1
|
Parker W, Patel E, Jirků-Pomajbíková K, Laman JD. COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost biodiversity of eukaryotic symbionts. iScience 2023; 26:106167. [PMID: 36785786 PMCID: PMC9908430 DOI: 10.1016/j.isci.2023.106167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The avoidance of infectious disease by widespread use of 'systems hygiene', defined by hygiene-enhancing technology such as sewage systems, water treatment facilities, and secure food storage containers, has led to a dramatic decrease in symbiotic helminths and protists in high-income human populations. Over a half-century of research has revealed that this 'biota alteration' leads to altered immune function and a propensity for chronic inflammatory diseases, including allergic, autoimmune and neuropsychiatric disorders. A recent Ethiopian study (EClinicalMedicine 39: 101054), validating predictions made by several laboratories, found that symbiotic helminths and protists were associated with a reduced risk of severe COVID-19 (adjusted odds ratio = 0.35; p<0.0001). Thus, it is now apparent that 'biome reconstitution', defined as the artificial re-introduction of benign, symbiotic helminths or protists into the ecosystem of the human body, is important not only for alleviation of chronic immune disease, but likely also for pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Kateřina Jirků-Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jon D. Laman
- Department of Pathology and Medical Biology, University Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Socio-medical studies of individuals self-treating with helminths provide insight into clinical trial design for assessing helminth therapy. Parasitol Int 2021; 87:102488. [PMID: 34737071 DOI: 10.1016/j.parint.2021.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The virtually complete loss of intestinal worms, known as helminths, from Western society has resulted in elimination of a range of helminth-induced morbidities. Unfortunately, that loss has also led to inflammation-associated deficiencies in immune function, ultimately contributing to widespread pandemics of allergies, autoimmunity, and neuropsychiatric disorders. Several socio-medical studies have examined the effects of intentional reworming, or self-treatment with helminths, on a variety of inflammation-related disorders. In this study, the latest results from ongoing socio-medical studies are described. The results point toward two important factors that appear to be overlooked in some if not most clinical trials. Specifically, (a) the method of preparation of the helminth can have a profound effect on its therapeutic efficacy, and (b) variation between individuals in the effective therapeutic dosage apparently covers a 10-fold range, regardless of the helminth used. These results highlight current limits in our understanding of the biology of both hosts and helminths, and suggest that information from self-treatment may be critical for clinical evaluation of the benefits and limits of helminth therapy.
Collapse
|
3
|
Ayelign B, Akalu Y, Teferi B, Molla MD, Shibabaw T. Helminth Induced Immunoregulation and Novel Therapeutic Avenue of Allergy. J Asthma Allergy 2020; 13:439-451. [PMID: 33116652 PMCID: PMC7548329 DOI: 10.2147/jaa.s273556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases are increasing at an alarming rate worldwide, particularly in developed countries. In contrast, there is a decrease in the prevalence of helminthic infections and other neglected diseases. The hygiene hypothesis elaborates parasitic infection, and allergy-associated diseases have an inverse relationship. Acute helminthic infection and allergic reaction stimulate Type 2 helper cells (Th2) immune response with up-regulation of cytokines IL-4-, IL-5-, and IL-13-mediated IgE and mast cell production, as well as eosinophilia. However, people who chronically suffer from helminthic infections are demarcated through polarized Th2 resulting in alternative macrophage activation and T regulatory response. This regulatory system reduces allergy incidence in individuals that are chronically diseased through helminth. As a result, the excretory-secretory (ES) substance derived from parasites and extracellular vesicular components can be used as a novel therapeutic modality of allergy. Therefore, the aim of this review meticulously explored the link between helminth infection and allergy, and utilization of the helminth secretome for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Defolie C, Merkling T, Fichtel C. Patterns and variation in the mammal parasite-glucocorticoid relationship. Biol Rev Camb Philos Soc 2020; 95:74-93. [PMID: 31608587 DOI: 10.1111/brv.