1
|
Wittmann D, Paulson ES, Banerjee A, Banla LI, Schultz C, Awan M, Chen X, Omari EA, Straza M, Li XA, Erickson B, Hall WA. Quantification and Dosimetric Impact of Normal Organ Motion During Adaptive Radiation Therapy Planning Using a 1.5 Tesla Magnetic Resonance-Equipped Linear Accelerator (MR-Linac). Adv Radiat Oncol 2025; 10:101758. [PMID: 40291510 PMCID: PMC12023748 DOI: 10.1016/j.adro.2025.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/14/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose Patients receiving adaptive magnetic resonance guided radiation therapy (MRgRT) undergo contour modification prior to treatment delivery, which takes 15 to over 60 minutes. We hypothesized that during the time required to create an adaptive MRgRT plan, organ movement will result in dosimetric changes to regional organs at risk (OARs). This study quantifies the dosimetric impact of OAR motion during the time required to perform adaptive MRgRT. Methods and Materials Thirty-one patients with pancreatic adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and oligo-metastases who received MRgRT using a 1.5 Tesla MR-Linac were prospectively enrolled in an open registry imaging trial (NCT03500081). Two magnetic resonance imaging (MRI) studies were acquired predelivery for each MRgRT treatment fraction: an initial "pretreatment" MRI (input to the adaptive evaluation with or without recontouring and replanning process), and a second "verification MRI" (acquired after the recontouring and adaption process and immediately before treatment delivery or "beam-on"). On the verification MRI, normal organs were recontoured offline. Recontoured normal organs included the colon, duodenum, small bowel, and stomach. Differences in OARs between organ positions represented the normal organ movement during the time required for plan adaption. Maximum dose (Dmax), volumetric (V) 0.5 cubic centimeter dose (D0.5cc), 3000 cGy (V30), and 2000 cGy (V20) were calculated from the recontoured verification MRI. Results Differences in Dmax, per fraction, for the listed normal organs were as follows: colon/rectum 239.50 cGy (P = .09), duodenum 136.40 cGy (P = .05), small bowel 488.27 cGy (P < .01), and stomach 95.92 (P = .17). Small bowel demonstrated a significant difference in Dmax, D0.5cc, and V30. Conclusions Statistically significant differences in small bowel doses are demonstrated as a result of motion during the timing required for adaptive MRgRT. These results reflect the importance of verifying MRI acquisition during adaptive MRgRT to confirm the location of OARs. They also identify the necessity of strategies to account for the dynamic nature of regional OARs.
Collapse
Affiliation(s)
- David Wittmann
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eric S. Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjishnu Banerjee
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leou Ismael Banla
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christopher Schultz
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Musaddiq Awan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Eenas A. Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Straza
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X. Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Wang D, Kim H, Zhuang T, Visak JD, Cai B, Parsons DDM, Jiang S, Godley AR, Lin MH. Simulation-Omitting and Using Library Patients for Pre-Planning Online Adaptive Radiotherapy (SUPPORT): A Feasibility Study for Spine Stereotactic Ablative Radiotherapy (SAbR) Patients. Cancers (Basel) 2025; 17:1216. [PMID: 40227766 PMCID: PMC11987748 DOI: 10.3390/cancers17071216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Treatment planning in the field of radiation therapy has evolved from three-dimensional (3D) planning to inverse planning and, most recently, to personalized adaptive radiotherapy (ART) [...].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mu-Han Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75309, USA; (D.W.); (H.K.); (T.Z.); (J.D.V.); (B.C.); (D.D.M.P.); (S.J.); (A.R.G.)
| |
Collapse
|
3
|
D'Souza A, Kang KH, Lattin JE, Kalaghchi B, Ginn JS, Price AT, Lakomy DS, Waters MR, Schiff JP, Huang Y, Tsai R, Samson PP, DeSelm CJ, Henke LE, Forghani F, Zhao X, Morris E, Hugo GD, Zhu T, Mo A, Laugeman E, Kim H. Feasibility of Stereotactic Body Radiation Therapy for Pancreatic Tumors Abutting Organs at Risk Using Magnetic Resonance Guided Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00312-8. [PMID: 40185211 DOI: 10.1016/j.ijrobp.2025.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) has historically been contraindicated in patients with tumors abutting gastrointestinal (GI) organs due to risk of toxicity. Adaptive magnetic resonance (MR) guided SBRT (MRgSBRT) is an increasingly used treatment paradigm to prescribe ablative doses to pancreatic tumors. Here we present our institutional experience of adaptive MRgSBRT for pancreatic tumors abutting or invading GI organs at risk (OARs). METHODS AND MATERIALS Forty-eight patients with pancreatic adenocarcinoma tumors abutting or invading GI OARs who received MRgSBRT to 50 Gy in 5 fractions at our institution between 2018-2019 were reviewed. Dosimetric variables were compared pre- and postadaptation to determine adequacy of target coverage, reasons for online adaptation, and resulting changes in GI OAR and constraints. RESULTS Patients' mean age was 67 years, 50% female, 63% with ECOG 0-1, and with majority of tumors being locally advanced (52%) and located in the pancreatic head, uncinate process, or neck (92%). Tumors abutted or invaded GI OARs in 100% and 21% of cases, respectively. Of the 240 fractions evaluated, 99% required online adaptation and 77% underwent normalization. The mean PTV_opt (PTV minus a 5mm-expansion of GI OAR contours as the plan optimization structure) receiving prescription dose was 93%. The predicted and adapted critical volume (V36Gy ≤0.5 cc) for OARs were found to be statistically significantly different (P < .001). The duodenum had the highest volume receiving 36 Gy for both preadapted (mean 3.4 cc) and postadapted (mean 0.33 cc) plans. Plans for pancreatic head, uncinate process, or neck tumors frequently exceeded duodenum dose constraints and plans for pancreatic body or tail tumors more often exceeded stomach constraints (P < .001). CONCLUSIONS Adaptive MR guidance may permit SBRT for pancreatic tumors abutting or invading OARs with minimal toxicity.
Collapse
Affiliation(s)
- Alden D'Souza
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kylie H Kang
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John E Lattin
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Bita Kalaghchi
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John S Ginn
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Alex T Price
- Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - David S Lakomy
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Michael R Waters
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joshua P Schiff
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Radiation Oncology, Keck School of Medicine of USC, Los Angeles, California
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Richard Tsai
- Department of Diagnostic Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Lauren E Henke
- Department of Radiation Oncology, University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - Farnoush Forghani
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Xiaodong Zhao
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Eric Morris
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tong Zhu
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Allen Mo
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
4
|
Webster A, Mundora Y, Clark CH, Hawkins MA. A systematic review of the impact of abdominal compression and breath-hold techniques on motion, inter-fraction set-up errors, and intra-fraction errors in patients with hepatobiliary and pancreatic malignancies. Radiother Oncol 2024; 201:110581. [PMID: 39395670 DOI: 10.1016/j.radonc.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND AND PURPOSE Reducing motion is vital when radiotherapy is used to treat patients with hepatobiliary (HPB) and pancreatic malignancies. Abdominal compression (AC) and breath-hold (BH) techniques aim to minimise respiratory motion, yet their adoption remains limited, and practices vary. This review examines the impact of AC and BH on motion, set-up errors, and patient tolerability in HPB and pancreatic patients. MATERIALS AND METHODS This systematic review, conducted using PRISMA and PICOS criteria, includes publications from January 2015 to February 2023. Eligible studies focused on AC and BH interventions in adults with HPB and pancreatic malignancies. Endpoints examined motion, set-up errors, intra-fraction errors, and patient tolerability. Due to study heterogeneity, Synthesis Without Meta-Analysis was used, and a 5 mm threshold assessed the impact of motion mitigation. RESULTS In forty studies, 14 explored AC and 26 BH, with 20 on HPB, 13 on pancreatic, and 7 on mixed cohorts. Six studied pre-treatment, 22 inter/intra-fraction errors, and 12 both. Six AC pre-treatment studies showed > 5 mm motion, and 4 BH and 2 AC studies reported > 5 mm inter-fraction errors. Compression studies commonly investigated the arch and belt, and DIBH was the predominant BH technique. No studies compared AC and BH. There was variation in the techniques, and several studies did not follow standardised error reporting. Patient experience and tolerability were under-reported. CONCLUSION The results indicate that AC effectively reduces motion, but its effectiveness may vary between patients. BH can immobilise motion; however, it can be inconsistent between fractions. The review underscores the need for larger, standardised studies and emphasizes the importance of considering the patient's perspective for tailored treatments.
Collapse
Affiliation(s)
- Amanda Webster
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Yemurai Mundora
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catharine H Clark
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK; Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK; National Physical Laboratory, Teddington, UK
| | - Maria A Hawkins
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Romano A, Placidi L, Boldrini L, Chiloiro G, Dinapoli N, Galetto M, Mazzarella C, Meffe G, Nardini M, Panza G, Ceglie S, Chiusolo P, Rossi E, Indovina L, Gambacorta MA. Magnetic Resonance Imaging Guided Radiation Therapy for Splenomegaly: Clinical Experiences and Technical Tips. Adv Radiat Oncol 2024; 9:101616. [PMID: 39386317 PMCID: PMC11459635 DOI: 10.1016/j.adro.2024.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/12/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Splenomegaly is a common manifestation in chronic lymphoid and myeloid malignancies. Although splenectomy is the preferred treatment for symptomatic splenomegaly, it carries significant risks. Radiation therapy (RT) has traditionally been considered a palliative option. This study explores the use of magnetic resonance guided radiation therapy(MRgRT) for splenic irradiation (SI) in patients with myelofibrosis (MFI) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). Methods This single-center retrospective analysis includes patients with MFI and MDS/MPN who underwent MRgRT SI between 2018 and 2022. Ten 1 Gy fractions were delivered to the planning target volume (spleen + 3/5mm margin). An adaptive online/offline strategy has been used to reduce the dose to healthy organs. Dosimetric data and clinical outcomes, including pain relief, gastrointestinal symptoms, and hematological values, were assessed. Results Twelve patients completed SI without interruption, with supportive transfusions as needed for cytopenias. Pain and gastrointestinal symptom relief was observed in most cases. The mean percentage reduction in spleen volume was 53.61%, with an average craniocaudal extension reduction of 77.78%. Twenty-nine (24.2%) of 120 fractions were online adapted, and 14 (11.7%) were replanned offline. Nonhematological toxicities were not reported. At a median follow-up of 12.9 months, 6 patients died, whereas 9 patients underwent hematopoietic cell transplantation, with 6 of them surviving. Conclusion This study demonstrates MRgRT SI feasibility in MFI and MDS/MPN patients, offering symptom relief and significant spleen volume reduction. Real-time setup verification and adaptive planning allowed for tailored treatment with reduced margins, minimizing healthy tissue exposure. Larger prospective studies with longer follow-ups are needed to further validate its efficacy and safety.
Collapse
Affiliation(s)
- Angela Romano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuditta Chiloiro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Dinapoli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Matteo Galetto
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ciro Mazzarella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Guenda Meffe
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Matteo Nardini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giulia Panza
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Sara Ceglie
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Hematology Service, Rome, Italy
| | - Patrizia Chiusolo
- Catholic University of Sacred Heart, Hematology Service, Rome, Italy
| | - Elena Rossi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of Sacred Heart, Hematology Service, Rome, Italy
| | - Luca Indovina
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
6
|
Ristau J, Hörner-Rieber J, Körber SA. MR-linac based radiation therapy in gastrointestinal cancers: a narrative review. J Gastrointest Oncol 2024; 15:1893-1907. [PMID: 39279945 PMCID: PMC11399841 DOI: 10.21037/jgo-22-961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/14/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Magnetic resonance guided radiotherapy (MRgRT) is an emerging technological innovation with more and more institutions gaining clinical experience in this new field of radiation oncology. The ability to better visualize both tumors and healthy tissues due to excellent soft tissue contrast combined with new possibilities regarding motion management and the capability of online adaptive radiotherapy might increase tumor control rates while potentially reducing the risk of radiation-induced toxicities. As conventional computed tomography (CT)-based image guidance methods are insufficient for adaptive workflows in abdominal tumors, MRgRT appears to be an optimal method for this tumor site. The aim of this narrative review is to outline the opportunities and challenges in magnetic resonance guided radiation therapy in gastrointestinal cancers. Methods We searched for studies, reviews and conceptual articles, including the general technique of MRgRT and the specific utilization in gastrointestinal cancers, focusing on pancreatic cancer, liver metastases and primary liver cancer, rectal cancer and esophageal cancer. Key Content and Findings This review is highlighting the innovative approach of MRgRT in gastrointestinal cancer and gives an overview of the currently available literature with regard to clinical experiences and theoretical background. Conclusions MRgRT is a promising new tool in radiation oncology, which can play off several of its beneficial features in the specific field of gastrointestinal cancers. However, clinical data is still scarce. Nevertheless, the available literature points out large potential for improvements regarding dose coverage and escalation as well as the reduction of dose exposure to critical organs at risk (OAR). Further prospective studies are needed to demonstrate the role of this innovative technology in gastrointestinal cancer management, in particular trials that randomly compare MRgRT with conventional CT-based image-guided radiotherapy (IGRT) would be of high value.
