1
|
Joules A, Mallya AS, Louwagie T, Yu G, Hubel A. Probing mechanisms of cryopreservation damage to natural killer cells. Cytotherapy 2025; 27:649-660. [PMID: 39918490 DOI: 10.1016/j.jcyt.2025.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND AIMS Natural killer (NK) cells show significant potential in targeting hard to treat cancers, but these cells need effective preservation methods to maintain viability and efficacy after cryopreservation. Traditional methods of preserving NK cells result in low post-thaw recovery and function. Dimethyl sulfoxide (DMSO) is a very common cryoprotectant for preserving NK cells, but its infusion into patients post-thaw can cause dose-dependent adverse effects, including nausea, discomfort and cardiac arrest. The aim of this work was to evaluate low DMSO- and osmolyte-based cryopreservation solutions across multiple steps in the cryopreservation process for NK cells. METHODS This study investigated NK cell membrane responses to cryoprotectants, dependence of cell survival on cooling rate and nucleation temperature and influence of osmotic shock and pH changes with regard to freezing NK cells using the NK cell line NK-92 as a model system. RESULTS Exposure to cryoprotectants reduced the membrane fluidity and NK cell-induced cytotoxicity of the cells before freezing, but combinations of osmolytes mitigated this loss. The introduction of cryoprotectants did not reduce perforin or granzyme content, and slow or rapid dilution after thawing did not reduce viability, recovery or proliferation. Controlled rate freezing and Raman cryomicroscopy studies revealed that NK cells tolerated fast cooling rates, and the optimal cooling rate for NK cells was 4-5°C/min. Raman cryomicroscopy mapped the distribution of cryoprotectants and ice of frozen NK cells at -50°C, showing a reduction in cytotoxic granule signal. CONCLUSIONS The large, osmotically inactive volume of NK cells demonstrates cell sensitivity to cryoprotectants and freezing. Exposure to cryoprotectants can reduce NK cell-induced cytotoxicity and membrane fluidity. We hypothesize that cell dehydration and freezing disrupt cytolytic granules, causing NK intracellular damage. These data emphasize the importance of developing robust techniques to enhance the cryopreservation of NK cells and indicate the points where cell damage occurs.
Collapse
Affiliation(s)
- Adam Joules
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Akshat S Mallya
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Troy Louwagie
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Zhao T, You J, Wang C, Li B, Liu Y, Shao M, Zhao W, Zhou C. Cell-based immunotherapies for solid tumors: advances, challenges, and future directions. Front Oncol 2025; 15:1551583. [PMID: 40356763 PMCID: PMC12066282 DOI: 10.3389/fonc.2025.1551583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Cell-based immunotherapies, including CAR-T, CAR-NK, and TCR-T therapies, represent a transformative approach to cancer treatment by offering precise targeting of tumor cells. Despite their success in hematologic malignancies, these therapies encounter significant challenges in treating solid tumors, such as antigen heterogeneity, immunosuppressive tumor microenvironments, limited cellular infiltration, off-target toxicity, and difficulties in manufacturing scalability. CAR-T cells have demonstrated exceptional efficacy in blood cancers but face obstacles in solid tumors, whereas CAR-NK cells offer reduced graft-versus-host disease but encounter similar barriers. TCR-T cells expand the range of treatable cancers by targeting intracellular antigens but require meticulous antigen selection to prevent off-target effects. Alternative therapies like TIL, NK, and CIK cells show promise but require further optimization to enhance persistence and overcome immunosuppressive barriers. Manufacturing complexity, high costs, and ensuring safety and efficacy remain critical challenges. Future advancements in gene editing, multi-antigen targeting, synthetic biology, off-the-shelf products, and personalized medicine hold the potential to address these issues and expand the use of cell-based therapies. Continued research and innovation are essential to improving safety, efficacy, and scalability, ultimately leading to better patient outcomes.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Jinping You
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Congyue Wang
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Bo Li
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Yuhan Liu
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Mingjia Shao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Wuyang Zhao
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| | - Chuang Zhou
- Department of Oncology, Ansteel Group General Hospital, Anshan, China
| |
Collapse
|
3
|
Lei W, Liu H, Deng W, Chen W, Liang Y, Gao W, Yuan X, Guo S, Li P, Wang J, Tong X, Sun YE, Liang A, Qian W. Safety and feasibility of 4-1BB co-stimulated CD19-specific CAR-NK cell therapy in refractory/relapsed large B cell lymphoma: a phase 1 trial. NATURE CANCER 2025:10.1038/s43018-025-00940-3. [PMID: 40251398 DOI: 10.1038/s43018-025-00940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/05/2025] [Indexed: 04/20/2025]
Abstract
Chimeric antigen receptor (CAR)-modified NK (CAR-NK) cells are candidates for next-generation cancer immunotherapies. Here we generated CD19-specific CAR-NK cells with 4-1BB and CD3ζ signaling endo-domains (CD19-BBz CAR-NK) by transduction of cord blood-derived NK cells using baboon envelope pseudotyped lentiviral vectors and demonstrated their antitumor activity in preclinical B cell lymphoma models in female mice. We next conducted a phase 1 dose-escalation trial involving repetitive administration of CAR-NK cells in 8 patients with relapsed/refractory large B cell lymphoma (NCT05472558). Primary end points were safety, maximum tolerated dose, and overall response rate. Secondary end points included duration of response, overall survival, and progression-free survival. No dose-limiting toxicities occurred, and the maximum tolerated dose was not reached. No cases of cytokine release syndrome, neurotoxicity, or graft-versus-host disease were observed. Results showed an overall response rate of 62.5% at day 30, with 4 patients (50%) achieving complete response. The median progression-free survival was 9.5 months, and the median overall survival was not reached. A post hoc exploratory single-cell RNA sequencing analysis revealed molecular features of CAR-NK cells associated with therapeutic efficacy and efficacy-related immune cell interaction networks. This study met the pre-specified end points. In conclusion, CD19-BBz CAR-NK cells were feasible and therapeutically safe, capable of inducing durable response in patients with B cell lymphoma.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education; Biotherapy Research Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xianggui Yuan
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Guo
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangmin Tong
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China.
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education; Biotherapy Research Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Ren Y, Xue M, Hui X, Liu X, Farooq MA, Chen Y, Ji Y, Duan Y, Ajmal I, Yao J, Jiang W. Chimeric cytokine receptor TGF-β RⅡ/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer. Pharmacol Res 2025; 212:107637. [PMID: 39884449 DOI: 10.1016/j.phrs.2025.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body's anti-cancer defense, and chimeric antigen receptor (CAR)-NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21 R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21 R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway. We successfully constructed NKG2D-CAR-NK cells expressing TRII/21 R and demonstrated strong anti-tumor activity against cancer cells both in vitro and in vivo. The co-expression of TRII/21 R in CAR-NK cells enhanced the cytotoxicity, promoted proliferation and survival capabilities, and reduced the expression of exhaustion markers. In the xenograft mouse model, TRII/21R-CAR-NK cells significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice compared to the mice receiving control CAR-NK cells. Additionally, TRII/21 R co-expression enhanced NK cells' infiltration, activation, and persistence within the tumor, indicating a robust anti-tumor response mediated by the JAK-STAT3 signaling pathway. This study underscores the therapeutic potential of TRII/21R-modified CAR-NK cells as a breakthrough strategy for combating cancer.
Collapse
MESH Headings
- Stomach Neoplasms/immunology
- Stomach Neoplasms/therapy
- Stomach Neoplasms/pathology
- Stomach Neoplasms/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Killer Cells, Natural/metabolism
- Animals
- Tumor Microenvironment/immunology
- Humans
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Cell Line, Tumor
- STAT3 Transcription Factor/metabolism
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptors, Interleukin-21/genetics
- Receptors, Interleukin-21/immunology
- Receptors, Interleukin-21/metabolism
- Immunotherapy, Adoptive/methods
- Mice, Inbred BALB C
- Mice
- Signal Transduction
- Mice, Nude
- Female
Collapse
Affiliation(s)
- Yaojun Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; College of Life Science, Xinjiang Normal University, Urumqi 830054, China
| | - Min Xue
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinhui Hui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiuyu Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiran Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuzhou Ji
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Lee J, Song J, Yoo W, Choi H, Jung D, Choi E, Jo SG, Gong EY, Jeoung YH, Park YS, Son WC, Lee H, Lee H, Kim JJ, Kim T, Lee S, Park JJ, Kim TD, Kim SH. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol Immunother 2025; 74:73. [PMID: 39751931 PMCID: PMC11698710 DOI: 10.1007/s00262-024-03923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy. Here, we report the generation of ErbB3-targeted chimeric antigen receptor (CAR)-modified natural killer (NK) cells by transducing cord blood-derived primary NK cells using vsv-g envelope-pseudotyped lentiviral vectors. Transduced cells displayed stable CAR-expressing activity and increased cytotoxicity against ErbB3-positive breast cancer cell lines. Furthermore, anti-ErbB3 (aErbB3) CAR-NK cells strongly reduced the tumor burden in the SK-BR-3 xenograft mouse model without observable side effects. These findings underscore the potential of aErbB3 CAR-NK cells as targeted immunotherapy for ErbB3-positive breast cancer, suggesting a promising alternative to conventional treatments.