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Parasites are ubiquitous and can strongly affect their hosts through mechanisms such as behavioural changes, increased energetic costs and/or immunomodulation. When parasites are detrimental to their hosts, they should act as physiological stressors and elicit the release of glucocorticoids. Alternatively, previously elevated glucocorticoid levels could facilitate parasite infection due to neuroimmunomodulation. However, results are equivocal, with studies showing either positive, negative or no relationship between parasite infection and glucocorticoid levels. Since factors such as parasite type, infection severity or host age and sex can influence the parasite-glucocorticoid relationship, we review the main mechanisms driving this relationship. We then perform a phylogenetic meta-analysis of 110 records from 65 studies in mammalian hosts from experimental and observational studies to quantify the general direction of this relationship and to identify ecological and methodological drivers of the observed variability. Our review produced equivocal results concerning the direction of the relationship, but there was stronger support for a positive relationship, although causality remained unclear. Mechanisms such as host manipulation for parasite survival, host response to infection, cumulative effects of multiple stressors, and neuro-immunomodulatory effects of glucocorticoids could explain the positive relationship. Our meta-analysis results revealed an overall positive relationship between glucocorticoids and parasitism among both experimental and observational studies. Because all experimental studies included were parasite manipulations, we conclude that parasites caused in general an increase in glucocorticoid levels. To obtain a better understanding of the directionality of this link, experimental manipulation of glucocorticoid levels is now required to assess the causal effects of high glucocorticoid levels on parasite infection. Neither parasite type, the method used to assess parasite infection nor phylogeny influenced the relationship, and there was no evidence for publication bias. Future studies should attempt to be as comprehensive as possible, including moderators potentially influencing the parasite-glucocorticoid relationship. We particularly emphasise the importance of testing hosts of a broad age range, concomitantly measuring sex hormone levels or at least reproductive status, and for observational studies, also considering food availability, host body condition and social stressors to obtain a better understanding of the parasite-glucocorticoid relationship.
Collapse
Affiliation(s)
- Charlotte Defolie
- Sociobiology/Anthropology Department, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Thomas Merkling
- Department of Natural Resource Sciences, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Ste. Anne de Bellevue, Québec, H9X 3V9, Canada
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Bergstrom BJ, Rose RK, Bellows AS. Stomach nematodes of cotton rats: parasites, commensals, or mutualists? J Mammal 2019. [DOI: 10.1093/jmammal/gyz136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
We related presence and burden of stomach nematodes to body mass and reproductive allocation in hispid cotton rats (Sigmodon hispidus) from two long-running field studies in Virginia (1983–1984, n = 286; and 1988–1990, n = 425) and one from Georgia 1987–1989 (n = 459). Eighty percent of rats from the earlier Virginia sample were infected, with mean nematode mass of 1,311 mg. In the later samples, 23% (Virginia) and 33% (Georgia) were infected with mean nematode mass of 493 and 769 mg, respectively. Presence of nematodes was positively correlated with host body length for each sex in each sample. We used analysis of covariance to examine length-adjusted residuals for presence of nematodes and mass of nematodes for association with somatic and reproductive response variables. Both body and reproductive masses were either positively associated or not related to nematode presence in the two low-prevalence samples, and either negatively associated or not related to nematode presence in the high-prevalence sample. No relationships were detected between host mass and nematode mass per host in either sex in any sample. There was no effect of nematode presence on litter size of pregnant females, but there was a positive effect of nematode mass on litter size in Georgia. Recent theory provides several possible explanations for such neutral-to-positive effects of stomach nematodes on host fitness, including the evolution of host tolerance to the parasites, fecundity compensation by the hosts, and positive effects on host health via immune modulation.