Collapse
Affiliation(s)
- Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Stefan A Körber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Boldrini L, Chiloiro G, Di Franco S, Romano A, Smiljanic L, Tran EH, Bono F, Charles Davies D, Lopetuso L, De Bonis M, Minucci A, Giacò L, Cusumano D, Placidi L, Giannarelli D, Sala E, Gambacorta MA. MOREOVER: multiomics MR-guided radiotherapy optimization in locally advanced rectal cancer. Radiat Oncol 2024; 19:94. [PMID: 39054479 PMCID: PMC11271028 DOI: 10.1186/s13014-024-02492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Complete response prediction in locally advanced rectal cancer (LARC) patients is generally focused on the radiomics analysis of staging MRI. Until now, omics information extracted from gut microbiota and circulating tumor DNA (ctDNA) have not been integrated in composite biomarkers-based models, thereby omitting valuable information from the decision-making process. In this study, we aim to integrate radiomics with gut microbiota and ctDNA-based genomics tracking during neoadjuvant chemoradiotherapy (nCRT). METHODS The main hypothesis of the MOREOVER study is that the incorporation of composite biomarkers with radiomics-based models used in the THUNDER-2 trial will improve the pathological complete response (pCR) predictive power of such models, paving the way for more accurate and comprehensive personalized treatment approaches. This is due to the inclusion of actionable omics variables that may disclose previously unknown correlations with radiomics. Aims of this study are: - to generate longitudinal microbiome data linked to disease resistance to nCRT and postulate future therapeutic strategies in terms of both type of treatment and timing, such as fecal microbiota transplant in non-responding patients. - to describe the genomics pattern and ctDNA data evolution throughout the nCRT treatment in order to support the prediction outcome and identify new risk-category stratification agents. - to mine and combine collected data through integrated multi-omics approaches (radiomics, metagenomics, metabolomics, metatranscriptomics, human genomics, ctDNA) in order to increase the performance of the radiomics-based response predictive model for LARC patients undergoing nCRT on MR-Linac. EXPERIMENTAL DESIGN The objective of the MOREOVER project is to enrich the phase II THUNDER-2 trial (NCT04815694) with gut microbiota and ctDNA omics information, by exploring the possibility to enhance predictive performance of the developed model. Longitudinal ctDNA genomics, microbiome and genomics data will be analyzed on 7 timepoints: prior to nCRT, during nCRT on a weekly basis and prior to surgery. Specific modelling will be performed for data harvested, according to the TRIPOD statements. DISCUSSION We expect to find differences in fecal microbiome, ctDNA and radiomics profiles between the two groups of patients (pCR and not pCR). In addition, we expect to find a variability in the stability of the considered omics features over time. The identified profiles will be inserted into dedicated modelling solutions to set up a multiomics decision support system able to achieve personalized treatments.
Collapse
Affiliation(s)
- Luca Boldrini
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Radiomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giuditta Chiloiro
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Silvia Di Franco
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Angela Romano
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lana Smiljanic
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Elena Huong Tran
- Radiomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Bono
- Radiomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Diepriye Charles Davies
- Radiomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Loris Lopetuso
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria De Bonis
- Genomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Angelo Minucci
- Genomics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Luciano Giacò
- Bioinformatics GSTeP core research facility, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - Lorenzo Placidi
- Medical Physics unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Diana Giannarelli
- Biostatistics Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Evis Sala
- Gemelli Advanced Radiology center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta Gambacorta
- Gemelli Advanced Radiotherapy center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Grimbergen G, Eijkelenkamp H, Snoeren LM, Bahij R, Bernchou U, van der Bijl E, Heerkens HD, Binda S, Ng SS, Bouchart C, Paquier Z, Brown K, Khor R, Chuter R, Freear L, Dunlop A, Mitchell RA, Erickson BA, Hall WA, Godoy Scripes P, Tyagi N, de Leon J, Tran C, Oh S, Renz P, Shessel A, Taylor E, Intven MP, Meijer GJ. Treatment planning for MR-guided SBRT of pancreatic tumors on a 1.5 T MR-Linac: A global consensus protocol. Clin Transl Radiat Oncol 2024; 47:100797. [PMID: 38831754 PMCID: PMC11145226 DOI: 10.1016/j.ctro.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Background and purpose Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.
Collapse
Affiliation(s)
- Guus Grimbergen
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Hidde Eijkelenkamp
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Louk M.W. Snoeren
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Rana Bahij
- Department of Oncology, Odense University Hospital, Denmark
| | - Uffe Bernchou
- Department of Oncology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Hanne D. Heerkens
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Shawn Binda
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia S.W. Ng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christelle Bouchart
- Department of Radiation Oncology, HUB Institut Jules Bordet, Brussels, Belgium
| | - Zelda Paquier
- Department of Radiation Oncology, HUB Institut Jules Bordet, Brussels, Belgium
| | - Kerryn Brown
- Radiation Oncology, ONJ Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Richard Khor
- Radiation Oncology, ONJ Centre, Austin Health, Heidelberg, Victoria, Australia
| | | | | | - Alex Dunlop
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Robert Adam Mitchell
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Beth A. Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paola Godoy Scripes
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Charles Tran
- GenesisCare, Darlinghurst, New South Wales, Australia
| | - Seungjong Oh
- Division of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Paul Renz
- Division of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Andrea Shessel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Edward Taylor
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Martijn P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
9
|
Poiset SJ, Shah S, Cappelli L, Anné P, Mooney KE, Werner-Wasik M, Laufer TS, Posey JA, Lin D, Basu Mallick A, Lavu H, Bashir B, Yeo CJ, Mueller AC. Early outcomes of MR-guided SBRT for patients with recurrent pancreatic adenocarcinoma. Radiat Oncol 2024; 19:65. [PMID: 38812040 PMCID: PMC11138072 DOI: 10.1186/s13014-024-02457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Local treatment options for locally recurrent pancreatic adenocarcinoma (LR-PAC) are limited, with median survival time (MST) of 9-13 months (mos) following recurrence. MRI-guided stereotactic body radiation therapy (MRgSBRT) provides the ability to dose escalate while sparing normal tissue. Here we report on the early outcomes of MRgSBRT for LR-PAC. METHODS Patients with prior resection of pancreatic adenocarcinoma with local recurrence treated with MRgSBRT at a single tertiary referral center from 5-2021 to 2-2023 were identified from our prospective database. MRgSBRT was delivered to 40-50 Gy in 4-5 fractions with target and OAR delineation per institutional standards. Endpoints included local control per RECIST v1.1, distant failure, overall survival (OS), and acute and chronic toxicities per Common Terminology Criteria for Adverse Events, v5. RESULTS Fifteen patients with LR-PAC were identified with median follow-up of 10.6 mos (2.8-26.5 mos) from MRgSBRT. There were 8 females and 7 males, with a median age of 69 years (50-83). One patient underwent neoadjuvant radiation for 50.4 Gy in 28 fractions followed by resection, and one underwent adjuvant radiation for 45 Gy in 25 fractions prior to recurrence. MRgSBRT was delivered a median of 18.8 mos (3.5-52.8 mos) following resection. OS following recurrence at 6 and 12 mos were 87% and 51%, respectively, with a median survival time of 14.1 mos (3.2-27.4 mos). Three patients experienced local failure at 5.9, 7.8, and 16.6 months from MgSBRT with local control of 92.3% and 83.9% at 6 and 12 months. 10 patients experienced distant failure at a median of 2.9 mos (0.3-6.7 mos). Grade 1-2 acute GI toxicity was noted in 47% of patients, and chronic GI toxicity in 31% of patients. No grade > 3 toxicities were noted. CONCLUSIONS This is the first report on toxicity and outcomes of MRgSBRT for LR-PAC in the literature. MRgSBRT is a safe, feasible treatment modality with the potential for improved local control in this vulnerable population. Future research is necessary to better identify which patients yield the most benefit from MRgSBRT, which should continue to be used with systemic therapy as tolerated. TRIAL REGISTRATION Jefferson IRB#20976, approved 2/17/21.
Collapse
Affiliation(s)
- Spencer J Poiset
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Sophia Shah
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Louis Cappelli
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Pramila Anné
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Karen E Mooney
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - Talya S Laufer
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA
| | - James A Posey
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Atrayee Basu Mallick
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Harish Lavu
- Department of Surgery, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Charles J Yeo
- Department of Surgery, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, 111 S 11th St. Suite G301, Philadelphia, PA, 19107, USA.
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Votta C, Iacovone S, Turco G, Carrozzo V, Vagni M, Scalia A, Chiloiro G, Meffe G, Nardini M, Panza G, Placidi L, Romano A, Cornacchione P, Gambacorta MA, Boldrini L. Evaluation of clinical parallel workflow in online adaptive MR-guided Radiotherapy: A detailed assessment of treatment session times. Tech Innov Patient Support Radiat Oncol 2024; 29:100239. [PMID: 38405058 PMCID: PMC10883837 DOI: 10.1016/j.tipsro.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Advancements in MRI-guided radiotherapy (MRgRT) enable clinical parallel workflows (CPW) for online adaptive planning (oART), allowing medical physicists (MPs), physicians (MDs), and radiation therapists (RTTs) to perform their tasks simultaneously. This study evaluates the impact of this upgrade on the total treatment time by analyzing each step of the current 0.35T-MRgRT workflow. Methods The time process of the workflow steps for 254 treatment fractions in 0.35 MRgRT was examined. Patients have been grouped based on disease site, breathing modality (BM) (BHI or FB), and fractionation (stereotactic body RT [SBRT] or standard fractionated long course [LC]). The time spent for the following workflow steps in Adaptive Treatment (ADP) was analyzed: Patient Setup Time (PSt), MRI Acquisition and Matching (MRt), MR Re-contouring Time (RCt), Re-Planning Time (RPt), Treatment Delivery Time (TDt). Also analyzed was the timing of treatments that followed a Simple workflow (SMP), without the online re-planning (PSt + MRt + TDt.). Results The time analysis revealed that the ADP workflow (median: 34 min) is significantly (p < 0.05) longer than the SMP workflow (19 min). The time required for ADP treatments is significantly influenced by TDt, constituting 40 % of the total time. The oART steps (RCt + RPt) took 11 min (median), representing 27 % of the entire procedure. Overall, 79.2 % of oART fractions were completed in less than 45 min, and 30.6 % were completed in less than 30 min. Conclusion This preliminary analysis, along with the comparative assessment against existing literature, underscores the potential of CPW to diminish the overall treatment duration in MRgRT-oART. Additionally, it suggests the potential for CPW to promote a more integrated multidisciplinary approach in the execution of oART.
