1
|
Jovanovic MZ, Stanojevic J, Stevanovic I, Ninkovic M, Ilic TV, Nedeljkovic N, Dragic M. Prolonged intermittent theta burst stimulation restores the balance between A2AR- and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease. Neural Regen Res 2025; 20:2053-2067. [PMID: 39254566 PMCID: PMC11691459 DOI: 10.4103/nrr.nrr-d-23-01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Kumar R, Kumari P, Kumar R. Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives. Mol Neurobiol 2025; 62:7268-7295. [PMID: 39875779 DOI: 10.1007/s12035-025-04712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death. Planned (i.e., radiotherapy of brain tumor patients) or unplanned radiation exposure (i.e., accidental radiation exposure) can induce nonspecific damage to neuronal tissues, resulting in chronic or acute radiation syndrome. Although anatomical alterations in the neuronal tissues have been reported at higher doses of gamma radiation, biochemical and molecular perturbations may be evident even at much lower radiation doses. They may manifest in the form of neuronal deficits and cognitive impairment. In the present review, several molecular events and signaling pathways, such as oxidative stress, neuroinflammation, apoptosis, cognition, neuroplasticity, and neurotoxicity induced in neuronal cells upon ionizing radiation exposure, are reviewed. Furthermore, brain-specific radioprotectors and mitigators that protect normal neuronal cells and tissues against ionizing radiation during radiotherapy of cancer patients or nuclear emergencies are also discussed.
Collapse
Affiliation(s)
- Ravi Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Pratibha Kumari
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
3
|
Chaves MM. Neutrophils and purinergic signaling: Partners in the crime against Leishmania parasites? Biochimie 2025; 232:43-53. [PMID: 39855456 DOI: 10.1016/j.biochi.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The parasite of the genus Leishmania is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed. Much has already been discussed about the role of neutrophils in Leishmania infection, and their participation is still controversial. A recent study showed that receptors present in the neutrophil membrane, the purinergic receptors, can control the infection when activated, but the triggering mechanism has not been elucidated. In this review, we will address the possible participation of purinergic receptors expressed in the neutrophil extracellular membrane that may be participating in the detection of Leishmania infection and their possible effects during parasitism.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Zikanova M, Skopova V, Stuurman KE, Baresova V, Souckova O, Hnizda A, Krijt M, Bleyer AJ, Zeman J, Kmoch S. Phosphoribosylformylglycinamidine Synthase (PFAS) Deficiency: Clinical, Genetic and Metabolic Characterisation of a Novel Defect in Purine de Novo Synthesis. J Inherit Metab Dis 2025; 48:e70041. [PMID: 40421664 DOI: 10.1002/jimd.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025]
Abstract
Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
Collapse
Affiliation(s)
- Marie Zikanova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Vaclava Skopova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Veronika Baresova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Olga Souckova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
- OMICS Mass Spectrometry Core Facility, Biology Departments, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ales Hnizda
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Matyas Krijt
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Anthony J Bleyer
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Jiri Zeman
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czechia, Czech Republic
| |
Collapse
|
5
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2025; 21:221-265. [PMID: 38958821 PMCID: PMC12061838 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
6
|
Zhang K, Ran R, Zhang CJ, Wang L, Zhang HH. Focus on P2X7R in microglia: its mechanism of action and therapeutic prospects in various neuropathic pain models. Front Pharmacol 2025; 16:1555732. [PMID: 40201695 PMCID: PMC11975881 DOI: 10.3389/fphar.2025.1555732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Neuropathic pain (NP) is a common symptom of many diseases and is caused by direct or indirect damage to the nervous system. Tricyclic antidepressants and serotonin-norepinephrine reuptake inhibitors are typical drugs used in clinical practice to suppress pain. However, these drugs have drawbacks, including a short duration of action, a limited analgesic effect, and possible dependence and side effects. Therefore, developing more effective NP treatment strategies has become a priority in medical research and has attracted much research attention. P2X7 receptor (P2X7R) is a non-selective cation channel activated by adenosine triphosphate and is mainly expressed in microglia in the central nervous system. Microglial P2X7R plays an important role in pain regulation, suggesting that it could be a potential target for drug development. This review comprehensively and objectively discussed the latest research progress of P2X7R, including its structural characteristics, functional properties, relationship with microglial activation and polarization, mechanism of action, and potential therapeutic strategies in multiple NP models. This study aimed to provide in-depth insights into the association between P2X7R and NP and explore the mechanism of action of P2X7R in the pathological process of NP and the translational potential and clinical application prospects of P2X7R antagonists in pain treatment, providing a scientific basis for the precise treatment of NP.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, China
| | - Rui Ran
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, China
| | | | - Linna Wang
- Lanzhou Biotechnique Development Co., Ltd., Lanzhou, China
| | - Hai-Hong Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Su W, He X, Lin Z, Xu J, Shangguan J, Wei Z, Zhao Y, Xing L, Gu Y, Chen G. Activation of P2X7R Inhibits Proliferation and Promotes the Migration and Differentiation of Schwann Cells. Mol Neurobiol 2025; 62:3067-3081. [PMID: 39225968 DOI: 10.1007/s12035-024-04460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In the vertebrate nervous system, myelination of nerve fibers is crucial for the rapid propagation of action potentials through saltatory conduction. Schwann cells-the main glial cells and myelinating cells of the peripheral nervous system-play a crucial role in myelination. Following injury during the repair of peripheral nerve injuries, a significant amount of ATP is secreted. This ATP release acts to trigger the dedifferentiation of myelinating Schwann cells into repair cells, an essential step for axon regeneration. Subsequently, to restore nerve function, these repair cells undergo redifferentiate into myelinating Schwann cells. Except for P2X4R, purine receptors such as P2X7R also play a significant role in this process. In the current study, decreased expression of P2X7R was observed after sciatic nerve injury, followed by a gradual increase to the normal level of P2X7R expression. In vivo experiments showed that the activation of P2X7R using an agonist injection promoted remyelination, while the antagonists hindered remyelination. Further, in vitro experiments supported these findings and demonstrated that P2X7R activation inhibited the proliferation of Schwann cells, but it promoted the migration and differentiation of the Schwann cells. Remyelination is a prominent feature of the nerve regeneration. In the current study, it was proposed that the manipulation of P2X7R expression in Schwann cells after nerve injury could be effective in facilitating nerve remyelination.
Collapse
Affiliation(s)
- Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaowen He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Zhihao Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Jinghui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Jianghong Shangguan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China.
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China.
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, China.