Collapse
Affiliation(s)
| | - Robert K Rose
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - A Scott Bellows
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
6
|
Li P, Rios Coronado PE, Longstaff XRR, Tarashansky AJ, Wang B. Nanomedicine Approaches Against Parasitic Worm Infections. Adv Healthc Mater 2018; 7:e1701494. [PMID: 29602254 DOI: 10.1002/adhm.201701494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Indexed: 01/10/2023]
Abstract
Nanomedicine approaches have the potential to transform the battle against parasitic worm (helminth) infections, a major global health scourge from which billions are currently suffering. It is anticipated that the intersection of two currently disparate fields, nanomedicine and helminth biology, will constitute a new frontier in science and technology. This progress report surveys current innovations in these research fields and discusses research opportunities. In particular, the focus is on: (1) major challenges that helminth infections impose on mankind; (2) key aspects of helminth biology that inform future research directions; (3) efforts to construct nanodelivery platforms to target drugs and genes to helminths hidden in their hosts; (4) attempts in applying nanotechnology to enable vaccination against helminth infections; (5) outlooks in utilizing nanoparticles to enhance immunomodulatory activities of worm-derived factors to cure allergy and autoimmune diseases. In each section, achievements are summarized, limitations are explored, and future directions are assessed.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | | | | | | | - Bo Wang
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
7
|
Sipahi AM, Baptista DM. Helminths as an alternative therapy for intestinal diseases. World J Gastroenterol 2017; 23:6009-6015. [PMID: 28970717 PMCID: PMC5597493 DOI: 10.3748/wjg.v23.i33.6009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/05/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Animal models and clinical studies have shown that helminth infections exert immunomodulatory activity, altering intestinal permeability and providing a potential beneficial action on autoimmune and inflammatory disorders in human beings, such as inflammatory bowel disease (IBD) and celiac disease. This is consistent with the theory that intestinal microbiota is responsible for shaping human immunological responses. With the arrival of the immunobiologic era and the use of antibodies, we propose a distinctive pathway for treating patients with IBD and celiac disease. We have some evidence about the safety and tolerability of helminth use, but evidence about their impact on disease activity is lacking. Using worms to treat diseases could be a possible way to lower treatment costs, since the era of immunobiologic agents is responsible for a significant rise in expenses. Some questions remain to be investigated regarding the use of helminths in intestinal disease, such as the importance of the specific species of helminths used, appropriate dosing regimens, optimal timing of treatment, the role of host genetics, diet, environment, and the elucidation of the exact mechanisms of action. One promising approach is the use of helminth-derived anti-inflammatory molecules as drugs. Yet there are still many challenges with this method, especially with regard to safety. Studies on intestinal permeability point to Strongyloides stercoralis as a useful nematode for these purposes.
Collapse
Affiliation(s)
- Aytan Miranda Sipahi
- LIM 07-Laboratory of Experimental Clinical Gastroenterology, Department of Gastroenterology and Hepatology, Clínicas Hospital of University of São Paulo-HCFMUSP and, School of Medicine at the University of São Paulo, São Paulo 04023-062, Brazil
| | - Daniel Machado Baptista
- LIM 07-Laboratory of Experimental Clinical Gastroenterology, Department of Gastroenterology and Hepatology, Clínicas Hospital of University of São Paulo-HCFMUSP and, School of Medicine at the University of São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
8
|
Briggs N, Weatherhead J, Sastry KJ, Hotez PJ. The Hygiene Hypothesis and Its Inconvenient Truths about Helminth Infections. PLoS Negl Trop Dis 2016; 10:e0004944. [PMID: 27632204 PMCID: PMC5025185 DOI: 10.1371/journal.pntd.0004944] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Current iterations of the hygiene hypothesis suggest an adaptive role for helminth parasites in shaping the proper maturation of the immune system. However, aspects of this hypothesis are based on assumptions that may not fully account for realities about human helminth infections. Such realities include evidence of causal associations between helminth infections and asthma or inflammatory bowel disease as well as the fact that helminth infections remain widespread in the United States, especially among populations at greatest risk for inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Neima Briggs
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jill Weatherhead
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - K. Jagannadha Sastry
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- James A Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- Scowcroft Institute of International Affairs, Bush School of Government and Public Service, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wang X, Wang J, Liang Y, Ni H, Shi L, Xu C, Zhou Y, Su Y, Mou X, Chen D, Mao C. Schistosoma japonicum HSP60-derived peptide SJMHE1 suppresses delayed-type hypersensitivity in a murine model. Parasit Vectors 2016; 9:147. [PMID: 26971312 PMCID: PMC4789290 DOI: 10.1186/s13071-016-1434-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/05/2016] [Indexed: 12/20/2022] Open
