1
|
Huang Q, Ying J, Yu W, Dong Y, Xiong H, Zhang Y, Liu J, Wang X, Hua F. P2X7 Receptor: an Emerging Target in Alzheimer's Disease. Mol Neurobiol 2024; 61:2866-2880. [PMID: 37940779 PMCID: PMC11043177 DOI: 10.1007/s12035-023-03699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) is a major cause of age-related dementia, which is becoming a global health crisis. However, the pathogenesis and etiology of AD are still not fully understood. And there are no valid treatment methods or precise diagnostic tools for AD. There is increasing evidence that P2X7R expression is upregulated in AD and is involved in multiple related pathological processes such as Aβ plaques, neurogenic fiber tangles, oxidative stress, and chronic neuroinflammation. This suggests that P2X7R may be a key player in the development of AD. P2X7R is a member of the ligand-gated purinergic receptor (P2X) family. It has received attention in neuroscience due to its role in a wide range of aging and age-related neurological disorders. In this review, we summarize current information on the roles of P2X7R in AD and suggest potential pharmacological interventions to slow down AD progression.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wen Yu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yao Dong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Hao Xiong
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yiping Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Jie Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, 17# Yongwai Road, Nanchang, 330006, Jiangxi, China.
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, China.
- Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006, Nanchang City, Jiangxi Province, People's Republic of China.
| |
Collapse
|
2
|
Zhang HL, Doblin S, Zhang ZW, Song ZJ, Dinesh B, Tabana Y, Saad DS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Wu S, Zhao R, Khaled B. Elucidating the molecular basis of ATP-induced cell death in breast cancer: Construction of a robust prognostic model. World J Clin Oncol 2024; 15:208-242. [PMID: 38455130 PMCID: PMC10915939 DOI: 10.5306/wjco.v15.i2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Sandai Doblin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Babu Dinesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Dahham Sabbar Saad
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Sen Wu
- Department of Biomedical Science, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Barakat Khaled
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
3
|
Zhang HL, Sandai D, Zhang ZW, Song ZJ, Babu D, Tabana Y, Dahham SS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Zhao R, Barakat K, Harun MSR, Shapudin SNM, Lok B. Adenosine triphosphate induced cell death: Mechanisms and implications in cancer biology and therapy. World J Clin Oncol 2023; 14:549-569. [PMID: 38179405 PMCID: PMC10762532 DOI: 10.5306/wjco.v14.i12.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
Adenosine triphosphate (ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer. This is achieved by elucidating the dynamic interplay between systemic and cellular ATP homeostasis, deciphering the intricate mechanisms governing AICD, elucidating its intricate involvement in cancer signaling pathways, and scrutinizing validated key genes. Moreover, the exploration of AICD as a potential avenue for cancer treatment underscores its essential role in shaping the future landscape of cancer therapeutics.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Sabbar Saad Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Mohammad Syamsul Reza Harun
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Siti Nurfatimah Mohd Shapudin
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| |
Collapse
|
4
|
Magalhães HIR, Machado FA, Souza RF, Caetano MAF, Figliuolo VR, Coutinho-Silva R, Castelucci P. Study of the roles of caspase-3 and nuclear factor kappa B in myenteric neurons in a P2X7 receptor knockout mouse model of ulcerative colitis. World J Gastroenterol 2023; 29:3440-3468. [PMID: 37389242 PMCID: PMC10303518 DOI: 10.3748/wjg.v29.i22.3440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.
Collapse
Affiliation(s)
| | | | | | | | - Vanessa Ribeiro Figliuolo
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | |
Collapse
|
5
|
Corrigendum: Purinergic signaling systems across comparative models of spinal cord injury. Neural Regen Res 2022; 18:689-696. [PMID: 36018196 PMCID: PMC9727416 DOI: 10.4103/1673-5374.350234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
[This corrects the article DOI: 10.4103/1673-5374.338993].