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Garofalo S, Mormino A, Mazzarella L, Cocozza G, Rinaldi A, Di Pietro E, Di Castro MA, De Felice E, Maggi L, Chece G, Andolina D, Ventura R, Ielpo D, Piacentini R, Catalano M, Stefanini L, Limatola C. Platelets tune fear memory in mice. Cell Rep 2025; 44:115261. [PMID: 39903668 DOI: 10.1016/j.celrep.2025.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/13/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Several lines of evidence have shown that platelet-derived factors are key molecules in brain-body communication in pathological conditions. Here, we identify platelets as key actors in the modulation of fear behaviors in mice through the control of inhibitory neurotransmission and plasticity in the hippocampus. Interfering with platelet number or activation reduces hippocampal serotonin (5-HT) and modulates fear learning and memory in mice, and this effect is reversed by serotonin replacement by serotonin precursor (5-HTP)/benserazide. In addition, we unravel that natural killer (NK) cells participate in this mechanism, regulating interleukin-13 (IL-13) levels in the gut, with effects on serotonin production by enterochromaffin cells and uptake by platelets. Both NK cells and platelet depletion reduce the activation of hippocampal inhibitory neurons and increase the long-term potentiation of synaptic transmission. Understanding the role of platelets in the modulation of neuro-immune interactions offers additional tools for the definition of the molecular and cellular elements involved in the growing field of brain-body communication.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Letizia Mazzarella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Germana Cocozza
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Donald Ielpo
- Department of Psychology and Center for Research in Neurobiology 'D. Bovet', Sapienza University of Rome, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory affiliated with Istituto Pasteur, Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
10
|
Huang B, Chen WN, Peng CM, Shen XL, Xue J, Yan CC, Zhong FM. Global trends of purinergic receptors and depression: A bibliometric analysis from 2003 to 2023. World J Psychiatry 2025; 15:102344. [PMID: 39974485 PMCID: PMC11758036 DOI: 10.5498/wjp.v15.i2.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Depression significantly threatens human health. Purinergic receptors are reported to be associated with depression. However, there is no bibliometric research in this field have been published. AIM To provide some reference for the further research in the field of purinergic receptors and depression utilizing bibliometric analysis. METHODS Relevant researches were retrieved from the Web of Science Core Collection database. The period of the search was from January 1, 2003 to December 31, 2023. The CiteSpace (6.2.R7) and VOSviewer (1.6.19) were applied to identify the main contributors of countries, authors, institutions, references and journals. Besides, we evaluate keywords to assess the hotspots and trends over the previous 2 decades. RESULTS Totally, 247 articles were identified, showing an increasing trend over time. The most productive country, institution, and journal in this field are China, Harvard University, and Biological Psychiatry, respectively. Liang SD and Rodrigues, Ana Lucia S were the most prolific authors. Burnstock G ranked first among the cited authors. The cooperation among countries and disciplines is crucial. The P2X7 receptor provides promising prospects for treating depression and further studies are warranted to validate the scope and significance of depression therapeutic strategies. CONCLUSION This study provides an overview of the worldwide research status and future trends in purinergic receptors and depression. P2X7 receptor is considered an appropriate target for the treatment of depression, as well as neurological diseases. It is implied that based on purinergic system, the future prospects for interventions aimed at depression treatment are promising, showing the way for both augmentation strategies and new drug treatments in the context of the pharmacology of depression.
Collapse
Affiliation(s)
- Biao Huang
- Department of Acupuncture, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Wei-Ning Chen
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Chun-Mei Peng
- Department of Asset Management, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Xiu-Li Shen
- Department of Gastroenterology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Jin Xue
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Chun-Chuan Yan
- Department of Acupuncture, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Fa-Ming Zhong
- Department of Spinal Surgery, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
11
|
Singh A, Singh L. Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential. Pharmacol Rep 2025; 77:31-42. [PMID: 39436564 DOI: 10.1007/s43440-024-00672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Sesquiterpenes are a class of organic compounds found in plants, fungi, and some insects. They are characterized by the presence of three isoprene units, resulting in a molecular formula that typically contains 15 carbon atoms (C₁₅H₂₄). Nerolidol and farnesol are both sesquiterpene alcohols present in the essential oils of numerous plants. They have drawn attention due to their potential neuroprotective properties. Nerolidol and farnesol are structural isomers, specifically geometric isomers, haring the same molecular formula (C₁₅H₂₄O) but differing in the spatial arrangement of their atoms. This variation in structure may contribute to their distinct biological activities. Scientific evidence suggests that nerolidol and farnesol exhibit antioxidant and anti-inflammatory characteristics which are crucial for neuroprotection. Nerolidol has been specifically noted for its ability to alleviate conditions such as Alzheimer's disease, Parkinson's disease, encephalomyelitis, depression, and anxiety by modulating inflammatory and oxidative stress pathways. Moreover, research indicates that both nerolidol and farnesol may modulate the Nrf-2/HO-1 antioxidant signaling pathway to mitigate oxidative stress-induced neurological damage. Activation of Nrf-2/HO-1 signaling cascade promotes cell survival and enhances the brain's ability to resist various insults. Nerolidol has also been reported to alleviate neuroinflammation by inhibiting the TLR-4/NF-κB and COX-2/NF-κB inflammatory signaling pathway. Besides, this nerolidol also modulates BDNF/TrkB/CREB signaling pathway to improve neuronal health. To date, limited research has delved into the anti-inflammatory properties of farnesol concerning neurodegenerative diseases. Further investigation is warranted to comprehensively elucidate the mechanisms underlying its action and potential therapeutic uses in neuroprotection. Initial observations indicate that farnesol exhibits promising prospects as a natural agent for safeguarding brain functions. Henceforth, drawing upon existing literature elucidating the neuroprotective attributes of nerolidol and farnesol, the current review endeavors to provide a detailed analysis of their mechanistic underpinnings in neuroprotection.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
12
|
Bayram Z, Akcabag E, Ozbey G, Nacitarhan C, Ozdem S, Turkay C, Ozdem SS. THE effect of P2X7 receptor activation on functional responses of human left internal mammary artery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2027-2037. [PMID: 39225832 DOI: 10.1007/s00210-024-03411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The Purinoreceptor 7 (P2X7R) has become a promising drug target in many cardiovascular diseases, including coronary artery disease, since prolonged activation of P2X7R could promote vascular dysfunction, atherosclerosis, and thrombosis. Thus, we aimed to study the effects of P2X7R activation on vascular relaxation responses of the human left internal mammary artery (LIMA). Sections of redundant human LIMA were cut into 3-mm wide rings,, suspended in 20-mL organ baths containing physiologic salt solution, and attached to an isometric force transducer connected to a computer-based data acquisition system. Long-term (60 min) incubation with specific P2X7R agonist Bz-ATP caused significant reductions in relaxation responses of LIMA to ATP and acetylcholine, which were reversed by selective P2X7R antagonists Brilliant Blue G or AZ11645373, whereas there were no changes in relaxation responses to endothelium-independent vasodilators isoprenaline, cAMP analog 8-Br-cAMP, and nitric oxide donor sodium nitroprusside. The impairment in relaxant responses of LIMA to endothelium-dependent vasodilators following activation of P2X7R for the long-term may contribute to postoperative LIMA vasospasm and hypertension. Modulation of P2X7R activity with selective agents may represent a new potential therapeutic approach in patients undergoing coronary artery bypass grafting surgery.
Collapse
Affiliation(s)
- Zeliha Bayram
- Turkish Medicines and Medical Devices Agency, Ankara, Turkey
| | - Esra Akcabag
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Gul Ozbey
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Cahit Nacitarhan
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey
| | - Sebahat Ozdem
- Department of Medical Biochemistry, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Cengiz Turkay
- Department of Cardiovascular Surgery, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Sadi S Ozdem
- Department of Medical Pharmacology, Akdeniz University Medical Faculty, Dumlupinar Avenue, 07070, Antalya, Turkey.
| |
Collapse
|
13
|
Fu Z, Ganesana M, Hwang P, Tan X, Kinkaid MM, Sun YY, Bian E, Weybright A, Chen HR, Sol-Church K, Eyo UB, Pridans C, Quintana FJ, Robson SC, Kumar P, Venton BJ, Schaefer A, Kuan CY. Microglia modulate the cerebrovascular reactivity through ectonucleotidase CD39. Nat Commun 2025; 16:956. [PMID: 39843911 PMCID: PMC11754601 DOI: 10.1038/s41467-025-56093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Microglia and the border-associated macrophages contribute to the modulation of cerebral blood flow, but the mechanisms have remained uncertain. Here, we show that microglia regulate the cerebral blood flow baseline and the responses to whisker stimulation or intra-cisternal magna injection of adenosine triphosphate, but not intra-cisternal magna injection of adenosine in mice model. Notably, microglia repopulation corrects these cerebral blood flow anomalies. The microglial-dependent regulation of cerebral blood flow requires the adenosine triphosphate-sensing P2RY12 receptor and ectonucleotidase CD39 that initiates the dephosphorylation of extracellular adenosine triphosphate into adenosine in both male and female mice. Pharmacological inhibition or CX3CR1-CreER-mediated deletion of CD39 mimics the cerebral blood flow anomalies in microglia-deficient mice and reduces the upsurges of extracellular adenosine following whisker stimulation. Together, these results suggest that the microglial CD39-initiated breakdown of extracellular adenosine triphosphate co-transmitter is an important step in neurovascular coupling and the regulation of cerebrovascular reactivity.
