-specific nuclease (DSN), and signal enrichment on bead supports rather than dispersion in solution was realized by rolling circle amplification (RCA) in one step. The synergistic integration of dual amplification and the application of bead supports effectively improved the sensitivity and specificity. Finally, the suspension bead array was created by the modified optical tweezer system, which realized the high-quality imaging analysis and improved the detection efficiency. The proposed sensing strategy achieved a limit of detection (LOD) as low as 5.90 pM with excellent specificity, stability, and reproducibility and was successfully applied to human serum samples, which has great potential for application in clinical serological research.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Kaihan Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Chenchen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No. 163, Xianlin Avenue, Nanjing 210023, PR China
| |
Collapse
|
2
|
Li Y, Zeng Z, Lv X, Jiang H, Li A, Liu Y, Deng Y, Li X. A POCT assay based on commercial HCG strip for miRNA21 detection by integrating with RCA-HCR cascade amplification and CRISPR/Cas12a. Mikrochim Acta 2025; 192:73. [PMID: 39806080 DOI: 10.1007/s00604-024-06922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
A point-of-care testing (POCT) assay based on commercial HCG strip was proposed for miRNA21 detection by integrating RCA-HCR cascaded isothermal amplification with CRISPR/Cas12a. Three modules were integrated in the proposed platform: target amplification module composed of rolling circle amplification (RCA) cascaded with hybridization chain reaction (HCR), signal transduction module composed of CRISPR/Cas12a combined with HCG-agarose gel beads probes, and signal readout module composed of commercial HCG strips. The proposed RCA-HCR-CRISPR/Cas12a-HCG strip assay for miRNA21 detection had high sensitivity, and the limit of detection was as low as 37 fM. The proposed assay showed excellent specificity for miRNA21, as other miRNAs did not caused interference for detection. The recoveries of miRNA21 were ranged from 89.0 to 118.0%. The intra-batch and inter-batch coefficient of variation (CV) were 10.1-13.4% and 11.9-14.5%, respectively, which indicated a high accuracy and precision, and the serum matrix did not cause any interference. With the advantages of low-cost, high sensitivity, visualization, and easy popularization, the proposed assay is expected to provide a powerful tool for early diagnosis of tumor disease miRNA, especially in resource-limited areas.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhihui Zeng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Liu
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Guo T, Xiong W, Liu C, Zhu L, Xie L. CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p. Genesis 2024; 62:e23599. [PMID: 38764323 DOI: 10.1002/dvg.23599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Wanjuan Xiong
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Chong Liu
- Department of Thoracic surgery, Wuhan Third Hospital, Wuhan, China
| | - Li Zhu
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| | - Ling Xie
- Department of Pharmacy, Wuhan Third Hospital, Wuhan, China
| |
Collapse
|
4
|
Dai Z, Zhan Z, Chen Y, Li J. MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. Tob Induc Dis 2024; 22:TID-22-92. [PMID: 38813585 PMCID: PMC11135024 DOI: 10.18332/tid/186643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/19/2023] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION The aim of the study is the regulatory effect of MicroRNA-210 (MiR-210) on cigarette smoke extract (CSE)-induced mouse lung epithelial type II cells (MLE-12) apoptosis and determine whether the MiR-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via Shh signaling pathway. METHODS Expression of MiR-210 in CSE-induced MLE-12 was assessed by qRT-PCR. The emphysema mouse model and MiR-210 knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vector instillation. The Sonic hedgehog (Shh), Ptch1, Gli1, B-cell lymphoma-2 (Bcl-2), and Caspase 3 protein expressions were detected by Western blotting. mRNA expressions of MiR-210, Shh, Ptch1, and Gli1 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Apoptotic ratios in mice and CSE-induced HPVEC were assessed using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays and flow cytometry. RESULTS Our results showed that MiR-210 mRNA levels were significantly down-regulated in the CSE-induced MLE 12. MLE 12 apoptosis with down-regulated Shh, Ptch1, Gli1, and Bcl-2 expression, increased Caspase 3 expression in the emphysema mouse model and CSE-induced MLE 12. Knockdown MiR-210 can facilitate cell apoptosis and emphysema via the Shh signaling pathway in mice. In vitro, MiR-210 can attenuate the apoptosis of CSE-exposed MLE 12. Moreover, MiR-210 regulated the Shh pathway and promoted its expression. CONCLUSIONS MiRNA-210 is involved in cigarette smoke extract-induced apoptosis of MLE-12 via the Shh signaling pathway. The present study reveals that MiRNA-210 may be a key regulator of cellular apoptosis and could be explored as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhongshang Dai
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijie Zhan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Jinhua Li
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
5
|
Thirunavukkarasu S, Banerjee S, Tantray I, Ojha R. Non-coding RNA and reprogrammed mitochondrial metabolism in genitourinary cancer. Front Genet 2024; 15:1364389. [PMID: 38544804 PMCID: PMC10965626 DOI: 10.3389/fgene.2024.1364389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Non-coding ribonucleic acids (ncRNAs) have been recently shown to contribute to tumorigenesis by mediating changes in metabolism. ncRNAs act as key molecules in metabolic pathways regulation. The dysregulation of ncRNAs during cancer progression contributes to altered metabolic phenotypes leading to reprogrammed metabolism. Since ncRNAs affect different tumor processes by regulating mitochondrial dynamics and metabolism, in the future ncRNAs can be exploited in disease detection, diagnosis, treatment, and resistance. The purpose of this review is to highlight the role of ncRNAs in mitochondrial metabolic reprogramming and to relate their therapeutic potential in the management of genitourinary cancer.
Collapse
Affiliation(s)
- Sandiya Thirunavukkarasu
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shouryarudra Banerjee
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishaq Tantray
- InventX Scientia, Kashmir, India
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Choi S, Kim K, Yeo H, Lee G, Kim I, Oh J, An HJ, Lee S. miR-4284 Functions as a Tumor Suppressor in Renal Cell Carcinoma Cells by Targeting Glutamate Decarboxylase 1. Cancers (Basel) 2023; 15:3888. [PMID: 37568704 PMCID: PMC10417762 DOI: 10.3390/cancers15153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
MicroRNAs (miRNAs) play a crucial role as oncogenic or tumor suppressors in the pathogenesis and progression of tumors. However, few studies have investigated the exact role of miR-4284 in renal cell carcinoma (RCC). We aimed to investigate the role of miR-4284 as a tumor suppressor in renal cancer cell lines. A498 and Caki-1 were transfected with miR-4284. The Cell Counting Kit-8, colony formation, apoptosis assays, and quantitative reverse transcription-polymerase chain reaction were used to evaluate tumor growth-inhibiting functions. The wound-healing, transwell, and sphere-formation assays were conducted to investigate tumorigenic characteristics. The potential target genes of miR-4284 were predicted and experimentally verified. A xenograft experiment was performed to estimate the tumor-growth-suppressive function of miR-4284. miR-4284 overexpression suppressed proliferation, induced apoptosis, and suppressed tumorigenic features of renal cancer cells. Glutamate decarboxylase 1 (GAD1) was directly targeted by miR-4284. A xenograft mouse model injected with Caki-1 cells transfected with miR-4284 showed significantly decreased tumor growth rate and volume. miR-4284 affected tumor growth, metastasis, and apoptosis of renal cancer cells in vitro and in vivo. These findings highlight the potential of miR-4284 as a target for anticancer miRNA therapeutics in RCC.
Collapse
Affiliation(s)
- Sujin Choi
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Kyeongmi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, 1205, Jungang-ro, Ilsandong-gu, Goyang-si 10414, Gyeonggi-do, Republic of Korea;
| | - Hyunjeong Yeo
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Gyurim Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
| | - Isaac Kim
- Department of General Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Jisu Oh
- Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Seoul 16995, Gyeonggi-do, Republic of Korea;
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Gyeonggi-do, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (S.C.); (H.Y.); (G.L.)
- SL Bio, Inc., 120 Haeryong-ro, Pocheon-si 11160, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Bai X, Zheng L, Xu Y, Liang Y, Li D. Role of microRNA-34b-5p in cancer and injury: how does it work? Cancer Cell Int 2022; 22:381. [PMID: 36457043 PMCID: PMC9713203 DOI: 10.1186/s12935-022-02797-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of noncoding single-stranded RNAs that can regulate gene expression by binding to the untranslated sequences at the 3 ' end of messenger RNAs. The microRNA-34 family is dysregulated in various human diseases. It is considered as a tumor-suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. As a member of the miRNA-34 family, miR-34b-5p serves as a powerful regulator of a suite of cellular activities, including cell growth, multiplication, development, differentiation, and apoptosis. It promotes or represses disease occurrence and progression by participating in some important signaling pathways. This review aimed to provide an overview and update on the differential expression and function of miR-34b-5p in pathophysiologic processes, especially cancer and injury. Additionally, miR-34b-5p-mediated clinical trials have indicated promising consequences for the therapies of carcinomatosis and injury. With the application of the first tumor-targeted microRNA drug based on miR-34a mimics, it can be inferred that miR-34b-5p may become a crucial factor in the therapy of various diseases. However, further studies on miR-34b-5p should shed light on its involvement in disease pathogenesis and treatment options.
Collapse
Affiliation(s)
- Xuechun Bai
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Lianwen Zheng
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Ying Xu
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Yan Liang
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| | - Dandan Li
- grid.452829.00000000417660726The Second Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
8
|
Miranda-Poma J, Trilla-Fuertes L, López-Camacho E, Zapater-Moros A, López-Vacas R, Lumbreras-Herrera MI, Pertejo-Fernandez A, Fresno-Vara JÁ, Espinosa-Arranz E, Gámez-Pozo A, Pinto-Marín Á. MiRNAs in renal cell carcinoma. Clin Transl Oncol 2022; 24:2055-2063. [PMID: 35729452 DOI: 10.1007/s12094-022-02866-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) are small RNA sequences that act as post-transcriptional regulatory genes to control many cellular processes through pairing bases with a complementary messenger RNA (mRNA). A single miRNA molecule can regulate more than 200 different transcripts and the same mRNA can be regulated by multiple miRNAs. In this review, we highlight the importance of miRNAs and collect the existing evidence on their relationship with kidney cancer.