Collapse
Affiliation(s)
- Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jinhoo Song
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Wonbeak Yoo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyunji Choi
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eunjeong Choi
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Seo-Gyeong Jo
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eun-Yeung Gong
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Hee Jeoung
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Hosuk Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hayoung Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeom Ji Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - TaeEun Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sooyun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-June Park
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
6
|
Guo Q, Li J, Wang J, Li L, Wei J, Zhang L. The advent of chimeric antigen receptor T Cell therapy in recalibrating immune balance for rheumatic autoimmune disease treatment. Front Pharmacol 2024; 15:1502298. [PMID: 39734406 PMCID: PMC11672202 DOI: 10.3389/fphar.2024.1502298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CAR-T cell therapy, a cutting-edge cellular immunotherapy with demonstrated efficacy in treating hematologic malignancies, also exhibits significant promise for addressing autoimmune diseases. This innovative therapeutic approach holds promise for achieving long-term remission in autoimmune diseases, potentially offering significant benefits to affected patients. Current targets under investigation for the treatment of these conditions include CD19, CD20, and BCMA, among others. However, CAR-T therapy faces difficulties such as time-consuming cell manufacturing, complex and expensive process, and the possibility of severe adverse reactions complicating the treatment, etc. This article examines CAR-T therapy across various rheumatic autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS), systemic sclerosis (SSc), antisynthetase syndrome (ASS), and ANCA-associated vasculitis (AAV), highlighting both therapeutic advancements and ongoing challenges.
Collapse
Affiliation(s)
- Qianyu Guo
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Jie Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Juanjuan Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Linxin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Wei
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Sainatham C, Yadav D, Dilli Babu A, Tallapalli JR, Kanagala SG, Filippov E, Murillo Chavez F, Ahmed N, Lutfi F. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front Med (Lausanne) 2024; 11:1462307. [PMID: 39697210 PMCID: PMC11652178 DOI: 10.3389/fmed.2024.1462307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based therapies, represent a transformative approach to cancer treatment, harnessing the immune system to target and eradicate malignant cells. CAR-T cell therapy, the most established among these, involves engineering T cells to express CARs specific to cancer cell antigens, showing remarkable efficacy in hematologic malignancies like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified therapies, which reprogram T cells to recognize intracellular tumor antigens presented by major histocompatibility complex (MHC) molecules, offer promise for a range of solid tumors. NK-cell therapies leverage NK cells' innate cytotoxicity, providing an allogeneic approach that avoids some of the immune-related complications associated with T-cell-based therapies. Macrophage-based therapies, still in early stages of the development, focus on reprogramming macrophages to stimulate an immune response against cancer cells in the tumor microenvironment. Despite their promise, socioeconomic and regulatory challenges hinder the accessibility and scalability of immune cell effector therapies. These treatments are costly, with CAR-T therapies currently exceeding $400,000 per patient, creating significant disparities in access based on socioeconomic status and geographic location. The high manufacturing costs stem from the personalized, labor-intensive processes of harvesting, modifying, and expanding patients' cells. Moreover, complex logistics for manufacturing and delivering these therapies limit their reach, particularly in low-resource settings. Regulatory pathways further complicate the landscape. In the United States., the Food and Drug Administrations' (FDA) accelerated approval processes for cell-based therapies facilitate innovation but do not address cost-related barriers. In Europe, the European Medicines Agency (EMA) offers adaptive pathways, yet decentralized reimbursement systems create uneven access across member states. Additionally, differing regulatory standards for manufacturing and quality control worldwide pose hurdles for global harmonization and access. To expand the reach of immune effector cell therapies, a multipronged approach is needed-streamlined regulatory frameworks, policies to reduce treatment costs, and international collaborations to standardize manufacturing. Addressing these socioeconomic and regulatory obstacles is essential to make these life-saving therapies accessible to a broader patient population worldwide. We present a literature review on the current landscape of immune effector cell therapies and barriers of access to currently approved standard of care therapy at various levels.
Collapse
Affiliation(s)
- Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Aravind Dilli Babu
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Jayanth Reddy Tallapalli
- Division of Infectious Diseases, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sai Gautham Kanagala
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, New York, NY, United States
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Franco Murillo Chavez
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Nausheen Ahmed
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Forat Lutfi
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Qin Y, Cui Q, Sun G, Chao J, Wang C, Chen X, Ye P, Zhou T, Jeyachandran AV, Sun O, Liu W, Yao S, Palmer C, Liu X, Arumugaswami V, Chan WC, Wang X, Shi Y. Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep 2024; 43:114867. [PMID: 39447568 DOI: 10.1016/j.celrep.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/05/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells. We show that NKG2A knockout (KO) enhances the anti-tumor and anti-viral capabilities of PSC-NK cells. NKG2A KO endows PSC-NK cells with higher cytotoxicity against HLA-E-expressing glioblastoma (GBM) cells, leukemia cells, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells in vitro. The NKG2A KO PSC-NK cells also exerted potent anti-tumor activity in vivo, leading to substantially suppressed tumor progression and prolonged survival of tumor-bearing mice in a xenograft GBM mouse model. These findings underscore the potential of PSC-NK cells with immune checkpoint KO as a promising cell-based immunotherapy. The unlimited supply and ease of genetic engineering of hPSCs makes genetically engineered PSC-NK an attractive option for easily accessible "off-the-shelf" cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Peng Ye
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Tao Zhou
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shunyu Yao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Chance Palmer
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
10
|
Chen X, Gao Y, Zhang Y. Allogeneic CAR-T cells for cancer immunotherapy. Immunotherapy 2024; 16:1079-1090. [PMID: 39378059 PMCID: PMC11492692 DOI: 10.1080/1750743x.2024.2408048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Autologous chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has displayed high efficacy in the treatment of hematological malignancies. Up to now, 11 autologous CAR-T cell products have been approved for the management of malignancies globally. However, the application of autologous CAR-T cell therapy has many individual limitations, long time-consuming, highly cost, and the risk of manufacturing failure. Indeed, some patients would not benefit from autologous CAR-T cell products because of rapid disease progression. Allogeneic CAR-T cells especially universal CAR-T (U-CAR-T) cell therapy are superior to these challenges of autologous CAR-T cells. In this review, we describe basic study and clinical trials of U-CAR-T cell therapeutic methods for malignancies. In addition, we summarize the problems encountered and potential solutions.
Collapse
Affiliation(s)
- Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yaoxin Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
11
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Wang X, Wang Y, Lee K, Davis B, Wen C, Jia B, Zheng H, Dong C, Wang Y. Display of Polyvalent Hybrid Antibodies on the Cell Surface for Enhanced Cell Recognition. SMALL METHODS 2024; 8:e2301331. [PMID: 38105419 DOI: 10.1002/smtd.202301331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 12/19/2023]
Abstract
Cell surface engineering with exogeneous receptors holds great promise for various applications. However, current biological methods face problems with safety, antigen escape, and receptor stoichiometry. The purpose of this study is to develop a biochemical method for displaying polyvalent antibodies (PAbs) on the cell surface. The PAbs are synthesized through the self-assembly of DNA-Ab conjugates under physiological conditions without the involvement of any factors harsh to cells. The data show that PAb-functionalized cells can recognize target cells much more effectively than monovalent controls. Moreover, dual Ab incorporation into the same PAb with a defined stoichiometric ratio leads to the formation of a polyvalent hybrid Ab (DPAb). DPAb-functionalized cells can effectively recognize target cell models with antigen escape, which cannot be achieved by PAbs with one type of Ab. Therefore, this work presents a novel biochemical method for Ab display on the cell surface for enhanced cell recognition.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yixun Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
13
|
Chen HC, Mueller N, Stott K, Kapeni C, Rivers E, Sauer CM, Beke F, Walsh SJ, Ashman N, O'Brien L, Rafati Fard A, Ghodsinia A, Li C, Joud F, Giger O, Zlobec I, Olan I, Aitken SJ, Hoare M, Mair R, Serrao E, Brenton JD, Garcia-Gimenez A, Richardson SE, Huntly B, Spring DR, Skjoedt MO, Skjødt K, de la Roche M, de la Roche M. Novel immunotherapeutics against LGR5 to target multiple cancer types. EMBO Mol Med 2024; 16:2233-2261. [PMID: 39169164 PMCID: PMC11393416 DOI: 10.1038/s44321-024-00121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
We have developed and validated a highly specific, versatile antibody to the extracellular domain of human LGR5 (α-LGR5). α-LGR5 detects LGR5 overexpression in >90% of colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pre-B-ALL tumour cells and was used to generate an Antibody-Drug Conjugate (α-LGR5-ADC), Bispecific T-cell Engager (α-LGR5-BiTE) and Chimeric Antigen Receptor (α-LGR5-CAR). α-LGR5-ADC was the most effective modality for targeting LGR5+ cancer cells in vitro and demonstrated potent anti-tumour efficacy in a murine model of human NALM6 pre-B-ALL driving tumour attrition to less than 1% of control treatment. α-LGR5-BiTE treatment was less effective in the pre-B-ALL cancer model yet promoted a twofold reduction in tumour burden. α-LGR5-CAR-T cells also showed specific and potent LGR5+ cancer cell killing in vitro and effective tumour targeting with a fourfold decrease in pre-B-ALL tumour burden relative to controls. Taken together, we show that α-LGR5 can not only be used as a research tool and a biomarker but also provides a versatile building block for a highly effective immune therapeutic portfolio targeting a range of LGR5-expressing cancer cells.