Abstract
Background Parasite-derived molecules with immunomodulatory properties, which have been optimised during host-parasite co-evolution, exhibit potential applications as novel immunotherapeutics. We have previously demonstrated that Schistosoma japonicum HSP60-derived peptide SJMHE1 induces CD4+CD25+ regulatory T-cells (Tregs) and that adoptively transferred SJMHE1-induced CD4+CD25+ Tregs inhibit delayed-type hypersensitivity (DTH) in mice. However, multiple concerns regarding this method render this treatment unsuitable. To gain further insights into the potential effects of SJMHE1, we used ovalbumin (OVA)-induced DTH and evaluated the effect of SJMHE1 on DTH mice. Methods BALB/c mice were sensitised with OVA alone or combined with SJMHE1 and then challenged with OVA to induce DTH. We first analysed the potential effects of SJMHE1 by measuring DTH responses, T-cell responses, cytokine secretion, and Treg proportions. We then evaluated the expression levels of IL-10 and TGF-β1 in CD4+CD25+ T-cells during DTH and Treg generation to identify the mechanism by which SJMHE1 suppresses DTH. Results SJMHE1 modulated the effector response against OVA-induced DTH and stimulated the production of the anti-inflammatory cytokines IL-10 and TGF-β1 in immunised mice through a mechanism involving CD4+CD25+ Tregs. SJMHE1-induced CD4+CD25+ Tregs expressed high levels of CTLA-4, IL-10, and TGF-β1, which substantially contributed to the suppressive activity during DTH. The administration of SJMHE1 to DTH in mice led to the expansion of CD4+CD25+ Tregs from CD4+CD25− T-cells in the periphery, which inhibited DTH responses. Conclusions Our study proves that the parasite-driven peptide suppresses DTH in mice, which may confer a new option for inflammation treatment.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China. .,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Jun Wang
- Department of Nuclear Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Yong Liang
- Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, Huaian, Jiangsu, 223300, China
| | - Hongchang Ni
- Department of Nuclear Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| | - Liang Shi
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chengcheng Xu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yuting Su
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiao Mou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Deyu Chen
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
10
|
Helmby H. Human helminth therapy to treat inflammatory disorders - where do we stand? BMC Immunol 2015; 16:12. [PMID: 25884706 PMCID: PMC4374592 DOI: 10.1186/s12865-015-0074-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Parasitic helminths have evolved together with the mammalian immune system over many millennia and as such they have become remarkably efficient modulators in order to promote their own survival. Their ability to alter and/or suppress immune responses could be beneficial to the host by helping control excessive inflammatory responses and animal models and pre-clinical trials have all suggested a beneficial effect of helminth infections on inflammatory bowel conditions, MS, asthma and atopy. Thus, helminth therapy has been suggested as a possible treatment method for autoimmune and other inflammatory disorders in humans.
Collapse
Affiliation(s)
- Helena Helmby
- Department of Immunology and Infection, Faculty of infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel street, London, WC1E 7HT, UK.
| |
Collapse
|
11
|
Impact of treatment of gastrointestinal nemathelminths on body weight of sheep and goats. J Parasit Dis 2014; 40:801-4. [PMID: 27605787 DOI: 10.1007/s12639-014-0581-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/15/2014] [Indexed: 01/15/2023] Open
Abstract
Gastrointestinal nemathelminths affect productive as well as reproductive performance of a wide range of ruminants. To assess the impact of anthelmintic treatment on gain in body weight (b. wt.) of sheep and goat, a study was conducted using two different flocks of sheep and goats each maintained in semi intensive system. Infected animals in both the flocks were divided into three groups each. Group I and II in each flock were treated with levamisole (@7.5 mg/kg b. wt. subcutaneously) and fenbendazole (@5 mg/kg b. wt. orally), respectively. Animals of group III were kept as untreated control. Individual b. wt. and faecal egg count were recorded up to 42nd day post treatment. Results showed 100 % reduction in faecal egg count of sheep on day 7 after treatment with levamisole and on day 10 after treatment with fenbendazole. In goats, the reduction in faecal egg count was 82.60 % after treatment with levamisole and 78.87 % after treatment with fenbendazole on day 14 post treatment. The study also revealed mean increase of 29.57 and 22.67 % in b. wt. of sheep treated with levamisole and fenbendazole respectively 42nd day post treatment whereas mean b. wt. of infected untreated control groups decreased by 7.14 %. Similarly, there was an increase of 10.71 and 14.47 % in mean b. wt. of goats 42nd day post treatment with levamisole and fenbendazole, respectively whereas mean b. wt. of untreated control group decreased by 15.38 %. More weight gain was recorded in sheep as compare to goats after treatment as compared to the untreated control group, which may be due to some drug resistance in goat and required clarification by further studies in these ecological zones of Udham Singh Nagar.