Collapse
Affiliation(s)
| | | | | | | | - Rocío López-Vacas
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | | | | | - Juan Ángel Fresno-Vara
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain.,CIBERONC, ISCIII, Madrid, Spain
| | | | - Angelo Gámez-Pozo
- Molecular Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Biomedica Molecular Medicine SL, Madrid, Spain
| | | |
Collapse
|
9
|
Zhao X, Li Y, Sun R, Fan Y, Mu X, Wang Y, Shi C, Ma C. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem 2022; 414:3529-3539. [PMID: 35229173 DOI: 10.1007/s00216-022-03979-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023]
Abstract
Analysis of microRNAs (miRNAs) is important in cancer diagnostics and therapy. Conventional methods used to extract miRNA for analysis are generally time-consuming. A novel approach for rapid and sensitive extraction of miRNAs is urgently need for clinical applications. Herein, a novel strategy based on electrical potential-assisted DNA-RNA hybridization was designed for miRNA extraction. The entire extraction process was accomplished in approximately 3 min, which is much shorter than the commercial adsorption column method, at more than 60 min, or the TRIzol method, at more than 90 min. Additionally, the method offered the advantages of simplicity and specificity during the extraction process by electrical potential-assisted hybridization of single-stranded DNA and RNA. Taking let-7a as an example, satisfactory results were achieved for miRNA extraction in serum, demonstrating the applicability in miRNA nucleic acid amplification.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China.
| |
Collapse
|
10
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
11
|
Giubellino A, Ricketts CJ, Moreno V, Linehan WM, Merino MJ. MicroRNA Profiling of Morphologically Heterogeneous Clear Cell Renal Cell Carcinoma. J Cancer 2021; 12:5375-5384. [PMID: 34405000 PMCID: PMC8364632 DOI: 10.7150/jca.52310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/26/2020] [Indexed: 01/05/2023] Open
Abstract
Intratumoral heterogeneity (IH) has been recently described as an important contributor to tumor growth through a branched rather than a linear pattern of tumor evolution for renal cell carcinoma. As to whether the miRNA profiling of the different and heterogeneous areas is the same or not, it is not known. This study analyzed the differences and similarities of the miRNA profiles in histologically distinct regions within several RCC tumors. The observed differences may have great implications for the development of predictive biomarkers and the identification of druggable targets with improvement of combinatorial therapeutic approaches for the effective treatment of kidney cancer, as well as for the identification of circulating malignant cells that can be useful to detect tumor recurrences.
Collapse
Affiliation(s)
- Alessio Giubellino
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| | - Christopher J Ricketts
- Urologic Oncology Branch National Cancer Institute, National Institutes of health, Bethesda, MD
| | - Vanessa Moreno
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| | - W Marston Linehan
- Urologic Oncology Branch National Cancer Institute, National Institutes of health, Bethesda, MD
| | - Maria J Merino
- Translational Surgical Pathology, Laboratory of Pathology, National Institutes of health, Bethesda, MD
| |
Collapse
|
12
|
Pirmoradi S, Teshnehlab M, Zarghami N, Sharifi A. A self-organizing deep neuro-fuzzy system approach for classification of kidney cancer subtypes using miRNA genomics data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106132. [PMID: 34010800 DOI: 10.1016/j.cmpb.2021.106132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Kidney cancer is a dangerous disease affecting many patients all over the world. Early-stage diagnosis and correct identification of kidney cancer subtypes play an essential role in the patient's survival; therefore, its subtypes diagnosis and classification are the main challenges in kidney cancer treatment. Medical studies have proved that miRNA dysregulation can increase the risk of cancer. Thus, in this paper, we propose a new machine learning approach for significant miRNAs identification and kidney cancer subtype classification to design an automatic diagnostic tool. The proposed method contains two main steps: feature selection and classification. First, we apply the feature selection algorithm to choose the candidate miRNAs for each subtype. The feature selection algorithm utilizes the AMGM measure to select significant miRNAs with high discriminant power. Next, the candidate miRNAs are fed to a classifier to evaluate the candidate features. In the classification step, the proposed self-organizing deep neuro-fuzzy system is employed to classify kidney cancer subgroups. The new deep neuro-fuzzy system consists of a deep structure in the rule layer and novel architecture in the fuzzifier layer. The proposed self-organizing deep neuro-fuzzy system can help us to overcome the main obstacles in the field of neuro-fuzzy system applications, such as the curse of dimensionality. The goal of this paper is to illustrate that the neuro-fuzzy system can very useful in high dimensional data, such as genomics data, using the proposed deep neuro-fuzzy system. The obtained results illustrated that our proposed method has succeeded in classifying kidney cancer subtypes with high accuracy based on the selected miRNAs.
Collapse
Affiliation(s)
- Saeed Pirmoradi
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Teshnehlab
- Department of Systems and Control Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| | - Nosratollah Zarghami
- Department of Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Sharifi
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Fu K, Li Y, Song J, Cai W, Wu W, Ye X, Xu J. Identification of a MicroRNA Signature Associated With Lymph Node Metastasis in Endometrial Endometrioid Cancer. Front Genet 2021; 12:650102. [PMID: 33936173 PMCID: PMC8082502 DOI: 10.3389/fgene.2021.650102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor in endometrial cancer. Anomalous microRNAs (miRNAs) are associated with cell functions and are becoming a powerful tool to characterize malignant transformation and metastasis. The aim of this study was to construct a miRNA signature to predict LNM in endometrial endometrioid carcinoma (EEC). Method Candidate target miRNAs related to LNM in EEC were screened by three methods including differentially expressed miRNAs (DEmiRs), weighted gene co-expression network analysis (WGCNA), and decision tree algorithms. Samples were randomly divided into the training and validation cohorts. A miRNA signature was built using a logistic regression model and was evaluated by the area under the curve (AUC) of receiver operating characteristic curve (ROC) and decision curve analysis (DCA). We also conducted pathway enrichment analysis and miRNA-gene regulatory network to look for potential genes and pathways engaged in LNM progression. Survival analysis was performed, and the miRNAs were tested whether they expressed differently in another independent GEO database. Result Thirty-one candidate miRNAs were screened and a final 15-miRNA signature was constructed by logistic regression. The model showed good calibration in the training and validation cohorts, with AUC of 0.824 (95% CI, 0.739-0.912) and 0.821 (95% CI, 0.691-0.925), respectively. The DCA demonstrated the miRNA signature was clinically useful. Hub miRNAs in signature seemed to contribute to EEC progression via mitotic cell cycle, cellular protein modification process, and molecular function. MiR-34c was statistically significant in survival that a higher expression of miR-34c indicated a higher survival time. MiR-34c-3p, miR-34c-5p, and miR-34b-5p were expressed differentially in GSE75968. Conclusion The miRNA signature could work as a noninvasive method to detect LNM in EEC with a high prediction accuracy. In addition, miR-34c cluster may be a key biomarker referring LNM in endometrial cancer.
Collapse
Affiliation(s)
- Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China.,Women's hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanrui Li
- School of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jianyuan Song
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangyu Cai
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohang Ye
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Hu C, Zhao Y, Wang X, Zhu T. Intratumoral Fibrosis in Facilitating Renal Cancer Aggressiveness: Underlying Mechanisms and Promising Targets. Front Cell Dev Biol 2021; 9:651620. [PMID: 33777960 PMCID: PMC7991742 DOI: 10.3389/fcell.2021.651620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 01/01/2023] Open
Abstract
Intratumoral fibrosis is a histologic manifestation of fibrotic tumor stroma. The interaction between cancer cells and fibrotic stroma is intricate and reciprocal, involving dysregulations from multiple biological processes. Different components of tumor stroma are implicated via distinct manners. In the kidney, intratumoral fibrosis is frequently observed in renal cell carcinoma (RCC). However, the underlying mechanisms remain largely unclear. In this review, we recapitulate evidence demonstrating how fibrotic stroma interacts with cancer cells and mechanisms shared between RCC tumorigenesis and renal fibrogenesis, providing promising targets for future studies.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufeng Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
15
|
Geyer T, Schwarze V, Marschner C, Schnitzer ML, Froelich MF, Rübenthaler J, Clevert DA. Diagnostic Performance of Contrast-Enhanced Ultrasound (CEUS) in the Evaluation of Solid Renal Masses. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E624. [PMID: 33227984 PMCID: PMC7699268 DOI: 10.3390/medicina56110624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The present study aims to evaluate the diagnostic performance of contrast-enhanced ultrasound (CEUS) for discriminating between benign and malignant solid renal masses. METHODS 18 patients with histopathologically confirmed benign solid renal masses (11 oncocytomas, seven angiomyolipomas) as well as 96 patients with confirmed renal cell carcinoma (RCC) who underwent CEUS followed by radical or partial nephrectomy were included in this single-center study. CEUS examinations were performed by an experienced radiologist (EFSUMB Level 3) and included the application of a second-generation contrast agent. RESULTS Renal angiomyolipomas, oncocytomas, and renal cell carcinomas showed varying sonomorphological characteristics in CEUS. Angiomyolipomas showed heterogeneous echogenicity (57% hypo-, 43% hyperechoic), while all lesions showed rapid contrast-enhancement with two lesions also showing venous wash-out (29%). Notably, 9/11 oncocytomas could be detected in conventional ultrasound (64% hypo-, 9% hyper-, 9% isoechoic) and 2/11 only demarcated upon intravenous application of contrast agent (18%). All oncocytomas showed hyperenhancement in CEUS, venous wash-out was registered in 7/11 lesions (64%). CONCLUSIONS In line with the current state of knowledge, no specific sonomorphological characteristics allowing for accurate distinction between benign and malignant solid renal masses in CEUS could be detected in our study.