Collapse
Affiliation(s)
- Hung-Chang Chen
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Astra Zeneca, Cambridge, UK
| | - Nico Mueller
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Katherine Stott
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Chrysa Kapeni
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Eilidh Rivers
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Carolin M Sauer
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Flavio Beke
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Stephen J Walsh
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
- Bicycle Therapeutics, Cambridge, UK
| | - Nicola Ashman
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
- Charles River Laboratories, Saffron Walden, UK
| | - Louise O'Brien
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Amir Rafati Fard
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Arman Ghodsinia
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Changtai Li
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Fadwa Joud
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Olivier Giger
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008, Bern, Switzerland
| | - Ioana Olan
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sarah J Aitken
- University of Cambridge, MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
- Department of Histopathology, Cambridge University Hospitals, NHS Foundation Trust, Main Drive, Cambridge, CB2 0QQ, UK
| | - Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Richard Mair
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Eva Serrao
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - James D Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alicia Garcia-Gimenez
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Simon E Richardson
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Brian Huntly
- University of Cambridge, Department of Haematology, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - David R Spring
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Mikkel-Ole Skjoedt
- Rigshospitalet-University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Karsten Skjødt
- University of Southern Denmark Campusvej 55, Odense M, DK-5230, Denmark
| | - Marc de la Roche
- University of Cambridge, Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Maike de la Roche
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
14
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
15
|
Sheedy A, Burduli N, Prakash A, Gurney M, Hanley S, Prendeville H, Sarkar S, O'Dwyer J, O'Dwyer M, Dolan E. NK cell line modified to express a potent, DR5 specific variant of TRAIL, show enhanced cytotoxicity in ovarian cancer models. Heliyon 2024; 10:e34976. [PMID: 39170449 PMCID: PMC11336271 DOI: 10.1016/j.heliyon.2024.e34976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Ovarian cancer is a lethal gynaecological malignancy with unsatisfactory 5 year survival rates of 30-50 %. Cell immunotherapy is a promising new cancer treatment where immune cells, such as Natural Killer (NK) cells, are administered to enable the patient to fight cancer through direct cytotoxicity. NK cells orchestrate an adaptive immune response by enabling the release of tumour antigens. NK cell cytotoxicity and effector responses are largely driven by TRAIL engagement. In this study we investigated the cytotoxic potential of a human NK cell line that were modified to express a potent DR5 specific TRAIL variant. We hypothesised that this modification would enhance NK cell cytotoxicity against TRAIL sensitive and resistant ovarian cancer cell lines in vitro. Methods KHYG-1 human NK cells were modified with a TRAIL variant targeting DR5 (TRAILv-KHYG-1). Human ovarian cancer cell lines, OVCAR-3 and SKOV-3, were cultured with modified or non-modified NK cells at different effector:target (E:T) ratios for 4 or 16 h. Apoptosis was assessed by Annexin-APC and 7-AAD and measured using flow cytometry. Apoptotic cells were defined as annexin V 7-AAD double positive. Cytokine expression was measured by multiplex ELISA, and analysed by flow cytometry. Results Modified and non-modified NK cells significantly reduced OVCAR-3 cell viability as compared to OVCAR-3 cells that were cultured alone after 4 and 16 h treatment. OVCAR-3 cell viability was reduced after treatment with 1:1 E:T ratio with TRAILv-KHYG-1 cells after 16 h. On the contrary, neither NK cell line had any effect of SKOV-3 cell viability despite SKOV-3 cells having more DR5 surface expression compared to OVCAR-3 cells. Conclusions TRAILv-KHYG-1 cells significantly reduced OVCAR-3 cell viability as compared to non-modified NK cells. However, no significant reduction in viability was observed when SKOV-3 cell were cultured with either NK cells, despite having more DR5 surface expression compared to OVCAR-3 cells. These data indicate that mechanisms other than DR5 expression drive TRAIL resistance in ovarian cancer.
Collapse
Affiliation(s)
- A.M. Sheedy
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - N. Burduli
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- Center for Hematology Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - A. Prakash
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. Gurney
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - S. Hanley
- Flow Cytometry Core Facility, University of Galway, Galway, Ireland
| | - H. Prendeville
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - S. Sarkar
- ONK Therapeutics Inc, Galway, Ireland
| | - J. O'Dwyer
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - M. O'Dwyer
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- ONK Therapeutics Inc, Galway, Ireland
| | - E.B. Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
16
|
Ghaedrahmati F, Akbari V, Seyedhosseini-Ghaheh H, Esmaeil N. Strong capacity of differentiated PD-L1 CAR-modified UCB-CD34 + cells and PD-L1 CAR-modified UCB-CD34 +-derived NK cells in killing target cells and restoration of the anti-tumor function of PD-1-high exhausted T Cells. Stem Cell Res Ther 2024; 15:257. [PMID: 39135206 PMCID: PMC11321137 DOI: 10.1186/s13287-024-03871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Using natural killer (NK) cells to treat hematopoietic and solid tumors has great promise. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells provide an "off-the-shelf" solution. METHODS In this study, we developed two CAR-NK cells targeting PD-L1 derived from lentiviral transduction of human umbilical cord blood (UCB)-CD34+ cells and UCB-CD34+-derived NK cells. The transduction efficiencies and in vitro cytotoxic functions including degranulation, cytokine production, and cancer cell necrosis of both resultants PD-L1 CAR-NK cells were tested in vitro on two different PD-L1 low and high-expressing solid tumor cell lines. RESULTS Differentiated CAR‑modified UCB-CD34+ cells exhibited enhanced transduction efficiency. The expression of anti-PD-L1 CAR significantly (P < 0.05) enhanced the cytotoxicity of differentiated CAR‑modified UCB-CD34+ cells and CAR-modified UCB-CD34+-derived NK cells against PD-L1 high-expressing tumor cell line. In addition, CAR-modified UCB-CD34+-derived NK cells significantly (P < 0.05) restored the tumor-killing ability of exhausted PD-1 high T cells. CONCLUSION Considering the more efficient transduction in stem cells and the possibility of producing CAR-NK cell products with higher yields, this approach is recommended for studies in the field of CAR-NK cells. Also, a pre-clinical study is now necessary to evaluate the safety and efficacy of these two CAR-NK cells individually and in combination with other therapeutic approaches.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744, Iran.
- Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Pooya Zist-Mabna Hakim Company, Poursina Hakim Institute, Isfahan, Iran.
| |
Collapse
|
17
|
Ahmadnia A, Mohammadi S, Yamchi A, Kalani MR, Farazmandfar T, Khosravi A, Memarian A. Augmenting the Antitumor Efficacy of Natural Killer Cells via SynNotch Receptor Engineering for Targeted IL-12 Secretion. Curr Issues Mol Biol 2024; 46:2931-2945. [PMID: 38666913 PMCID: PMC11048765 DOI: 10.3390/cimb46040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Natural killer (NK) cells are crucial components of innate immunity, known for their potent tumor surveillance abilities. Chimeric antigen receptors (CARs) have shown promise in cancer targeting, but optimizing CAR designs for NK cell functionality remains challenging. CAR-NK cells have gained attention for their potential to reduce side effects and enable scalable production in cancer immunotherapy. This study aimed to enhance NK cell anti-tumor activity by incorporating PD1-synthetic Notch (synNotch) receptors. A chimeric receptor was designed using UniProt database sequences, and 3D structure models were generated for optimization. Lentiviral transduction was used to introduce PD1-Syn receptors into NK cells. The expression of PD1-Syn receptors on NK cell surfaces was assessed. Engineered NK cells were co-cultured with PDL1+ breast cancer cells to evaluate their cytotoxic activity and ability to produce interleukin-12 (IL-12) and interferon-gamma (IFNγ) upon interaction with the target cells. This study successfully expressed the PD1-Syn receptors on NK cells. CAR-NK cells secreted IL-12 and exhibited target-dependent IFNγ production when engaging PDL1+ cells. Their cytotoxic activity was significantly enhanced in a target-dependent manner. This study demonstrates the potential of synNotch receptor-engineered NK cells in enhancing anti-tumor responses, especially in breast cancer cases with high PDL1 expression.