Collapse
Affiliation(s)
- Claudio Votta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Sara Iacovone
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Gabriele Turco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Valerio Carrozzo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Marica Vagni
- Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Guenda Meffe
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Matteo Nardini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Giulia Panza
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Patrizia Cornacchione
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma, Italy
| |
Collapse
|
11
|
Rusu DN, Cunningham JM, Arch JV, Chetty IJ, Parikh PJ, Dolan JL. Impact of intrafraction motion in pancreatic cancer treatments with MR-guided adaptive radiation therapy. Front Oncol 2023; 13:1298099. [PMID: 38162503 PMCID: PMC10756668 DOI: 10.3389/fonc.2023.1298099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose The total time of radiation treatment delivery for pancreatic cancer patients with daily online adaptive radiation therapy (ART) on an MR-Linac can range from 50 to 90 min. During this period, the target and normal tissues undergo changes due to respiration and physiologic organ motion. We evaluated the dosimetric impact of the intrafraction physiological organ changes. Methods Ten locally advanced pancreatic cancer patients were treated with 50 Gy in five fractions with intensity-modulated respiratory-gated radiation therapy on a 0.35-T MR-Linac. Patients received both pre- and post-treatment volumetric MRIs for each fraction. Gastrointestinal organs at risk (GI-OARs) were delineated on the pre-treatment MRI during the online ART process and retrospectively on the post-treatment MRI. The treated dose distribution for each adaptive plan was assessed on the post-treatment anatomy. Prescribed dose volume histogram metrics for the scheduled plan on the pre-treatment anatomy, the adapted plan on the pre-treatment anatomy, and the adapted plan on post-treatment anatomy were compared to the OAR-defined criteria for adaptation: the volume of the GI-OAR receiving greater than 33 Gy (V33Gy) should be ≤1 cubic centimeter. Results Across the 50 adapted plans for the 10 patients studied, 70% were adapted to meet the duodenum constraint, 74% for the stomach, 12% for the colon, and 48% for the small bowel. Owing to intrafraction organ motion, at the time of post-treatment imaging, the adaptive criteria were exceeded for the duodenum in 62% of fractions, the stomach in 36%, the colon in 10%, and the small bowel in 48%. Compared to the scheduled plan, the post-treatment plans showed a decrease in the V33Gy, demonstrating the benefit of plan adaptation for 66% of the fractions for the duodenum, 95% for the stomach, 100% for the colon, and 79% for the small bowel. Conclusion Post-treatment images demonstrated that over the course of the adaptive plan generation and delivery, the GI-OARs moved from their isotoxic low-dose region and nearer to the dose-escalated high-dose region, exceeding dose-volume constraints. Intrafraction motion can have a significant dosimetric impact; therefore, measures to mitigate this motion are needed. Despite consistent intrafraction motion, plan adaptation still provides a dosimetric benefit.
Collapse
Affiliation(s)
- Doris N. Rusu
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Justine M. Cunningham
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jacob V. Arch
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Parag J. Parikh
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Jennifer L. Dolan
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
12
|
Young T, Lee M, Johnston M, Nguyen T, Ko R, Arumugam S. Assessment of interfraction dose variation in pancreas SBRT using daily simulation MR images. Phys Eng Sci Med 2023; 46:1619-1627. [PMID: 37747645 DOI: 10.1007/s13246-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Pancreatic Cancer is associated with poor treatment outcomes compared to other cancers. High local control rates have been achieved by using hypofractionated stereotactic body radiotherapy (SBRT) to treat pancreatic cancer. Challenges in delivering SBRT include close proximity of several organs at risk (OARs) and target volume inter and intra fraction positional variations. Magnetic resonance image (MRI) guided radiotherapy has shown potential for online adaptive radiotherapy for pancreatic cancer, with superior soft tissue contrast compared to CT. The aim of this study was to investigate the variability of target and OAR volumes for different treatment approaches for pancreatic cancer, and to assess the suitability of utilizing a treatment-day MRI for treatment planning purposes. Ten healthy volunteers were scanned on a Siemens Skyra 3 T MRI scanner over two sessions (approximately 3 h apart), per day over 5 days to simulate an SBRT daily simulation scan for treatment planning. A pretreatment scan was also done to simulate patient setup and treatment. A 4D MRI scan was taken at each session for internal target volume (ITV) generation and assessment. For each volunteer a treatment plan was generated in the Raystation treatment planning system (TPS) following departmental protocols on the day one, first session dataset (D1S1), with bulk density overrides applied to enable dose calculation. This treatment plan was propagated through other imaging sessions, and the dose calculated. An additional treatment plan was generated on each first session of each day (S1) to simulate a daily replan process, with this plan propagated to the second session of the day. These accumulated mock treatment doses were assessed against the original treatment plan through DVH comparison of the PTV and OAR volumes. The generated ITV showed large variations when compared to both the first session ITV and daily ITV, with an average magnitude of 22.44% ± 13.28% and 25.83% ± 37.48% respectively. The PTV D95 was reduced by approximately 23.3% for both plan comparisons considered. Surrounding OARs had large variations in dose, with the small bowel V30 increasing by 128.87% when compared to the D1S1 plan, and 43.11% when compared to each daily S1 plan. Daily online adaptive radiotherapy is required for accurate dose delivery for pancreas cancer in the absence of additional motion management and tumour tracking techniques.
Collapse
Affiliation(s)
- Tony Young
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia.
- Ingham Institute, Sydney, Australia.
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, Australia.
| | - Mark Lee
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | | | - Theresa Nguyen
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Rebecca Ko
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Sydney, Australia
- Ingham Institute, Sydney, Australia
- South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Eijkelenkamp H, Grimbergen G, Daamen LA, Heerkens HD, van de Ven S, Mook S, Meijer GJ, Molenaar IQ, van Santvoort HC, Paulson E, Erickson BA, Verkooijen HM, Hall WA, Intven MPW. Clinical outcomes after online adaptive MR-guided stereotactic body radiotherapy for pancreatic tumors on a 1.5 T MR-linac. Front Oncol 2023; 13:1040673. [PMID: 37854684 PMCID: PMC10579578 DOI: 10.3389/fonc.2023.1040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 08/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Online adaptive magnetic resonance-guided radiotherapy (MRgRT) is a promising treatment modality for pancreatic cancer and is being employed by an increasing number of centers worldwide. However, clinical outcomes have only been reported on a small scale, often from single institutes and in the context of clinical trials, in which strict patient selection might limit generalizability of outcomes. This study presents clinical outcomes of a large, international cohort of patients with (peri)pancreatic tumors treated with online adaptive MRgRT. Methods We evaluated clinical outcomes and treatment details of patients with (peri)pancreatic tumors treated on a 1.5 Tesla (T) MR-linac in two large-volume treatment centers participating in the prospective MOMENTUM cohort (NCT04075305). Treatments were evaluated through schematics, dosage, delivery strategies, and success rates. Acute toxicity was assessed until 3 months after MRgRT started, and late toxicity from 3-12 months of follow-up (FU). The EORTC QLQ-C30 questionnaire was used to evaluate the quality of life (QoL) at baseline and 3 months of FU. Furthermore, we used the Kaplan-Meier analysis to calculate the cumulative overall survival. Results A total of 80 patients were assessed with a median FU of 8 months (range 1-39 months). There were 34 patients who had an unresectable primary tumor or were medically inoperable, 29 who had an isolated local recurrence, and 17 who had an oligometastasis. A total of 357 of the 358 fractions from all hypofractionated schemes were delivered as planned. Grade 3-4 acute toxicity occurred in 3 of 59 patients (5%) with hypofractionated MRgRT and grade 3-4 late toxicity in 5 of 41 patients (12%). Six patients died within 3 months after MRgRT; in one of these patients, RT attribution could not be ruled out as cause of death. The QLQ-C30 global health status remained stable from baseline to 3 months FU (70.5 at baseline, median change of +2.7 [P = 0.5]). The 1-year cumulative overall survival for the entire cohort was 67%, and that for the primary tumor group was 66%. Conclusion Online adaptive MRgRT for (peri)pancreatic tumors on a 1.5 T MR-Linac could be delivered as planned, with low numbers of missed fractions. In addition, treatments were associated with limited grade 3-4 toxicity and a stable QoL at 3 months of FU.
Collapse
Affiliation(s)
- Hidde Eijkelenkamp
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Guus Grimbergen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lois A. Daamen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hanne D. Heerkens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Radiotherapy, Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia van de Ven
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stella Mook
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gert J. Meijer
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Izaak Q. Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, Utrecht, Netherlands
| | | | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beth Ann Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - William Adrian Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Martijn P. W. Intven
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Dal Bello R, Lapaeva M, La Greca Saint-Esteven A, Wallimann P, Günther M, Konukoglu E, Andratschke N, Guckenberger M, Tanadini-Lang S. Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen. Phys Imaging Radiat Oncol 2023; 27:100464. [PMID: 37497188 PMCID: PMC10366576 DOI: 10.1016/j.phro.2023.100464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Background and purpose The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions. Materials and methods A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT. Results The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path. Conclusion The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%.
Collapse
Affiliation(s)
- Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mariia Lapaeva
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Artificial Intelligence and Machine Learning Group, Department of Informatics, University of Zurich, Zurich, Switzerland
- Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
| | - Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
| | - Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Manuel Günther
- Artificial Intelligence and Machine Learning Group, Department of Informatics, University of Zurich, Zurich, Switzerland
| | | | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Chiloiro G, Boldrini L, Romano A, Placidi L, Tran HE, Nardini M, Massaccesi M, Cellini F, Indovina L, Gambacorta MA. Magnetic resonance-guided stereotactic body radiation therapy (MRgSBRT) for oligometastatic patients: a single-center experience. LA RADIOLOGIA MEDICA 2023; 128:619-627. [PMID: 37079221 PMCID: PMC10116467 DOI: 10.1007/s11547-023-01627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Stereotactic body radiotherapy is increasingly used for the treatment of oligometastatic disease. Magnetic resonance-guided stereotactic radiotherapy (MRgSBRT) offers the opportunity to perform dose escalation protocols while reducing the unnecessary irradiation of the surrounding organs at risk. The aim of this retrospective, monoinstitutional study is to evaluate the feasibility and clinical benefit (CB) of MRgSBRT in the setting of oligometastatic patients. MATERIALS AND METHODS Data from oligometastatic patients treated with MRgSBRT were collected. The primary objectives were to define the 12-month progression-free survival (PFS) and local progression-free survival (LPFS) and 24-month overall survival (OS) rate. The objective response rate (ORR) included complete response (CR) and partial response (PR). CB was defined as the achievement of ORR and stable disease (SD). Toxicities were also assessed according to the CTCAE version 5.0 scale. RESULTS From February 2017 to March 2021, 59 consecutive patients with a total of 80 lesions were treated by MRgSBRT on a 0.35 T hybrid unit. CR and PR as well as SD were observed in 30 (37.5%), 7 (8.75%), and 17 (21.25%) lesions, respectively. Furthermore, CB was evaluated at a rate of 67.5% with an ORR of 46.25%. Median follow-up time was 14 months (range: 3-46 months). The 12-month LPFS and PFS rates were 70% and 23%, while 24-month OS rate was 93%. No acute toxicity was reported, whereas late pulmonary fibrosis G1 was observed in 9 patients (15.25%). CONCLUSION MRgSBRT was well tolerated by patients with reported low toxicity levels and a satisfying CB.
Collapse
Affiliation(s)
- Giuditta Chiloiro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Huong Elena Tran
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Matteo Nardini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Mariangela Massaccesi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Francesco Cellini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luca Indovina
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | | |
Collapse
|
16
|
Grimbergen G, Eijkelenkamp H, van Vulpen JK, van de Ven S, Raaymakers BW, Intven MP, Meijer GJ. Feasibility of online radial magnetic resonance imaging for adaptive radiotherapy of pancreatic tumors. Phys Imaging Radiat Oncol 2023; 26:100434. [PMID: 37034029 PMCID: PMC10074242 DOI: 10.1016/j.phro.2023.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Background and purpose Online adaptive magnetic resonance (MR)-guided treatment planning for pancreatic tumors on 1.5T systems typically employs Cartesian 3D T 2w magnetic resonance imaging (MRI). The main disadvantage of this sequence is that respiratory motion results in substantial blurring in the abdomen, which can hamper delineation accuracy. This study investigated the use of two motion-robust radial MRI sequences as main delineation scan for pancreatic MR-guided radiotherapy. Materials and methods Twelve patients with pancreatic tumors were imaged with a 3D T 2w scan, a Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) scan (partially overlapping strips), and a 3D Vane scan (stack-of-stars), on a 1.5T MR-Linac under abdominal compression. The scans were assessed by three radiation oncologists for their suitability for online adaptive delineation. A quantitative comparison was made for gradient entropy and the effect of motion on apparent target position. Results The PROPELLER scans were selected as first preference in 56% of the cases, the 3D T 2w in 42% and the 3D Vane in 3%. PROPELLER scans sometimes contained a large interslice variation which would have compromised delineation. Gradient entropy was significantly higher in 3D T 2w patient scans. The apparent target position was more sensitive to motion amplitude in the PROPELLER scans, but substantial offsets did not occur under 10 mm peak-to-peak. Conclusion PROPELLER MRI may be a superior imaging sequence for pancreatic MRgRT compared to standard Cartesian sequences. The large interslice variation should be mitigated through further sequence optimization before PROPELLER can be adopted for online treatment adaptation.