Collapse
Affiliation(s)
- Zhongxiao Fu
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | | - Philip Hwang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao Tan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Melissa Marie Kinkaid
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Emily Bian
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Aden Weybright
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katia Sol-Church
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Anne Schaefer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- MPI Biology of Ageing, Cologne, Germany
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
14
|
da Costa P, Schetinger MRC, Baldissarelli J, Reichert KP, Stefanello N, Bottari NB, Vidal T, da Cruz IBM, Assmann CE, Morsch VMM. Blackcurrant (Ribes nigrum L.) and Its Association with Donepezil Restore Cognitive Impairment, Suppress Oxidative Stress and Pro-inflammatory Responses, and Improve Purinergic Signaling in a Scopolamine-Induced Amnesia Model in Mice. Neurochem Res 2025; 50:79. [PMID: 39800790 DOI: 10.1007/s11064-024-04327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 02/02/2025]
Abstract
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking. This study investigated the effects of BC and its association with Donepezil (DNPZ) on learning and memory, on the modulation of purinergic signaling, pro-inflammatory responses, and oxidative markers in a mouse model of cognitive impairment chronically induced by scopolamine (SCO). Animals were divided into twelve groups and treated with BC (50 or 100 mg/kg), and/or DNPZ (5 mg/kg), and/or SCO (1 mg/kg). Results showed that SCO decreased spatial learning and memory as assessed by the Morris Water Maze test, and treatment with BC and/or DNPZ restored these effects. Furthermore, BC and/or DNPZ treatments also prevented changes in ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) and adenosine deaminase (ADA) activities and restored the increased density of P2X7 and A2A receptors in synaptosomes of the cerebral cortex of SCO-induced mice. Moreover, the increased Nod-like receptor protein 3 (NLRP3) and interleukin-1β expression, and the oxidative stress markers levels were reduced by BC and/or DNPZ treatments, compared with the SCO group. Overall, BC and/or DNPZ treatments ameliorated SCO-induced cognitive decline, alleviated oxidative stress and pro-inflammatory responses, and improved purinergic signaling. These findings underscore the potential of BC, especially when in combination with DNPZ, as a therapeutic agent for the prevention of memory deficits associated with aging or neurological diseases.
Collapse
Affiliation(s)
- Pauline da Costa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Jucimara Baldissarelli
- Department of Physiology and Pharmacology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Microbiology and Parasitology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Taís Vidal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Rosini S, Rosini S, Saviola G, Molfetta L. Adenosine triphosphate: a new player in complex regional pain syndrome type 1. Minerva Med 2024; 115:651-659. [PMID: 39101383 DOI: 10.23736/s0026-4806.24.09345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The complex regional pain syndrome type 1 (CRPS-1) is one of the most discussed painful syndromes due to the variability and severity of its symptoms. CRPS-1 generally occurs after a trauma, a fracture or a sprain followed by an immobilization. Classical diagnostic criteria are not always clear; hence, the diagnosis is difficult. The definition of CRPS itself defines and considers the pain as key symptom neglecting the bone damage. Early CRPS involves the activation of the innate cutaneous immune system with altered sensory and sympathetic signaling, activation and proliferation of keratinocytes and mast cells in addition to the release of inflammatory mediators and pain. The role of the immune system and the response to the disease is becoming clearer as the microglia is activated as a result of injury and can induce a central sensitization while astrocytes can maintain the process. Adenosine triphosphate (ATP) exerts a fundamental role in the activation of innate cutaneous immune system, in the proliferation of keratinocytes and mast cells, in the release of several proinflammatory cytokines and in the microglia activation. It is essential to intervene on this pathology as soon as possible with drugs, as clodronate, able to reduce bone marrow edema and pain through the inhibition of the primary inflammatory process and the immune reaction, limiting the activation of macrophages and the release of cytokines activating nuclear growth factor (NGF). In this review the role of ATP, bisphosphonates and rehabilitation are discussed.
Collapse
Affiliation(s)
| | | | - Gianantonio Saviola
- Unit of Rheumatology, Istituti Clinici Scientifici (ICS) Maugeri, IRCCS Istituto di Castel Goffredo, Castel Goffredo, Mantua, Italy -
| | - Luigi Molfetta
- School of Medical and Pharmaceutical Sciences, Department of Surgical Sciences and Integrated Diagnostics (DISC), Research Center of Osteoporosis and Osteoarticular Pathologies, University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Reynolds KE, Huang E, Sabbineni M, Wiseman E, Murtaza N, Ahuja D, Napier M, Murphy KM, Singh KK, Scott AL. Purinergic Signalling Mediates Aberrant Excitability of Developing Neuronal Circuits in the Fmr1 Knockout Mouse Model. Mol Neurobiol 2024; 61:9507-9528. [PMID: 38652351 DOI: 10.1007/s12035-024-04181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Neuronal hyperexcitability within developing cortical circuits is a common characteristic of several heritable neurodevelopmental disorders, including Fragile X Syndrome (FXS), intellectual disability and autism spectrum disorders (ASD). While this aberrant circuitry is typically studied from a neuron-centric perspective, glial cells secrete soluble factors that regulate both neurite extension and synaptogenesis during development. The nucleotide-mediated purinergic signalling system is particularly instrumental in facilitating these effects. We recently reported that within a FXS animal model, the Fmr1 KO mouse, the purinergic signalling system is upregulated in cortical astrocytes leading to altered secretion of synaptogenic and plasticity-related proteins. In this study, we examined whether elevated astrocyte purinergic signalling also impacts neuronal morphology and connectivity of Fmr1 KO cortical neurons. Here, we found that conditioned media from primary Fmr1 KO astrocytes was sufficient to enhance neurite extension and complexity of both wildtype and Fmr1 KO neurons to a similar degree as UTP-mediated outgrowth. Significantly enhanced firing was also observed in Fmr1 KO neuron-astrocyte co-cultures grown on microelectrode arrays but was associated with large deficits in firing synchrony. The selective P2Y2 purinergic receptor antagonist AR-C 118925XX effectively normalized much of the aberrant Fmr1 KO activity, designating P2Y2 as a potential therapeutic target in FXS. These results not only demonstrate the importance of astrocyte soluble factors in the development of neural circuitry, but also show that P2Y purinergic receptors play a distinct role in pathological FXS neuronal activity.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eileen Huang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Monica Sabbineni
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Eliza Wiseman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nadeem Murtaza
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - Desmond Ahuja
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Matt Napier
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada
| | - Kathryn M Murphy
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | | | - Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St, Guelph, ON, Canada.