Collapse
Affiliation(s)
- Ali Ahmadnia
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| | - Saeed Mohammadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan P.O. Box 386, Iran
| | - Mohamad Reza Kalani
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| | - Touraj Farazmandfar
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| | - Ayyoub Khosravi
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| | - Ali Memarian
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
- Department of Medical Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan P.O. Box 665, Iran
| |
Collapse
|
18
|
Lin X, Guan T, Xu Y, Li Y, Lin Y, Chen S, Chen Y, Wei X, Li D, Cui Y, Lin Y, Sun P, Guo J, Li C, Gu J, Yang W, Zeng H, Ma C. Efficacy of the induced pluripotent stem cell derived and engineered CD276-targeted CAR-NK cells against human esophageal squamous cell carcinoma. Front Immunol 2024; 15:1337489. [PMID: 38566988 PMCID: PMC10985341 DOI: 10.3389/fimmu.2024.1337489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Chimeric antigen receptor natural killer (CAR-NK) cells have been found to be successful in treating hematologic malignancies and present potential for usage in solid tumors. Methods In this study, we created CD276-targeted CAR-expressing NK cells from pluripotent stem cells (iPSC CD276-targeted CAR-NK cells) and evaluated their cytotoxicity against esophageal squamous cell carcinoma (ESCC) using patient-specific organoid (PSO) models comprising of both CD276-positive and CD276-negative adjacent epithelium PSO models (normal control PSO, NC PSO) as well as primary culture of ESCC cell models. In addition, in vitro and in vivo models such as KYSE-150 were also examined. iPSC NK cells and NK-free media were used as the CAR-free and NK-free controls, respectively. Results The positive CD276 staining was specifically detected on the ESCC membrane in 51.43% (54/105) of the patients of all stages, and in 51.35% (38/74) of stages III and IV. The iPS CD276-targeted CAR-NK cells, comparing with the iPS NK cells and the NK-free medium, exhibited specific and significant cytotoxic activity against CD276-positive ESCC PSO rather than CD276-negative NC PSO, and exhibited significant cytotoxicity against CD276-expressing cultured ESCC cells, as well as against CD276-expressing KYSE-150 in vitro and in BNDG mouse xenograft. Discussion The efficacy of the iPSC CD276-targeted CAR-NK cells demonstrated by their successful treatment of CD276-expressing ESCC in a multitude of pre-clinical models implied that they hold tremendous therapeutic potential for treating patients with CD276-expressing ESCC.
Collapse
Affiliation(s)
- Xiaolan Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tian Guan
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Yien Xu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Li
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Yanchun Lin
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
| | - Shaobin Chen
- Department of Thoracic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dongsheng Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Lin
- Department of Medical Imaging, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Pingnan Sun
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Department of Stem Cell Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianmin Guo
- Division of Life Science and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Congzhu Li
- Department of Gynecological Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Yang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangdong, China
| | - Haoyu Zeng
- Guangdong Procapzoom Bioscience Inc, Guangzhou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changchun Ma
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Procapzoom-Shantou University Medical College iPS Cell Research Center, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
19
|
Lin X, Guan T, Li Y, Lin Y, Huang G, Lin Y, Sun P, Li C, Gu J, Zeng H, Ma C. Efficacy of MUC1-targeted CAR-NK cells against human tongue squamous cell carcinoma. Front Immunol 2024; 15:1337557. [PMID: 38390321 PMCID: PMC10882221 DOI: 10.3389/fimmu.2024.1337557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The clinical efficacy of CAR-NK cells against CD19-expressing blood cancers has been demonstrated, and they have shown potential for treating solid tumors as well. However, the efficacy of CAR-NK cells for treating human oral tongue squamous cell carcinoma (OTSCC) has not been examined. Methods We assessed MUC1 expression in human OTSCC tissue and a cell line using immunohistochemistry and immunofluorescence. We constructed NK cells that express CAR targeted to MUC1 from pluripotent stem cells (iPSC-derived MUC1-targeted CAR-NK cells) and evaluated their effectiveness against OTSCC in vitro using the xCELLigence Real-Time Cell Analysis system and CCK8 assay, and in vivo by measuring xenograft growth daily in BNDG mice treated with MUC1-targeted CAR-NK cells. As controls, we used iPSC-derived NK cells and NK-free media, which were CAR-free and blank, respectively. Results MUC1 expression was detected in 79.5% (66/83) of all OTSCC patients and 72.7% (24/33) of stage III and IV. In stage III and IV MUC1 positive OTSCC, 63.6% (21/33) and 48.5% (16/33) patients had a MUC1-positive cancer cell rate of more than 50% and 80%, respectively. The iPSC-derived MUC1-targeted CAR-NK cells exhibited significant cytotoxicity against MUC1-expressing OTSCC cells in vitro, in a time- and dose-dependent manner, and showed a significant inhibitory effect on xenograft growth compared to both the iPSC-derived NK cells and the blank controls. We observed no weight loss, severe hematological toxicity or NK cell-mediated death in the BNDG mice. Conclusion The MUC1-targeted CAR-NK cells had significant efficacy against human OTSCC, and their promising therapeutic response warrants further clinical trials.
Collapse
Affiliation(s)
- Xiaolan Lin
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tian Guan
- Guangdong Procapzoom Bioscience Inc., Guangzhou, China
- Procapzoom - Shantou University Medical College induced pluripotent stem cell (iPS) Research Center, Shantou, Guangdong, China
| | - Yun Li
- Guangdong Procapzoom Bioscience Inc., Guangzhou, China
- Procapzoom - Shantou University Medical College induced pluripotent stem cell (iPS) Research Center, Shantou, Guangdong, China
| | - Yanchun Lin
- Guangdong Procapzoom Bioscience Inc., Guangzhou, China
- Procapzoom - Shantou University Medical College induced pluripotent stem cell (iPS) Research Center, Shantou, Guangdong, China
| | - Guowei Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Lin
- Department of Medical Imaging, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Pingnan Sun
- Department of Stem Cell Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Congzhu Li
- Department of Gynecological Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Haoyu Zeng
- Guangdong Procapzoom Bioscience Inc., Guangzhou, China
- Procapzoom - Shantou University Medical College induced pluripotent stem cell (iPS) Research Center, Shantou, Guangdong, China
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Changchun Ma
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Procapzoom - Shantou University Medical College induced pluripotent stem cell (iPS) Research Center, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
20
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|
21
|
Wang Y, Suarez ER, Kastrunes G, de Campos NSP, Abbas R, Pivetta RS, Murugan N, Chalbatani GM, D'Andrea V, Marasco WA. Evolution of cell therapy for renal cell carcinoma. Mol Cancer 2024; 23:8. [PMID: 38195534 PMCID: PMC10775455 DOI: 10.1186/s12943-023-01911-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and combination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy as a "living drug" has achieved hematological malignancy cures with a high response rate, and significant research efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric antigen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell therapy and advancing cell therapy into clinic to achieve cures for RCC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Gabriella Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Najla Santos Pacheco de Campos
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Rabia Abbas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Renata Schmieder Pivetta
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09210-580, Brazil
- Graduate Program in Medicine - Hematology and Oncology, Federal University of Sao Paulo, São Paulo, SP, 04023-062, Brazil
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Vincent D'Andrea
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Chen Z, Hu Y, Mei H. Advances in CAR-Engineered Immune Cell Generation: Engineering Approaches and Sourcing Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303215. [PMID: 37906032 PMCID: PMC10724421 DOI: 10.1002/advs.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a highly efficacious treatment modality for refractory and relapsed hematopoietic malignancies in recent years. Furthermore, CAR technologies for cancer immunotherapy have expanded from CAR-T to CAR-natural killer cell (CAR-NK), CAR-cytokine-induced killer cell (CAR-CIK), and CAR-macrophage (CAR-MΦ) therapy. Nevertheless, the high cost and complex manufacturing processes of ex vivo generation of autologous CAR products have hampered broader application. There is an urgent need to develop an efficient and economical paradigm shift for exploring new sourcing strategies and engineering approaches toward generating CAR-engineered immune cells to benefit cancer patients. Currently, researchers are actively investigating various strategies to optimize the preparation and sourcing of these potent immunotherapeutic agents. In this work, the latest research progress is summarized. Perspectives on the future of CAR-engineered immune cell manufacturing are provided, and the engineering approaches, and diverse sources used for their development are focused upon.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Yu Hu
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| | - Heng Mei
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhanHubei430022China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhan430022China
| |
Collapse
|
23
|
Hinnekens C, De Smedt SC, Fraire JC, Braeckmans K. Non-viral engineering of NK cells. Biotechnol Adv 2023; 68:108212. [PMID: 37454745 DOI: 10.1016/j.biotechadv.2023.108212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The last decade has witnessed great progress in the field of adoptive cell therapies, with the authorization of Kymriah (tisagenlecleucel) in 2017 by the Food and Drug Administration (FDA) as a crucial stepstone. Since then, five more CAR-T therapies have been approved for the treatment of hematological malignancies. While this is a great step forward to treating several types of blood cancers, CAR-T cell therapies are still associated with severe side-effects such as Graft-versus-Host Disease (GvHD), cytokine release syndrome (CRS) and neurotoxicity. Because of this, there has been continued interest in Natural Killer cells which avoid these side-effects while offering the possibility to generate allogeneic cell therapies. Similar to T-cells, NK cells can be genetically modified to improve their therapeutic efficacy in a variety of ways. In contrast to T cells, viral transduction of NK cells remains inefficient and induces cytotoxic effects. Viral vectors also require a lengthy and expensive product development process and are accompanied by certain risks such as insertional mutagenesis. Therefore, non-viral transfection technologies are avidly being developed aimed at addressing these shortcomings of viral vectors. In this review we will present an overview of the potential of NK cells in cancer immunotherapies and the non-viral transfection technologies that have been explored to engineer them.