Collapse
|
12
|
Belo VS, Struchiner CJ, Barbosa DS, Nascimento BWL, Horta MAP, da Silva ES, Werneck GL. Risk factors for adverse prognosis and death in American visceral leishmaniasis: a meta-analysis. PLoS Negl Trop Dis 2014; 8:e2982. [PMID: 25058582 PMCID: PMC4109848 DOI: 10.1371/journal.pntd.0002982] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/14/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the current context of high fatality rates associated with American visceral leishmaniasis (VL), the appropriate use of prognostic factors to identify patients at higher risk of unfavorable outcomes represents a potential tool for clinical practice. This systematic review brings together information reported in studies conducted in Latin America, on the potential predictors of adverse prognosis (continued evolution of the initial clinical conditions of the patient despite the implementation of treatment, independent of the occurrence of death) and death from VL. The limitations of the existing knowledge, the advances achieved and the approaches to be used in future research are presented. METHODS/PRINCIPAL FINDINGS The full texts of 14 studies conforming to the inclusion criteria were analyzed and their methodological quality examined by means of a tool developed in the light of current research tools. Information regarding prognostic variables was synthesized using meta-analysis. Variables were grouped according to the strength of evidence considering summary measures, patterns and heterogeneity of effect-sizes, and the results of multivariate analyses. The strongest predictors identified in this review were jaundice, thrombocytopenia, hemorrhage, HIV coinfection, diarrhea, age <5 and age >40-50 years, severe neutropenia, dyspnoea and bacterial infections. Edema and low hemoglobin concentration were also associated with unfavorable outcomes. The main limitation identified was the absence of validation procedures for the few prognostic models developed so far. CONCLUSIONS/SIGNIFICANCE Integration of the results from different investigations conducted over the last 10 years enabled the identification of consistent prognostic variables that could be useful in recognizing and handling VL patients at higher risk of unfavorable outcomes. The development of externally validated prognostic models must be prioritized in future investigations.
Collapse
Affiliation(s)
- Vinícius Silva Belo
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
- Departamento Básico—Área da Saúde—Campus Governador Valadares, Universidade Federal de Juiz de Fora, Governador Valadares, Minas Gerais, Brasil
- * E-mail:
| | - Claudio José Struchiner
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - David Soeiro Barbosa
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Marco Aurélio Pereira Horta
- Departamento de Epidemiologia e Métodos Quantitativos em Saúde, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janiero, Brasil
| | - Eduardo Sérgio da Silva
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Divinópolis, Minas Gerais, Brasil
| | - Guilherme Loureiro Werneck
- Departamento de Endemias Samuel Pessoa, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
- Departamento de Epidemiologia, Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
13
|
Mathew G, Thambi M, Unnikrishnan MK. A multimodal Darwinian strategy for alleviating the atherosclerosis pandemic. Med Hypotheses 2013; 82:159-62. [PMID: 24355423 DOI: 10.1016/j.mehy.2013.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/24/2013] [Indexed: 01/15/2023]
Abstract
The conflict between our 'primitive' genes and 'modern' lifestyle probably lies at the root of several disorders that afflict modern man. Atherosclerosis, which is relatively unknown among contemporary hunter-gatherer populations, has reached pandemic proportions in recent times. Being an evolutionary problem with several inter-related pathologies, current therapeutic strategy for treating atherosclerosis has inherent limitations. Reviewing evolution-linked risk factors suggests that there are four aspects to the etiology of atherosclerosis namely, decreased intestinal parasitism, oversensitivity of evolutionarily redundant mast cells, chronic underactivation of AMPK (cellular energy sensor) and a deficiency of vitamin D. A combination of these four causes appear to have precipitated the atherosclerosis pandemic in modern times. Man and worms co-existed symbiotically in the past. Massive de-worming campaigns could have disrupted this symbiosis, increasing nutritional availability to man (pro-obesity) at the cost of decreased immunotolerance (pro-atherogenicity). A reduction in helminth-induced chronic TH2 activation could also have enhanced TH1 polarization, eventually disrupting the reciprocal regulation of TH1/TH2 balance and resulting in atherosclerosis. The riddance of helminth infestations may have rendered mast cells immunologically redundant, making them oversensitive to inflammatory stimuli, thereby playing a pro-atherogenic role. AMPK activation exerts pleiotropic anti-atherogenic effects, such as suppression of fatty acid, cholesterol, protein synthesis, reduction of vascular smooth muscle proliferation, etc. As energy deficit is the chief stimulus for AMPK activation, the over-nourished modern man appears to be suffering from chronic underactivation of AMPK, legitimising the unrivalled supremacy of metformin, the oldest prescribed antidiabetic drug. The fact that humans evolved in the sunny tropics suggests that humans are selected for high vitamin D levels. Vitamin D deficiency is now linked to several conditions including increased risk of CV disorders, diabetes, etc. The manifold decrease in vitamin D levels in modern man justifies a need for supplementation. We therefore hypothesize that a judicious combination of mast cell stabilization, AMPK activation, vitamin D supplementation, and moderation in hygiene practices could be an evolution-based multimodal strategy for both preventing and mitigating the pandemic of atherosclerosis.