Collapse
|
17
|
Liu X, Li Z, Yin Y. Clinical application of MR-Linac in tumor radiotherapy: a systematic review. Radiat Oncol 2023; 18:52. [PMID: 36918884 PMCID: PMC10015924 DOI: 10.1186/s13014-023-02221-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Recent years have seen both a fresh knowledge of cancer and impressive advancements in its treatment. However, the clinical treatment paradigm of cancer is still difficult to implement in the twenty-first century due to the rise in its prevalence. Radiotherapy (RT) is a crucial component of cancer treatment that is helpful for almost all cancer types. The accuracy of RT dosage delivery is increasing as a result of the quick development of computer and imaging technology. The use of image-guided radiation (IGRT) has improved cancer outcomes and decreased toxicity. Online adaptive radiotherapy will be made possible by magnetic resonance imaging-guided radiotherapy (MRgRT) using a magnetic resonance linear accelerator (MR-Linac), which will enhance the visibility of malignancies. This review's objectives are to examine the benefits of MR-Linac as a treatment approach from the perspective of various cancer patients' prognoses and to suggest prospective development areas for additional study.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
18
|
Feasibility of delivered dose reconstruction for MR-guided SBRT of pancreatic tumors with fast, real-time 3D cine MRI. Radiother Oncol 2023; 182:109506. [PMID: 36736589 DOI: 10.1016/j.radonc.2023.109506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE In MR-guided SBRT of pancreatic cancer, intrafraction motion is typically monitored with (interleaved) 2D cine MRI. However, tumor surroundings are often not fully captured in these images, and motion might be distorted by through-plane movement. In this study, the feasibility of highly accelerated 3D cine MRI to reconstruct the delivered dose during MR-guided SBRT was assessed. MATERIALS AND METHODS A 3D cine MRI sequence was developed for fast, time-resolved 4D imaging, featuring a low spatial resolution that allows for rapid volumetric imaging at 430 ms. The 3D cines were acquired during the entire beam-on time of 23 fractions of online adaptive MR-guided SBRT for pancreatic tumors on a 1.5 T MR-Linac. A 3D deformation vector field (DVF) was extracted for every cine dynamic using deformable image registration. Next, these DVFs were used to warp the partial dose delivered in the time interval between consecutive cine acquisitions. The warped dose plans were summed to obtain a total delivered dose. The delivered dose was also calculated under various motion correction strategies. Key DVH parameters of the GTV, duodenum, small bowel and stomach were extracted from the delivered dose and compared to the planned dose. The uncertainty of the calculated DVFs was determined with the inverse consistency error (ICE) in the high-dose regions. RESULTS The mean (SD) relative (ratio delivered/planned) D99% of the GTV was 0.94 (0.06), and the mean (SD) relative D0.5cc of the duodenum, small bowel, and stomach were respectively 0.98 (0.04), 1.00 (0.07), and 0.98 (0.06). In the fractions with the lowest delivered tumor coverage, it was found that significant lateral drifts had occurred. The DVFs used for dose warping had a low uncertainty with a mean (SD) ICE of 0.65 (0.07) mm. CONCLUSION We employed a fast, real-time 3D cine MRI sequence for dose reconstruction in the upper abdomen, and demonstrated that accurate DVFs, acquired directly from these images, can be used for dose warping. The reconstructed delivered dose showed only a modest degradation of tumor coverage, mostly attainable to baseline drifts. This emphasizes the need for motion monitoring and development of intrafraction treatment adaptation solutions, such as baseline drift corrections.
Collapse
|
19
|
Nardini M, Capotosti A, Mazzoni LN, Cusumano D, Boldrini L, Chiloiro G, Romano A, Valentini V, Indovina L, Placidi L. Tuning the optimal diffusion-weighted MRI parameters on a 0.35-T MR-Linac for clinical implementation: A phantom study. Front Oncol 2022; 12:867792. [PMID: 36523999 PMCID: PMC9745186 DOI: 10.3389/fonc.2022.867792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/07/2022] [Indexed: 12/06/2023] Open
Abstract
PURPOSE This study aims to assess the quality of a new diffusion-weighted imaging (DWI) sequence implemented on an MR-Linac MRIdian system, evaluating and optimizing the acquisition parameters to explore the possibility of clinically implementing a DWI acquisition protocol in a 0.35-T MR-Linac. MATERIALS AND METHODS All the performed analyses have been carried out on two types of phantoms: a homogeneous 24-cm diameter polymethylmethacrylate (PMMA) sphere (SP) and a homemade phantom (HMP) constating in a PMMA cylinder filled with distilled water with empty sockets into which five cylindrical vials filled with five different concentrations of methylcellulose water solutions have been inserted. SP was used to evaluate the dependence of diffusion gradient inhomogeneity artifacts on gantry position. Four diffusion sequences with b-values of 500 s/mm2 and 3 averages have been acquired: three with diffusion gradients in the three main directions (phase direction, read direction, slice direction) and one with the diffusion gradients switched off. The dependence of diffusion image uniformity and SNR on the number of averages in the MR sequences was also investigated to determine the optimal number of averages. Finally, the ADC values of HMP have been computed and then compared between images acquired in the scanners at 0.35 and 1.5 T. RESULTS In order to acquire high-quality artifact-free DWI images, the "slice" gradient direction has been identified to be the optimal one and 0° to be the best gradient angle. Both the SNR ratio and the uniformity increase with the number of averages. A threshold value of 80 for SNR and 85% for uniformity was adopted to choose the best number of averages. By making a compromise between time and quality and limiting the number of b-values, it is possible to reduce the acquisition time to 78 s. The Passing-Bablok test showed that the two methods, with 0.35 and 1.5 T scanners, led to similar results. CONCLUSION The quality of the DWI has been accurately evaluated in relation to different sequence parameters, and optimal parameters have been identified to select a clinical protocol for the acquisition of ADC maps sustainable in the workflow of a hybrid radiotherapy system with a 0.35-T MRI scanner.
Collapse
Affiliation(s)
- Matteo Nardini
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Amedeo Capotosti
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lorenzo Nicola Mazzoni
- Azienda Unità Sanitaria Locale (AUSL) Toscana Centro, Medical Physics Unit, Prato-Pistoia, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Mater Olbia Hospital, UOS Fisica Medica, Olbia, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giuditta Chiloiro
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luca Indovina
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario “Agostino Gemelli” Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
20
|
Lapaeva M, La Greca Saint-Esteven A, Wallimann P, Günther M, Konukoglu E, Andratschke N, Guckenberger M, Tanadini-Lang S, Dal Bello R. Synthetic computed tomographies for low-field magnetic resonance-guided radiotherapy in the abdomen. Phys Imaging Radiat Oncol 2022; 24:173-179. [DOI: 10.1016/j.phro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
|
21
|
Chuong MD, Ann Clark M, Henke LE, Kishan AU, Portelance L, Parikh PJ, Bassetti MF, Nagar H, Rosenberg SA, Mehta MP, Refaat T, Rineer JM, Smith A, Seung S, Zaki BI, Fuss M, Mak RH. Patterns of Utilization and Clinical Adoption of 0.35 Tesla MR-guided Radiation Therapy in the United States - Understanding the Transition to Adaptive, Ultra-Hypofractionated Treatments. Clin Transl Radiat Oncol 2022; 38:161-168. [DOI: 10.1016/j.ctro.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
|
22
|
Stereotactic ablative radiation for pancreatic cancer on a 1.5 Telsa magnetic resonance-linac system. Phys Imaging Radiat Oncol 2022; 24:88-94. [PMID: 36386447 PMCID: PMC9640311 DOI: 10.1016/j.phro.2022.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Ablative radiation therapy (A-RT) appears to improve outcomes in locally advanced pancreatic cancer (LAPC) yet requires solutions for respiratory and digestive motion. We report outcomes of A-RT for pancreatic cancer using 1.5 T MR-adaptive treatment delivery. Methods Between March 2020 and July 2021, we treated 30 patients with pancreatic cancer with 50 Gy in 5 fractions (biologically effective dose [BED10] = 100 Gy10) using a novel compression belt workflow and remote planning on the Unity 1.5 T MR linac system. Cumulative incidence of progression was computed from A-RT initiation with death as a competing risk. Overall (OS) and progression-free survival (PFS) were calculated using Kaplan Meier methods. Results Of 30 patients, most (73 %) were locally advanced, 4 (13 %) were metastatic, 2 (7 %) were medically inoperable, and 2 (7 %) were locally recurrent. Most (73 %) received FOLFIRINOX prior to A-RT. Median follow-up times from diagnosis and A-RT were 17.6 (IQR 15.8-23.1) and 11.5 months (IQR 9.7-16.1), respectively. Cumulative incidences at 1-year of local and distant progression were 19.3 % (95 %CI 6.7-36.8 %) and 47.4 % (95 %CI 26.7-65.6 %), respectively. Median OS from diagnosis and A-RT were not reached. One-year OS from diagnosis and A-RT were 96.4 % (95 %CI 77.2-99.5 %) and 80.0 % (95 %CI 57.3-91.4 %), respectively. Median and 1-year PFS were 10.1 months (95 %CI 4.4-14.4) and 39.7 % (95 %CI 20.3-58.5 %), respectively. No grade 3 + toxicities were observed. Conclusions A-RT using the 1.5 T Unity MR Linac resulted in promising LC and OS with no severe toxicity in patients with LAPC despite radiosensitive organs adjacent to the target volumes. Longer follow-up is needed to assess long-term outcomes.
Collapse
|
23
|
Grimbergen G, Eijkelenkamp H, Heerkens HD, Raaymakers BW, Intven MPW, Meijer GJ. Dosimetric impact of intrafraction motion under abdominal compression during MR-guided SBRT for (Peri-) pancreatic tumors. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8ddd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Intrafraction motion is a major concern for the safety and effectiveness of high dose stereotactic body radiotherapy (SBRT) in the upper abdomen. In this study, the impact of the intrafraction motion on the delivered dose was assessed in a patient group that underwent MR-guided radiotherapy for upper abdominal malignancies with an abdominal corset. Approach. Fast online 2D cine MRI was used to extract tumor motion during beam-on time. These tumor motion profiles were combined with linac log files to reconstruct the delivered dose in 89 fractions of MR-guided SBRT in twenty patients. Aside the measured tumor motion, motion profiles were also simulated for a wide range of respiratory amplitudes and drifts, and their subsequent dosimetric impact was calculated in every fraction. Main results. The average (SD) D
99% of the gross tumor volume (GTV), relative to the planned D
99%, was 0.98 (0.03). The average (SD) relative D
0.5cc
of the duodenum, small bowel and stomach was 0.99 (0.03), 1.00 (0.03), and 0.97 (0.05), respectively. No correlation of respiratory amplitude with dosimetric impact was observed. Fractions with larger baseline drifts generally led to a larger uncertainty of dosimetric impact on the GTV and organs at risk (OAR). The simulations yielded that the delivered dose is highly dependent on the direction of on baseline drift. Especially in anatomies where the OARs are closely abutting the GTV, even modest LR or AP drifts can lead to substantial deviations from the planned dose. Significance. The vast majority of the fractions was only modestly impacted by intrafraction motion, increasing our confidence that MR-guided SBRT with abdominal compression can be safely executed for patients with abdominal tumors, without the use of gating or tracking strategies.