Collapse
|
6
|
Hua SQ, Hu JL, Zou FL, Liu JP, Luo HL, Hu DX, Wu LD, Zhang WJ. P2X7 receptor in inflammation and pain. Brain Res Bull 2022; 187:199-209. [PMID: 35850190 DOI: 10.1016/j.brainresbull.2022.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Different studies have confirmed P2X7 receptor-mediated inflammatory mediators play a key role in the development of pain. P2X7 receptor activation can induce the development of pain by mediating the release of inflammatory mediators. In view of the fact that P2X7 receptor is expressed in the nervous system and immune system, it is closely related to the stability and maintenance of the nervous system function. ATP activates P2X7 receptor, opens non-selective cation channels, activates multiple intracellular signaling, releases multiple inflammatory cytokines, and induces pain. At present, the role of P2X7 receptor in inflammatory response and pain has been widely recognized and affirmed. Therefore, in this paper, we discussed the pathological mechanism of P2X7 receptor-mediated inflammation and pain, focused on the internal relationship between P2X7 receptor and pain. Moreover, we also described the effects of some antagonists on pain relief by inhibiting the activities of P2X7 receptor. Thus, targeting to inhibit activation of P2X7 receptor is expected to become another potential target for the relief of pain.
Collapse
Affiliation(s)
- Shi-Qi Hua
- Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Jia-Ling Hu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Fei-Long Zou
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Li-Dong Wu
- Emergency Department, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City 343000, Jiangxi Province, China.
| |
Collapse
|
7
|
Seizures in PPT1 Knock-In Mice Are Associated with Inflammatory Activation of Microglia. Int J Mol Sci 2022; 23:ijms23105586. [PMID: 35628400 PMCID: PMC9144763 DOI: 10.3390/ijms23105586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL), the most severe form of neuronal ceroid lipofuscinoses, is caused by mutations in the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). Typical symptoms of this disease include progressive psychomotor developmental retardation, visual failure, seizures, and premature death. Here, we investigated seizure activity and relevant pathological changes in PPT1 knock-in mice (PPT1 KI). The behavior studies in this study demonstrated that PPT1 KI mice had no significant seizure activity until 7 months of age, and local field potentials also displayed epileptiform activity at the same age. The expression levels of Iba-1 and CD68 demonstrated, by Western blot analysis, the inflammatory cytokine TNF-α content measured with enzyme-linked immunosorbent assay, and the number of microglia demonstrated by immunohistochemistry (IHC) were significantly increased at age of 7 months, all of which indicate microglia activation at an age of seizure onset. The increased expression of GFAP were seen at an earlier age of 4 months, and such an increase reached its peak at age of 6 months, indicating that astrocyte activation precedes microglia. The purinergic P2X7 receptor (P2X7R) is an ATP-sensitive ionic channel that is highly expressed in microglia and is fundamental to microglial activation, proliferation, cytokines release and epilepsy. We show that the ATP concentration in hippocampal tissue in PPT1 KI mice was increased using an enhanced ATP assay kit and demonstrated that the antagonist of P2X7R, A-438079, significantly reduced seizures in PPT1 KI mice. In contrast to glial cell activation and proliferation, a significant reduction in synaptic proteins GABAAR was seen in PPT1 KI mice. These results indicate that seizure in PPT1 KI mice may be associated with microglial activation involved in ATP-sensitive P2X7R signaling and impaired inhibitory neurotransmission.
Collapse
|
8
|
Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol 2021; 27:7909-7924. [PMID: 35046620 PMCID: PMC8678817 DOI: 10.3748/wjg.v27.i46.7909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system (ENS) consists of thousands of small ganglia arranged in the submucosal and myenteric plexuses, which can be negatively affected by Crohn's disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs are complex and multifactorial disorders characterized by chronic and recurrent inflammation of the intestine, and the symptoms of IBDs may include abdominal pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a promising therapeutic target for IBDs, especially owing to its wide expression and, in the case of other purinergic receptors, in both human and model animal enteric cells. However, little is known about the actual involvement between the activation of the P2X7 receptor and the cascade of subsequent events and how all these activities associated with chemical signals interfere with the functionality of the affected or treated intestine. In this review, an integrated view is provided, correlating the structural organization of the ENS and the effects of IBDs, focusing on cellular constituents and how therapeutic approaches through the P2X7 receptor can assist in both protection from damage and tissue preservation.