Collapse
Affiliation(s)
- Charlotte Hinnekens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Ayuso JM, Farooqui M, Virumbrales-Muñoz M, Denecke K, Rehman S, Schmitz R, Guerrero JF, Sanchez-de-Diego C, Campo SA, Maly EM, Forsberg MH, Kerr SC, Striker R, Sherer NM, Harari PM, Capitini CM, Skala MC, Beebe DJ. Microphysiological model reveals the promise of memory-like natural killer cell immunotherapy for HIV ± cancer. Nat Commun 2023; 14:6681. [PMID: 37865647 PMCID: PMC10590421 DOI: 10.1038/s41467-023-41625-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/12/2023] [Indexed: 10/23/2023] Open
Abstract
Numerous studies are exploring the use of cell adoptive therapies to treat hematological malignancies as well as solid tumors. However, there are numerous factors that dampen the immune response, including viruses like human immunodeficiency virus. In this study, we leverage human-derived microphysiological models to reverse-engineer the HIV-immune system interaction and evaluate the potential of memory-like natural killer cells for HIV+ head and neck cancer, one of the most common tumors in patients living with human immunodeficiency virus. Here, we evaluate multiple aspects of the memory-like natural killer cell response in human-derived bioengineered environments, including immune cell extravasation, tumor penetration, tumor killing, T cell dependence, virus suppression, and compatibility with retroviral medication. Overall, these results suggest that memory-like natural killer cells are capable of operating without T cell assistance and could simultaneously destroy head and neck cancer cells as well as reduce viral latency.
Collapse
Affiliation(s)
- Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| | - Mehtab Farooqui
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - María Virumbrales-Muñoz
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Katheryn Denecke
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
| | - Rebecca Schmitz
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Jorge F Guerrero
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA
| | - Cristina Sanchez-de-Diego
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Sara Abizanda Campo
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Elizabeth M Maly
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Sheena C Kerr
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Robert Striker
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Vivent Health, Milwaukee, USA
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, USA
- Institute for Molecular Virology, University of Wisconsin, Madison, WI, USA
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M Capitini
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Melissa C Skala
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, 330 N Orchard street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
25
|
Hatami Z, Hashemi ZS, Eftekhary M, Amiri A, Karpisheh V, Nasrollahi K, Jafari R. Natural killer cell-derived exosomes for cancer immunotherapy: innovative therapeutics art. Cancer Cell Int 2023; 23:157. [PMID: 37543612 PMCID: PMC10403883 DOI: 10.1186/s12935-023-02996-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023] Open
Abstract
Chimeric antigen receptor natural killer cells (CAR-NK) promote off-the-shelf cellular therapy for solid tumors and malignancy.However,, the development of CAR-NK is due to their immune surveillance uncertainty and cytotoxicity challenge was restricted. Natural killer cell-derived exosome (NK-Exo) combine crucial targeted cellular therapies of NK cell therapies with unique non-toxic Exo as a self-origin shuttle against cancer immunotherapy. This review study covers cytokines, adoptive (autologous and allogenic) NK immunotherapy, stimulatory and regulatory functions, and cell-free derivatives from NK cells. The future path of NK-Exo cytotoxicity and anti-tumor activity with considering non-caspase-independent/dependent apoptosis and Fas/FasL pathway in cancer immunotherapy. Finally, the significance and implication of NK-Exo therapeutics through combination therapy and the development of emerging approaches for the purification and delivery NK-Exo to severe immune and tumor cells and tissues were discussed in detail.
Collapse
Affiliation(s)
- Zahra Hatami
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Mohamad Eftekhary
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kaveh Nasrollahi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
26
|
Guo T, Wei Q. Cell Reprogramming Techniques: Contributions to Cancer Therapy. Cell Reprogram 2023; 25:142-153. [PMID: 37530737 DOI: 10.1089/cell.2023.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
The reprogramming of terminally differentiated cells over the past few years has become important for induced pluripotent stem cells (iPSCs) in the field of regenerative medicine and disease drug modeling. At the same time, iPSCs have also played an important role in human cancer research. iPSCs derived from cancer patients can be used to simulate the early progression of cancer, for drug testing, and to study the molecular mechanism of cancer occurrence. In recent years, with the application of cellular immunotherapy in cancer therapy, patient-derived iPSC-induced immune cells (T, natural killer, and macrophage cells) solve the problem of immune rejection and have higher immunogenicity, which greatly improves the therapeutic efficiency of immune cell therapy. With the continuous progress of cancer differentiation therapy, iPSC technology can reprogram cancer cells to a more primitive pluripotent undifferentiated state, and successfully reverse cancer cells to a benign phenotype by changing the epigenetic inheritance of cancer cells. This article reviews the recent progress of cell reprogramming technology in human cancer research, focuses on the application of reprogramming technology in cancer immunotherapy and the problems solved, and summarizes the malignant phenotype changes of cancer cells in the process of reprogramming and subsequent differentiation.
Collapse
Affiliation(s)
- Tongtong Guo
- College of Life Science, Northwest University, Xi'an, China
| | - Qi Wei
- Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
27
|
Christodoulou I, Solomou EE. A Panorama of Immune Fighters Armored with CARs in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15113054. [PMID: 37297016 DOI: 10.3390/cancers15113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease. Intensive chemotherapy is the mainstay of treatment but results in debilitating toxicities. Moreover, many treated patients will eventually require hematopoietic stem cell transplantation (HSCT) for disease control, which is the only potentially curative but challenging option. Ultimately, a subset of patients will relapse or have refractory disease, posing a huge challenge to further therapeutic decisions. Targeted immunotherapies hold promise for relapsed/refractory (r/r) malignancies by directing the immune system against cancer. Chimeric antigen receptors (CARs) are important components of targeted immunotherapy. Indeed, CAR-T cells have achieved unprecedented success against r/r CD19+ malignancies. However, CAR-T cells have only achieved modest outcomes in clinical studies on r/r AML. Natural killer (NK) cells have innate anti-AML functionality and can be engineered with CARs to improve their antitumor response. CAR-NKs are associated with lower toxicities than CAR-T cells; however, their clinical efficacy against AML has not been extensively investigated. In this review, we cite the results from clinical studies of CAR-T cells in AML and describe their limitations and safety concerns. Moreover, we depict the clinical and preclinical landscape of CAR used in alternative immune cell platforms with a specific focus on CAR-NKs, providing insight into the future optimization of AML.
Collapse
Affiliation(s)
- Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
28
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
29
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Karvouni M, Vidal-Manrique M, Susek KH, Hussain A, Gilljam M, Zhang Y, Gray JD, Lund J, Kaufmann G, Ljunggren HG, Ji H, Lundqvist A, Wagner AK, Guo W, Alici E. Challenges in αCD38-chimeric antigen receptor (CAR)-expressing natural killer (NK) cell-based immunotherapy in multiple myeloma: Harnessing the CD38dim phenotype of cytokine-stimulated NK cells as a strategy to prevent fratricide. Cytotherapy 2023:S1465-3249(23)00068-3. [PMID: 37055320 DOI: 10.1016/j.jcyt.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND AIMS Adoptive cell therapy with chimeric antigen receptor (CAR)-expressing natural killer (NK) cells is an emerging approach that holds promise in multiple myeloma (MM). However, the generation of CAR-NK cells targeting CD38 is met with obstacles due to the expression of CD38 on NK cells. Knock-out of CD38 is currently explored as a strategy, although the consequences of the lack of CD38 expression with regards to engraftment and activity in the bone marrow microenvironment are not fully elucidated. Here, we present an alternative approach by harnessing the CD38dim phenotype occurring during long-term cytokine stimulation of primary NK cells. METHODS Primary NK cells were expanded from peripheral blood mononuclear cells by long-term IL-2 stimulation. During expansion, the CD38 expression was monitored in order to identify a time point when introduction of a novel affinity-optimized αCD38-CAR confered optimal viability, i.e. prevented fratricide. CD38dim NK cells were trasduced with retroviral vectors encoding for the CAR trasngene and their functionality was assessed in in vitro activation and cytotoxicity assays. RESULTS We verified the functionality of the αCD38-CAR-NK cells against CD38+ cell lines and primary MM cells. Importantly, we demonstrated that αCD38-CAR-NK cells derived from patients with MM have increased activity against autologous MM samples ex vivo. CONCLUSIONS Overall, our results highlight that incorporation of a functional αCD38-CAR construct into a suitable NK-cell expansion and activation protocol results in a potent and feasible immunotherapeutic strategy for the treatment of patients with MM.