Collapse
Affiliation(s)
- Geetha Mathew
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Magith Thambi
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - M K Unnikrishnan
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India.
| |
Collapse
|
14
|
Nematode-derived proteins suppress proliferation and cytokine production of antigen-specific T cells via induction of cell death. PLoS One 2013; 8:e68380. [PMID: 23861729 PMCID: PMC3693813 DOI: 10.1371/journal.pone.0068380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/28/2013] [Indexed: 01/08/2023] Open
Abstract
In order to establish long-lasting infections in their mammalian host, filarial
nematodes have developed sophisticated strategies to dampen their host’s immune
response. Proteins that are actively secreted by the parasites have been shown
to induce the expansion of regulatory T cells and to directly interfere with
effector T cell function. Here, we analyze the suppressive capacity of
Onchocercavolvulus-derived excreted/secreted
proteins. Addition of two recombinant O. volvulus proteins, abundant larval
transcript-2 (OvALT-2) and novel larval transcript-1
(OvNLT-1) to cell cultures of T cell receptor transgenic
CD4+ and CD8+ T cells suppressed antigen-specific
stimulation in vitro. Ovalbumin-specific CD4+
DO11.10 and OT-II T cells that had been stimulated with their cognate antigen in
the presence of OvALT-2 or OvNLT-1 displayed
reduced DNA synthesis quantified by 3H-thymidine incorporation and
reduced cell division quantified by CFSE dilution. Furthermore, the IL-2 and
IFN-γ response of ovalbumin-specific CD8+ OT-I T cells was suppressed
by OvALT-2 and OvNLT-1. In contrast, another
recombinant O.
volvulus protein,
microfilariae surface-associated antigen (Ov103), did not
modulate T cell activation, thus serving as internal control for
non-ESP-mediated artifacts. Suppressive capacity of the identified ESP was
associated with induction of apoptosis in T cells demonstrated by increased
exposure of phosphatidylserine on the plasma membrane. Of note, the digestion of
recombinant proteins with proteinase K did not abolish the suppression of
antigen-specific proliferation although the suppressive capacity of the
identified excreted/secreted products was not mediated by low molecular weight
contaminants in the undigested preparations. In summary, we identified two
suppressive excreted/secreted products from O. volvulus, which interfere with the
function of antigen-specific T cells in vitro.
Collapse
|
15
|
Buchmann K. Fish immune responses against endoparasitic nematodes - experimental models. JOURNAL OF FISH DISEASES 2012; 35:623-635. [PMID: 22671918 DOI: 10.1111/j.1365-2761.2012.01385.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Vertebrates mount a series of immune reactions when invaded by helminths but antihelmintic immune strategies allow, in many cases, the first invaders of the non-immune host to survive for prolonged periods, whereas subsequent larval invaders of the same parasite species face increased host resistance and thereby decreased colonization success. This concomitant immunity may represent a trade-off between adverse side effects (associated with killing of large helminths in the host tissue) and the need for future protection against invasion. Encapsulation and isolation of large live endoparasitic larvae may be associated with less pathology compared to coping with excess dead parasite tissue in host organs. Likewise, live adult nematodes may be accepted in tissues at a certain activity level for the same reasons. Various host cell receptors bind helminth molecules after which signal-transducing events lead to mobilization of specific reaction patterns depending on the combination of receptors and ligands involved. Both innate and adaptive responses (humoral and cellular) are prominent actors, but skewing of the Th1 lymphocyte response towards a Th2 type is a characteristic element of antihelminthic responses in mammalian hosts. Similar patterns may be expected also to occur in at least some fish species, such as salmonids, producing relevant cytokines, MHCII and CD4+ cells required for these lymphocyte subpopulations. Atlantic cod, Gadus morhua L., is without these immunological elements that indicate that alternative reaction pathways exist in at least some fish groups. Recent achievements within teleost immunology have made it possible to track these host responses in fish and the present work outlines the main immune reactions in fish against helminths and suggests three experimental fish models for exploration of these immune pathways in fish infected with nematodes.