Collapse
Affiliation(s)
| | - Patricia Castelucci
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 08000-000, Brazil
| |
Collapse
|
9
|
Biswas D, Ambalavanan P, Ravins M, Anand A, Sharma A, Lim KXZ, Tan RYM, Lim HY, Sol A, Bachrach G, Angeli V, Hanski E. LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection. Cell Rep 2021; 34:108766. [PMID: 33657368 DOI: 10.1016/j.celrep.2021.108766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Group A Streptococcus (GAS) causes diverse human diseases, including life-threatening soft-tissue infections. It is accepted that the human antimicrobial peptide LL-37 protects the host by killing GAS. Here, we show that GAS extracellular protease ScpC N-terminally cleaves LL-37 into two fragments of 8 and 29 amino acids, preserving its bactericidal activity. At sub-bactericidal concentrations, the cleavage inhibits LL-37-mediated neutrophil chemotaxis, shortens neutrophil lifespan, and eliminates P2X7 and EGF receptors' activation. Mutations at the LL-37 cleavage site protect the peptide from ScpC-mediated splitting, maintaining all its functions. The mouse LL-37 ortholog CRAMP is neither cleaved by ScpC nor does it activate P2X7 or EGF receptors. Treating wild-type or CRAMP-null mice with sub-bactericidal concentrations of the non-cleavable LL-37 analogs promotes GAS clearance that is abolished by the administration of either P2X7 or EGF receptor antagonists. We demonstrate that LL-37-mediated activation of host receptors is critical for defense against GAS soft-tissue infections.
Collapse
Affiliation(s)
- Debabrata Biswas
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| | - Poornima Ambalavanan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | - Kimberly Xuan Zhen Lim
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Rachel Ying Min Tan
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Asaf Sol
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Veronique Angeli
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Immunology, National University of Singapore, LSI Immunology Programme, National University of Singapore, Singapore, Singapore
| | - Emanuel Hanski
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore; Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel.
| |
Collapse
|
10
|
Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Sci Rep 2020; 10:19876. [PMID: 33199725 PMCID: PMC7669894 DOI: 10.1038/s41598-020-76428-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
The ATP-gated P2X7 receptor is highly expressed in microglia and has been involved in diverse brain diseases. P2X7 effects were also described in neurons and astrocytes but its localisation and function in these cell types has been challenging to demonstrate in situ. BAC transgenic mouse lines have greatly advanced neuroscience research and two BAC-transgenic P2X7 reporter mouse models exist in which either a soluble EGFP (sEGFP) or an EGFP-tagged P2X7 receptor (P2X7-EGFP) is expressed under the control of a BAC-derived P2rx7 promoter. Here we evaluate both mouse models and find striking differences in both P2X expression levels and EGFP reporter expression patterns. Most remarkably, the sEGFP model overexpresses a P2X4 passenger gene and sEGFP shows clear neuronal localisation but appears to be absent in microglia. Preliminary functional analysis in a status epilepticus model suggests functional consequences of the observed P2X receptor overexpression. In summary, an aberrant EGFP reporter pattern and possible effects of P2X4 and/or P2X7 protein overexpression need to be considered when working with this model. We further discuss reasons for the observed differences and possible caveats in BAC transgenic approaches.
Collapse
|
11
|
Wilkaniec A, Cieślik M, Murawska E, Babiec L, Gąssowska-Dobrowolska M, Pałasz E, Jęśko H, Adamczyk A. P2X7 Receptor is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21113959. [PMID: 32486485 PMCID: PMC7312811 DOI: 10.3390/ijms21113959] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The purinergic P2X7 receptor (P2X7R) belongs to a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). Several studies have pointed to a role of P2X7R-dependent signalling in Parkinson's disease (PD)-related neurodegeneration. The pathology of (PD) is characterized by the formation of insoluble alpha-synuclein (α-Syn) aggregates—Lewy bodies, but the mechanisms underlying α-Syn-induced dopaminergic cell death are still partially unclear. Our previous studies indicate that extracellular α-Syn directly interact with neuronal P2X7R and induces intracellular free calcium mobilization in neuronal cells. The main objective of this study was to examine the involvement of P2X7R receptor in α-Syn-induced mitochondrial dysfunction and cell death. We found that P2X7R stimulation is responsible for α-Syn-induced oxidative stress and activation of the molecular pathways of programmed cell death. Exogenous α-Syn treatment led to P2X7R-dependent decrease in mitochondrial membrane potential as well as elevation of mitochondrial ROS production resulting in breakdown of cellular energy production. Moreover, P2X7R-dependent deregulation of AMP-activated protein kinase as well as decrease in parkin protein level could be responsible for α-Syn-induced mitophagy impairment and accumulation of dysfunctional mitochondria. P2X7R might be putative pharmacological targets in molecular mechanism of extracellular α-Syn toxicity.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
- Correspondence: ; Tel.: +48-22-608-66-00; Fax: +48-22-608-64-13
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Emilia Murawska
- Department of Applied Microbiology, Institute of Microbiology, Warsaw University, Miecznikowa 1 Street, 02-096 Warsaw, Poland;
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Ewelina Pałasz
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (L.B.); (M.G.-D.); (E.P.); (H.J.); (A.A.)