Collapse
|
24
|
Tang B, Liu M, Wang B, Diao P, Li J, Feng X, Wu F, Yao X, Liao X, Hou Q, Orlandini LC. Improving the clinical workflow of a MR-Linac by dosimetric evaluation of synthetic CT. Front Oncol 2022; 12:920443. [PMID: 36106119 PMCID: PMC9464932 DOI: 10.3389/fonc.2022.920443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive radiotherapy performed on the daily magnetic resonance imaging (MRI) is an option to improve the treatment quality. In the adapt-to-shape workflow of 1.5-T MR-Linac, the contours of structures are adjusted on the basis of patient daily MRI, and the adapted plan is recalculated on the MRI-based synthetic computed tomography (syCT) generated by bulk density assignment. Because dosimetric accuracy of this strategy is a priority and requires evaluation, this study aims to explore the usefulness of adding an assessment of dosimetric errors associated with recalculation on syCT to the clinical workflow. Sixty-one patients, with various tumor sites, treated using a 1.5-T MR-Linac were included in this study. In Monaco V5.4, the target and organs at risk (OARs) were contoured, and a reference CT plan that contains information about the outlined contours, their average electron density (ED), and the priority of ED assignment was generated. To evaluate the dosimetric error of syCT caused by the inherent approximation within bulk density assignment, the reference CT plan was recalculated on the syCT obtained from the reference CT by forcing all contoured structures to their mean ED defined on the reference plan. The dose–volume histogram (DVH) and dose distribution of the CT and syCT plan were compared. The causes of dosimetric discrepancies were investigated, and the reference plan was reworked to minimize errors if needed. For 54 patients, gamma analysis of the dose distribution on syCT and CT show a median pass rate of 99.7% and 98.5% with the criteria of 3%/3 mm and 2%/2 mm, respectively. DVH difference of targets and OARs remained less than 1.5% or 1 Gy. For the remaining patients, factors (i.e., inappropriate ED assignments) influenced the dosimetric agreement of the syCT vs. CT reference DVH by up to 21%. The causes of the errors were promptly identified, and the DVH dosimetry was realigned except for two lung treatments for which a significant discrepancy remained. The recalculation on the syCT obtained from the planning CT is a powerful tool to assess and decrease the minimal error committed during the adaptive plan on the MRI-based syCT.
Collapse
Affiliation(s)
- Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Bingjie Wang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Peng Diao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- *Correspondence: Peng Diao,
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Qing Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
25
|
Delpon G, Barateau A, Beneux A, Bessières I, Latorzeff I, Welmant J, Tallet A. [What do we need to deliver "online" adapted radiotherapy treatment plans?]. Cancer Radiother 2022; 26:794-802. [PMID: 36028418 DOI: 10.1016/j.canrad.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
During the joint SFRO/SFPM session of the 2019 congress, a state of the art of adaptive radiotherapy announced a strong impact in our clinical practice, in particular with the availability of treatment devices coupled to an MRI system. Three years later, it seems relevant to take stock of adaptive radiotherapy in practice, and especially the "online" strategy because it is indeed more and more accessible with recent hardware and software developments, such as coupled accelerators to a three-dimensional imaging device and algorithms based on artificial intelligence. However, the deployment of this promising strategy is complex because it contracts the usual time scale and upsets the usual organizations. So what do we need to deliver adapted treatment plans with an "online" strategy?
Collapse
Affiliation(s)
- G Delpon
- Institut de cancérologie de l'Ouest, Saint-Herblain et IMT Atlantique, Nantes université, CNRS/IN2P3, Subatech, Nantes, France.
| | - A Barateau
- Université Rennes, CLCC Eugène-Marquis, Inserm, LTSI-UMR 1099, Rennes, France
| | - A Beneux
- Hospices Civils de Lyon, Lyon, France
| | - I Bessières
- Centre Georges-François Leclerc, Dijon, France
| | | | - J Welmant
- Institut du cancer de Montpellier, Montpellier, France
| | - A Tallet
- Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
26
|
Rammohan N, Randall JW, Yadav P. History of Technological Advancements towards MR-Linac: The Future of Image-Guided Radiotherapy. J Clin Med 2022; 11:jcm11164730. [PMID: 36012969 PMCID: PMC9409689 DOI: 10.3390/jcm11164730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Image-guided radiotherapy (IGRT) enables optimal tumor targeting and sparing of organs-at-risk, which ultimately results in improved outcomes for patients. Magnetic resonance imaging (MRI) revolutionized diagnostic imaging with its superior soft tissue contrast, high spatiotemporal resolution, and freedom from ionizing radiation exposure. Over the past few years there has been burgeoning interest in MR-guided radiotherapy (MRgRT) to overcome current challenges in X-ray-based IGRT, including but not limited to, suboptimal soft tissue contrast, lack of efficient daily adaptation, and incremental exposure to ionizing radiation. In this review, we present an overview of the technologic advancements in IGRT that led to MRI-linear accelerator (MRL) integration. Our report is organized in three parts: (1) a historical timeline tracing the origins of radiotherapy and evolution of IGRT, (2) currently available MRL technology, and (3) future directions and aspirations for MRL applications.
Collapse
|
27
|
Nierer L, Kamp F, Reiner M, Corradini S, Rabe M, Dietrich O, Parodi K, Belka C, Kurz C, Landry G. Evaluation of an anthropomorphic ion chamber and 3D gel dosimetry head phantom at a 0.35 T MR-linac using separate 1.5 T MR-scanners for gel readout. Z Med Phys 2022; 32:312-325. [PMID: 35305857 PMCID: PMC9948847 DOI: 10.1016/j.zemedi.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE To date, no universally accepted technique for the evaluation of the overall dosimetric performance of hybrid integrated magnetic resonance imaging (MR) - linear accelerators (linacs) is available. We report on the suitability and reliability of a novel phantom with modular inserts for combined polymer gel (PG) and ionisation chamber (IC) measurements at a 0.35 T MR-linac. METHODS Three 3D-printed, modular head phantoms, based on real patient anatomy, were used for repeated (2 times) PG irradiations of cranial treatment plans on a 0.35 T MR-linac. The PG readout was performed on two 1.5 T diagnostic MR-scanners to reduce scanning time. The PG dose volumes were normalised to the IC dose (normalised dose N1) and to the median planning target volume dose (normalised dose N2). Linearity of the PG dose response was validated and dose profiles, centres of mass (COM) of the 95% isodoses and dose volume histograms (DVH) were compared between planned and measured dose distributions and a 3D gamma analysis was performed. RESULTS Dose linearity of the PG was good (R2> 0.99 for all linear fit functions). High agreement was found between planned and measured dose volumes in the dose profiles and DVHs. The largest dose deviation was found in the intermediate dose region (mean dose deviation 0.2Gy; 5.6%). A mean COM offset of 1.2mm indicated high spatial accuracy. Mean 3D gamma passing rates (2%, 2mm) of 83.3% for N1 and 91.6% for N2 dose distributions were determined. When comparing repeated PG measurements to each other, a mean gamma passing rate of 95.7% was found. CONCLUSION The new modular phantom was found practical for use at a 0.35 T MR-linac. In contrast to the high dose region, larger mean deviations were found in the mid dose range. The PG measurements showed high reproducibility. The MR-linac performed well in a non-adaptive setting in terms of spatial and dosimetric accuracy.
Collapse
Affiliation(s)
- Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; Department of Radiation Oncology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
28
|
Towards Accurate and Precise Image-Guided Radiotherapy: Clinical Applications of the MR-Linac. J Clin Med 2022; 11:jcm11144044. [PMID: 35887808 PMCID: PMC9324978 DOI: 10.3390/jcm11144044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Advances in image-guided radiotherapy have brought about improved oncologic outcomes and reduced toxicity. The next generation of image guidance in the form of magnetic resonance imaging (MRI) will improve visualization of tumors and make radiation treatment adaptation possible. In this review, we discuss the role that MRI plays in radiotherapy, with a focus on the integration of MRI with the linear accelerator. The MR linear accelerator (MR-Linac) will provide real-time imaging, help assess motion management, and provide online adaptive therapy. Potential advantages and the current state of these MR-Linacs are highlighted, with a discussion of six different clinical scenarios, leading into a discussion on the future role of these machines in clinical workflows.
Collapse
|
29
|
Milder MT, Magallon-Baro A, den Toom W, de Klerck E, Luthart L, Nuyttens JJ, Hoogeman MS. Technical feasibility of online adaptive stereotactic treatments in the abdomen on a robotic radiosurgery system. Phys Imaging Radiat Oncol 2022; 23:103-108. [PMID: 35928600 PMCID: PMC9344339 DOI: 10.1016/j.phro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maaike T.W. Milder
- Corresponding author at: Department of Radiation Oncology, Erasmus MC – Cancer Institute, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kaučić H, Kosmina D, Schwarz D, Mack A, Šobat H, Čehobašić A, Leipold V, Andrašek I, Avdičević A, Mlinarić M. Stereotactic Ablative Radiotherapy Using CALYPSO ® Extracranial Tracking for Intrafractional Tumor Motion Management-A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study. Cancers (Basel) 2022; 14:cancers14112688. [PMID: 35681668 PMCID: PMC9179494 DOI: 10.3390/cancers14112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The aim of this study was to evaluate the efficacy and safety of SABR for LAPC using Calypso® Extracranial Tracking for intrafractional, fiducial-based motion management, to present this motion management technique, as there are yet no published data on usage of Calypso® during SABR for LAPC, and to report on our clinical outcomes. (2) Methods: Fifty-four patients were treated with SABR in one, three, or five fractions, receiving median BED10 = 112.5 Gy. Thirty-eight patients received systemic treatment. End points were OS, FFLP, PFS, and toxicity. Actuarial survival analysis and univariate analysis were investigated. (3) Results: Median follow-up was 20 months. Median OS was 24 months. One-year FFLP and one-year OS were 100% and 90.7%, respectively. Median PFS was 18 months, and one-year PFS was 72.2%. Twenty-five patients (46.3%) were alive at the time of analysis, and both median FU and OS for this subgroup were 26 months. No acute/late toxicity > G2 was reported. (4) Conclusions: SABR for LAPC using Calypso® presented as an effective and safe treatment and could be a promising local therapeutic option with very acceptable toxicity, either as a single treatment or in a multimodality regimen. Dose escalation to the tumor combined with systemic treatment could yield better clinical outcomes.
Collapse
Affiliation(s)
- Hrvoje Kaučić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-91-5622-191
| | - Domagoj Kosmina
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Dragan Schwarz
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Medicinski Fakultet Sveučilišta u Rijeci, Braće Branchetta 20/1, 51000 Rijeka, Croatia
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Fakultet za Dentalnu Medicinu i Zdravstvo Osijek, Crkvena Ulica 21, 31000 Osijek, Croatia
| | - Andreas Mack
- Swiss NeuroRadiosurgery Center, Bürglistrasse 29, 8002 Zürich, Switzerland;
| | - Hrvoje Šobat
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Adlan Čehobašić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Vanda Leipold
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Iva Andrašek
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Asmir Avdičević
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Mihaela Mlinarić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| |
Collapse
|
31
|
Lombardo E, Rabe M, Xiong Y, Nierer L, Cusumano D, Placidi L, Boldrini L, Corradini S, Niyazi M, Belka C, Riboldi M, Kurz C, Landry G. Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac60b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Gated beam delivery is the current clinical practice for respiratory motion compensation in MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-fractional motion using multileaf collimator tracking the total system latency needs to be accounted for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the prediction of superior–inferior tumor centroid positions extracted from clinically acquired 2D cine MRIs. Approach. We used 88 patients treated at the University Hospital of the LMU Munich for training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM and the LR were trained with offline (offline LSTM and offline LR) and online schemes (offline+online LSTM and online LR), the latter to allow for continuous adaptation to recent respiratory patterns. Main results. We found the offline+online LSTM to perform best for all investigated forecasts. Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and Gemelli testing set, respectively. Significance. This indicates that LSTM networks have potential as respiratory motion predictors and that continuous online re-optimization can enhance their performance.
Collapse
|
32
|
Simoni N, Rossi G, Cellini F, Vitolo V, Orlandi E, Valentini V, Mazzarotto R, Sverzellati N, D'Abbiero N. Ablative Radiotherapy (ART) for Locally Advanced Pancreatic Cancer (LAPC): Toward a New Paradigm? Life (Basel) 2022; 12:life12040465. [PMID: 35454956 PMCID: PMC9025325 DOI: 10.3390/life12040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Locally advanced pancreatic cancer (LAPC) represents a major urgency in oncology. Due to the massive involvement of the peripancreatic vessels, a curative-intent surgery is generally precluded. Historically, LAPC has been an indication for palliative systemic therapy. In recent years, with the introduction of intensive multi-agent chemotherapy regimens and aggressive surgical approaches, the survival of LAPC patients has significantly improved. In this complex and rapidly evolving scenario, the role of radiotherapy is still debated. The use of standard-dose conventional fractionated radiotherapy in LAPC has led to unsatisfactory oncological outcomes. However, technological advances in radiation therapy over recent years have definitively changed this paradigm. The use of ablative doses of radiotherapy, in association with image-guidance, respiratory organ-motion management, and adaptive protocols, has led to unprecedented results in terms of local control and survival. In this overview, principles, clinical applications, and current pitfalls of ablative radiotherapy (ART) as an emerging treatment option for LAPC are discussed.