Collapse
Affiliation(s)
- K Buchmann
- Department of Veterinary Disease Biology, Section of Biomedicine, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
16
|
KOLBAUM J, ESCHBACH ML, STEEG C, JACOBS T, FLEISCHER B, BRELOER M. Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection. Parasite Immunol 2012; 34:388-93. [DOI: 10.1111/j.1365-3024.2012.01369.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Bilbo SD, Wray GA, Perkins SE, Parker W. Reconstitution of the human biome as the most reasonable solution for epidemics of allergic and autoimmune diseases. Med Hypotheses 2011; 77:494-504. [DOI: 10.1016/j.mehy.2011.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/04/2011] [Indexed: 02/07/2023]
|
18
|
Harnett W, Goodridge HS, Allen JM, Harnett M. Receptor usage by the Acanthocheilonema viteae-derived immunomodulator, ES-62. Exp Parasitol 2011; 132:97-102. [PMID: 21925176 DOI: 10.1016/j.exppara.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/17/2011] [Accepted: 09/01/2011] [Indexed: 01/15/2023]
Abstract
ES-62 is an immunomodulatory phosphorylcholine (PC)-containing glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae. Previously, the use of knockout mice has revealed the effects of ES-62 on macrophages and dendritic cells to be dependent on TLR4. However, it is possible that ES-62 may interact with additional proteins on the surfaces of target cells and hence that cells may vary with respect to receptor usage. In this study, we identified by molecular weight, proteins that interact with ES-62 and found differences amongst the immune system cells studied. Thus, whereas lymphocytes appear to have two major interacting proteins of ∼135 and ∼82 kDa, U937 monocytes only contain an ES-62-binding protein of the latter molecular weight. Binding to the proteins on B cells and U937 cells was blocked by PC, suggesting a critical role for this ES-62 moiety in facilitating interaction. Finally, ES-62 binding is followed by internalization in both macrophages and B cells but only in the former was absence of TLR4 found to block internalization. These findings are consistent with differences in receptor usage by ES-62 amongst different cell-types.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | | | | |
Collapse
|
19
|
Hartmann W, Haben I, Fleischer B, Breloer M. Pathogenic nematodes suppress humoral responses to third-party antigens in vivo by IL-10-mediated interference with Th cell function. THE JOURNAL OF IMMUNOLOGY 2011; 187:4088-99. [PMID: 21900178 DOI: 10.4049/jimmunol.1004136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One third of the human population is infected with helminth parasites. To promote their longevity and to limit pathology, helminths have developed several strategies to suppress the immune response of their host. As this immune suppression also acts on unrelated third-party Ags, a preexisting helminth infection may interfere with vaccination efficacy. In this study, we show that natural infection with Litomosoides sigmodontis suppressed the humoral response to thymus-dependent but not to thymus-independent model Ags in C57BL/6 mice. Thereby, we provide evidence that reduced humoral responses were mediated by interference with Th cell function rather than by direct suppression of B cells in L. sigmodontis-infected mice. We directly demonstrate suppression of Ag-specific proliferation in OVA-specific Th cells after adoptive transfer into L. sigmodontis-infected mice that led to equally reduced production of OVA-specific IgG. Transferred Th cells displayed increased frequencies of Foxp3(+) after in vivo stimulation within infected but not within naive mice. Helminth-mediated suppression was induced by established L. sigmodontis infections but was completely independent of the individual worm burden. Using DEREG mice, we rule out a central role for host-derived regulatory T cells in the suppression of transferred Th cell proliferation. In contrast, we show that L. sigmodontis-induced, host-derived IL-10 mediated Foxp3 induction in transferred Th cells and significantly contributed to the observed Th cell hypoproliferation within infected mice.
Collapse
Affiliation(s)
- Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
20
|
KOLBAUM J, RITTER U, ZIMARA N, BREWIG N, ESCHBACH ML, BRELOER M. Efficient control of Leishmania and Strongyloides despite partial suppression of nematode-induced Th2 response in co-infected mice. Parasite Immunol 2011; 33:226-35. [DOI: 10.1111/j.1365-3024.2010.01273.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Harnett W, Harnett MM. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol 2010; 10:278-84. [PMID: 20224568 DOI: 10.1038/nri2730] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helminths may protect humans against allergic and autoimmune diseases and, indeed, defined helminth-derived products have recently been shown to prevent the development of such inflammatory diseases in mouse models. Here, we propose that helminth-derived products not only have therapeutic potential but can also be used as unique tools for defining key molecular events in the induction of an anti-inflammatory response and, therefore, for defining new therapeutic targets.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|