1
|
Albeloushi S, Hasan A, Arefanian H, Sindhu S, Al-Rashed F, Kochumon S, Abukhalaf N, Jacob T, Shenouda S, Al Madhoun A, Al-Mulla F, Ahmad R. Differential effects of fish-oil and cocoa-butter based high-fat/high-sucrose diets on endocrine pancreas morphology and function in mice. Front Endocrinol (Lausanne) 2024; 15:1265799. [PMID: 38414818 PMCID: PMC10897036 DOI: 10.3389/fendo.2024.1265799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. METHODS C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. RESULTS AND DISCUSSION Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas β-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.
Collapse
Affiliation(s)
- Shaima Albeloushi
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Amal Hasan
- Translational Research Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Hossein Arefanian
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Nermeen Abukhalaf
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Texy Jacob
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Steve Shenouda
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Translational Research Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
2
|
Iizuka Y, Hirako S, Kim H, Wada N, Ohsaki Y, Yanagisawa N. Fish oil-derived n-3 polyunsaturated fatty acids downregulate aquaporin 9 protein expression of liver and white adipose tissues in diabetic KK mice and 3T3-L1 adipocytes. J Nutr Biochem 2024; 124:109514. [PMID: 37918450 DOI: 10.1016/j.jnutbio.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Ohsaki
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Souza-Tavares H, Miranda CS, Vasques-Monteiro IML, Sandoval C, Santana-Oliveira DA, Silva-Veiga FM, Fernandes-da-Silva A, Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat metabolic diseases: Focus on the adipose tissue, liver, and pancreas. World J Gastroenterol 2023; 29:4136-4155. [PMID: 37475842 PMCID: PMC10354577 DOI: 10.3748/wjg.v29.i26.4136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023] Open
Abstract
The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.
Collapse
Affiliation(s)
| | | | | | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno 5310431, Chile
- Departamento de Ciencias Preclínicas, Universidad de la Frontera, Temuco 4780000, Chile
| | | | | | | | - Vanessa Souza-Mello
- Department of Anatomy, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
4
|
Zhang HJ, Gao X, Guo XF, Li KL, Li S, Sinclair AJ, Li D. Effects of dietary eicosapentaenoic acid and docosahexaenoic acid supplementation on metabolic syndrome: A systematic review and meta-analysis of data from 33 randomized controlled trials. Clin Nutr 2021; 40:4538-4550. [PMID: 34229258 DOI: 10.1016/j.clnu.2021.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/02/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND & AIMS Previous randomized controlled trials (RCTs) have compared the effects of pure preparations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in reducing metabolic syndrome (MetS) risk factors, but the results were inconsistent. The present study aimed to clarify whether EPA and DHA have differential effects on MetS features in humans. METHODS A systematic literature search was conducted in CNKI, PubMed, Embase and Scopus updated to February 2021. The mean changes in the characteristics of MetS were calculated as weighted mean differences by using a random-effects model. Thirty-three RCTs were included. RESULTS The results showed that both EPA and DHA were effective at lowering serum triglycerides (TG) levels. EPA supplementation decreased the serum levels of total cholesterol (TC) (WMD = -0.24 mmol/L; 95% CI, -0.43, -0.05 mmol/L), TG (WMD = -0.77 mmol/L; 95% CI, -1.54, -0.00 mmol/L) and low density lipoprotein-cholesterol (LDL-C) (WMD = -0.13 mmol/L; 95% CI, -0.25, -0.01 mmol/L), while DHA increased the serum levels of TC (WMD = 0.14 mmol/L; 95% CI, 0.03, 0.25 mmol/L), LDL-C (WMD = 0.26 mmol/L; 95% CI, 0.15, 0.38 mmol/L) and high density lipoprotein-cholesterol (HDL-C) (WMD = 0.07 mmol/L; 95% CI, 0.04, 0.09 mmol/L). Moreover, DHA increased the serum levels of insulin compared with EPA, especially in subgroups whose mean age was <60 years (0.43 mU/L; 95% CI: 0.04, 0.81 mU/L) and duration of DHA supplementation < 3 months (0.39 mU/L; 95% CI: 0.01, 0.77 mU/L). CONCLUSIONS The present meta-analysis provides evidence that EPA and DHA have different effects on risk factors of MetS.
Collapse
Affiliation(s)
- Hui-Jun Zhang
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China
| | - Xiang Gao
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China; College of Life Sciences, Qingdao University, Qingdao, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China
| | - Ke-Lei Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China
| | - Shan Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China
| | - Andrew J Sinclair
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China; Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Duo Li
- Institute of Nutrition & Health, College of Public Health, Qingdao University, Qingdao, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Lee D, Shin Y, Roh JS, Ahn J, Jeoong S, Shin SS, Yoon M. RETRACTED: Lemon Balm Extract ALS-L1023 Regulates Obesity and Improves Insulin Sensitivity via Activation of Hepatic PPARα in High-Fat Diet-Fed Obese C57BL/6J Mice. Int J Mol Sci 2020; 21:E4256. [PMID: 32549364 PMCID: PMC7352304 DOI: 10.3390/ijms21124256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous studies demonstrated that peroxisome proliferator-activated receptor α (PPARα) activation reduces weight gain and improves insulin sensitivity in obese mice. Since excess lipid accumulation in non-adipose tissues is suggested to be responsible for the development of insulin resistance, this study was undertaken to examine whether the lemon balm extract ALS-L1023 regulates hepatic lipid accumulation, obesity, and insulin resistance and to determine whether its mechanism of action involves PPARα. Administration of ALS-L1023 to high-fat-diet-induced obese mice caused reductions in body weight gain, visceral fat mass, and visceral adipocyte size without changes of food consumption profiles. ALS-L1023 improved hyperglycemia, hyperinsulinemia, glucose and insulin tolerance, and normalized insulin-positive β-cell area in obese mice. ALS-L1023 decreased hepatic lipid accumulation and concomitantly increased the expression of PPARα target genes responsible for fatty acid β-oxidation in livers. In accordance with the in vivo data, ALS-L1023 reduced lipid accumulation and stimulated PPARα reporter gene expression in HepG2 cells. These effects of ALS-L1023 were comparable to those of the PPARα ligand fenofibrate, while the PPARα antagonist GW6471 inhibited the actions of ALS-L1023 on lipid accumulation and PPARα luciferase activity in HepG2 cells. Higher phosphorylated protein kinase B (pAkt)/Akt ratios and lower expression of gluconeogenesis genes were observed in the livers of ALS-L1023-treated mice. These results indicate that ALS-L1023 may inhibit obesity and improve insulin sensitivity in part through inhibition of hepatic lipid accumulation via hepatic PPARα activation.
Collapse
Affiliation(s)
- Dongju Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Yujin Shin
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Busan 50612, Korea;
| | - Jiwon Ahn
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Sunhyo Jeoong
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| | - Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea; (D.L.); (Y.S.); (S.J.)
| |
Collapse
|