| |
Collapse
|
12
|
Zhang WJ, Zhu ZM, Liu ZX. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull 2020; 155:19-28. [PMID: 31778766 DOI: 10.1016/j.brainresbull.2019.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Neuropathic Pain (NPP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. Clinically, drugs are usually used to suppress pain, such as (lidocaine, morphine, etc.), but the effect is short-lived, poor analgesia, and there are certain dependence and side effects. Therefore, the investigation of the treatment of NPP has become an urgent problem in medical, attracting a lot of research attention. P2X7 is dependent on Adenosine triphosphate (ATP) ion channel receptors and has dual functions for the development of nerve damage and pain. In this review, we explored the link between the P2X7 receptor (P2X7R) and NPP, providing insight into the P2X7R and NPP, discussing the pathological mechanism of P2 X7R in NPP and the biological characteristics of P2X7R antagonist inhibiting its over-expression for the targeted therapy of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China; Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zheng-Ming Zhu
- The Second Affiliate Hospital. Nanchang University, Nanchang City. Jiangxi Province, China.
| | - Zeng-Xu Liu
- Basic Medical School, Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
13
|
Carmo M, Gonçalves FQ, Canas PM, Oses JP, Fernandes FD, Duarte FV, Palmeira CM, Tomé AR, Agostinho P, Andrade GM, Cunha RA. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A 2A receptor over-activation in a rat model of Parkinson's disease. Br J Pharmacol 2019; 176:3666-3680. [PMID: 31220343 DOI: 10.1111/bph.14771] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 05/01/2019] [Accepted: 06/01/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease (PD) involves an initial loss of striatal dopamine terminals evolving into degeneration of dopamine neurons in substantia nigra (SN), which can be modelled by 6-hydroxydopamine (6-OHDA) administration. Adenosine A2A receptor blockade attenuates PD features in animal models, but the source of the adenosine causing A2A receptor over-activation is unknown. As ATP is a stress signal, we have tested if extracellular catabolism of adenine nucleotides into adenosine (through ecto-5'-nucleotidase or CD73) leads to A2A receptor over-activation in PD. EXPERIMENTAL APPROACH Effects of blocking CD73 with α,β-methylene ADP (AOPCP) were assayed in 6-OHDA-treated rats and dopamine-differentiated neuroblastoma SH-SY5Y cells. KEY RESULTS 6-OHDA increased ATP release and extracellular conversion into adenosine through CD73 up-regulation in SH-SY5Y cells. Removing extracellular adenosine with adenosine deaminase, blocking CD73 with AOPCP, or blocking A2A receptors with SCH58261 were equi-effective in preventing 6-OHDA-induced damage in SH-SY5Y cells. In vivo striatal exposure to 6-OHDA increased ATP release and extracellular formation of adenosine from adenosine nucleotides and up-regulated CD73 and A2A receptors in striatal synaptosomes. Intracerebroventricular administration of AOPCP phenocopied effects of SCH58261, attenuating 6-OHDA-induced (a) increase of contralateral rotations after apomorphine, (b) reduction of dopamine content in striatum and SN, (c) loss of TH staining in striatum and SN, (d) motor dysfunction in the cylinder test, and (e) short-term memory impairment in the object recognition test. CONCLUSION AND IMPLICATIONS Our data indicate that increased ATP-derived adenosine formation is responsible for A2A receptor over-activation in PD, suggesting CD73 as a new target to manage PD.