Collapse
Affiliation(s)
- Maria Karvouni
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcos Vidal-Manrique
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Katharina H Susek
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Alamdar Hussain
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mari Gilljam
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - J Dixon Gray
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Johan Lund
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Wenzhong Guo
- Sorrento Therapeutics, Inc., San Diego, California, USA
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Xia W, Chen J, Hou W, Chen J, Xiong Y, Li H, Qi X, Xu H, Xie Z, Li M, Zhang X, Li J. Engineering a HER2-CAR-NK Cell Secreting Soluble Programmed Cell Death Protein with Superior Antitumor Efficacy. Int J Mol Sci 2023; 24:ijms24076843. [PMID: 37047817 PMCID: PMC10094803 DOI: 10.3390/ijms24076843] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
A new therapy strategy for relapsing patients who have received trastuzumab treatment urgently needs to be explored. HER2-specific chimeric antigen receptor (CAR)-expressing NK cells are being rapidly developed for solid tumor therapy, as they have many advantages over HER2-CAR-T cells. Endogenous soluble PD-1 (sPD-1) from the PD-1 extracellular domain blocks PD-1/PD-L1 interaction to promote cancer immunology. Herein, we engineered a new HER2-CAR-NK cell that co-expresses sPD-1 (designed as sPD-1-CAR-NK cells) and assessed its cytotoxic activities toward various cancer cells, activation of immunity and sPD-1 release in vitro and in mouse models bearing breast cancer cells with high HER2 expression, with or without trastuzumab resistance. We demonstrated that sPD-1-CAR-NK cells were able to release bioactive sPD-1, thereby enhancing the cytolytic activities of HER2-CAR-NK cells against HER2 and PD-L1 highly expressing target cells accompanied by increases in the secretion of perforin, granzyme B and IFN-γ. In vivo, sPD-1-CAR-NK cells had superior immunological anticancer efficacy compared to HER2-CAR-NK cells, and they had advantages over HER2-CAR-NK cells in the intraperitoneal injection of sPD-1. Moreover, the infiltration and activation of NK and T cells into tumor tissue were increased in mice with sPD-1-CAR-NK cells. There was no significant change in the body temperature, organ tissue and body weight in all groups except for the group with the PD-1 injection. Together, these data indicate that HER2-specific sPD-1-CAR-NK cells can transport sPD-1 into cancer tissues with high HER2 expression, further improving the efficacy of HER-CAR-NK cells without obvious side effects. sPD-1-CAR-NK is a promising cytotherapeutic agent for patients bearing HER2-positive breast cancer, including those with trastuzumab resistance.
Collapse
Affiliation(s)
- Wenjiao Xia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jiaxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Wenqing Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Junsheng Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongyan Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 200126, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 200126, China
| | - Mingfeng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
32
|
Yu J, Li T, Zhu J. Gene Therapy Strategies Targeting Aging-Related Diseases. Aging Dis 2023; 14:398-417. [PMID: 37008065 PMCID: PMC10017145 DOI: 10.14336/ad.2022.00725] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Rapid advancements have taken place in gene therapy technology. However, effective methods for treating aging- or age-related chronic diseases, which are often closely related to genes or even multiple genes, are still lacking. The path to developing cures is winding, while gene therapy that targets genes related to aging represents an exciting research direction with tremendous potential. Among aging-related genes, some candidates have been studied at different levels, from cell to organismal levels (e.g., mammalian models) with different methods, from overexpression to gene editing. The TERT and APOE have even entered the stage of clinical trials. Even those displaying only a preliminary association with diseases have potential applications. This article discusses the foundations and recent breakthroughs in the field of gene therapy, providing a summary of current mainstream strategies and gene therapy products with clinical and preclinical applications. Finally, we review representative target genes and their potential for treating aging or age-related diseases.
Collapse
Affiliation(s)
| | | | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| |
Collapse
|
33
|
Liu S, Wei W, Wang J, Chen T. Theranostic applications of selenium nanomedicines against lung cancer. J Nanobiotechnology 2023; 21:96. [PMID: 36935493 PMCID: PMC10026460 DOI: 10.1186/s12951-023-01825-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/18/2023] [Indexed: 03/21/2023] Open
Abstract
The incidence and mortality rates of lung cancer are among the highest in the world. Traditional treatment methods include surgery, chemotherapy, and radiotherapy. Although rapid progress has been achieved in the past decade, treatment limitations remain. It is therefore imperative to identify safer and more effective therapeutic methods, and research is currently being conducted to identify more efficient and less harmful drugs. In recent years, the discovery of antitumor drugs based on the essential trace element selenium (Se) has provided good prospects for lung cancer treatments. In particular, compared to inorganic Se (Inorg-Se) and organic Se (Org-Se), Se nanomedicine (Se nanoparticles; SeNPs) shows much higher bioavailability and antioxidant activity and lower toxicity. SeNPs can also be used as a drug delivery carrier to better regulate protein and DNA biosynthesis and protein kinase C activity, thus playing a role in inhibiting cancer cell proliferation. SeNPs can also effectively activate antigen-presenting cells to stimulate cell immunity, exert regulatory effects on innate and regulatory immunity, and enhance lung cancer immunotherapy. This review summarizes the application of Se-based species and materials in lung cancer diagnosis, including fluorescence, MR, CT, photoacoustic imaging and other diagnostic methods, as well as treatments, including direct killing, radiosensitization, chemotherapeutic sensitization, photothermodynamics, and enhanced immunotherapy. In addition, the application prospects and challenges of Se-based drugs in lung cancer are examined, as well as their forecasted future clinical applications and sustainable development.
Collapse
Affiliation(s)
- Shaowei Liu
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weifeng Wei
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jinlin Wang
- Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
34
|
Molnar A, Monroe H, Basri Aydin H, Arslan ME, Lightle A, Lee H, El Jabbour T. Tumors of the Digestive System: Comprehensive Review of Ancillary Testing and Biomarkers in the Era of Precision Medicine. Curr Oncol 2023; 30:2388-2404. [PMID: 36826143 PMCID: PMC9954843 DOI: 10.3390/curroncol30020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has remained at the vanguard of promising cancer therapeutic regimens due to its exceptionally high specificity for tumor cells and potential for significantly improved treatment-associated quality of life compared to other therapeutic approaches such as surgery and chemoradiation. This is especially true in the digestive system, where high rates of mutation give rise to a host of targetable tumor-specific antigens. Many patients, however, do not exhibit measurable improvements under immunotherapy due to intrinsic or acquired resistance, making predictive biomarkers necessary to determine which patients will benefit from this line of treatment. Many of these biomarkers are assessed empirically by pathologists according to nuanced scoring criteria and algorithms. This review serves to inform clinicians and pathologists of extant and promising upcoming biomarkers predictive of immunotherapeutic efficacy among digestive system malignancies and the ancillary testing required for interpretation by pathologists according to tumor site of origin.
Collapse
Affiliation(s)
- Attila Molnar
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10025, USA
| | - Hunter Monroe
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
| | - Hasan Basri Aydin
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Mustafa Erdem Arslan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Lightle
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Tony El Jabbour
- Department of Pathology, West Virginia University, Morgantown, WV 26506, USA
- Correspondence:
| |
Collapse
|
35
|
Arellano-Ballestero H, Sabry M, Lowdell MW. A Killer Disarmed: Natural Killer Cell Impairment in Myelodysplastic Syndrome. Cells 2023; 12:633. [PMID: 36831300 PMCID: PMC9954109 DOI: 10.3390/cells12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Myelodysplastic syndrome (MDS) treatment remains a big challenge due to the heterogeneous nature of the disease and its ability to progress to acute myeloid leukemia (AML). The only curative option is allogeneic hematopoietic stem cell transplantation (HSCT), but most patients are unfit for this procedure and are left with only palliative treatment options, causing a big unmet need in the context of this disease. Natural killer (NK) cells are attractive candidates for MDS immunotherapy due to their ability to target myeloid leukemic cells without prior sensitization, and in recent years we have seen an arising number of clinical trials in AML and, recently, MDS. NK cells are reported to be highly dysfunctional in MDS patients, which can be overcome by adoptive NK cell immunotherapy or activation of endogenous NK cells. Here, we review the role of NK cells in MDS, the contribution of the tumor microenvironment (TME) to NK cell impairment, and the most recent data from NK cell-based clinical trials in MDS.