Collapse
Affiliation(s)
- Thomas Geyer
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| | - Vincent Schwarze
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| | - Constantin Marschner
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| | - Moritz L. Schnitzer
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| | - Matthias F. Froelich
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, 68167 Mannheim, Germany;
| | - Johannes Rübenthaler
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| | - Dirk-André Clevert
- Department of Radiology, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (V.S.); (C.M.); (M.L.S.); (J.R.); (D.-A.C.)
| |
Collapse
|
16
|
Evangelista AF, de Menezes WP, Berardinelli GN, Dos Santos W, Scapulatempo-Neto C, Guimarães DP, Calin GA, Reis RM. Pyknon-Containing Transcripts Are Downregulated in Colorectal Cancer Tumors, and Loss of PYK44 Is Associated With Worse Patient Outcome. Front Genet 2020; 11:581454. [PMID: 33304384 PMCID: PMC7693444 DOI: 10.3389/fgene.2020.581454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023] Open
Abstract
Pyknons are specific human/primate-specific DNA motifs at least 16 nucleotides long that are repeated in blocks in intergenic and intronic regions of the genome and can be located in a new class of non-coding RNAs of variable length. Recent studies reported that pyknon deregulation could be involved in the carcinogenesis process, including colorectal cancer. We evaluated the expression profile of a set of 12 pyknons in a set of molecularly characterized colorectal cancer (CRC) patients. The pyknons (PYK10, PYK14, PYK17, PYK26, PYK27, PYK40, PYK41, PYK42, PYK43, PYK44, PYK83, and PYK90) expression was determined by qRT-PCR. A pilot analysis of 20 cases was performed, and consistent results were obtained for PYK10, PYK17, PYK42, PYK44, and PYK83. Further, the expression of the selected pyknons was evaluated in 73 CRC cases. Moreover, in 52 patients, we compared the expression profile in both tumor and normal tissues. All five pyknons analyzed showed significantly lower expression levels in the tumor compared to normal tissue. It was observed an association between expression of PYK10 with TP53 mutations (p = 0.029), PYK17 to histologic grade (p = 0.035), and PYK44 to clinical staging (p = 0.016). Moreover, levels of PYK44 were significantly associated with the patient's poor overall survival (p = 0.04). We reported the significant downregulation of pyknons motifs in tumor tissue compared with the normal counterpart, and the association of lower PYK44 expression with worse patient outcome. Further studies are needed to extend and validate these findings and determine the clinical-pathological impact.
Collapse
Affiliation(s)
| | | | | | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil
| | - George A Calin
- Translational Molecular Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
17
|
Sotoudeh Anvari M, Gharib A, Abolhasani M, Azari-Yam A, Hossieni Gharalari F, Safavi M, Zare Mirzaie A, Vasei M. Pre-analytical Practices in the Molecular Diagnostic Tests, A Concise Review. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:1-19. [PMID: 33391375 PMCID: PMC7691716 DOI: 10.30699/ijp.2020.124315.2357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
Abstract
Molecular assays for detection of nucleic acids in biologic specimens are valuable diagnostic tools supporting clinical diagnoses and therapeutic decisions. Pre-analytical errors, which occur before or during processing of nucleic acid extraction, contribute a significant role in common errors that take place in molecular laboratories. Certain practices in specimen collection, transportation, and storage can affect the integrity of nucleic acids before analysis. Applying best practices in these steps, helps to minimize those errors and leads to better decisions in patient diagnosis and treatment. Widely acceptable recommendations, which are for optimal molecular assays associated with pre-analytic variables, are limited. In this article, we have reviewed most of the important issues in sample handling from bed to bench before starting molecular tests, which can be used in diagnostic as well as research laboratories. We have addressed the most important pre-analytical points in performing molecular analysis in fixed and unfixed solid tissues, whole blood, serum, plasma, as well as most of the body fluids including urine, fecal and bronchial samples, as well as prenatal diagnosis samples.
Collapse
Affiliation(s)
- Maryam Sotoudeh Anvari
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Gharib
- Department of Pathology, Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aileen Azari-Yam
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Moeinadin Safavi
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Mirzaie
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vasei
- Cell-based Therapies Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
19
|
Petrozza V, Costantini M, Tito C, Giammusso LM, Sorrentino V, Cacciotti J, Porta N, Iaiza A, Pastore AL, Di Carlo A, Simone G, Carbone A, Gallucci M, Fazi F. Emerging role of secreted miR-210-3p as potential biomarker for clear cell Renal Cell Carcinoma metastasis. Cancer Biomark 2020; 27:181-188. [PMID: 31771042 DOI: 10.3233/cbm-190242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are emerging as promising molecules in the diagnosis, prognosis and treatment of urological tumours. Recently, our group performed two independent studies highlighting that miR-210-3p may be a useful biomarker not only for diagnosis but also for post-surgery clear cell Renal Cell Carcinoma (ccRCC) management. OBJECTIVE The aim of this study is to further explore the effectiveness of miRNA as non-invasive biomarker for clinical outcomes and ccRCC response to the treatment. METHODS We analyzed miR-210-3p levels in neoplastic and healthy tissue and in urine specimens collected at surgery and during follow-up of 21 ccRCC patients by RTqPCR. RESULTS Firstly, we confirmed that the expression of miR-210-3p was upregulated in tumor tissues and in urine samples of analyzed cohort. Of note is that miR-210-3p expression was significantly reduced in urine samples from disease-free patients during follow-up (from 3 to 12 months) compared to the baseline levels observed at the time of surgery. In a small subgroup of patients presenting metastatic progression (such as bone, intestinal or lung metastasis), the urine levels of miR-210-3p correlated with responsiveness to the therapy. CONCLUSIONS This pilot study highlights the relevance of secreted miR-210-3p as powerful non-invasive prognostic and predictive biomarker for the evaluation of clinical outcomes and treatment response during ccRCC follow up.
Collapse
Affiliation(s)
- Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Manuela Costantini
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Claudia Tito
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Laura Maria Giammusso
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Veronica Sorrentino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Jessica Cacciotti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Natale Porta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Pathology Unit ICOT, Latina, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Antonio Luigi Pastore
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy
| | - Angelina Di Carlo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Giuseppe Simone
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Carbone
- Department of Medico Surgical Sciences and Biotechnologies, Sapienza University of Rome, Urology Unit ICOT, Latina, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Urology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
20
|
Xie Y, Chen L, Gao Y, Ma X, He W, Zhang Y, Zhang F, Fan Y, Gu L, Li P, Zhang X, Gou X. miR-363 suppresses the proliferation, migration and invasion of clear cell renal cell carcinoma by downregulating S1PR1. Cancer Cell Int 2020; 20:227. [PMID: 32536815 PMCID: PMC7288407 DOI: 10.1186/s12935-020-01313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) serve as important regulators of the tumorigenesis and progression of many human cancers. Therefore, we evaluated the biological function and underlying mechanism of miR-363 in clear cell renal cell carcinoma (ccRCC). Methods The expression of miR-363 in ccRCC tissues compared with adjacent normal renal tissues was detected by quantitative real-time polymerase chain reaction, and the association between miR-363 levels and prognosis of ccRCC patients was analyzed. The candidate target gene of miR-363 was determined by in silico analysis and luciferase reporter assays. The effects of miR-363 on the proliferation, migration and invasion of ccRCC cells in vitro were determined by MTS assay, colony formation assay, Transwell assay and wound healing assay. We also investigated the roles of miR-363 in vivo by a xenograft tumour model. The mechanism of miR-363 on the proliferation, migration and invasion of ccRCC was determined by gain- and loss-of-function analyses. Results we demonstrated that miR-363 expression was obviously downregulated in ccRCC tissues and that reduced miR-363 expression was correlated with poor disease-free survival (DFS) in ccRCC patients after surgery. S1PR1 expression was inversely correlated with the level of miR-363 in human ccRCC samples. Luciferase reporter assays suggested that S1PR1 was a direct functional target of miR-363. miR-363 downregulated S1PR1 expression and suppressed the proliferation, migration and invasion abilities of ccRCC cells in vitro and suppressed xenograft tumour growth in vivo. Importantly, miR-363 exerted its biological function by inhibiting S1PR1 expression in ccRCC cells, leading to the repression of ERK activation. Moreover, we found that the levels of downstream effectors of ERK, including PDGF-A, PDGF-B, and epithelial-mesenchymal transition (EMT)-related genes, were decreased after miR-363 overexpression. Conclusions Our results suggest that miR-363 acts as a tumour suppressor by directly targeting S1PR1 in ccRCC and may be a potential new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Liangyou Gu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Pin Li
- Department of Pediatric Urology, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
21
|
Xu Y, Ma Y, Liu XL, Gao SL. miR‑133b affects cell proliferation, invasion and chemosensitivity in renal cell carcinoma by inhibiting the ERK signaling pathway. Mol Med Rep 2020; 22:67-76. [PMID: 32377748 PMCID: PMC7248518 DOI: 10.3892/mmr.2020.11125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma has the highest incidence rate of cancer types in the urinary system. Moreover, microRNAs (miRNA) have been closely associated with numerous types of tumor. The present study aimed to investigate the effects of miRNA (miR)-133b on the proliferation, invasion and chemosensitivity of renal cell carcinoma cells, and to determine whether its mechanism was regulated by the ERK signaling pathway. Both renal cell carcinoma and adjacent healthy tissues from 60 patients, in addition to renal cell carcinoma lines, ACHN, Caki-1, A-498 and 786-O, and 293 cells, were used in this study. miR-133b expression was measured from renal cell carcinoma, adjacent healthy tissues and renal cell carcinoma cell lines by reverse transcription-quantitative PCR. Cells were transfected with miR-133b mimic to achieve miR-133b overexpression. The proliferative, migratory and invasive ability of the cells were evaluated using MTT, wound healing and Matrigel assays, respectively, and flow cytometry was used to detect the apoptotic rate. Following treatment with an ERK inhibitor, U0126, and activator, LM22B-10, western blotting was used to detect the expression of related proteins and the activity of the ERK signaling pathway. The overexpression of miR-133b significantly inhibited cell proliferation, migration and invasion, whilst inducing apoptosis and increasing the drug sensitivity of renal cell carcinoma cells to cisplatin, docetaxel and doxorubicin. The miR-133b mimic also increased the protein expression levels of Bax and decreased the expression levels of matrix metalloproteinase (MMP)-2, MMP-9, ATP-binding cassette subfamily G2, P-glycoprotein, Bcl-2 and proliferating cell nuclear antigen, as well as the phosphorylation of ERK (P<0.05). The administration of the U0216 inhibitor demonstrated similar effects to miR-133b overexpression, and there was no significant difference compared with the miR-133b mimic transfection (P>0.05). However, the overexpression of miR-133b combined with LM22B-10 treatment weakened the anticancer effects of miR-133b mimic transfection (P<0.05). In conclusion, miR-133b overexpression was observed to inhibit the proliferation, migration and invasion of renal cell carcinoma cells and improve chemotherapeutic sensitivity; it was suggested that the mechanism maybe related to the inhibition of ERK1/2 phosphorylation and thus decreased ERK signaling pathway activity.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuan Ma
- Department of Internal Medicine, School of Medicine, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiao-Ling Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Sheng-Li Gao
- Department of Clinical Medicine, Shandong Medical College, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
22
|
Lv N, Li C, Liu X, Qi C, Wang Z. miR-34b Alleviates High Glucose-Induced Inflammation and Apoptosis in Human HK-2 Cells via IL-6R/JAK2/STAT3 Signaling Pathway. Med Sci Monit 2019; 25:8142-8151. [PMID: 31665127 PMCID: PMC6842269 DOI: 10.12659/msm.917128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background It is well established that inflammation and apoptosis of renal tubular epithelial cells caused by hyperglycemia contribute to the development of diabetic nephropathy (DN). Although microRNAs (miRNAs) are known to have roles in inflammation-related disorders, the exact role of miR-34b in DN has not been defined, and the regulatory mechanism has been unclear. This study aimed to clarify the role of miR-34b in DN pathogenesis. Material/Methods Expression of miR-34b, IL-6R, and other key factors of inflammation, apoptosis (TNF-α, IL-1β, IL-6, caspase-3) in high glucose (HG)-induced HK-2 cells were measured by real-time PCR, Western blot, and flow cytometric cell apoptosis assays. We used luciferase reporter assay to detect the target of miR-34b. Moreover, the targeting gene of miR-34b and its downstream JAK2/STAT3 signaling pathway were explored. Results It was demonstrated that miR-34b overexpression inhibited apoptosis and expression levels of TNF-α, IL-1β, IL-6, and caspase-3 in HG-treated HK-2 cells. We also found that IL-6R is a direct target of miR-34b, which could rescue inflammation and apoptosis in HG-treated HK-2 cells transfected with miR-34b mimic. Furthermore, we showed that overexpression of miR-34b inhibited the IL-6R/JAK2/STAT3 signaling pathway in HG-treated HK-2 cells. Conclusions Our data suggest that overexpression of miR-34b improves inflammation and ameliorates apoptosis in HG-induced HK-2 cells via the IL-6R/JAK2/STAT3 pathway, indicating that miR-34b could be a promising therapeutic target in DN.