Collapse
Affiliation(s)
- Nicola Simoni
- Radiotherapy Unit, Azienda Ospedaliera Universitaria, 43126 Parma, Italy
| | - Gabriella Rossi
- Department of Radiation Oncology, Azienda Ospedaliero Universitaria Integrata, 37126 Verona, Italy
| | - Francesco Cellini
- Radioterapia Oncologica ed Ematologia, Dipartimento Universitario Diagnostica per Immagini, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Vincenzo Valentini
- Radioterapia Oncologica ed Ematologia, Dipartimento Universitario Diagnostica per Immagini, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Radioterapia Oncologica ed Ematologia, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy
| | - Renzo Mazzarotto
- Department of Radiation Oncology, Azienda Ospedaliero Universitaria Integrata, 37126 Verona, Italy
| | - Nicola Sverzellati
- Division of Radiology, Azienda Ospedaliera Universitaria, 43126 Parma, Italy
| | - Nunziata D'Abbiero
- Radiotherapy Unit, Azienda Ospedaliera Universitaria, 43126 Parma, Italy
| |
Collapse
|
33
|
Nierer L, Eze C, da Silva Mendes V, Braun J, Thum P, von Bestenbostel R, Kurz C, Landry G, Reiner M, Niyazi M, Belka C, Corradini S. Dosimetric benefit of MR-guided online adaptive radiotherapy in different tumor entities: liver, lung, abdominal lymph nodes, pancreas and prostate. Radiat Oncol 2022; 17:53. [PMID: 35279185 PMCID: PMC8917666 DOI: 10.1186/s13014-022-02021-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Background Hybrid magnetic resonance (MR)-Linac systems have recently been introduced into clinical practice. The systems allow online adaption of the treatment plan with the aim of compensating for interfractional anatomical changes. The aim of this study was to evaluate the dose volume histogram (DVH)-based dosimetric benefits of online adaptive MR-guided radiotherapy (oMRgRT) across different tumor entities and to investigate which subgroup of plans improved the most from adaption. Methods Fifty patients treated with oMRgRT for five different tumor entities (liver, lung, multiple abdominal lymph nodes, pancreas, and prostate) were included in this retrospective analysis. Various target volume (gross tumor volume GTV, clinical target volume CTV, and planning target volume PTV) and organs at risk (OAR) related DVH parameters were compared between the dose distributions before and after plan adaption. Results All subgroups clearly benefited from online plan adaption in terms of improved PTV coverage. For the liver, lung and abdominal lymph nodes cases, a consistent improvement in GTV coverage was found, while many fractions of the prostate subgroup showed acceptable CTV coverage even before plan adaption. The largest median improvements in GTV near-minimum dose (D98%) were found for the liver (6.3%, p < 0.001), lung (3.9%, p < 0.001), and abdominal lymph nodes (6.8%, p < 0.001) subgroups. Regarding OAR sparing, the largest median OAR dose reduction during plan adaption was found for the pancreas subgroup (-87.0%). However, in the pancreas subgroup an optimal GTV coverage was not always achieved because sparing of OARs was prioritized. Conclusion With online plan adaptation, it was possible to achieve significant improvements in target volume coverage and OAR sparing for various tumor entities and account for interfractional anatomical changes.
Collapse
|
34
|
Ermongkonchai T, Khor R, Muralidharan V, Tebbutt N, Lim K, Kutaiba N, Ng SP. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J Gastroenterol 2022; 28:745-754. [PMID: 35317275 PMCID: PMC8891728 DOI: 10.3748/wjg.v28.i7.745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a malignancy with one of the poorest prognoses amongst all cancers. Patients with unresectable tumours either receive palliative care or undergo various chemoradiotherapy regimens. Conventional techniques are often associated with acute gastrointestinal toxicities, as adjacent critical structures such as the duodenum ultimately limits delivered doses. Stereotactic body radiotherapy (SBRT) is an advanced radiation technique that delivers highly ablative radiation split into several fractions, with a steep dose fall-off outside target volumes.
AIM To discuss the latest data on SBRT and whether there is a role for magnetic resonance-guided techniques in multimodal management of locally advanced, unresectable pancreatic cancer.
METHODS We conducted a search on multiple large databases to collate the latest records on radiotherapy techniques used to treat pancreatic cancer. Out of 1229 total records retrieved from our search, 36 studies were included in this review.
RESULTS Studies indicate that SBRT is associated with improved clinical efficacy and toxicity profiles compared to conventional radiotherapy techniques. Further dose escalation to the tumour with SBRT is limited by the poor soft-tissue visualisation of computed tomography imaging during radiation planning and treatment delivery. Magnetic resonance-guided techniques have been introduced to improve imaging quality, enabling treatment plan adaptation and re-optimisation before delivering each fraction.
CONCLUSION Therefore, SBRT may lead to improved survival outcomes and safer toxicity profiles compared to conventional techniques, and the addition of magnetic resonance-guided techniques potentially allows dose escalation and conversion of unresectable tumours to operable cases.
Collapse
Affiliation(s)
- Tai Ermongkonchai
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | | | - Niall Tebbutt
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| | - Kelvin Lim
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Numan Kutaiba
- Department of Diagnostic Radiology, Austin Health, Heidelberg 3084, Victoria, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg 3084, Victoria, Australia
| |
Collapse
|
35
|
Chiloiro G, Cusumano D, Boldrini L, Romano A, Placidi L, Nardini M, Meldolesi E, Barbaro B, Coco C, Crucitti A, Persiani R, Petruzziello L, Ricci R, Salvatore L, Sofo L, Alfieri S, Manfredi R, Valentini V, Gambacorta MA. THUNDER 2: THeragnostic Utilities for Neoplastic DisEases of the Rectum by MRI guided radiotherapy. BMC Cancer 2022; 22:67. [PMID: 35033008 PMCID: PMC8760695 DOI: 10.1186/s12885-021-09158-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Neoadjuvant chemoradiation therapy (nCRT) is the standard treatment modality in locally advanced rectal cancer (LARC). Since response to radiotherapy (RT) is dose dependent in rectal cancer, dose escalation may lead to higher complete response rates. The possibility to predict patients who will achieve complete response (CR) is fundamental. Recently, an early tumour regression index (ERI) was introduced to predict pathological CR (pCR) after nCRT in LARC patients. The primary endpoints will be the increase of CR rate and the evaluation of feasibility of delta radiomics-based predictive MRI guided Radiotherapy (MRgRT) model. Methods Patients affected by LARC cT2-3, N0-2 or cT4 for anal sphincter involvement N0-2a, M0 without high risk features will be enrolled in the trial. Neoadjuvant CRT will be administered using MRgRT. The initial RT treatment will consist in delivering 55 Gy in 25 fractions on Gross Tumor Volume (GTV) plus the corresponding mesorectum and 45 Gy in 25 fractions on the drainage nodes. Chemotherapy with 5-fluoracil (5-FU) or oral capecitabine will be administered continuously. A 0.35 Tesla MRI will be acquired at simulation and every day during MRgRT. At fraction 10, ERI will be calculated: if ERI will be inferior than 13.1, the patient will continue the original treatment; if ERI will be higher than 13.1 the treatment plan will be reoptimized, intensifying the dose to the residual tumor at the 11th fraction to reach 60.1 Gy. At the end of nCRT instrumental examinations are to be performed in order to restage patients. In case of stable disease or progression, the patient will undergo surgery. In case of major or complete clinical response, conservative approaches may be chosen. Patients will be followed up to evaluate toxicity and quality of life. The number of cases to be enrolled will be 63: all the patients will be treated at Fondazione Policlinico Universitario A. Gemelli IRCCS in Rome. Discussion This clinical trial investigates the impact of RT dose escalation in poor responder LARC patients identified using ERI, with the aim of increasing the probability of CR and consequently an organ preservation benefit in this group of patients. Trial registration ClinicalTrials.gov Identifier: NCT04815694 (25/03/2021).
Collapse
Affiliation(s)
- Giuditta Chiloiro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Davide Cusumano
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luca Boldrini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Matteo Nardini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Elisa Meldolesi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Brunella Barbaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Claudio Coco
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Antonio Crucitti
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Roberto Persiani
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Lucio Petruzziello
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Riccardo Ricci
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Lisa Salvatore
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Luigi Sofo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Sergio Alfieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Riccardo Manfredi
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | | |
Collapse
|
36
|
Grimbergen G, Eijkelenkamp H, Heerkens HD, Raaymakers BW, Intven MPW, Meijer GJ. Intrafraction pancreatic tumor motion patterns during ungated magnetic resonance guided radiotherapy with an abdominal corset. Phys Imaging Radiat Oncol 2022; 21:1-5. [PMID: 35005257 PMCID: PMC8715205 DOI: 10.1016/j.phro.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
Background Stereotactic body radiotherapy (SBRT) has been shown to be a promising therapy for unresectable pancreatic tumors. However, intrafraction motion, caused by respiratory motion and organ drift, is one of the main concerns for efficient dose delivery in ungated upper abdominal radiotherapy. The aim of this study was to analyze the intrafraction gross tumor volume (GTV) motion in a clinical cohort. Materials and methods We included 13 patients that underwent online adaptive magnetic resonance (MR)-guided SBRT for malignancies in the pancreatic region (5 × 8 Gy). An abdominal corset was fitted in order to reduce the abdominal respiratory motion. Coronal and sagittal cine magnetic resonance images of the tumor region were made at 2 Hz during the entire beam-on time of each fraction. We used deformable image registration to obtain GTV motion profiles in all three directions, which were subsequently high-pass and low-pass filtered to isolate the motion caused by respiratory motion and baseline drift, respectively. Results The mean (SD) respiratory amplitudes were 4.2 (1.9) mm cranio-caudal (CC), 2.3 (1.1) mm ventral-dorsal (AP) and 1.4 (0.6) mm left–right (LR), with low variability within patients. The mean (SD) maximum baseline drifts were 1.2 (1.1) mm CC, 0.5 (0.4) mm AP and 0.5 (0.3) mm LR. The mean (SD) minimum baseline drifts were −0.7 (0.5) mm CC, −0.6 (0.5) mm AP and −0.5 (0.4) mm LR. Conclusion Overall tumor motion during treatment was small and interfractionally stable. These findings show that high-precision ungated MR-guided SBRT is feasible with an abdominal corset.
Collapse
Affiliation(s)
- Guus Grimbergen
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| | - Hidde Eijkelenkamp
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| | - Hanne D Heerkens
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| | - Bas W Raaymakers
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
37
|
Shepherd M, Graham S, Ward A, Zwart L, Cai B, Shelley C, Booth J. Pathway for radiation therapists online advanced adapter training and credentialing. Tech Innov Patient Support Radiat Oncol 2021; 20:54-60. [PMID: 34917781 PMCID: PMC8665404 DOI: 10.1016/j.tipsro.2021.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Online Adaptive Radiation Therapy (oART) provides a solution to account for daily patient variations, but wide spread implementation is hindered by human resources and training. Physicians can mentor Radiation Therapists (RTTs) through traditional tasks such as contouring and plan approval. With evidence-based credentialing activities, decision support aids and ‘on-call’ caveats, RTTs can lead the oART workflow and a ‘Clinician-Lite’ approach. Compliance with legislative, regulatory and medico-legal governing bodies can be addressed through post-graduate study, advanced practice pathways, exemptions and delegation of task. Online adaptive radiotherapy (oART) is an emerging advanced treatment option for cancer patients worldwide. Current oART practices using magnetic resonance (MR) and cone beam computed tomography (CBCT) based imaging are resource intensive and require physician presence, which is a barrier to widespread implementation. Global evidence demonstrates Radiation Therapists (RTTs) can lead the oART workflow with decision support tools and on ‘on-call’ caveats in a ‘clinician-lite’ approach without significantly compromising on treatment accuracy, speed or patient outcomes. With careful consideration of jurisdictional regulations and guidance from the multi-disciplinary team, RTTs can elevate beyond traditional scopes of practice. By implementing robust and evidence-based credentialing activities, they enable service sustainability and expand the real-world gains of adaptive radiotherapy to a greater number of cancer patients worldwide. This work summarises the evidence for RTT-led oART treatments and proposes a pathway for training and credentialing.