Collapse
Affiliation(s)
| | - May Sabry
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
- Novamune Ltd., London WC2R 1DJ, UK
| | - Mark W. Lowdell
- Department of Haematology, University College London, London NW3 5PF, UK
- InmuneBio Inc., Boca Raton, FL 33432, USA
| |
Collapse
|
36
|
Wang S, Chen K, Jiang Y, Zhao G, Wang C, Fang H, Tang Q, Sun C, Zhang L, Wu H, Zhang LF, Li N. Breaking boundaries: Current progress of anticancer NK cell-based drug development. Drug Discov Today 2023; 28:103436. [PMID: 36370993 DOI: 10.1016/j.drudis.2022.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Natural killer (NK) cell therapy is emerging as a cancer treatment. NK cells are innate cytotoxic lymphocytes that act as first-line responders to kill target cells without prior encounters. NK cells recognize cancer cells, virus-infected cells, and other types of stressed cell through a reservoir of germline-encoded receptors. NK cells are safe for allogeneic applications. Therefore, they are the ideal off-the-shelf cell, which overcome the low efficiency issue caused by the patient-by-patient nature of autologous cell therapy. Unlike T cells, NK cells cannot form a strong immune memory; therefore, they suffer from short in vivo persistence. However, different from T cells, NK cells have a reservoir of innate immune receptors targeting a variety of malignant cells. In addition, they can utilize antibody guidance in target recognition. With suitable engineering, NK cells can function as universal anticancer drugs that are not restricted to HLA and cancer types, which will benefit the large cohort of patients with rare cancer types and patients with no convenient drug targets for precision and personalized medicine. Here, we summarize and discuss the designs of current anticancer NK cell therapies.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kun Chen
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Caie Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | - Haiyang Wu
- TCRCure Biological Technology Co Ltd, Guangdong, China
| | - Li-Feng Zhang
- TCRCure Biological Technology Co Ltd, Guangdong, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
37
|
Yang K, Zhao Y, Sun G, Zhang X, Cao J, Shao M, Liang X, Wang L. Clinical application and prospect of immune checkpoint inhibitors for CAR-NK cell in tumor immunotherapy. Front Immunol 2023; 13:1081546. [PMID: 36741400 PMCID: PMC9892943 DOI: 10.3389/fimmu.2022.1081546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells is an attractive research field in tumor immunotherapy. While CAR is genetically engineered to express certain molecules, it retains the intrinsic ability to recognize tumor cells through its own receptors. Additionally, NK cells do not depend on T cell receptors for cytotoxic killing. CAR-NK cells exhibit some differences to CAR-T cells in terms of more precise killing, numerous cell sources, and increased effectiveness in solid tumors. However, some problems still exist with CAR-NK cell therapy, such as cytotoxicity, low transfection efficiency, and storage issues. Immune checkpoints inhibit immune cells from performing their normal killing function, and the clinical application of immune checkpoint inhibitors for cancer treatment has become a key therapeutic strategy. The application of CAR-T cells and immune checkpoint inhibitors is being evaluated in numerous ongoing basic research and clinical studies. Immune checkpoints may affect the function of CAR-NK cell therapy. In this review, we describe the combination of existing CAR-NK cell technology with immune checkpoint therapy and discuss the research of CAR-NK cell technology and future clinical treatments. We also summarize the progress of clinical trials of CAR-NK cells and immune checkpoint therapy.
Collapse
Affiliation(s)
- Kangdi Yang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuze Zhao
- School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Guanqun Sun
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Xu Zhang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinjin Cao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Mingcong Shao
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xijun Liang
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| | - Lina Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Xijun Liang, ; Lina Wang,
| |
Collapse
|
38
|
Liu S, Nguyen K, Park D, Wong N, Wang A, Zhou Y. Harnessing natural killer cells to develop next-generation cellular immunotherapy. Chronic Dis Transl Med 2022; 8:245-255. [PMID: 36420177 PMCID: PMC9676120 DOI: 10.1002/cdt3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022] Open
Abstract
Cellular immunotherapy harnesses the body's own immune system to fight cancer by using engineered T cells, macrophages, or natural killer (NK) cells. Compared to chimeric antigen receptor T (CAR-T) cells that are commonly used to treat hematological malignancies, CAR-NK cells have shown remarkable therapeutic effectiveness while exhibiting enhanced safety, reduced risk of graft-versus-host disease, fewer side effects, and amplified antitumor efficacy. Preclinical trials have unveiled the high potential of adoptive CAR-NK cell therapy to curtail or even eliminate both hematological malignancies and solid tumors in animal models. We brought forth herein the design principle of CAR-NK cells, highlighted the latest progress in the preclinical testing and clinical trials of CAR-NK cells, briefly delved into discussed major roadblocks in CAR-NK therapy, and discussed potential solutions to surmount these challenges. Given the accelerated progress in both basic and translational studies on immune cell engineering, CAR-NK cell therapy promises to become a serious contender and important addition to the next-generation cell-based immunotherapy.
Collapse
Affiliation(s)
- Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Kaycee Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Dongyong Park
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Nelson Wong
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Anson Wang
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and TechnologyTexas A&M UniversityHoustonTexasUSA
- Department of Translational Medical Sciences, School of MedicineTexas A&M UniversityHoustonTexasUSA
| |
Collapse
|
39
|
Bahmanyar M, Vakil MK, Al-Awsi GRL, Kouhpayeh SA, Mansoori Y, Mansoori B, Moravej A, Mazarzaei A, Ghasemian A. Anticancer traits of chimeric antigen receptors (CARs)-Natural Killer (NK) cells as novel approaches for melanoma treatment. BMC Cancer 2022; 22:1220. [PMID: 36434591 PMCID: PMC9701052 DOI: 10.1186/s12885-022-10320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells (lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logistically cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have several advantages over T cells in the application for therapies such as availability, unique biological features, safety profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host disease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunotherapies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expanding and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME preparation and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can also overcome therapy limitations.
Collapse
Affiliation(s)
- Maryam Bahmanyar
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyed Amin Kouhpayeh
- grid.411135.30000 0004 0415 3047Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- grid.512728.b0000 0004 5907 6819Department of Immunology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
40
|
Moscarelli J, Zahavi D, Maynard R, Weiner LM. The Next Generation of Cellular Immunotherapy: Chimeric Antigen Receptor-Natural Killer Cells. Transplant Cell Ther 2022; 28:650-656. [PMID: 35788086 PMCID: PMC9547868 DOI: 10.1016/j.jtct.2022.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
The advent of chimeric antigen receptor (CAR) engineering has led to the development of powerful cellular therapies for cancer. CAR T cell-based treatments have had notable clinical success, but logistical issues and associated toxicities are recognized limitations. There is emerging interest in using other immune effector cell types for CAR therapy. Natural killer (NK) cells are part of the innate immune system, and these lymphocytes play major roles in immunosurveillance and antitumor immune responses. Incorporating CARs into NK cells provides the opportunity to harness and enhance their innate cytotoxic potential toward malignancies. In this review, we discuss the production of CAR-engineered NK cells, highlight data on their preclinical and clinical efficacy, and examine the obstacles and strategies to overcome them.
Collapse
Affiliation(s)
- Jake Moscarelli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - David Zahavi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Rachael Maynard
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC
| | - Louis M Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, Washington, DC.
| |
Collapse
|
41
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers (Basel) 2022; 14:cancers14174318. [PMID: 36077853 PMCID: PMC9454439 DOI: 10.3390/cancers14174318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR)-T and -natural killer (NK) therapies are promising in cancer treatment. CAR-NK therapy gains great attention due to the lack of adverse effects observed in CAR-T therapies and to the NK cells’ unique mechanisms of recognizing target cells. Off-the-shelf products are in urgent need, not only for good yields, but also for lower cost and shorter preparation time. The current progress of CAR-NK therapy is discussed. Abstract CD8+ T cells and natural killer (NK) cells eliminate target cells through the release of lytic granules and Fas ligand (FasL)-induced target cell apoptosis. The introduction of chimeric antigen receptor (CAR) makes these two types of cells selective and effective in killing cancer cells. The success of CAR-T therapy in the treatment of acute lymphoblastic leukemia (ALL) and other types of blood cancers proved that the immunotherapy is an effective approach in fighting against cancers, yet adverse effects, such as graft versus host disease (GvHD) and cytokine release syndrome (CRS), cannot be ignored for the CAR-T therapy. CAR-NK therapy, then, has its advantage in lacking these adverse effects and works as effective as CAR-T in terms of killing. Despite these, NK cells are known to be hard to transduce, expand in vitro, and sustain shorter in vivo comparing to infiltrated T cells. Moreover, CAR-NK therapy faces challenges as CAR-T therapy does, e.g., the time, the cost, and the potential biohazard due to the use of animal-derived products. Thus, enormous efforts are needed to develop safe, effective, and large-scalable protocols for obtaining CAR-NK cells. Here, we reviewed current progress of CAR-NK therapy, including its biological properties, CAR compositions, preparation of CAR-NK cells, and clinical progresses. We also discussed safety issues raised from genetic engineering. We hope this review is instructive to the research community and a broad range of readers.