Collapse
Affiliation(s)
- Na Lv
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Chunqing Li
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Xin Liu
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Caihui Qi
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| | - Zhenqing Wang
- Department of Endocrinology, Dongying People's Hospital, Dongying, Shangdong, China (mainland)
| |
Collapse
|
23
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Tang T, Du X, Zhang X, Niu W, Li C, Tan J. Computational identification and analysis of early diagnostic biomarkers for kidney cancer. J Hum Genet 2019; 64:1015-1022. [PMID: 31350524 DOI: 10.1038/s10038-019-0640-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 01/30/2023]
Abstract
Renal cell carcinoma is one of the most common urinary system tumors in adults, it is usually asymptomatic in its early stage and the patients are often diagnosed late. MicroRNA has a higher diagnostic accuracy than traditional markers and may become a new type of early diagnostic biomarker for kidney cancer. Three computational methods and several bioinformatic methods including PPI network, overall survival analysis and enrichment analysis were used to identify the significant differentially expressed miRNAs. Thirteen miRNAs that were significantly differentially expressed in RCC patients were identified, 10 of them have been proved to be associated with kidney cancer in other studies, miR-576, miR-616 and miR-133a-2 are three newly discovered biomarkers of RCC in this study. We found that the target genes of miR-576 (CUL3 and RAC1) are involved in the regulation of multiple cancer-related biological pathways, and the target gene of miR-616 (ASB13 and FBXW2) has been reported to be associated with the development of other cancers. Our findings may have guiding significance for the early diagnosis of renal cell carcinoma.
Collapse
Affiliation(s)
- Tang Tang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoyan Du
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Wenling Niu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
25
|
Chan Y, Yu Y, Wang G, Wang C, Zhang D, Wang X, Wang Z, Jian W, Zhang C. Inhibition of MicroRNA-381 Promotes Tumor Cell Growth and Chemoresistance in Clear-Cell Renal Cell Carcinoma. Med Sci Monit 2019; 25:5181-5190. [PMID: 31299041 PMCID: PMC6642673 DOI: 10.12659/msm.915524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background MicroRNA-381 (miR-381) is proven to be involved in many human tumors. Bioinformatics prediction suggests that miR-381 is decreased in renal cell carcinoma. However, its biological functions in clear-cell renal cell carcinoma (ccRCC) remain largely unknown. The present research aimed to evaluate miR-381 expression in renal cancer tissues and its effects on cell proliferation, growth, migration, and chemoresistance. Material/Methods Sixty pairs of ccRCC and the adjacent non-tumor specimens were collected during routine therapeutic surgery. Quantitative real-time PCR (qRT-PCR) assay was employed to examine miR-381 expression in the ccRCC tissues and the associated adjacent tissues (the normal tissues adjacent to tumor tissues). Cell transfection assay and Thiazolyl Blue Tetrazolium Bromide (MTT) assay were utilized to observe effects of miR-381 on the cell proliferation, growth, invasion, and chemoresistance in the Caki-1 cell line and 786-O cell line. Flow cytometry was used to assess cell apoptosis. Caki-1 cell and 786-O cell Xenograft BALB/c mouse models were established. Results miR-381 expression was downregulated in ccRCC tissues in vivo and in cell lines in vitro. Downregulation of miR-381 promoted growth of cells and restrained the ccRCC cell apoptosis. Increased miR-381 combined with Ci and Pa suppressed the proliferation and enhanced the anti-tumor effects of Ci and Pa at tolerated concentrations in vitro. miR-381 inhibition promoted chemoresistance in vitro. Conclusions miR-381 levels were significantly downregulated in renal cancer tissues and miR-381 inhibition promoted tumor cell growth, migration, and chemoresistance.
Collapse
Affiliation(s)
- Yunhui Chan
- Department of Urology, Third Ward, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yipeng Yu
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Gang Wang
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Changlin Wang
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Daming Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China (mainland).,Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Zichun Wang
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Wengang Jian
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Cheng Zhang
- Department of Urology, Third Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
26
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
27
|
Carlsson J, Christiansen J, Davidsson S, Giunchi F, Fiorentino M, Sundqvist P. The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma. Oncol Lett 2019; 17:4566-4574. [PMID: 30988818 PMCID: PMC6447904 DOI: 10.3892/ol.2019.10142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most commonly diagnosed renal tumor, consisting of ~3% of all malignancies worldwide. The prognosis of RCC can vary widely, and detecting patients at risk of recurrence at an early stage of disease may improve patient outcome. The factors presently used in a clinical setting cannot reliably predict the natural history of the disease. Therefore, there is a requirement to identify novel biomarkers that can aid in predicting patient outcome. Previous studies have indicated that microRNAs (miRNAs/miRs) are potential candidates as prognostic biomarkers for patients suffering from RCC. Consequently, the aims of the present study were to validate the potential of 3 of these miRNAs to predict the prognosis of patients with RCC, and to investigate the stability of endogenous control genes for miRNA studies in RCC tissues. The expression of 7 endogenous controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in formalin-fixed paraffin-embedded tumor and benign tissues from patients suffering from clear cell RCC (ccRCC). The analyses identified RNU48 and U47 as the most stable endogenous controls. The expression of miR-126, miR-21 and miR-10b was analyzed using RT-qPCR in renal tissues from 116 patients diagnosed with ccRCC. All three investigated miRNAs were differentially expressed between malignant and benign tissues. miR-126 and miR-10b were also differentially expressed between grades and stages of ccRCC. In a univariate, but not in a multivariate model, low expression of miR-126 was associated with shorter time to recurrence of the disease. The results of the present study indicate that of the 3 miRNAs investigated, the expression of miR-126 has the strongest potential as a prognostic biomarker for patients suffering from ccRCC.
Collapse
Affiliation(s)
- Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Jesper Christiansen
- Department of Surgery, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| | - Francesca Giunchi
- Department of Pathology, F. Addari Institute of Oncology, S. Orsola Hospital, I-401 38 Bologna, Italy
| | - Michelangelo Fiorentino
- Department of Pathology, F. Addari Institute of Oncology, S. Orsola Hospital, I-401 38 Bologna, Italy
| | - Pernilla Sundqvist
- Department of Urology, Faculty of Medicine and Health, Örebro University, 701 85 Örebro, Sweden
| |
Collapse
|
28
|
Multiswarm heterogeneous binary PSO using win-win approach for improved feature selection in liver and kidney disease diagnosis. Comput Med Imaging Graph 2018; 70:135-154. [DOI: 10.1016/j.compmedimag.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/26/2018] [Accepted: 10/12/2018] [Indexed: 01/26/2023]
|
29
|
A Machine Learning Approach for the Classification of Kidney Cancer Subtypes Using miRNA Genome Data. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122422] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Kidney cancer is one of the deadliest diseases and its diagnosis and subtype classification are crucial for patients’ survival. Thus, developing automated tools that can accurately determine kidney cancer subtypes is an urgent challenge. It has been confirmed by researchers in the biomedical field that miRNA dysregulation can cause cancer. In this paper, we propose a machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Through empirical studies we found 35 miRNAs that possess distinct key features that aid in kidney cancer subtype diagnosis. In the proposed method, Neighbourhood Component Analysis (NCA) is employed to extract discriminative features from miRNAs and Long Short Term Memory (LSTM), a type of Recurrent Neural Network, is adopted to classify a given miRNA sample into kidney cancer subtypes. In the literature, only a couple of kidney subtypes have been considered for classification. In the experimental study, we used the miRNA quantitative read counts data, which was provided by The Cancer Genome Atlas data repository (TCGA). The NCA procedure selected 35 of the most discriminative miRNAs. With this subset of miRNAs, the LSTM algorithm was able to group kidney cancer miRNAs into five subtypes with average accuracy around 95% and Matthews Correlation Coefficient value around 0.92 under 10 runs of randomly grouped 5-fold cross-validation, which were very close to the average performance of using all miRNAs for classification.