Collapse
Affiliation(s)
- Meegan Shepherd
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia
| | - Siobhan Graham
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Amy Ward
- Queen's Hospital, BHRUT NHS Trust, Rom Valley Way, Romford RM1 0AG, UK
| | - Lissane Zwart
- Medisch Spectrum Twente (MST), Koningstraat 1, 7512 KZ Enschede, Netherlands
| | - Bin Cai
- UT Southwestern Medical Center, Harry Hines Blvd, Dallas, TX 75390, USA
| | | | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd, St Leonard, NSW 2065, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2004, Australia
| |
Collapse
|
38
|
Placidi L, Cusumano D, Alparone A, Boldrini L, Nardini M, Meffe G, Chiloiro G, Romano A, Valentini V, Indovina L. When your MR linac is down: Can an automated pipeline bail you out of trouble? Phys Med 2021; 91:80-86. [PMID: 34739878 DOI: 10.1016/j.ejmp.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The unique treatment delivery technique provided by magnetic resonance guided radiotherapy (MRgRT) can represent a significant drawback when system fail occurs. This retrospective study proposes and evaluates a pipeline to completely automate the workflow necessary to shift a MRgRT treatment to a traditional radiotherapy linac. MATERIAL AND METHODS Patients undergoing treatment during the last MRgRT system failure were retrospectively included in this study. The core of the proposed pipeline was based on a tool able to mimic the original MR linac dose distribution. The so obtained dose distribution (AUTO) has been compared with the distribution obtained in the conventional radiotherapy linac (MAN). Plan comparison has been performed in terms of time required to obtain the final dose distribution, DVH parameters, dosimetric indices and visual analogue scales scoring by radiation oncologists. RESULTS AUTO plans generation has been obtained within 10 min for all the considered cases. All AUTO plans were found to be within clinical tolerance, showing a mean target coverage variation of 1.7% with a maximum value of 4.3% and a minimum of 0.6% when compared with MAN plans. The highest OARs mean variation has been found for rectum V60 (6.7%). Dosimetric indices showed no relevant differences, with smaller gradient measure in favour of AUTO plans. Visual analogue scales scoring has confirmed comparable plan quality for AUTO plans. CONCLUSION The proposed workflow allows a fast and accurate generation of automatic treatment plans. AUTO plans can be considered equivalent to MAN ones, with limited clinical impact in the worst-case scenario.
Collapse
Affiliation(s)
- L Placidi
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - D Cusumano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy.
| | | | - L Boldrini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| | - M Nardini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| | - G Meffe
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| | - G Chiloiro
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| | - A Romano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| | - V Valentini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Indovina
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Rome, Italy
| |
Collapse
|
39
|
Tyagi N, Liang J, Burleson S, Subashi E, Godoy Scripes P, Tringale KR, Romesser PB, Reyngold M, Crane CH. Feasibility of ablative stereotactic body radiation therapy of pancreas cancer patients on a 1.5 Tesla magnetic resonance-linac system using abdominal compression. Phys Imaging Radiat Oncol 2021; 19:53-59. [PMID: 34307919 PMCID: PMC8295846 DOI: 10.1016/j.phro.2021.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiation therapy delivered using MR-guided radiotherapy (MRgRT) and automatic breathold gating has shown to improve overall survival for locally advanced pancreatic cancer (LAPC) patients. The goal of our study was to evaluate feasibility of treating LAPC patients using abdominal compression (AC) and impact of potential intrafraction motion on planned dose on a 1.5T MR-linac. METHODS & MATERIALS Ten LAPC patients were treated with MRgRT to 50 Gy in 5 fractions with daily online plan adaptation and AC. Three orthogonal plane cine MRI were acquired to assess stability of AC pressure in minimizing tumor motion. Three sets of T2w MR scans, pre-treatment (MRIpre), verification (MRIver) and post-treatment (MRIpost) MRI, were acquired for every fraction. A total of 150 MRIs and doses were evaluated. Impact of intrafraction organ motion was evaluated by propagating pre-treatment plan and structures to MRIver and MRIpost, editing contours and recalculating doses. Gross tumor volume (GTV) coverage and organs-at-risk (OARs) doses were evaluated on MRIver and MRIpost. RESULTS Median total treatment time was 75.5 (49-132) minutes. Median tumor motion in AC for all fractions was 1.7 (0.7-7), 2.1 (0.6-6.3) and 4.1 (1.4-10.0) mm in anterior-posterior, left-right and superior-inferior direction. Median GTV V50Gy was 78.7%. Median D5cm3 stomach_duodenum was 24.2 (18.4-29.3) Gy on MRIver and 24.2 (18.3-30.5) Gy on MRIpost. Median D5cm3 small bowel was 24.3 (18.2-32.8) Gy on MRIver and 24.4 (16.0-33.6) Gy on MRIpost. CONCLUSION Dose-volume constraints for OARs were exceeded for some fractions on MRIver and MRIpost. Longer follow up is needed to see the dosimetric impact of intrafraction motion on gastrointestinal toxicity.
Collapse
Affiliation(s)
- Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jiayi Liang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Burleson
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paola Godoy Scripes
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn R. Tringale
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marsha Reyngold
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher H. Crane
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
40
|
Kang SK, An HJ, Jin H, Kim JI, Chie EK, Park JM, Lee JS. Synthetic CT generation from weakly paired MR images using cycle-consistent GAN for MR-guided radiotherapy. Biomed Eng Lett 2021; 11:263-271. [PMID: 34350052 DOI: 10.1007/s13534-021-00195-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
Although MR-guided radiotherapy (MRgRT) is advancing rapidly, generating accurate synthetic CT (sCT) from MRI is still challenging. Previous approaches using deep neural networks require large dataset of precisely co-registered CT and MRI pairs that are difficult to obtain due to respiration and peristalsis. Here, we propose a method to generate sCT based on deep learning training with weakly paired CT and MR images acquired from an MRgRT system using a cycle-consistent GAN (CycleGAN) framework that allows the unpaired image-to-image translation in abdomen and thorax. Data from 90 cancer patients who underwent MRgRT were retrospectively used. CT images of the patients were aligned to the corresponding MR images using deformable registration, and the deformed CT (dCT) and MRI pairs were used for network training and testing. The 2.5D CycleGAN was constructed to generate sCT from the MRI input. To improve the sCT generation performance, a perceptual loss that explores the discrepancy between high-dimensional representations of images extracted from a well-trained classifier was incorporated into the CycleGAN. The CycleGAN with perceptual loss outperformed the U-net in terms of errors and similarities between sCT and dCT, and dose estimation for treatment planning of thorax, and abdomen. The sCT generated using CycleGAN produced virtually identical dose distribution maps and dose-volume histograms compared to dCT. CycleGAN with perceptual loss outperformed U-net in sCT generation when trained with weakly paired dCT-MRI for MRgRT. The proposed method will be useful to increase the treatment accuracy of MR-only or MR-guided adaptive radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-021-00195-8.
Collapse
Affiliation(s)
- Seung Kwan Kang
- Department of Biomedical Sciences and Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 South Korea
| | - Hyun Joon An
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 South Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 South Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences and Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 South Korea.,Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 South Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, 03080 South Korea
| |
Collapse
|
41
|
Votta C, Cusumano D, Boldrini L, Dinapoli N, Placidi L, Turco G, Antonelli MV, Pollutri V, Romano A, Indovina L, Valentini V. Delivery of online adaptive magnetic resonance guided radiotherapy based on isodose boundaries. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:78-81. [PMID: 34258412 PMCID: PMC8254198 DOI: 10.1016/j.phro.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
Magnetic Resonance-guided Radiotherapy (MRgRT) allows direct monitoring of treated volumes. The aim of this study was to investigate the feasibility of a new gating strategy consisting in using an isodose as boundary. Forty-four patients treated for thoracic and abdominal lesions using MRgRT were enrolled. The accuracy of the new strategy was compared to the conventional one in terms of area improvement available for gating without compromising target coverage. A mean increase of 24% for lung, 15% for liver and 11% for pancreas was observed, demonstrating how the new method can be useful in challenging situations with low dose conformality.
Collapse
|
42
|
Placidi L, Nardini M, Cusumano D, Boldrini L, Chiloiro G, Romano A, Votta C, Antonelli MV, Valentini V, Indovina L. VMAT-like plans for magnetic resonance guided radiotherapy: Addressing unmet needs. Phys Med 2021; 85:72-78. [PMID: 33979726 DOI: 10.1016/j.ejmp.2021.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE VMAT delivery technique is currently not applicable to Magnetic Resonance-guided radiotherapy (MRgRT) hybrid systems. Aim of this study is to evaluate an innovative VMAT-like (VML) delivery technique. MATERIAL AND METHODS First, planning and dosimetric evaluation of the MRgRT VML treatment have been performed on 10 different disease sites and the results have been compared with the corresponding IMRT plans. Then, in the second phase, 10 of the most dosimetrically challenging locally advanced pancreas treatment plans have been retrospectively re-planned using the VML approach to explore the potentiality of this new delivery technique. Finally, VML robustness was evaluated and compared with the IMRT plans, considering a lateral positioning error of ± 5 mm. RESULTS In phase one, all VML plans were within constraint for all OARs. When PTV coverage is considered, in the 50% of the cases VML PTV coverage is equal or higher than in IMRT plan. In the remaining 50%, the highest target under coverage difference in comparison with IMRT plan is -1.71%. The mean and maximum treatment time differences (VML-IMRT) is 0.2 min and 3.1 min respectively. In phase two, the treatment time variation (VML-IMRT), shows a mean, maximum and minimum variations of 1.3, 4.6 and -0.6 min respectively. All VML plans have a better target coverage if compared with IMRT plans, keeping in any case the OARs constraints within tolerance. VML doesn't increase plan robustness. CONCLUSION VMAT-like treatment approach appeared to be an efficient planning solution and it was decided to clinically implement it in daily practice, especially in the frame of hypo fractionated treatments.
Collapse
Affiliation(s)
- L Placidi
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Nardini
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - D Cusumano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy.
| | - L Boldrini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| | - G Chiloiro
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| | - A Romano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| | - C Votta
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| | - M V Antonelli
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| | - V Valentini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Indovina
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Roma, Italy
| |
Collapse
|
43
|
Placidi L, Nardini M, Cusumano D, Boldrini L, Catucci F, Chiloiro G, Votta C, Valentini V, Indovina L. Dosimetric accuracy of dual isocenter irradiation in low magnetic field resonance guided radiotherapy system for extended abdominal tumours. Phys Med 2021; 84:149-158. [PMID: 33895666 DOI: 10.1016/j.ejmp.2021.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Due to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac. MATERIAL AND METHODS Dual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch. RESULTS MLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation. 2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis. The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV). CONCLUSION The dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.
Collapse
Affiliation(s)
- L Placidi
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Nardini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - D Cusumano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - L Boldrini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - F Catucci
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - G Chiloiro
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - C Votta
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - V Valentini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Indovina
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| |
Collapse
|
44
|
Keesman R, van der Bijl E, Janssen TM, Vijlbrief T, Pos FJ, van der Heide UA. Clinical workflow for treating patients with a metallic hip prosthesis using magnetic resonance imaging-guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 15:85-90. [PMID: 33458331 PMCID: PMC7807622 DOI: 10.1016/j.phro.2020.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022]
Abstract
Background & purpose Metallic prostheses distort the magnetic field during magnetic resonance imaging (MRI), leading to geometric distortions and signal loss. The purpose of this work was to develop a method to determine eligibility for MRI-guided radiotherapy (MRIgRT) on a per patient basis by estimating the magnitude of geometric distortions inside the clinical target volume (CTV). Materials & methods Three patients with prostate cancer and hip prosthesis, treated using MRIgRT, were included. Eligibility for MRIgRT was based on computed tomography and associated CTV delineations, together with a field-distortion (B0) map and anatomical images acquired during MR simulation. To verify the method, B0 maps made during MR simulation and each MRIgRT treatment fraction were compared. Results Estimates made during MR simulation of the magnitude of distortions inside the CTV were 0.43 mm, 0.19 mm and 2.79 mm compared to the average over all treatment fractions of 1.40 mm, 0.32 mm and 1.81 mm, per patient respectively. Conclusions B0 map acquisitions prior to treatment can be used to estimate the magnitude of distortions during MRIgRT to guide the decision on eligibility for MRIgRT of prostate cancer patients with metallic hip implants.