| |
Collapse
|
17
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
18
|
Li Y, Fu J, Wang H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1462. [PMID: 39598374 PMCID: PMC11597607 DOI: 10.3390/ph17111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels are integral membrane proteins embedded in biological membranes, and they comprise specific proteins that control the flow of ion transporters in and out of cells, playing crucial roles in the biological functions of different cells. They maintain the homeostasis of water and ion metabolism by facilitating ion transport and participate in the physiological processes of neurons and glial cells by regulating signaling pathways. Neurodegenerative diseases are a group of disorders characterized by the progressive loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Despite significant progress in understanding the pathophysiological processes of various neurological diseases in recent years, effective treatments for mitigating the damage caused by these diseases remain inadequate. Increasing evidence suggests that ion channels are closely associated with neuroinflammation; oxidative stress; and the characteristic proteins in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, studying the pathogenic mechanisms closely related to ion channels in neurodegenerative diseases can help identify more effective therapeutic targets for treating neurodegenerative diseases. Here, we discuss the progress of research on ion channels in different neurodegenerative diseases and emphasize the feasibility and potential of treating such diseases from the perspective of ion channels.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| |
Collapse
|
19
|
Bazilio DS, Moraes DJA, Machado BH. Glutamatergic and purinergic transmitters and astrocyte modulation in the synaptic transmission in the NTS of rats exposed to short-term sustained hypoxia. Am J Physiol Regul Integr Comp Physiol 2024; 327:R423-R441. [PMID: 39102465 DOI: 10.1152/ajpregu.00293.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
There is evidence that astrocytes modulate synaptic transmission in the nucleus tractus solitarius (NTS) interacting with glutamatergic and purinergic mechanisms. Here, using in situ working heart-brainstem preparations, we evaluated the involvement of astrocyte and glutamatergic/purinergic neurotransmission in the processing of autonomic and respiratory pathways in the NTS of control and rats exposed to sustained hypoxia (SH). Baseline autonomic and respiratory activities and the responses to chemoreflex activation (KCN) were evaluated before and after microinjections of fluorocitrate (FCt, an astrocyte metabolic inhibitor), kynurenic acid, and pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS) (nonselective antagonists of glutamatergic and purinergic receptors) into the rostral aspect of the caudal commissural NTS. FCt had no effects on the baseline parameters evaluated but reduced the bradycardic response to chemoreflex activation in SH rats. FCt combined with kynurenic acid and PPADS in control rats reduced the baseline duration of expiration, which was attenuated after SH. FCt produced a large increase in PN frequency discharge in control rats, which was reduced after SH, indicating a reduction in the astrocyte modulation after SH. The data show that 1) the bradycardic component of the peripheral chemoreflex is reduced in SH rats after astrocytes inhibition, 2) the inhibition of astrocytes in the presence of double antagonists in the NTS affects the modulation of baseline duration of expiration in control but not in SH rats, and 3) the autonomic and respiratory responses to chemoreflex activation are mediated by glutamatergic and purinergic receptors in the rostral aspect of the caudal commissural NTS.NEW & NOTEWORTHY Our findings indicate that the neurotransmission of autonomic and respiratory components of the peripheral chemoreflex in the nucleus tractus solitarius (NTS) is mediated by glutamatergic and purinergic mechanisms and reveal a selective involvement of NTS astrocytes in controlling the chemoreflex parasympathetic response in rats exposed to sustained hypoxia (SH) and the baseline duration of expiration mainly in control rats, indicating a selective role for astrocytes modulation in the NTS of control and SH rats.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
21
|
Reynolds KE, Napier M, Fei F, Green K, Scott AL. Dysregulated Purinergic Signalling in Fragile X Syndrome Cortical Astrocytes. Neuromolecular Med 2024; 26:36. [PMID: 39254908 DOI: 10.1007/s12017-024-08802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The symptoms of fragile X syndrome (FXS), caused by a single gene mutation to Fmr1, have been increasingly linked to disordered astrocyte signalling within the cerebral cortex. We have recently demonstrated that the purinergic signalling pathway, which utilizes nucleoside triphosphates and their metabolites to facilitate bidirectional glial and glial-neuronal interactions, is upregulated in cortical astrocytes derived from the Fmr1 knockout (KO) mouse model of FXS. Heightened Fmr1 KO P2Y purinergic receptor levels were correlated with prolonged intracellular calcium release, elevated synaptogenic protein secretion, and hyperactivity of developing circuits. However, due to the relative lack of sensitive and reproducible quantification methods available for measuring purines and pyrimidines, determining the abundance of these factors in Fmr1 KO astrocytes was limited. We therefore developed a hydrophilic interaction liquid chromatography protocol coupled with mass spectrometry to compare the abundance of intracellular and extracellular purinergic molecules between wildtype and Fmr1 KO mouse astrocytes. Significant differences in the concentrations of UDP, ATP, AMP, and adenosine intracellular stores were found within Fmr1 KO astrocytes relative to WT. The extracellular level of adenosine was also significantly elevated in Fmr1 KO astrocyte-conditioned media in comparison to media collected from WT astrocytes. Glycosylation of the astrocyte membrane-bound CD39 ectonucleotidase, which facilitates ligand breakdown following synaptic release, was also elevated in Fmr1 KO astrocyte cultures. Together, these differences demonstrated further dysregulation of the purinergic signalling system within Fmr1 KO cortical astrocytes, potentially leading to significant alterations in FXS purinergic receptor activation and cellular pathology.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew Napier
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Fan Fei
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
- Moderna Inc., Norwood, MA, USA
| | - Kirk Green
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
| | - Angela L Scott
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
22
|
Shukla S, Dalai P, Agrawal-Rajput R. Metabolic crosstalk: Extracellular ATP and the tumor microenvironment in cancer progression and therapy. Cell Signal 2024; 121:111281. [PMID: 38945420 DOI: 10.1016/j.cellsig.2024.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Adenosine 5'-triphosphate (ATP) is a vital element in energy information. It plays a critical role in transmitting signals inside the body, which is necessary for controlling the life activities of all cells, including tumor cells [1]. Its significance extends from intracellular signaling pathways to tumor regression. Purinergic signaling, a form of extracellular paracrine signaling, relies on purine nucleotides. Extracellular ectonucleotidases convert these purine nucleotides to their respective di and mono-phosphate nucleoside forms, contributing significantly to immune biology, cancer biology, and inflammation studies. ATP functions as a mighty damage-linked molecular pattern when released outside the cell, accumulating in inflammatory areas. In the tumor microenvironment (TME), purinergic receptors such as ATP-gated ion channels P2X1-5 and G protein-coupled receptors (GPCR) (P2Y) interact with ATP and other nucleotides, influencing diverse immune cell activities. CD39 and CD73-mediated extracellular ATP degradation contributes to immunosuppression by diminishing ATP-dependent activation and generating adenosine (ADO), potentially hindering antitumor immunity and promoting tumor development. Unraveling the complexities of extracellular ATP (e-ATP) and ADO effects on the TME poses challenges in identifying optimal treatment targets, yet ongoing investigations aim to devise strategies combating e-ATP/ADO-induced immunosuppression, ultimately enhancing anti-tumor immunity. This review explores e-ATP metabolism, its purinergic signaling, and therapeutic strategies targeting associated receptors and enzymes.
Collapse
Affiliation(s)
- Sourav Shukla
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Parameswar Dalai
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar 382426, Gujarat, India.
| |
Collapse
|
23
|
Gerasimovskaya E, Patil RS, Davies A, Maloney ME, Simon L, Mohamed B, Cherian-Shaw M, Verin AD. Extracellular purines in lung endothelial permeability and pulmonary diseases. Front Physiol 2024; 15:1450673. [PMID: 39234309 PMCID: PMC11372795 DOI: 10.3389/fphys.2024.1450673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
The purinergic signaling system is an evolutionarily conserved and critical regulatory circuit that maintains homeostatic balance across various organ systems and cell types by providing compensatory responses to diverse pathologies. Despite cardiovascular diseases taking a leading position in human morbidity and mortality worldwide, pulmonary diseases represent significant health concerns as well. The endothelium of both pulmonary and systemic circulation (bronchial vessels) plays a pivotal role in maintaining lung tissue homeostasis by providing an active barrier and modulating adhesion and infiltration of inflammatory cells. However, investigations into purinergic regulation of lung endothelium have remained limited, despite widespread recognition of the role of extracellular nucleotides and adenosine in hypoxic, inflammatory, and immune responses within the pulmonary microenvironment. In this review, we provide an overview of the basic aspects of purinergic signaling in vascular endothelium and highlight recent studies focusing on pulmonary microvascular endothelial cells and endothelial cells from the pulmonary artery vasa vasorum. Through this compilation of research findings, we aim to shed light on the emerging insights into the purinergic modulation of pulmonary endothelial function and its implications for lung health and disease.
Collapse
Affiliation(s)
| | - Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Adrian Davies
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Office of Academic Affairs, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Liselle Simon
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Basmah Mohamed
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
24
|
Deng J, Tong X, Huang Y, Du Z, Sun R, Zheng Y, Ma R, Ding W, Zhang Y, Li J, Sun Y, Chen C, Zhang JC, Song L, Liu B, Lin S. Prophylactic nicotinamide mononucleotide (NMN) mitigates CSDS-induced depressive-like behaviors in mice via preserving of ATP level in the mPFC. Biomed Pharmacother 2024; 176:116850. [PMID: 38834006 DOI: 10.1016/j.biopha.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Depression is a prevalent psychiatric disorder with accumulating evidence implicating dysregulation of extracellular adenosine triphosphate (ATP) levels in the medial prefrontal cortex (mPFC). It remains unclear whether facilitating endogenous ATP production and subsequently increasing extracellular ATP level in the mPFC can exert a prophylactic effect against chronic social defeat stress (CSDS)-induced depressive-like behaviors and enhance stress resilience. Here, we found that nicotinamide mononucleotide (NMN) treatment effectively elevated nicotinamide adenine dinucleotide (NAD+) biosynthesis and extracellular ATP levels in the mPFC. Moreover, both the 2-week intraperitoneal (i.p.) injection and 3-week oral gavage of NMN prior to exposure to CSDS effectively prevented the development of depressive-like behavior in mice. These protective effects were accompanied with the preservation of both NAD+ biosynthesis and extracellular ATP level in the mPFC. Furthermore, catalyzing ATP hydrolysis by mPFC injection of the ATPase apyrase negated the prophylactic effects of NMN on CSDS-induced depressive-like behaviors. Prophylactic NMN treatment also prevented the reduction in GABAergic inhibition and the increase in excitability in mPFC neurons projecting to the lateral habenula (LHb). Collectively, these findings demonstrate that the prophylactic effects of NMN on depressive-like behaviors are mediated by preventing extracellular ATP loss in the mPFC, which highlights the potential of NMN supplementation as a novel approach for protecting and preventing stress-induced depression in susceptible individuals.