Collapse
|
30
|
Zhang J, Ye Y, Chang DW, Lin SH, Huang M, Tannir NM, Matin S, Karam JA, Wood CG, Chen ZN, Wu X. Global and Targeted miRNA Expression Profiling in Clear Cell Renal Cell Carcinoma Tissues Potentially Links miR-155-5p and miR-210-3p to both Tumorigenesis and Recurrence. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2487-2496. [PMID: 30201497 PMCID: PMC6207099 DOI: 10.1016/j.ajpath.2018.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
About 30% of patients undergoing nephrectomy for renal cell carcinoma (RCC) experience disease recurrence. We profiled miRNAs dysregulated in clear-cell (cc) RCC tumor tissues and predictive of recurrence. The expression levels of 800 miRNAs were assessed in paired tumor and normal tissues from a discovery cohort of 18 ccRCC patients. miRNAs found to be differentially expressed were examined in a validation set of 205 patients, using real-time quantitative PCR. Tumor-normal data from 64 patients in The Cancer Genome Atlas were used for external validation. Twenty-eight miRNAs were consistently dysregulated in tumor tissues. On dichotomized analysis, patients with high levels of miR-155-5p and miR-210-3p displayed an increased risk for ccRCC recurrence (hazard ratio, 2.64; 95% CI, 1.49 to 4.70; P = 0.0009; and hazard ratio, 1.80; 95% CI, 1.04 to 3.12; P = 0.036, respectively) and a shorter median recurrence-free survival time than did patients with low levels [P < 0.01 (log rank test)]. A risk score was generated based on the expression levels of miR-155-5p and miR-210-3p, and the trend test was significant (P = 0.005). On pathway analysis, target genes regulated by miR-155-5p and miR-210-3p were mainly enriched in inflammation-related pathways. We identified and validated multiple miRNAs dysregulated in ccRCC tissues; miR-155-5p and miR-210-3p were predictive of ccRCC recurrence, pointing to potential utility as biomarkers and underlying biological mechanisms.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas; College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhi-Nan Chen
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China; Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, China
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
31
|
Tsiakanikas P, Giaginis C, Kontos CK, Scorilas A. Clinical utility of microRNAs in renal cell carcinoma: current evidence and future perspectives. Expert Rev Mol Diagn 2018; 18:981-991. [DOI: 10.1080/14737159.2018.1539668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nustrition, School of Environment, University of the Aegean, Lemnos, Greece
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Gattolliat CH, Couvé S, Meurice G, Oréar C, Droin N, Chiquet M, Ferlicot S, Verkarre V, Vasiliu V, Molinié V, Méjean A, Dessen P, Giraud S, Bressac-De-Paillerets B, Gardie B, Tean Teh B, Richard S, Gad S. Integrative analysis of dysregulated microRNAs and mRNAs in multiple recurrent synchronized renal tumors from patients with von Hippel-Lindau disease. Int J Oncol 2018; 53:1455-1468. [PMID: 30066860 PMCID: PMC6086628 DOI: 10.3892/ijo.2018.4490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is a rare auto-somal dominant syndrome that is the main cause of inherited clear-cell renal cell carcinoma (ccRCC), which generally occurs in the form of multiple recurrent synchronized tumors. Affected patients are carriers of a germline mutation in the VHL tumor suppressor gene. Somatic mutations of this gene are also found in sporadic ccRCC and numerous pan-genomic studies have reported a dysregulation of microRNA (miRNA) expression in these sporadic tumors. In order to investigate the molecular mechanisms underlying the pathogenesis of VHL-associated ccRCC, particularly in the context of multiple tumors, the present study characterized the mRNA and miRNA transcriptome through an integrative analysis compared with sporadic renal tumors. In the present study, two series of ccRCC samples were used. The first set consisted of several samples from different tumors occurring in the same patient, for two independent patients affected with VHL disease. The second set consisted of 12 VHL-associated tumors and 22 sporadic ccRCC tumors compared with a pool of normal renal tissue. For each sample series, an expression analysis of miRNAs and mRNAs was conducted using microarrays. The results indicated that multiple tumors within the kidney of a patient with VHL disease featured a similar pattern of miRNA and gene expression. In addition, the expression levels of miRNA were able to distinguish VHL-associated tumors from sporadic ccRCC, and it was identified that 103 miRNAs and 2,474 genes were differentially expressed in the ccRCC series compared with in normal renal tissue. The majority of dysregulated genes were implicated in 'immunity' and 'metabolism' pathways. Taken together, these results allow a better understanding of the occurrence of ccRCC in patients with VHL disease, by providing insights into dysregulated miRNA and mRNA. In the set of patients with VHL disease, there were few differences in miRNA and mRNA expression, thus indicating a similar molecular evolution of these synchronous tumors and suggesting that the same molecular mechanisms underlie the pathogenesis of these hereditary tumors.
Collapse
Affiliation(s)
| | - Sophie Couvé
- Oncogenetics Laboratory, EPHE, PSL Research University, 75014 Paris, France
| | | | - Cédric Oréar
- Genomic Platform, Gustave Roussy, 94800 Villejuif, France
| | - Nathalie Droin
- Genomic Platform, Gustave Roussy, 94800 Villejuif, France
| | - Mathieu Chiquet
- Oncogenetics Laboratory, EPHE, PSL Research University, 75014 Paris, France
| | - Sophie Ferlicot
- INSERM, UMR 1186, Gustave Roussy, Paris-Sud University, Paris-Saclay University, 94800 Villejuif, France
| | - Virginie Verkarre
- PREDIR INCa, Department of Urology, AP-HP, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Viorel Vasiliu
- Department of Pathological Anatomy, Necker Hospital, 75015 Paris, France
| | - Vincent Molinié
- Department of Pathological Anatomy and Cytology, Saint Joseph Hospital, 75014 Paris, France
| | - Arnaud Méjean
- PREDIR INCa, Department of Urology, AP-HP, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | | | - Sophie Giraud
- PREDIR INCa, Department of Urology, AP-HP, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | | | - Betty Gardie
- Oncogenetics Laboratory, EPHE, PSL Research University, 75014 Paris, France
| | - Bin Tean Teh
- National Cancer Centre, Duke Graduate Medical School, Cancer Science Institute of Singapore, Institute of Molecular and Cellular Biology, Singapore 138673, Singapore
| | - Stéphane Richard
- Oncogenetics Laboratory, EPHE, PSL Research University, 75014 Paris, France
| | - Sophie Gad
- Oncogenetics Laboratory, EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
33
|
MicroRNAs as Urinary Biomarker for Oncocytoma. DISEASE MARKERS 2018; 2018:6979073. [PMID: 30116406 PMCID: PMC6079495 DOI: 10.1155/2018/6979073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/22/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
Abstract
The identification of benign renal oncocytoma, its differentiation from malignant renal tumors, and their eosinophilic variants are a continuous challenge, influencing preoperative planning and being an unnecessary stress factor for patients. Regressive changes enhance the diagnostic dilemma, making evaluations by frozen sections or by immunohistology (on biopsies) unreliable. MicroRNAs (miRs) have been proposed as novel biomarkers to differentiate renal tumor subtypes. However, their value as a diagnostic biomarker of oncocytoma in urines based on mechanisms known in oncocytomas has not been exploited. We used urines from patients with renal tumors (oncocytoma, renal cell carcinoma: clear cell, papillary, chromophobe) and with other urogenital lesions. miRs were extracted and detected via qRT-PCR, the respective tumors analyzed by immunohistology. We found isocitrate dehydrogenase 2 upregulated in oncocytoma and oncocytic chromophobe carcinoma, indicating an increased Krebs cycle metabolism. Since we had shown that all renal tumors are stimulated by endothelin-1, we analyzed miRs preidentified by microarray after endothelin-1 stimulation of renal epithelial cells. Four miRs are proposed as presurgical urinary biomarkers due to their known regulatory mechanism in oncocytoma: miR-498 (formation of the oncocytoma-specific slice-form of vimentin, Vim3), miR-183 (associated with increased CO2 levels), miR-205, and miR-31 (signaling through downregulation of PKC epsilon, shown previously).
Collapse
|
34
|
Chen X, Lou N, Ruan A, Qiu B, Yan Y, Wang X, Du Q, Ruan H, Han W, Wei H, Yang H, Zhang X. miR-224/miR-141 ratio as a novel diagnostic biomarker in renal cell carcinoma. Oncol Lett 2018; 16:1666-1674. [PMID: 30008851 PMCID: PMC6036413 DOI: 10.3892/ol.2018.8874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Biomarkers to guide the clinical treatment of patients with renal cell carcinoma (RCC) are not yet routinely available. MicroRNAs (miRNAs) have been demonstrated to serve as biomarkers for a number of types of cancer. Based on a previous study by this group, we hypothesize that several highly differentially expressed miRNAs may serve as tissue and plasma biomarkers in patients with RCC. The expression levels of miR-210, miR-224 and miR-141 were analyzed in tissue samples from the same cohort of 78 patients with RCC, in paired pre- and post-operative plasma samples from 66 patients with clear cell RCC (ccRCC) and in 67 healthy controls by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic (ROC) was used to evaluate the diagnostic accuracy associated with the expression of miR-210, miR-224 and miR-141. ROC curves revealed that the diagnostic accuracy (area under the curve) of tissue miR-210, miR-224, the ratio of miR-210/miR-141 (miR210/141), miR-224/miR-141 (miR224/141) and miR-210× miR-224/miR-141 (miR210×224/141) in ccRCC was 0.8329, 0.8511, 0.9412, 0.9898 and 0.9771, respectively. Notably, miR224/141 demonstrated the highest accuracy among these miRNAs for discriminating ccRCC tissues from normal tissues, with a sensitivity of 97.06% and a specificity of 98.53%. The expression levels of plasma miR-210 and miR-224 were significantly increased in patients compared with healthy control patients, and were reduced postoperatively (P<0.05). The diagnostic accuracy of plasma miR-210 and miR-224 were 0.6775 (89.55% sensitivity and 48.48% specificity) and 0.6056 (88.06% sensitivity and 40.91% specificity), respectively. The present study indicated that the tissue miR-224/miR-141 ratio is a potentially powerful tool for detecting ccRCC. However, plasma miR-210 and miR-224 may not be associated with diagnosis of ccRCC.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Anming Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Qiu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Yan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xuegang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Quansheng Du
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weiwei Han
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Haibin Wei
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hongmei Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
35
|
Crentsil VC, Liu H, Sellitti DF. Comparison of exosomal microRNAs secreted by 786-O clear cell renal carcinoma cells and HK-2 proximal tubule-derived cells in culture identifies microRNA-205 as a potential biomarker of clear cell renal carcinoma. Oncol Lett 2018; 16:1285-1290. [PMID: 30061948 DOI: 10.3892/ol.2018.8751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 01/12/2023] Open
Abstract
Previous reports have indicated that the abundance of specific microRNAs (miRNA) contained within the exosome/microvesicle compartment of patient biofluids may be useful in diagnosing specific types of cancer. In the present study, the 786-O cell line, which is derived from a clear cell renal cell carcinoma (ccRCC), was used as an in vitro ccRCC tumor model and the human renal proximal tubule cell line HK-2 was used as its normal renal tissue control to investigate the similarities of exosomal content of selected ccRCC miRNA biomarkers in the supernatant with the content of those markers in the cells themselves. A PCR array identified miRNA biomarkers of solid RCC tumors (miR-210, MiR-34a, miR-155-5p and miR-150-5p) that were increased by 2-8 fold in 786-O exosomes compared with the control. These were subsequently chosen for further investigation using TaqMan RT-qPCR in addition to miR-15a and miR-205, which were selected based on prior interest as RCC biomarkers. MiR-15a, -34a, -210 and -155 levels were significantly lower in exosomes when compared with that in whole cells but did not differ between the HK-2 and 786-O cells in either the cytoplasmic, exosome or exosome-free supernatant fractions. By contrast, cytoplasmic miR-150 and miR-205 exhibited significant differences in concentration between the two cell lines. In addition, the cytoplasmic content of miR-150 and miR-205 was mirrored in the exosomal content of these miRNAs. Furthermore, the difference in exosomal miR-205 content was statistically significant. The present study indicated that measurements of the exosomal content of miR-205 and possibly miR-150, but not those of the other examined miRNAs, are proportional to their respective contents in the cells that secreted them. These findings suggest that in vitro RCC systems may be useful in identifying miRNAs with sufficiently high levels of exportation into exosomes; and with sufficiently different expression levels between tumor and normal cells to serve as ccRCC biomarkers in vivo.