Collapse
|
43
|
Choi SH, Kim HJ, Park JD, Ko ES, Lee M, Lee DK, Choi JH, Jang HJ, Kim I, Jung HY, Park KH, Park KS. Chemical priming of natural killer cells with branched polyethylenimine for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004964. [PMID: 36028281 PMCID: PMC9422841 DOI: 10.1136/jitc-2022-004964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Due to their powerful immune surveillance activity and ability to kill and clear cancer cells, natural killer (NK) cells are an emerging anticancer immunotherapeutic agent. Therefore, there is much interest in developing efficient technologies that further enhance the therapeutic antitumor efficacy of NK cells. Methods To produce chemically primed NK cells, we screened polymers with various electric charges and examined their ability to enhance the cytotoxicity of NK cells. The effect of primary amine and electric charges of 25 kDa branched polyethylenimine (25KbPEI) was investigated by fluorination of the chemical. The role of 25KbPEI in determining the major priming mechanism was investigated in terms of calcium influx into NK cells. In vivo therapeutic efficacy of chemically primed NK cells was evaluated against solid tumor mouse model of triple negative breast and ovarian cancers. Results Chem_NK that was produced by the priming activity of 25KbPEI showed potent antitumor activity to various cancer cells. Chem_NK showed an activated phenotype, which manifests as increased expression of activating/adhesion/chemokine receptors and perforin accumulation, leading to enhanced migration ability and antitumor activity. Chem_NK display potent therapeutic efficacy against in vivo mouse model of triple negative breast and ovarian cancers. Fluorination of the primary amine group reduces the activity of 25KbPEI to prime NK cells, indicating that the cationic charge on the chemical plays a critical role in NK cell activation. A major priming mechanism was 25KbPEI-mediated calcium influx into NK cells, which occurred mainly via the Ca2+-permeable non-selective cation channel transient receptor potential melastatin 2. Conclusions NK cells can be chemically primed with 25KbPEI to express potent antitumor activity as well as enhanced migration ability. Because PEI is a biocompatible and Food and Drug Administration-approved chemical for biomedical use, these results suggest a cost-effective and simple method of producing therapeutic NK cells.
Collapse
Affiliation(s)
- Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hye Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Eun-Su Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Minwook Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Dae-Keum Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Isaac Kim
- Department of Surgery, Bundang CHA Medical Center, CHA University, Seongnam-si, Korea (the Republic of)
| | - Hae-Yun Jung
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Keun-Hong Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Korea (the Republic of)
| |
Collapse
|
44
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
45
|
Agostini A, Orlacchio A, Carbone C, Guerriero I. Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Front Immunol 2022; 13:876291. [PMID: 35711414 PMCID: PMC9193393 DOI: 10.3389/fimmu.2022.876291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| |
Collapse
|
46
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
47
|
Da Y, Liu Y, Hu Y, Liu W, Ma J, Lu N, Zhang C, Zhang C. STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer. Oncoimmunology 2022; 11:2054105. [PMID: 35371622 PMCID: PMC8967397 DOI: 10.1080/2162402x.2022.2054105] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the stimulator of interferon gene (STING)-mediated innate immune response has been suggested as a promising therapeutic strategy for cancers. However, the effects of STING agonist on natural killer (NK) cell-mediated anti-tumor responses in pancreatic cancer remains unknown. Herein, we evaluated the effects of a classical STING agonist cyclic GMP-AMP (cGAMP) on NK cells in pancreatic cancer. We found that cGAMP could directly activate NK cells and enhance the sensitivity of pancreatic cancer cells to NK cell cytotoxicity, suggesting that cGAMP may become a potential adjuvant for NK cell therapy. In addition, combination of CAR-NK-92 cells targeting mesothelin and cGAMP displayed greater antitumor efficacy by inhibiting tumor growth and prolonging survival of the mouse model of pancreatic cancer. These results suggest that the combination of a STING agonist and NK cells may become a novel immunotherapy strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yanyan Da
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| | - Wenzeng Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Cancer Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
- Nk CellTech Co., Ltd., Shanghai International Medical Park, Pudong New Area, Shanghai, China
| |
Collapse
|
48
|
Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022; 10:12. [PMID: 35303962 PMCID: PMC8932134 DOI: 10.1186/s40364-022-00364-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are unique innate immune cells and manifest rapid and potent cytotoxicity for cancer immunotherapy and pathogen removal without the requirement of prior sensitization or recognition of peptide antigens. Distinguish from the T lymphocyte-based cythotherapy with toxic side effects, chimeric antigen receptor-transduced NK (CAR-NK) cells are adequate to simultaneously improve efficacy and control adverse effects including acute cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GVHD). Moreover, considering the inherent properties of NK cells, the CAR-NK cells are “off-the-shelf” product satisfying the clinical demand for large-scale manufacture for cancer immunotherapy attribute to the cytotoxic effect via both NK cell receptor-dependent and CAR-dependent signaling cascades. In this review, we mainly focus on the latest updates of CAR-NK cell-based tactics, together with the opportunities and challenges for cancer immunotherapies, which represent the paradigm for boosting the immune system to enhance antitumor responses and ultimately eliminate malignancies. Collectively, we summarize and highlight the auspicious improvement in CAR-NK cells and will benefit the large-scale preclinical and clinical investigations in adoptive immunotherapy.
Collapse
Affiliation(s)
- Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province & NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China. .,Center for Cellular Therapies, The First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China. .,Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, 230031, Anhui Province, China. .,Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 Donggangxi Road, Chengguan District, Lanzhou City, 730013, Gansu Province, China.
| | - Yuan Meng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, 301700, China. .,Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao, 334000, China. .,State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China. .,Stem Cell Bank of Guizhou Province, Guizhou Health-Biotech Biotechnology Co., Ltd., Guiyang, 550000, China.
| |
Collapse
|
49
|
Yeo D, Giardina C, Saxena P, Rasko JE. The next wave of cellular immunotherapies in pancreatic cancer. Mol Ther Oncolytics 2022; 24:561-576. [PMID: 35229033 PMCID: PMC8857655 DOI: 10.1016/j.omto.2022.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is an aggressive disease that is predicted to become the second leading cause of cancer-related death worldwide by 2030. The overall 5-year survival rate is around 10%. Pancreatic cancer typically presents late with locally advanced or metastatic disease, and there are limited effective treatments available. Cellular immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has had significant success in treating hematological malignancies. However, CAR T cell therapy efficacy in pancreatic cancer has been limited. This review provides an overview of current and ongoing CAR T cell clinical studies of pancreatic cancer and the major challenges and strategies to improve CAR T cell efficacy. These strategies include arming CAR T cells; developing off-the-shelf allogeneic CAR T cells; using other immune CAR cells, like natural killer cells and tumor-infiltrating lymphocytes; and combination therapy. Careful incorporation of preclinical models will enhance management of affected individuals, assisting incorporation of cellular immunotherapies. A multifaceted, personalized approach involving cellular immunotherapy treatment is required to improve pancreatic cancer outcomes.
Collapse
Affiliation(s)
- Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Caroline Giardina
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Payal Saxena
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Division of Gastroenterology, Department of Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - John E.J. Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
50
|
Zheng A, Du Y, Wang Y, Zheng Y, Ning Z, Wu M, Zhang C, Zhang D, Liu J, Liu X. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:998-1009. [PMID: 35228895 PMCID: PMC8844804 DOI: 10.1016/j.omtn.2022.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
It is well established that natural killer (NK) cells can be used as an alternative candidate of T cells for adoptive cell therapy (ACT) due to its high killing capacity, off-the-shelf utility, and low toxicity. Though NK cells provide rapid and potent immune effects, they still suffer from insufficient infiltration and tumor immunosuppression environment, which result in unsatisfactory therapeutic efficiency. Herein, a highly stable CD16/PD-L1 bi-specific aptamer (defined as CP-bi-apt) with high affinity and selectivity was introduced to overcome these obstacles. This CP-bi-apt can mediate a significant antitumor immunity by recruiting CD16-positive NK cells to directly contact with PD-L1 high-expressed tumor cells. In addition, the induced up-regulation of PD-L1 on tumor cells can inevitably occur as an adaptive response to most of the immunotherapeutic strategies. The prepared CP-bi-apt can be further used as an immune checkpoint inhibitor to specifically bind to PD-L1, thus reducing the negative impact of PD-L1 over-expression on the therapeutic efficacy. Furthermore, this CP-bi-apt-based immunotherapy is simple, highly efficient, and has low side effects, showing a promising potential for clinical translation.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Yanlin Du
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China
| | - Yiru Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- The Hepatobiliary Medical Center of Fujian Province, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P.R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P.R. China
- The Hepatobiliary Medical Center of Fujian Province, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, P.R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| |
Collapse
|