Collapse
Affiliation(s)
- Jialin Deng
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaohan Tong
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yanhua Huang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zean Du
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ruizhe Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yantao Zheng
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ruijia Ma
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanzhao Ding
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junfeng Li
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Sun
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chunxiao Chen
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ji-Chun Zhang
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Li Song
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
26
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
27
|
Wildner F, Neuhäusel TS, Klemz A, Kovács R, Ulmann L, Geiger JRP, Gerevich Z. Extracellular ATP inhibits excitatory synaptic input on parvalbumin positive interneurons and attenuates gamma oscillations via P2X4 receptors. Br J Pharmacol 2024; 181:1635-1653. [PMID: 38073073 DOI: 10.1111/bph.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND AND PURPOSE P2X4 receptors (P2X4R) are ligand gated cation channels that are activated by extracellular ATP released by neurons and glia. The receptors are widely expressed in the brain and have fractional calcium currents comparable with NMDA receptors. Although P2X4Rs have been reported to modulate synaptic transmission and plasticity, their involvement in shaping neuronal network activity remains to be elucidated. EXPERIMENTAL APPROACH We investigated the effects of P2X receptors at network and synaptic level using local field potential electrophysiology, whole cell patch clamp recordings and calcium imaging in fast spiking parvalbumin positive interneurons (PVINs) in rat and mouse hippocampal slices. The stable ATP analogue ATPγS, selective antagonists and P2X4R knockout mice were used. KEY RESULTS The P2XR agonist ATPγS reversibly decreased the power of gamma oscillations. This inhibition could be antagonized by the selective P2X4R antagonist PSB-12062 and was not observed in P2X4-/- mice. The phasic excitatory inputs of CA3 PVINs were one of the main regulators of the gamma power. Associational fibre compound excitatory postsynaptic currents (cEPSCs) in CA3 PVINs were inhibited by P2X4R activation. This effect was reversible, dependent on intracellular calcium and dynamin-dependent internalization of AMPA receptors. CONCLUSIONS AND IMPLICATIONS The results indicate that P2X4Rs are an important source of dendritic calcium in CA3 PVINs, thereby regulating excitatory synaptic inputs onto the cells and presumably the state of gamma oscillations in the hippocampus. P2X4Rs represent an effective target to modulate hippocampal network activity in pathophysiological conditions such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Florian Wildner
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tim S Neuhäusel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alexander Klemz
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Lauriane Ulmann
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
28
|
García-Rodríguez C, Duarte Y, Ardiles ÁO, Sáez JC. The antiseizure medication valproate increases hemichannel activity found in brain cells, which could worsen disease outcomes. J Neurochem 2024; 168:1045-1059. [PMID: 38291613 DOI: 10.1111/jnc.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Glial cells play relevant roles in neuroinflammation caused by epilepsy. Elevated hemichannel (HC) activity formed by connexins (Cxs) or pannexin1 (Panx1) largely explains brain dysfunctions commonly caused by neuroinflammation. Glia express HCs formed by Cxs 43, 30, or 26, while glia and neurons both express HCs formed by Panx1. Cx43 HCs allow for the influx of Ca2+, which promotes glial reactivity, enabling the release of the gliotransmitters that contribute to neuronal over-stimulation. Valproate (VPA), an antiseizure medication, has pleiotropic actions on neuronal molecular targets, and their action on glial cell HCs remains elusive. We used HeLa cells transfected with Cx43, Cx30, Cx26, or Panx1 to determine the effect of VPA on HC activity in the brain. VPA slightly increased HC activity under basal conditions, but significantly enhanced it in cells pre-exposed to conditions that promoted HC activity. Furthermore, VPA increased ATP release through Cx43 HCs. The increased HC activity caused by VPA was resistant to washout, being consistent with in silico studies, which predicted the binding site for VPA and Cx43, as well as for Panx1 HCs on the intracellular side, suggesting that VPA first enters through HCs, after which their activity increases.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Yorley Duarte
- Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology, Universidad Andrés Bello, Santiago, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Medicina, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Jamali Dastjerdi M, Azadvari M, Kordafshari G, Zhao BX, Adel-Mehraban MS, Alipour R, Karimi M, Kazemi AH, Sourani A, Vafaie Sefti A. Comparative efficacy of acupuncture, venesection, and physical therapy on chronic low back pain outcomes: a randomized clinical trial. Ann Med Surg (Lond) 2024; 86:2729-2738. [PMID: 38694293 PMCID: PMC11060228 DOI: 10.1097/ms9.0000000000001944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/02/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Chronic low back pain (CLBP) imposes considerable financial and social burden with poor response to medical and surgical treatments. Alternatively, acupuncture and venesection(Fasd) are traditionally used to alleviate nociceptive and musculoskeletal pains. This study aimed to evaluate the effectiveness and the safety of acupuncture and venesection on CLBP and patient functionality. Methods The current study was a single-blinded, randomized clinical trial with balanced allocation, conducted in the Department of Physical Medicine & Rehabilitation Medicine, in 2022. One hundred five CLBP patients who had no back pain-attributable structural or major diseases were randomly allocated into three parallel arms and received either physical therapy (PTG), acupuncture (APG), or venesection (VSG). Pain severity and functional aspects were evaluated using the visual analogue scale (VAS) and Oswestry disability index (ODI) during the study. VAS and ODI scores were defined as the primary outcomes. Results Ninety-five patients were reviewed in the final analysis (PTG=33, APG=30, VSG=31). Demographic data showed equal group distribution. Statistical analysis showed all procedures had reduced VAS score immediately after the first session, after the last session, and after follow-up; however, APG and VSG values were significantly lower (P<0.05). Pain reduction results in follow-up period were more sustainable in APG and VSG as compared to PTG (P<0.01). ODI results revealed global improvement after the last session of the treatment in all groups, while APG had more significant results (P<0.05). During the follow-up period, ODI still tended to decrease in VSG, non-significantly increased in APG, and significantly increased in PTG. Only two patients reported fainting after receiving venesection. Conclusion Considering the pain and functional scores, both acupuncture and venesection can reproduce reliable results. Acupuncture and venesection both have sustained effects on pain and daily function of the patients even after treatment termination, while physical therapy had more relapse in pain and functional limitations.