Collapse
Affiliation(s)
- Victor C Crentsil
- Department of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA
| | - Hui Liu
- Department of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA
| | - Donald F Sellitti
- Department of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of The Health Sciences, Bethesda, MD 20814-4799, USA
| |
Collapse
|
36
|
Strauss P, Marti HP, Beisland C, Scherer A, Lysne V, Leh S, Flatberg A, Koch E, Beisvag V, Landolt L, Skogstrand T, Eikrem Ø. Expanding the Utilization of Formalin-Fixed, Paraffin-Embedded Archives: Feasibility of miR-Seq for Disease Exploration and Biomarker Development from Biopsies with Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2018. [PMID: 29534467 PMCID: PMC5877664 DOI: 10.3390/ijms19030803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel predictive tools for clear cell renal cell carcinoma (ccRCC) are urgently needed. MicroRNAs (miRNAs) have been increasingly investigated for their predictive value, and formalin-fixed paraffin-embedded biopsy archives may potentially be a valuable source of miRNA sequencing material, as they remain an underused resource. Core biopsies of both cancerous and adjacent normal tissues were obtained from patients (n = 12) undergoing nephrectomy. After small RNA-seq, several analyses were performed, including classifier evaluation, obesity-related inquiries, survival analysis using publicly available datasets, comparisons to the current literature and ingenuity pathway analyses. In a comparison of tumour vs. normal, 182 miRNAs were found with significant differential expression; miR-155 was of particular interest as it classified all ccRCC samples correctly and correlated well with tumour size (R² = 0.83); miR-155 also predicted poor survival with hazard ratios of 2.58 and 1.81 in two different TCGA (The Cancer Genome Atlas) datasets in a univariate model. However, in a multivariate Cox regression analysis including age, sex, cancer stage and histological grade, miR-155 was not a statistically significant survival predictor. In conclusion, formalin-fixed paraffin-embedded biopsy tissues are a viable source of miRNA-sequencing material. Our results further support a role for miR-155 as a promising cancer classifier and potentially as a therapeutic target in ccRCC that merits further investigation.
Collapse
Affiliation(s)
- Philipp Strauss
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Andreas Scherer
- Spheromics, 81100 Kontiolahti, Finland;
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00100 Helsinki, Finland
| | - Vegard Lysne
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Even Koch
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Vidar Beisvag
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.F.); (V.B.)
| | - Lea Landolt
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
| | - Trude Skogstrand
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Biomedicine, University of Bergen, 5021 Bergen, Norway;
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (P.S.); (H.-P.M.); (C.B.); (S.L.); (E.K.); (L.L.)
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence: ; Tel.: +47-4544-6008
| |
Collapse
|
37
|
Lawrie CH, Armesto M, Fernandez-Mercado M, Arestín M, Manterola L, Goicoechea I, Larrea E, Caffarel MM, Araujo AM, Sole C, Sperga M, Alvarado-Cabrero I, Michal M, Hes O, López JI. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms. J Mol Diagn 2018; 20:34-45. [PMID: 29056573 DOI: 10.1016/j.jmoldx.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 01/23/2023] Open
Abstract
Tubulocystic renal cell carcinoma (TC-RCC) is a rare recently described renal neoplasm characterized by gross, microscopic, and immunohistochemical differences from other renal tumor types and was recently classified as a distinct entity. However, this distinction remains controversial particularly because some genetic studies suggest a close relationship with papillary RCC (PRCC). The molecular basis of this disease remains largely unexplored. We therefore performed noncoding (nc) RNA/miRNA expression analysis and targeted next-generation sequencing mutational profiling on 13 TC-RCC cases (11 pure, two mixed TC-RCC/PRCC) and compared with other renal neoplasms. The expression profile of miRNAs and other ncRNAs in TC-RCC was distinct and validated 10 differentially expressed miRNAs by quantitative RT-PCR, including miR-155 and miR-34a, that were significantly down-regulated compared with PRCC cases (n = 22). With the use of targeted next-generation sequencing we identified mutations in 14 different genes, most frequently (>60% of TC-RCC cases) in ABL1 and PDFGRA genes. These mutations were present in <5% of clear cell RCC, PRCC, or chromophobe RCC cases (n > 600) of The Cancer Genome Atlas database. In summary, this study is by far the largest molecular study of TC-RCC cases and the first to investigate either ncRNA expression or their genomic profile. These results add molecular evidence that TC-RCC is indeed a distinct entity from PRCC and other renal neoplasms.
Collapse
Affiliation(s)
- Charles H Lawrie
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - María Armesto
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | | | - María Arestín
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - Lorea Manterola
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - Ibai Goicoechea
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - Erika Larrea
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - María M Caffarel
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Angela M Araujo
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - Carla Sole
- Molecular Oncology Group of Biodonostia Research Institute, San Sebastian, Spain
| | - Maris Sperga
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | | | - Michal Michal
- Department of Pathology, Charles University Hospital, Plzen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Charles University Hospital, Plzen, Czech Republic
| | - José I López
- Department of Pathology, Cruces University Hospital, University of the Basque Country, Barakaldo, Bizkaia, Spain; BioCruces Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
38
|
Li G, Luo J, Xiao Q, Liang C, Ding P. Prediction of microRNA–disease associations with a Kronecker kernel matrix dimension reduction model. RSC Adv 2018. [DOI: 10.1039/c7ra12491k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Kronecker kernel matrix dimension reduction model for predicting novel miRNA–disease associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering
- East China Jiaotong University
- Nanchang
- China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| | - Qiu Xiao
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| | - Cheng Liang
- College of Information Science and Engineering
- Shandong Normal University
- Jinan
- China
| | - Pingjian Ding
- College of Computer Science and Electronic Engineering
- Hunan University
- Changsha
- China
| |
Collapse
|
39
|
Zhou L, Li Z, Pan X, Lai Y, Quan J, Zhao L, Xu J, Xu W, Guan X, Li H, Yang S, Gui Y, Lai Y. Identification of miR-18a-5p as an oncogene and prognostic biomarker in RCC. Am J Transl Res 2018; 10:1874-1886. [PMID: 30018727 PMCID: PMC6038077 DOI: pmid/30018727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND RCC is a malignant tumor that originates from renal tubular epithelial cells, accounting for nearly 90% of renal malignancies and 3% of adult malignancies. It was reported that more than 30-40% of patients with early localized RCC still have recurrence and metastasis after receiving radical surgery. miRNAs are an endogenous non-coding small RNAs that play an important role in the regulation of tumor cell proliferation, differentiation and apoptosis. METHODS In our study, RT-qPCR, CCK-8 assay, wound scratch assay, transwell assay and flow cytometry assay were designed to identify the expression and functions of miR-18a-5p in RCC. Moreover, we collected the survival data from The Cancer Genome Atlas to predict and clarify the prognostic functions of miR-18a-5p in RCC. The correlation between miR-18a-5p expression and clinicopathological variables or overall survival was analyzed by 42 formalin-fixed paraffin-embedded (FFPE) renal cancer samples. RESULTS The expression of miR-18a-5p in RCC tissues and cell lines was elevated. Further researches suggested that upregulation of miR-18a-5p had a positive effect on RCC cell proliferation, migration, invasion and inhibition of apoptosis, while down-regulation of miR-18a-5p neutralized the effect. In addition, Data of TCGA and prognostic analysis of FFPE RCC samples revealed that high miR-18a-5p expression patients had significantly poorer survival. CONCLUSIONS These results demonstrated that miR-18a-5p functioned as an oncogene and prognostic biomarker in RCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Zuwei Li
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Shantou University Medical CollegeShantou 515041, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yulin Lai
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- Department of Urology, Guangzhou Medical UniversityGuangzhou 511436, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jing Quan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
- Department of Urology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen HospitalShenzhen 518036, Guangdong, China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical CenterShenzhen 518036, Guangdong, China
| |
Collapse
|
40
|
Qin Z, Wei X, Jin N, Wang Y, Zhao R, Hu Y, Yan W, Li J, Zhou Q. MiR-199a targeting ROCK1 to affect kidney cell proliferation, invasion and apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1920-1925. [PMID: 29130345 DOI: 10.1080/21691401.2017.1396224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Renal cell carcinoma (RCC) is one of the three most common cancers of urinary tract cancer, accounting for 2-3% of all systemic cancers. Recent studies have found that miR-199a is lowly expressed in RCC, may act as a tumour suppressor gene to induce the occurrence of kidney cancer. In the present study, we investigated the role of miR-199a in the progression and metastasis of RCC. The results showed that miR-199a significantly downregulated in RCC and cell lines. Overexpression of miR-199a in RCC cell lines significantly inhibited cell proliferation, migration and invasion. Furthermore, the qRT-PCR and western blot results showed that miR-199a overexpression significantly downregulated ROCK-1 mRNA and protein levels. ROCK1 was identified as a target of miR-199a, and ectopic expression of miR-199a downregulated ROCK1 by direct binding to its 3' untranslated region. Together, these findings indicate that miR-199a acts as a tumour suppressor and its downregulation in tumour tissues may contribute to the progression and metastasis of RCC through a mechanism involving ROCK1, suggesting miR-199a as a potential new diagnostic and therapeutic target for the treatment of RCC.