Collapse
Affiliation(s)
- Rick Keesman
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Erik van der Bijl
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Tomas M Janssen
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Tineke Vijlbrief
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Uulke A van der Heide
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
45
|
Cusumano D, Boldrini L, Yadav P, Casà C, Lee SL, Romano A, Piras A, Chiloiro G, Placidi L, Catucci F, Votta C, Mattiucci GC, Indovina L, Gambacorta MA, Bassetti M, Valentini V. Delta Radiomics Analysis for Local Control Prediction in Pancreatic Cancer Patients Treated Using Magnetic Resonance Guided Radiotherapy. Diagnostics (Basel) 2021; 11:72. [PMID: 33466307 PMCID: PMC7824764 DOI: 10.3390/diagnostics11010072] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to investigate the role of Delta Radiomics analysis in the prediction of one-year local control (1yLC) in patients affected by locally advanced pancreatic cancer (LAPC) and treated using Magnetic Resonance guided Radiotherapy (MRgRT). A total of 35 patients from two institutions were enrolled: A 0.35 Tesla T2*/T1 MR image was acquired for each case during simulation and on each treatment fraction. Physical dose was converted in biologically effective dose (BED) to compensate for different radiotherapy schemes. Delta Radiomics analysis was performed considering the gross tumour volume (GTV) delineated on MR images acquired at BED of 20, 40, and 60 Gy. The performance of the delta features in predicting 1yLC was investigated in terms of Wilcoxon Mann-Whitney test and area under receiver operating characteristic (ROC) curve (AUC). The most significant feature in predicting 1yLC was the variation of cluster shade calculated at BED = 40 Gy, with a p-value of 0.005 and an AUC of 0.78 (0.61-0.94). Delta Radiomics analysis on low-field MR images might play a promising role in 1yLC prediction for LAPC patients: further studies including an external validation dataset and a larger cohort of patients are recommended to confirm the validity of this preliminary experience.
Collapse
Affiliation(s)
- Davide Cusumano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Luca Boldrini
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Poonam Yadav
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA; (P.Y.); (M.B.)
| | - Calogero Casà
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Sangjune Laurence Lee
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 1N4, Canada;
| | - Angela Romano
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Antonio Piras
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Giuditta Chiloiro
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Francesco Catucci
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Claudio Votta
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Gian Carlo Mattiucci
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Luca Indovina
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Maria Antonietta Gambacorta
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| | - Michael Bassetti
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA; (P.Y.); (M.B.)
| | - Vincenzo Valentini
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (D.C.); (L.B.); (A.R.); (A.P.); (G.C.); (L.P.); (F.C.); (C.V.); (G.C.M.); (L.I.); (M.A.G.); (V.V.)
| |
Collapse
|
46
|
MRI-guided stereotactic radiation therapy for hepatocellular carcinoma: a feasible and safe innovative treatment approach. J Cancer Res Clin Oncol 2021; 147:2057-2068. [PMID: 33398447 DOI: 10.1007/s00432-020-03480-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) in early stages benefits from local ablative treatments such as radiofrequency ablation (RFA) or transarterial chemoembolization (TACE). In this context, radiotherapy (RT) has shown promising results but has not been thoroughly evaluated. Magnetic resonance-guided RT (MRgRT) may represent a paradigm shifting improvement in stereotactic body radiotherapy (SBRT) for liver tumors. METHODS We retrospectively evaluated HCC patients treated on a hybrid low-tesla MRgRT unit. A total biologically effective dose (BED) > 100 Gy was delivered in 5 consecutive fractions, respecting the appropriate organs-at-risk constraints. Hybrid MR scans were used for treatment planning and cine MR was used for delivery gating. Patients were followed up for toxicity and treatment-response assessment. RESULTS Ten patients were enrolled, with a total of 12 lesions. All the lesions were irradiated with no interruptions. Six patients had already performed previous local therapies. Median follow-up after SBRT was 6.5 months (1-25). Two cases of acute toxicity were reported (G ≤ 2 according to CTCAE v4.0). At the time of the analysis, 90% of the population presented local control. Child-Pugh before and after treatment remained unchanged in all but one patient. CONCLUSION MRgRT is a feasible and safe option showing favorable toxicity profile for HCC treatment.
Collapse
|
47
|
Mazzarotto R, Simoni N, Guariglia S, Rossi G, Micera R, De Robertis R, Pierelli A, Zivelonghi E, Malleo G, Paiella S, Salvia R, Cavedon C, Milella M, Bassi C. Dosimetric Feasibility Study of Dose Escalated Stereotactic Body Radiation Therapy (SBRT) in Locally Advanced Pancreatic Cancer (LAPC) Patients: It Is Time to Raise the Bar. Front Oncol 2020; 10:600940. [PMID: 33392093 PMCID: PMC7773844 DOI: 10.3389/fonc.2020.600940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE To assess the dosimetric feasibility of a stereotactic body radiotherapy (SBRT) dose escalated protocol, with a simultaneous integrated boost (SIB) and a simultaneous integrated protection (SIP) approach, in patients with locally advanced pancreatic cancer (LAPC). MATERIAL AND METHODS Twenty LAPC lesions, previously treated with SBRT at our Institution, were re-planned. The original prescribed and administered dose was 50/30/25 Gy in five fractions to PTVsib (tumor-vessel interface [TVI])/PTVt (tumor volume)/PTVsip (overlap area between PTVt and planning organs at risk volume [PRVoars]), respectively. At re-planning, the prescribed dose was escalated up to 60/40/33 Gy in five fractions to PTVsib/PTVt/PTVsip, respectively. All plans were performed using an inspiration breath hold (IBH) technique and generated with volumetric modulated arc therapy (VMAT). Well-established and accepted OAR dose constraints were used (D0.5cc < 33 Gy for luminal OARs and D0.5cc < 38 Gy for corresponding PRVoars). The primary end-point was to achieve a median dose equal to the prescription dose for the PTVsib with D98≥ 95% (95% of prescription dose is the minimum dose), and a coverage for PTVt and PTVsip of D95≥95%, with minor deviations in OAR dose constraints in < 10% of the plans. RESULTS PTVsib median (± SD) dose/D95/conformity index (CI) were 60.54 (± 0.85) Gy/58.96 (± 0.86) Gy/0.99 (± 0.01), respectively; whilst PTVt median (± SD) dose/D95 were 44.51 (± 2.69) Gy/38.44 (± 0.82) Gy, and PTVsip median (± SD) dose/D95 were 35.18 (± 1.42) Gy/33.01 (± 0.84) Gy, respectively. With regard to OARs, median (± SD) maximum dose (D0.5cc) to duodenum/stomach/bowel was 29.31 (± 5.72) Gy/25.29 (± 6.90) Gy/27.03 (± 5.67) Gy, respectively. A minor acceptable deviation was found for a single plan (bowel and duodenum D0.5cc=34.8 Gy). V38 < 0.5 cc was achieved for all PRV luminal OARs. CONCLUSIONS In LAPC patients SBRT, with a SIB/SIP dose escalation approach up to 60/40/33 Gy in five fractions to PTVsib/PTVt/PTVsip, respectively, is dosimetrically feasible with adequate PTVs coverage and respect for OAR dose constraints.
Collapse
Affiliation(s)
- Renzo Mazzarotto
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Nicola Simoni
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Stefania Guariglia
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Gabriella Rossi
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Renato Micera
- Department of Radiation Oncology, University of Verona Hospital Trust, Verona, Italy
| | | | - Alessio Pierelli
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Emanuele Zivelonghi
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Giuseppe Malleo
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Salvatore Paiella
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| | - Carlo Cavedon
- Department of Medical Physics, University of Verona Hospital Trust, Verona, Italy
| | - Michele Milella
- Department of Oncology, University of Verona Hospital Trust, Verona, Italy
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
48
|
Boldrini L, Romano A, Placidi L, Mattiucci GC, Chiloiro G, Cusumano D, Pollutri V, Antonelli MV, Indovina L, Gambacorta MA, Valentini V. Case Report: First in Human Online Adaptive MR Guided SBRT of Peritoneal Carcinomatosis Nodules: A New Therapeutic Approach for the Oligo-Metastatic Patient. Front Oncol 2020; 10:601739. [PMID: 33384958 PMCID: PMC7770165 DOI: 10.3389/fonc.2020.601739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Peritoneal carcinosis (PC) is characterized by poor prognosis. PC is currently treated as a locoregional disease and the possibility to perform very precise treatments such as stereotactic body radiation therapy (SBRT) has opened up new therapeutic perspectives. More recently, the introduction of Magnetic Resonance-guided Radiation Therapy (MRgRT) allowed online adaptation (OA) of treatment plan to optimize daily dose distribution based on patient’s anatomy. The aim of this study is the evaluation of the effectiveness of SBRT OA workflow in an oligometastatic patient affected by PC. We report the clinical case of a patient affected by PC originating from colon cancer, previously treated with chemotherapy and surgery, addressed to OA SBRT treatment on a single chemoresistant PC nodule, delivered with a 0.35 T MR Linac. Treatment was delivered using gating approach in deep inspiration breath hold condition in order to reduce intrafraction variability. Prescription dose was 35 Gy in 5 fractions. The PTV V95% of the original plan was 96.6%, while the predicted values for the following fractions were 11.9, 56.4, 0, 0, and 61%. Similarly, the small bowel V19.5 Gy of the original plan was 4.63 cc, while the predicted values for the following fractions were 3.7, 8.6, 10.7, 1.96, 3.7 cc. Thanks to the OA approach, the re-optimized PTV V95% coverage improved to 96.1, 89.0, 85.5, 94.5, and 94%; while the small bowel V19.5 Gy to 3.36; 3.28; 1.84; 2.62; 2.6 cc respectively. After the end of RT, the patient was addressed to follow-up, and the re-evaluation 18F-FDG PET-CT was performed after 10 months from irradiation showed complete response. No acute or late toxicities were recorded. MRgRT with OA approach in PC patients is technically and clinically feasible with clean toxicity result. Online adaptive SBRT for oligometastases opens up new therapeutic scenarios in the management of this category of patients.
Collapse
Affiliation(s)
- Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Gian Carlo Mattiucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Davide Cusumano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Veronica Pollutri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Marco Valerio Antonelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
49
|
[MR-Linac: The era of personalised radiation therapy]. Bull Cancer 2020; 108:49-54. [PMID: 33308847 DOI: 10.1016/j.bulcan.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
|
50
|
Placidi L, Cusumano D, Boldrini L, Votta C, Pollutri V, Antonelli MV, Chiloiro G, Romano A, De Luca V, Catucci F, Indovina L, Valentini V. Quantitative analysis of MRI-guided radiotherapy treatment process time for tumor real-time gating efficiency. J Appl Clin Med Phys 2020; 21:70-79. [PMID: 33089954 PMCID: PMC7701108 DOI: 10.1002/acm2.13030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Magnetic Resonance-guided radiotherapy (MRgRT) systems allow continuous monitoring of therapy volumes during treatment delivery and personalized respiratory gating approaches. Treatment length may therefore be significantly affected by patient's compliance and breathing control. We quantitatively analyzed treatment process time efficiency (TE ) using data obtained from real-world patient treatment logs to optimize MRgRT delivery settings. METHODS Data corresponding to the first 100 patients treated with a low T hybrid MRI-Linac system, both in free breathing (FB) and in breath hold inspiration (BHI) were collected. TE has been computed as the percentage difference of the actual single fraction's total treatment time and the predicted treatment process time, as computed by the TPS during plan optimization. Differences between the scheduled and actual treatment room occupancy time were also evaluated. Finally, possible correlations with planning, delivery and clinical parameters with TE were also investigated. RESULTS Nine hundred and nineteen treatment fractions were evaluated. TE difference between BHI and FB patients' groups was statistically significant and the mean TE were 42.4%, and -0.5% respectively. No correlation was found with TE for BHI and FB groups. Planning, delivering and clinical parameters classified BHI and FB groups, but no correlation with TE was found. CONCLUSION The use of BHI gating technique can increase the treatment process time significantly. BHI technique could be not always an adequate delivery technique to optimize the treatment process time. Further gating techniques should be considered to improve the use of MRgRT.
Collapse
Affiliation(s)
- Lorenzo Placidi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Votta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Veronica Pollutri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Marco Valerio Antonelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Giuditta Chiloiro
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Angela Romano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Viola De Luca
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Francesco Catucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|