Collapse
Affiliation(s)
- Moein Jamali Dastjerdi
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Azadvari
- Department of Physical Medicine and Rehabilitation, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Kordafshari
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bai-Xiao Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mohammad Sadegh Adel-Mehraban
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reihane Alipour
- Traditional Persian Medicine and Complementary Medicine (PerCoMed) Student Association, Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hooman Kazemi
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
- International School, Beijing University of Chinese Medicine, Beijing, China
| | - Arman Sourani
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Vafaie Sefti
- Department of Traditional Medicine, School of Persian medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Yang G, Zhou S, Feng Y, Lang J, Chen Y, Ren H. The Prevalence of Hyperuricemia and the Association Between Hyperuricemia and Age in Patients with Psychiatric Disorders to a General Hospital: A Cross-Section Study. Int J Gen Med 2024; 17:1467-1477. [PMID: 38645402 PMCID: PMC11032717 DOI: 10.2147/ijgm.s454670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose In clinical work, it has been found that the prevalence of hyperuricemia (HUA) is significantly higher in younger patients with psychiatric disorders, but there are few studies in this area. The present study aims to evaluate the prevalence of HUA and the relationship between the HUA and age in hospitalized patients with psychiatric disorders in the real world, and to provide a theoretical basis for clinical staff to pay attention to the metabolic indicators of younger patients and for future related studies. Methods This is a cross-sectional evaluation of a cohort of 1761 patients with psychiatric disorders of hospitalized. The categories of disorders designed for study included: Depression, Bipolar disorder, Schizophrenia, Anxiety, Obsessive-Compulsive disorder, Acute and transient psychotic disorder, Dissociative(conversion) disorders, Conduct disorders and Tic disorders. In addition, based on age, the participants are stratified into three groups. The authors used Kruskal-Wallis tests, chi-square tests, and multiple linear logistic regression to verify the relationship between HUA and age among hospitalized patients with psychiatric disorders. Results Overall, the estimated prevalence of HUA was 35.4%. The prevalence of HUA was significantly higher in individuals with 17 years and under compared to those with 45 years and above (P < 0.001). After adjusting for confounders, the prevalence of HUA remained higher at 17 years and under than at 45 years and above. Bipolar disorder can lead to an increased prevalence of HUA (P<0.05). Conclusion The prevalence of HUA was higher in hospitalized patients with psychiatric disorders, and the prevalence was inversely proportional to age.
Collapse
Affiliation(s)
- Guodong Yang
- Mental Health Center, Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei, 050000, People’s Republic of China
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Department of Psychiatry, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Shuang Zhou
- The Sixth People’s Hospital of Hebei Province, Baoding, Hebei, 071000, People’s Republic of China
| | - Yue Feng
- Maternity & Child Care Center of Qinhuangdao, Qinhuangdao, Hebei, 066000, People’s Republic of China
| | - Jiaran Lang
- Mental Health Center, Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei, 050000, People’s Republic of China
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Department of Psychiatry, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yaxin Chen
- Mental Health Center, Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei, 050000, People’s Republic of China
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Department of Psychiatry, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Huipeng Ren
- Mental Health Center, Hebei Medical University and Hebei Technical Innovation Center for Mental Health Assessment and Intervention, Shijiazhuang, Hebei, 050000, People’s Republic of China
- The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
- Department of Psychiatry, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
31
|
Li J, Li H, Bi S, Sun Y, Gu F, Yu T. Shock wave assisted intracellular delivery of antibiotics against bone infection with Staphylococcus aureus via P2X7 receptors. J Orthop Translat 2024; 45:10-23. [PMID: 38434180 PMCID: PMC10904912 DOI: 10.1016/j.jot.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 03/05/2024] Open
Abstract
Background Treatment of chronic osteomyelitis (bone infection) remains a clinical challenge; in particular, it requires enhanced delivery of antibiotic drugs for the treatment of intracellular Staphylococcus aureus (S. aureus), which prevents infection recurrence and resistance. Previous studies have found that noninvasive shock waves used to treat musculoskeletal diseases can alter cell permeability, however, it is unclear whether shock waves alter cell membrane permeability in chronic osteomyelitis. Furthermore, it remains unknown whether such changes in permeability promote the entry of antibiotics into osteoblasts to exert antibacterial effects. Methods In our study, trypan blue staining was used to determine the shock wave parameters that had no obvious damage to the osteoblast model; the effect of shocks waves on the cell membrane permeability of osteoblast model was detected by BODIPY®FL vancomycin; high performance liquid chromatography-mass spectrometry (HLPC-MS) was used to detect the effect of shock wave on the entry of antibiotics into the osteoblast model; plate colony counting method was used to detect the clearance effect of shock wave assisted antibiotics on S. aureus in the osteoblast model. To explore the mechanism, the effect of different pulses of shock waves on S. aureus was examined by plate colony counting method, besides, P2X7 receptor in osteoblast was detected by immunofluorescence and the extracellular ATP levels was detected. Furthermore, the effect of P2X7 receptor antagonists KN-62 or A740003 on the intracellular antibacterial activity of shock-assisted antibiotics was observed. Then, we used S. aureus to establish a rat model of chronic tibial osteomyelitis and investigated the efficacy and safety of shock-wave assisted antibiotics in the treatment of chronic osteomyelitis in rats. Results The viability of the osteoblast models of intracellular S. aureus infection was not significantly affected by the application of up to 400 shock wave pulses at 0.21 mJ/mm2. Surprisingly, the delivery of BODIPY®FL vancomycin to osteoblast model cells was markedly enhanced by this shock wave treatment. Furthermore, the shock wave therapy increased the delivery of hydrophilic antibiotics (vancomycin and cefuroxime sodium), but not lipophilic antibiotics (rifampicin and levofloxacin), which improved the intracellular antibacterial effect. Afterwards, we discovered that shock wave treatment increased the extracellular concentration of ATP (the P2X7 receptor activator), while KN-62 or A740003, a P2X7 receptor inhibitor, decreased intracellular antibacterial activity. We then found that 0.1 mL of 1 × 1011 CFU/mL ATCC25923 S. aureus was suitable for modeling chronic osteomyelitis in rats. Besides, the shock wave-assisted vancomycin treatment with the strongest antibacterial and osteogenic effects among the tested treatments was confirmed in vivo by imaging examination, microbiological cultures, and histopathology, with favorable safety. Conclusions Our results suggest that shock waves can promote the entry of antibiotics into osteoblasts for antibacteria by changing the cell membrane permeability in a P2X7 receptor-dependent manner. Besides, considering antibacterial and osteogenic efficiency and a high degree of safety in rat osteomyelitis model, shock wave-assisted vancomycin treatment may thus represent a possible adjuvant therapy for chronic osteomyelitis.
Collapse
Affiliation(s)
- Jiangbi Li
- Department of Orthopedics , Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Orthopaedics, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haixia Li
- Department of Neurology, The Affiliated Hospital of Kunming University of Science and Technology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Songqi Bi
- Department of Orthopedics , Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yang Sun
- Department of Orthopedics , Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Gu
- Department of Orthopedics , The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics , Orthopaedic Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Shi M, Cao L, Ding D, Yu W, Lv P, Yu N. Effects of Noise Damage on the Purinergic Signal of Cochlear Spiral Ganglion Cells in Guinea Pigs. Mol Biotechnol 2024; 66:321-331. [PMID: 37145220 DOI: 10.1007/s12033-023-00755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
To observe the expression changes of P2 protein in cochlear spiral ganglion cells before and after noise injury, and to explore the relationship between the changes of purinergic receptors in spiral ganglion cells and noise-induced hearing loss, so that the signal transduction of purinergic receptors can be used to treat SNHL The target point provides a theoretical basis. The experimental animals were randomly divided into normal and experimental groups. The experimental group was given 120 dB white noise continuous exposure for 10 days and 3 h a day. The auditory brainstem response was measured before and after the noise exposure. After the noise exposure, the two groups of animals were collected. Do immunofluorescence staining, western blot, fluorescence real-time quantitative PCR to observe the expression of P2 protein. The average hearing threshold of the animals in the experimental group increased to 38.75 ± 6.44 dB SPL after 7 days of noise exposure, and the high-frequency hearing loss was lower and severe; the average hearing threshold increased to 54.38 ± 6.80 dB SPL after 10 days of noise exposure, and the hearing loss at 4 k Hz was relatively high. Light; Frozen sections of cochlear spiral ganglion cells and staining of isolated spiral ganglion cells found that P2X2, P2X3, P2X4, P2X7, P2Y2, and P2Y4 proteins were all expressed in cochlear spiral ganglion cells before noise exposure. Among them, P2X3 expression increased and P2X4, the down-regulation of P2Y2 expression was statistically significant (P < 0.05); Western blot and real-time quantitative PCR detection results showed that the expression of P2X3 was significantly increased after noise exposure than before noise exposure (P < 0.05), and P2X4 and P2Y2 were expressed after noise exposure The amount was significantly lower than before noise exposure (P < 0.05). (Figure. 4). After noise exposure, the expression of P2 protein is upregulated or downregulated. By affecting the Ca2+ cycle, the transmission of sound signals to the auditory center is blocked, which provides a theoretical basis for the signal transduction of purinergic receptors to become a target for the treatment of SNHL.