Collapse
Affiliation(s)
- Zhigang Qin
- a Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Xin Wei
- b Department of Urology , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Ning Jin
- b Department of Urology , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Yao Wang
- b Department of Urology , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Rui Zhao
- b Department of Urology , China-Japan Union Hospital of Jilin University , Changchun , China
| | - Yangqing Hu
- c Department of Nephrology , The Affiliated Hospital of Shao Yang University , Shaoyang , China
| | - Weijian Yan
- c Department of Nephrology , The Affiliated Hospital of Shao Yang University , Shaoyang , China
| | - Junke Li
- c Department of Nephrology , The Affiliated Hospital of Shao Yang University , Shaoyang , China
| | - Qiaoling Zhou
- d Department of Nephrology , Xiangya Hospital Central South University , Changsha , China
| |
Collapse
|
41
|
MiR-411 Functions as a Tumor Suppressor in Renal Cell Cancer. Int J Biol Markers 2017; 32:e454-e460. [PMID: 28708205 DOI: 10.5301/ijbm.5000261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 01/17/2023]
Abstract
Background Recent studies have revealed that microRNAs (miRNAs) play important roles as oncogenes or tumor suppressors in tumorigenesis and tumor development, by negatively regulating protein expression. A previous study of microarrays identified that miR-411 was down-regulated in renal cell carcinoma (RCC), while few studies investigating the role of miR-411 in the pathogenesis of RCC have been performed. Methods We assessed the miR-411 expression in RCC and paired adjacent normal tissues, as well as in RCC cell lines and a normal renal cell line, by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Furthermore, the effects of miR-411 on RCC and normal renal cell proliferation, apoptosis and migration were determined using MTT assay, CCK-8 assay, flow cytometry and scratch wound assay following restoration of miR-411 with synthetic mimics. Results Results of qRT-PCR indicated that the expression of miR-411 was down-regulated in RCC tissues and cell lines when compared with adjacent normal tissues and a normal renal cell line. Further, results of CCK-8, MTT, cell scratch and transwell assay showed that over-expression of miR-411 suppressed RCC cell (786-0 and ACHN) proliferation and migration. Flow cytometry assay revealed that miR-411 could induce RCC cell apoptosis. However, overexpression of miR-411 had no obvious effect on normal renal cell line 293T Conclusions To sum up, miR-411 is significantly down-regulated and plays a role as a tumor suppressor in RCC. Further studies are warranted to determine the mechanisms of miR-411 in RCC pathogenesis and define the target genes of miR-411 in RCC.
Collapse
|
42
|
Lei Z, Ma X, Li H, Zhang Y, Gao Y, Fan Y, Li X, Chen L, Xie Y, Chen J, Wu S, Tang L, Zhang X. Up-regulation of miR-181a in clear cell renal cell carcinoma is associated with lower KLF6 expression, enhanced cell proliferation, accelerated cell cycle transition, and diminished apoptosis. Urol Oncol 2017; 36:93.e23-93.e37. [PMID: 29066014 DOI: 10.1016/j.urolonc.2017.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Dysregulated expression of miR-181a accompanies tumorigenesis in many human cancers. However, in clear cell renal cell carcinoma (ccRCC), the role of miR-181a remains unclear. The aim of this study was to investigate biological functions of miR-181a and its expression levels in ccRCC tissues and cancer cell lines. MATERIAL AND METHODS Expression levels of miR-181a in samples of ccRCC tumors and adjacent nontumor tissues from 42 patients as well as in 786-O, 769-P, A498, and CAKI-1 ccRCC cell lines were determined by quantitative real-time polymerase chain reaction. Potential targets of miR-181a were predicted using bioinformatic approaches and then verified by using the luciferase reporter assay. The effects of miR-181a on cell proliferation, colony formation, cell cycle progression, and apoptosis were investigated in ccRCC cell lines transfected with specific miR-181a mimic and inhibitor. RESULTS We found that miR-181a expression was up-regulated in ccRCC tissues and cell lines. The expression level of miR-181a significantly correlated with the tumor size, tumor/node/metastasis staging, and Fuhrman grade. Luciferase assays showed that KLF6 was a target of miR-181a. KLF6 expression was inversely correlated with the level of miR-181a. Overexpression of miR-181a led to reduced KLF6 mRNA and protein levels, whereas mutations of the potential miR-181a binding sites in the KLF6 gene abrogated this inhibitory effect. Furthermore, overexpression of miR-181a promoted proliferation and G1/S cell cycle transition, as well as inhibited apoptosis by down-regulating KLF6 in ccRCC cells. CONCLUSIONS miR-181a is up-regulated in ccRCC and may act as a tumor promoting factor by targeting KLF6 expression. Manipulating miR-181a may provide a beneficial effect in the treatment of ccRCC.
Collapse
Affiliation(s)
- Zhenwei Lei
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Hongzhao Li
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Xintao Li
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Luyao Chen
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yongpeng Xie
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Jianwen Chen
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shengpan Wu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Lu Tang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
43
|
Ge YZ, Xu LW, Zhou CC, Lu TZ, Yao WT, Wu R, Zhao YC, Xu X, Hu ZK, Wang M, Yang XB, Zhou LH, Zhong B, Xu Z, Li WC, Zhu JG, Jia RP. A BAP1 Mutation-specific MicroRNA Signature Predicts Clinical Outcomes in Clear Cell Renal Cell Carcinoma Patients with Wild-type BAP1. J Cancer 2017; 8:2643-2652. [PMID: 28900502 PMCID: PMC5595094 DOI: 10.7150/jca.20234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/25/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1.
Collapse
Affiliation(s)
- Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Chang-Cheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Tian-Ze Lu
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, 41 Jianshe Road, Nantong 226006, China
| | - Wen-Tao Yao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - You-Cai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Xiao Xu
- Department of Radiation Oncology, JiangSu Armed Police General Hospital, 8 Jiangdu South Road, Yangzhou 225003, China
| | - Zhi-Kai Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Xiao-Bing Yang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Bing Zhong
- Department of Urology, Huaian First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huaian 223300, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Wen-Cheng Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210006, China
| |
Collapse
|
44
|
Du M, Giridhar KV, Tian Y, Tschannen MR, Zhu J, Huang CC, Kilari D, Kohli M, Wang L. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer. Oncotarget 2017; 8:63703-63714. [PMID: 28969022 PMCID: PMC5609954 DOI: 10.18632/oncotarget.19476] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Plasma exosomal miRNAs were evaluated for prognosis in an initial set of 44 metastatic renal cell cancer (mRCC) patients by RNA sequencing. Among ∼3.49 million mappable reads per patient, miRNAs accounted for 93.1% of the mapped RNAs. 227 miRNAs with high abundance were selected for survival analysis. Cox regression analysis identified association of 6 miRNAs with overall survival (OS) (P<0.01, False discovery rate (FDR) < 0.3). Five of the associated miRNAs were quantified in an independent follow-up cohort of 65 mRCC patients by TaqMan-based miRNA assays. Kaplan-Meier analysis confirmed the significant OS association of three miRs; miR-let-7i-5p (P=0.018, HR=0.49, 95% CI=0.21-0.84), miR-26a-1-3p (P=0.025, HR=0.43, 95% CI=0.10-0.84) and miR-615-3p (P=0.0007, HR=0.36, 95% CI=0.11-0.54). A multivariate analysis of miR-let-7i-5p with the clinical factor-based Memorial Sloan-Kettering Cancer Center (MSKCC) score improved survival prediction from an area under the curve (AUC) of 0.58 for MSKCC score to an average AUC of 0.64 across 48-month follow-up time. The multivariate model was able to define a high-risk group with median survival of 14 months and low risk group of 39 months (P=0.0002, HR=3.43, 95%CI, 2.73-24.15). Further validation of miRNA-based prognostic biomarkers are needed to improve current clinic-pathologic based prognostic models in patients with mRCC.
Collapse
Affiliation(s)
- Meijun Du
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yijun Tian
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Michael R Tschannen
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jing Zhu
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chiang-Ching Huang
- Department of Biostatistics, University of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Department of Oncology, Medical College of Wisconsin and Milwaukee VA Medical Center, Milwaukee, WI, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
45
|
Ding D, Zhang Y, Wen L, Fu J, Bai X, Fan Y, Lin Y, Dai H, Li Q, Zhang Y, An R. MiR-367 regulates cell proliferation and metastasis by targeting metastasis-associated protein 3 (MTA3) in clear-cell renal cell carcinoma. Oncotarget 2017; 8:63084-63095. [PMID: 28968973 PMCID: PMC5609905 DOI: 10.18632/oncotarget.18647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is an aggressive and malignant kidney cancer which has the worst prognosis. Although microRNAs (miRNAs) have recently been identified as a novel class of regulators in oncogenesis and metastasis, there are few studies on their participation in ccRCC. In the present study, we observed that miR-367 expression was increased in both human ccRCC tissues and cell lines. Cell proliferation was evaluated by MTT assay and 5-Ethynyl-2′-deoxyuridine (EdU) assay kit, which indicated that inhibition of miR-367 could suppress the ccRCC proliferation. Forced expression of miR-367 substantially induced cell migration and invasion evidenced by wound-healing and transwell assays, and this carcinogenesis could be abolished by miR-367 inhibitor treatment. Further analysis identified Metastasis-Associated Protein 3 (MTA3) as a direct target of miR-367. QRT-PCR and western blot results indicated the correlative expression of miR-367 and MTA3 in ccRCC tissue samples. Overexpression of MTA3 reversed miR-367-induced cell proliferation, migration and invasion. Our data uncovered a novel molecular interaction between miR-367 and MTA3, indicating a therapeutic strategy of miR-367 for ccRCC.