Collapse
Affiliation(s)
- Min Shi
- Suining Central Hospital, Suining, 629000, China
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100000, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100000, China
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100000, China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100000, China
| | - Lei Cao
- Suining Central Hospital, Suining, 629000, China
| | - Daxiong Ding
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Wenxing Yu
- Suining Central Hospital, Suining, 629000, China
| | - Ping Lv
- Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Ning Yu
- Senior Department of Otolaryngology-Head & Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing, 100000, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100000, China.
- State Key Lab of Hearing Science, Ministry of Education, Beijing, 100000, China.
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, 100000, China.
| |
Collapse
|
33
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
34
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
35
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
36
|
Cipriani R, Domerq M, Martín A, Matute C. Role of Microglia in Stroke. ADVANCES IN NEUROBIOLOGY 2024; 37:405-422. [PMID: 39207705 DOI: 10.1007/978-3-031-55529-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.
Collapse
Affiliation(s)
| | - Maria Domerq
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and CIBERNED, Leioa, Spain.
| |
Collapse
|
37
|
Falco MV, Fabbiani G, Maciel C, Valdivia S, Vitureira N, Russo RE. P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord. Front Cell Neurosci 2023; 17:1288676. [PMID: 38164435 PMCID: PMC10757934 DOI: 10.3389/fncel.2023.1288676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.
Collapse
Affiliation(s)
- María Victoria Falco
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Maciel
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Spring Valdivia
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Raúl E. Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
38
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
Machado FA, Souza RF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Effects of experimental ulcerative colitis on myenteric neurons in P2X7-knockout mice. Histochem Cell Biol 2023; 160:321-339. [PMID: 37306742 DOI: 10.1007/s00418-023-02208-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.
Collapse
Affiliation(s)
- Felipe Alexandre Machado
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | - Roberta Figueiroa Souza
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil
| | | | | | - Patricia Castelucci
- Department of Anatomy, Institute Biomedical and Sciences, University of São Paulo, Av. Prof. Dr. Lineu Prestes, 2415, São Paulo, CEP 05508-900, Brazil.
| |
Collapse
|
40
|
Viviani LG, Kokh DB, Wade RC, T-do Amaral A. Molecular Dynamics Simulations of the Human Ecto-5'-Nucleotidase (h-ecto-5'-NT, CD73): Insights into Protein Flexibility and Binding Site Dynamics. J Chem Inf Model 2023; 63:4691-4707. [PMID: 37532679 DOI: 10.1021/acs.jcim.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Human ecto-5'-nucleotidase (h-ecto-5'-NT, CD73) is a homodimeric Zn2+-binding metallophosphoesterase that hydrolyzes adenosine 5'-monophosphate (5'-AMP) to adenosine and phosphate. h-Ecto-5'-NT is a key enzyme in purinergic signaling pathways and has been recognized as a promising biological target for several diseases, including cancer and inflammatory, infectious, and autoimmune diseases. Despite its importance as a biological target, little is known about h-ecto-5'-NT dynamics, which poses a considerable challenge to the design of inhibitors of this target enzyme. Here, to explore h-ecto-5'-NT flexibility, all-atom unbiased molecular dynamics (MD) simulations were performed. Remarkable differences in the dynamics of the open (catalytically inactive) and closed (catalytically active) conformations of the apo-h-ecto-5'-NT were observed during the simulations, and the nucleotide analogue inhibitor AMPCP was shown to stabilize the protein structure in the closed conformation. Our results suggest that the large and complex domain motion that enables the h-ecto-5'-NT open/closed conformational switch is slow, and therefore, it could not be completely captured within the time scale of our simulations. Nonetheless, we were able to explore the faster dynamics of the h-ecto-5'-NT substrate binding site, which is mainly located at the C-terminal domain and well conserved among the protein's open and closed conformations. Using the TRAPP ("Transient Pockets in Proteins") approach, we identified transient subpockets close to the substrate binding site. Finally, conformational states of the substrate binding site with higher druggability scores than the crystal structure were identified. In summary, our study provides valuable insights into h-ecto-5'-NT structural flexibility, which can guide the structure-based design of novel h-ecto-5'-NT inhibitors.
Collapse
Affiliation(s)
- Lucas G Viviani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Antonia T-do Amaral
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| |
Collapse
|
41
|
Babiec L, Wilkaniec A, Matuszewska M, Pałasz E, Cieślik M, Adamczyk A. Alterations of Purinergic Receptors Levels and Their Involvement in the Glial Cell Morphology in a Pre-Clinical Model of Autism Spectrum Disorders. Brain Sci 2023; 13:1088. [PMID: 37509018 PMCID: PMC10377192 DOI: 10.3390/brainsci13071088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Recent data suggest that defects in purinergic signalling are a common denominator of autism spectrum disorders (ASDs), though nothing is known about whether the disorder-related imbalance occurs at the receptor level. In this study, we investigated whether prenatal exposure to valproic acid (VPA) induces changes in purinergic receptor expression in adolescence and whether it corresponds to glial cell activation. Pregnant dams were subjected to an intraperitoneal injection of VPA at embryonic day 12.5. In the hippocampi of adolescent male VPA offspring, we observed an increase in the level of P2X1, with concomitant decreases in P2X7 and P2Y1 receptors. In contrast, in the cortex, the level of P2X1 was significantly reduced. Also, significant increases in cortical P2Y1 and P2Y12 receptors were detected. Additionally, we observed profound alterations in microglial cell numbers and morphology in the cortex of VPA animals, leading to the elevation of pro-inflammatory cytokine expression. The changes in glial cells were partially reduced via a single administration of a non-selective P2 receptor antagonist. These studies show the involvement of purinergic signalling imbalance in the modulation of brain inflammatory response induced via prenatal VPA exposure and may indicate that purinergic receptors are a novel target for pharmacological intervention in ASDs.
Collapse
Affiliation(s)
- Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Marta Matuszewska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
42
|
Quintas C, Gonçalves J, Queiroz G. Involvement of P2Y 1, P2Y 6, A 1 and A 2A Receptors in the Purinergic Inhibition of NMDA-Evoked Noradrenaline Release in the Rat Brain Cortex. Cells 2023; 12:1690. [PMID: 37443726 PMCID: PMC10341078 DOI: 10.3390/cells12131690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.
Collapse
Affiliation(s)
| | - Jorge Gonçalves
- Mechanistic Pharmacology and Pharmacotherapy Unit, UCIBIO-i4HB, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.Q.); (G.Q.)
| | | |
Collapse
|
43
|
Tewari BP, Harshad PA, Singh M, Joshi NB, Joshi PG. Pilocarpine-induced acute seizure causes rapid area-specific astrogliosis and alters purinergic signaling in rat hippocampus. Brain Res 2023:148444. [PMID: 37290610 DOI: 10.1016/j.brainres.2023.148444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The progressive nature of acquired epilepsy warrants a thorough examination of acute changes that occur immediately after an epileptogenic insult to better understand the cellular and molecular mechanisms that trigger epileptogenesis. Astrocytes are important regulators of neuronal functions and emerging evidence suggests an involvement of astrocytic purinergic signaling in the etiology of acquired epilepsies. However, how astrocytic purinergic signaling responds immediately after an acute seizure or an epileptogenic insult to impact epileptogenesis is not well studied. In the present study, we report area-specific rapid onset of astrocytic changes in morphology, as well as in expression and functional activity of the purinergic signaling in the hippocampus that occur immediately after pilocarpine-induced stage 5 seizure. After 3 hours of stage 5 acute seizure, hippocampal astrocytes show increased intrinsic calcium activity in stratum radiatum as well as reactive astrogliosis in the stratum lacunosum moleculare and hilus regions of the hippocampus. Hilar astrocytes also upregulated the expression of P2Y1 and P2Y2 metabotropic purinergic receptors. Subsequently, P2Y1 exhibited a functional upregulation by showing a significantly higher intracellular calcium rise in ex-vivo hippocampal slices on P2Y1 activation. Our results suggest that hippocampal astrocytes undergo rapid area-specific morphological and functional changes immediately after the commencement of the seizure activity and purinergic receptors upregulation is one of the earliest changes in response to seizure activity. These changes can be considered acute astrocytic responses to seizure activity which can potentially drive the epileptogenesis and can be explored further to identify astrocyte-specific targets for seizure therapy.
Collapse
Affiliation(s)
- Bhanu P Tewari
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| | - P A Harshad
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Mahendra Singh
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Nanda B Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India
| | - Preeti G Joshi
- Department of Biophysics, National Institute of mental health and Neuroscience (NIMHANS), Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
44
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
45
|
Garcia CP, Licht-Murava A, Orr AG. Effects of adenosine A 2A receptors on cognitive function in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:121-154. [PMID: 37741689 DOI: 10.1016/bs.irn.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine A2A receptors have been studied extensively in the context of motor function and movement disorders such as Parkinson's disease. In addition to these roles, A2A receptors have also been increasingly implicated in cognitive function and cognitive impairments in diverse conditions, including Alzheimer's disease, schizophrenia, acute brain injury, and stress. We review the roles of A2A receptors in cognitive processes in health and disease, focusing primarily on the effects of reducing or enhancing A2A expression levels or activities in animal models. Studies reveal that A2A receptors in neurons and astrocytes modulate multiple aspects of cognitive function, including memory and motivation. Converging evidence also indicates that A2A receptor levels and activities are aberrantly increased in aging, acute brain injury, and chronic disorders, and these increases contribute to neurocognitive impairments. Therapeutically targeting A2A receptors with selective modulators may alleviate cognitive deficits in diverse neurological and neuropsychiatric conditions. Further research on the exact neural mechanisms of these effects as well as the efficacy of selective A2A modulators on cognitive alterations in humans are important areas for future investigation.
Collapse
Affiliation(s)
- Cinthia P Garcia
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States; Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, United States
| | - Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, United States; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
46
|
Yang D, Chen M, Yang S, Deng F, Guo X. Connexin hemichannels and pannexin channels in toxicity: Recent advances and mechanistic insights. Toxicology 2023; 488:153488. [PMID: 36918108 DOI: 10.1016/j.tox.2023.153488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Connexin hemichannels and pannexin channels are two types of transmembrane channels that allow autocrine/paracrine signalling through the exchange of ions and molecules between the intra- and extracellular compartments. However, owing to the poor selectivity of permeable ions and metabolites, the massive opening of these plasma membrane channels can lead to an excessive influx of toxic substances and an outflux of essential metabolites, such as adenosine triphosphate, glutathione, glutamate and ions, resulting in unbalanced cell homeostasis and impaired cell function. It is becoming increasingly clear that these channels can be activated in response to external stimuli and are involved in toxicity, yet their concrete mechanistic roles in the toxic effects induced by stress and various environmental changes remain poorly defined. This review provides an updated understanding of connexin hemichannels and pannexin channels in response to multiple extrinsic stressors and how these activated channels and their permeable messengers participate in toxicological pathways and processes, including inflammation, oxidative damage, intracellular calcium imbalance, bystander DNA damage and excitotoxicity.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Mengyuan Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Sijia Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| |
Collapse
|
47
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-receptor interactions and microvesicle exchange as mechanisms modulating signaling between neurons and astrocytes. Neuropharmacology 2023; 231:109509. [PMID: 36935005 DOI: 10.1016/j.neuropharm.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
It is well known that astrocytes play a significant metabolic role in the nervous tissue, maintaining the homeostasis of the extracellular space and of the blood-brain barrier, and providing trophic support to neurons. In addition, however, evidence exists indicating astrocytes as important elements for brain activity through signaling exchange with neurons. Astrocytes, indeed, can sense synaptic activity and their molecular machinery responds to neurotransmitters released by neurons with cytoplasmic Ca2+ elevations that, in turn, stimulate the release of neuroactive substances (gliotransmitters) influencing nearby neurons. In both cell types the recognition and transduction of this complex pattern of signals is mediated by specific receptors that are also involved in mechanisms tuning the intercellular cross-talk between astrocytes and neurons. Two of these mechanisms are the focus of the present discussion. The first concerns direct receptor-receptor interactions leading to the formation at the cell membrane of multimeric receptor complexes. The cooperativity that emerges in the actions of orthosteric and allosteric ligands of the monomers forming the assembly provides the cell decoding apparatus with sophisticated and flexible dynamics in terms of recognition and signal transduction pathways. A further mechanism of plasticity involving receptors is based on the transfer of elements of the cellular signaling apparatus via extracellular microvesicles acting as protective containers, which can lead to transient changes in the transmitting/decoding capabilities of the target cell.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| |
Collapse
|
48
|
Hu Q, Li G. Role of purinergic receptors in cardiac sympathetic nerve injury in diabetes mellitus. Neuropharmacology 2023; 226:109406. [PMID: 36586475 DOI: 10.1016/j.neuropharm.2022.109406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Diabetic cardiac autonomic neuropathy is a common and serious chronic complication of diabetes, which can lead to sympathetic and parasympathetic nerve imbalance and a relative excitation of the sympathetic nerve. Purinergic receptors play a crucial role in this process. Diabetic cardiac sympathetic nerve injury affects the expression of purinergic receptors, and activated purinergic receptors affect the phosphorylation of different signaling pathways and the regulation of inflammatory processes. This paper introduces the abnormal changes of sympathetic nerve in diabetes mellitus and summarizes the recently published studies on the role of several purinergic receptor subtypes in diabetic cardiac sympathetic nerve injury. These studies suggest that purinergic receptors as novel drug targets are of great significance for the treatment of diabetic autonomic neuropathy. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
49
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
50
|
Pereira ADS, Miron VV, Castro MFV, Bottari NB, Assmann CE, Nauderer JN, Bissacotti BF, Mostardeiro VB, Stefanello N, Baldissarelli J, Palma TV, Morsch VMM, Schetinger MRC. Neuromodulatory effect of the combination of metformin and vitamin D 3 triggered by purinergic signaling in type 1 diabetes induced-rats. Mol Cell Endocrinol 2023; 563:111852. [PMID: 36657632 DOI: 10.1016/j.mce.2023.111852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Several studies have indicated the vitamin D deficiency in the development of macro- and microvascular complications of diabetes mellitus (DM) including DM-related cognitive dysfunction. The purinergic system plays an important role in the modulation of a variety of mechanisms, including neuroinflammation, plasticity, and cell-cell communication. In addition, purines, their receptors, and enzymes can regulate the purinergic axis at different levels in type 1 DM (T1DM). This study evaluated the effects of vitamin D3 alone or in combination with metformin in the behavioral performance of streptozotocin-induced T1DM rats. The effects of this combination on the metabolism of ATP and ADP were also studied by NTPDase (CD39), AMP by 5'-nucleotidase (CD73), and adenosine by adenosine deaminase (E-ADA) in the brain and peripheral lymphocytes of type 1 diabetic STZ-induced rats. The results showed that anxiety and memory loss from the DM condition reverted after 30 days of vitamin D3 treatment. Furthermore, the DM state affected systemic enzymes, with no effect on the central enzymes hydrolyzing extracellular nucleotides and nucleosides. Vitamin D3 treatment positively regulated ectonucleotidase (NTPDase and 5'-nucleotidase) activity, E-ADA, and the purinergic receptors as a mechanism to prevent oxidative damage in the cerebral cortex of T1DM rats. A neuroprotector effect of vitamin D3 through adenosine signaling was also observed, by regulating A1 and A2A receptors proteins levels. The present findings suggest that purinergic signaling through vitamin D3 modulation may be a novel alternative strategy for T1DM treatment, and may compensate for the negative changes in the central nervous system.
Collapse
Affiliation(s)
- Aline da Silva Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Vanessa Valéria Miron
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Milagros Fanny Vera Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Nathieli Bianchin Bottari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jelson Norberto Nauderer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bianca Fagan Bissacotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vitor Bastianello Mostardeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jucimara Baldissarelli
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Taís Vidal Palma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera Maria Melchiors Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|