Collapse
Affiliation(s)
- Dexin Ding
- Department of Urology, The First Affiliated Hospital of The Harbin Medical University, Harbin 150001, China.,Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lin Wen
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiangbo Fu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xue Bai
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuhua Fan
- Department of Biotechnology and Pharmaceutics, College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yuan Lin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongshuang Dai
- Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Qiang Li
- Department of Urology, The Affiliated Tumor Hospital of The Harbin Medical University, Harbin 150001, China
| | - Yong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ruihua An
- Department of Urology, The First Affiliated Hospital of The Harbin Medical University, Harbin 150001, China
| |
Collapse
|
46
|
The putative tumor suppressor microRNA-30a-5p modulates clear cell renal cell carcinoma aggressiveness through repression of ZEB2. Cell Death Dis 2017; 8:e2859. [PMID: 28569782 PMCID: PMC5520909 DOI: 10.1038/cddis.2017.252] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/22/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common subtype of renal cell carcinoma, can easily invade local tissues and metastasize, and is resistant to currently available treatments. Recent studies profiling microRNA expression in ccRCC have suggested miR-30a-5p may be deregulated in these cancer cells. To determine its role and mechanism of action in ccRCC, miR-30-5p expression levels were quantified and functions were analyzed using in vitro and in vivo experiments and bioinformatics. A decrease in miR-30a-5p expression was frequently noted in ccRCC cells and tissues. Importantly, low miR-30a-5p levels were significantly associated with a poor ccRCC patient prognosis. Stable overexpression of miR-30a-5p in 769-P cells was sufficient to prevent cellular proliferation and invasion in vitro and in vivo. Upon further examination, it was found that miR-30a-5p directly targeted the 3'-UTR of ZEB2 and suppressed ccRCC cell epithelial-mesenchymal transition. In addition, miR-30a-5p may be downregulated by the long non-coding RNA DLEU2. Taken together, these data reveal an important role for miR-30a-5p in the regulation of ccRCC proliferation and invasion, and indicate the potential for miR-30a-5p in applications furthering ccRCC prognostics and therapeutics.
Collapse
|
47
|
Jin L, Zhang Z, Li Y, He T, Hu J, Liu J, Chen M, Gui Y, Chen Y, Lai Y. miR-125b is associated with renal cell carcinoma cell migration, invasion and apoptosis. Oncol Lett 2017; 13:4512-4520. [PMID: 28599452 PMCID: PMC5453059 DOI: 10.3892/ol.2017.5985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNA (miR)-125b has been identified as deregulated in a number of types of cancer. Previous studies have detected the expression of miR-125b in clear cell renal cell carcinoma (ccRCC) tissues by in situ hybridization and revealed that miR-125b was upregulated in ccRCC tissues, and was associated with recurrence and survival of patients with ccRCC. However, the function of miR-125b in RCC remains unclear. Thus, the expression of miR-125b was detected with quantitative polymerase chain reaction (qPCR) in 24 paired RCC and adjacent normal tissues. The result of qPCR showed that miR-125b was upregulated in RCC tissues. Furthermore, the function of miR-125b in RCC (786-O and ACHN) cells was detected by transfecting miR-125 mimic or inhibitor to upregulate or downregulate miR-125b expression. Cell proliferation assays (MTT and Cell Counting Kit-8), cell mobility assays (cell scratch and Transwell assay) and a cell apoptotic assay (flow cytometry assay) were performed to assess the function of miR-125b on RCC cells. Results from the assays demonstrated that overexpression of miR-125b could promote cell migration and invasion, and reduce the cell apoptotic rate. It was also revealed that downregulation of miR-125b could reduce cell migration and invasion, and induce cell apoptosis. However, the results of the cell proliferation assay revealed that miR-125b had no significant effect on cell proliferation. Not only could miR-125b predict recurrence and survival of ccRCC; the present study revealed that miR-125b could regulate RCC cell migration, invasion and apoptosis. Additional studies are required to determine the mechanism of miR-125b in RCC cells and define the target genes of miR-125b in RCC.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Zeng Zhang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Tao He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jia Hu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jiaju Liu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Mingwei Chen
- Department of Urology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Yun Chen, Department of Ultrasound, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
48
|
Shi L, Zhang L, Wang C, Sun S, Cao X, Zhang X. Expression of serum microRNA-378 and its clinical significance in renal cell carcinoma. Genet Mol Biol 2017. [PMID: 28644508 PMCID: PMC5488467 DOI: 10.1590/1678-4685-gmb-2016-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studies have demonstrated that miRNA-378 is expressed in various malignant tumors. In
the present study, we aimed to explore the expression of serum miRNA-378 and its
clinical significance in renal cell carcinoma (RCC) patients. A total of 75 RCC
patients, 63 renal cysts (RC) patients and 75 healthy controls were selected. The
miRNA-378 level in RCC and RC groups was significantly higher than in healthy control
group, with RCC group having the highest level. The miRNA-378 levels were
significantly decreased within the same group after surgery. When compared with
healthy controls, RC group had higher levels but not significantly (p > 0.05)
while levels in RCC group were significantly higher (p < 0.05). miRNA-378
expression was correlated with clinical stage and differentiation degree, but not
correlated with patient's age, gender, surgical strategy and tumor diameter. The AUC
of miRNA-378 was 0.896, 95% confidence interval was 0.847 to 0.945, and AUC
hypothesis testing was statistically significant (p < 0.001, RCC vs healthy
control). miRNA-378 shows potential in the diagnosis and prediction of postoperative
curative effect of renal cell carcinoma, but further studies with lager samples are
needed.
Collapse
Affiliation(s)
- Lixin Shi
- Department of Urology, PLA General Hospital, Beijing, China
| | - Lei Zhang
- Department of Urology, PLA General Hospital, Beijing, China
| | - Chunyang Wang
- Department of Urology, PLA General Hospital, Beijing, China
| | - Shengkun Sun
- Department of Urology, PLA General Hospital, Beijing, China
| | - Xiyuan Cao
- Institute of Basic Medicine, Military Medical Science Academy of the PLA, Beijing, China
| | - Xu Zhang
- Department of Urology, PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Ji H, Tian D, Zhang B, Zhang Y, Yan D, Wu S. Overexpression of miR-155 in clear-cell renal cell carcinoma and its oncogenic effect through targeting FOXO3a. Exp Ther Med 2017; 13:2286-2292. [PMID: 28565840 PMCID: PMC5443202 DOI: 10.3892/etm.2017.4263] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-155 (miR-155) is overexpressed in numerous human cancer types and has an oncogenic role. Previous study has revealed that miR-155 serves an important role in the progression of clear-cell renal cell carcinoma (ccRCC); however, the underlying mechanism was not completely clarified. The present study aimed to investigate the biological role of miR-155 in ccRCC and the underlying molecular mechanisms. The expression of miR-155 in 20 ccRCC and adjacent normal kidney tissues was determined by PCR. After downregulation of miR-155 expression by miR-155 inhibitor, cell growth was assessed by MTT and colony formation assays. Apoptosis and cell cycle distribution were analyzed by flow cytometry. Cell invasion and migration was detected by wound healing and Transwell assays. Furthermore, forkhead box O3a (FOXO3a) mRNA and protein expression were detected by PCR and immunoblotting. The expression of FOXO3a in 20 ccRCC tissues was also examined by immunohistochemistry. The expression of miR-155 was upregulated in ccRCC tissues compared to that in adjacent normal tissues. Inhibition of miR-155 significantly suppressed the proliferation, colony formation, migration and invasion, and induced G1 arrest and apoptosis of ccRCC cells in vitro. Moreover, inhibition of miR-155 significantly upregulated FOXO3a expression, and miR-155 expression was inversely correlated with FOXO3a expression in ccRCC tissues. In conclusion, miR-155 may have an important role in the genesis of ccRCC through targeting FOXO3a and may be a potential target for ccRCC therapy.
Collapse
Affiliation(s)
- Hong Ji
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Dong Tian
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Bing Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Yangyang Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Dongliang Yan
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Shuhua Wu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
50
|
You ZH, Huang ZA, Zhu Z, Yan GY, Li ZW, Wen Z, Chen X. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput Biol 2017; 13:e1005455. [PMID: 28339468 PMCID: PMC5384769 DOI: 10.1371/journal.pcbi.1005455] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 04/07/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
In the recent few years, an increasing number of studies have shown that microRNAs (miRNAs) play critical roles in many fundamental and important biological processes. As one of pathogenetic factors, the molecular mechanisms underlying human complex diseases still have not been completely understood from the perspective of miRNA. Predicting potential miRNA-disease associations makes important contributions to understanding the pathogenesis of diseases, developing new drugs, and formulating individualized diagnosis and treatment for diverse human complex diseases. Instead of only depending on expensive and time-consuming biological experiments, computational prediction models are effective by predicting potential miRNA-disease associations, prioritizing candidate miRNAs for the investigated diseases, and selecting those miRNAs with higher association probabilities for further experimental validation. In this study, Path-Based MiRNA-Disease Association (PBMDA) prediction model was proposed by integrating known human miRNA-disease associations, miRNA functional similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity for miRNAs and diseases. This model constructed a heterogeneous graph consisting of three interlinked sub-graphs and further adopted depth-first search algorithm to infer potential miRNA-disease associations. As a result, PBMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.8341 and 0.9169, respectively) and 5-fold cross validation (average AUC of 0.9172). In the cases studies of three important human diseases, 88% (Esophageal Neoplasms), 88% (Kidney Neoplasms) and 90% (Colon Neoplasms) of top-50 predicted miRNAs have been manually confirmed by previous experimental reports from literatures. Through the comparison performance between PBMDA and other previous models in case studies, the reliable performance also demonstrates that PBMDA could serve as a powerful computational tool to accelerate the identification of disease-miRNA associations. Identification of miRNA-disease associations is considered as a key way for the development of pathology, diagnose and therapy. Computational prediction models contribute to discovering the underlying disease-related miRNAs on a large scale. Based on the assumption that functionally related miRNAs tend to be involved in phenotypically similar disease and vice versa, the model of PBMDA was developed to prioritize the underlying miRNA-disease associations by adopting a special depth-first search algorithm in a heterogeneous graph, which was composed of known miRNA-disease association network, miRNA similarity network, and disease similarity network. Through leave-one-out cross validation and 5-fold cross validation, the promising results demonstrated the effectiveness of the proposed model. We further implemented the case studies of three important human complex diseases, 88%, 88% and 90% of top-50 predicted miRNA-disease associations have been manually confirmed based on recent experimental reports. It is anticipated that PBMDA could prioritize the most potential miRNA-disease associations on a large scale for advancing the progress of biological experiment validation in the future, which could further contribute to the understanding of complex disease mechanisms.
Collapse
Affiliation(s)
- Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, ürümqi, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- * E-mail: (XC); (ZZ)
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Zhenkun Wen
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- * E-mail: (XC); (ZZ)
| |
Collapse
|