Collapse
Affiliation(s)
- Marta Carmo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jean-Pierre Oses
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco D Fernandes
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Geanne M Andrade
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Furuta T, Ohishi A, Nagasawa K. Intracellular labile zinc is a determinant of vulnerability of cultured astrocytes to oxidative stress. Neurosci Lett 2019; 707:134315. [PMID: 31185281 DOI: 10.1016/j.neulet.2019.134315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023]
Abstract
Recently, we found that treatment of cultured mouse astrocytes of ddY-strain mice (ddY-astrocytes) with 400 μM H2O2 for 24 h increased the intracellular labile zinc level without cell toxicity. In contrast, 170 μM H2O2 for 12 h is reported to kill mouse astrocytes obtained from C57BL/6-strain mice (C57BL/6-astrocytes) with an increase in intracellular labile zinc. To clarify this discrepancy, we compared the intracellular zinc levels and cell toxicity in H2O2-treated ddY- and C57BL/6-astrocytes. Exposure of C57BL/6-astrocytes to 170 or 400 μM H2O2 for 12 h dose-dependently decreased the cell viability and administration of plasma membrane-permeable zinc chelator TPEN prevented the 170 μM H2O2-induced astrocyte death, while neither concentration of H2O2 killed ddY-astrocytes. The intracellular zinc level in H2O2-treated C57BL/6-astrocytes was higher than that in H2O2-treated ddY-astrocytes, and this increase was suppressed by TPEN. There was no apparent difference in the expression levels of zinc transporters ZIPs and ZnTs between the two types of astrocytes, while expression of zinc releasable channel TRPM7 was found on the plasma membrane in ddY-astrocytes, but not in C57BL/6-astrocytes, although the total cellular expression levels were almost the same. In addition, a TRPM7 blocker, 2-aminoethoxydiphenyl borate, increased the intracellular zinc level in H2O2-treated ddY-, but not C57BL/6-astrocytes. Collectively, it is suggested that vulnerability of astrocytes to oxidative stress depends on an increased level of intracellular labile zinc, and TRPM7 localized on the plasma membrane contributes, at least in part, to ameliorate the cell injury by decreasing the zinc level.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan.
| |
Collapse
|
15
|
Zhang CM, Huang X, Lu HL, Meng XM, Song NN, Chen L, Kim YC, Chen J, Xu WX. Diabetes-induced damage of gastric nitric oxide neurons mediated by P2X7R in diabetic mice. Eur J Pharmacol 2019; 851:151-160. [PMID: 30796903 DOI: 10.1016/j.ejphar.2019.02.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 02/03/2023]
Abstract
It is generally considered that enteric neuropathy is one of the causative factors in diabetic gastroparesis. Our previous study demonstrated that there is a loss of NOS neurons in diabetic mice. However, the underlying mechanism remains unclear. The present study was designed to clarify the relationship between neuronal P2X7R and NOS neuron damage. The effect of P2X7R on diabetes-induced gastric NOS neurons damage and its mechanism were investigated by using quantitative RT-PCR,immunofluorescence, western blot, isometric force recording, intracellular calcium ([Ca2+]i) measurement and whole-cell patch clamp techniques. The immunohistochemistry and western blot results showed that nNOS expression was significantly down-regulated in diabetic mice, meanwhile, electric field stimulation-induced NOS sensitive relaxation was significantly suppressed. Myenteric neurons expressed P2X7R and pannexin1, and the mRNA and protein level of P2X7R and pannexin1 were up-regulated in diabetic mice. BzATP, a P2X7R activator, evoked [Ca2+]i increase in Hek293 cells with heterologous expression of P2X7R (Hek293-P2X7R cells) and the same dose of ATP-induced [Ca2+]i was more obvious in Hek293-P2X7R cells than in Hek293 cells. Application of BzATP activated an inward current of Hek293-P2X7R in a dose dependent manner. Hek293-P2X7R but not untransfected Hek293 cells could take up of YO-PRO-1. In addition, the uptake of YO-PRO-1 by Hek293-P2X7R was blocked by oxATP, a P2X7 antagonist and CBX, a pannexin1 inhibitor. The results suggest that the P2X7R of enteric neurons may be involved in diabetes-induced NOS neuron damage via combining with pannexin-1 to form transmembrane pores which induce macromolecular substances and calcium into the cells.
Collapse
Affiliation(s)
- Chun-Mei Zhang
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, 1665 Kong Jiang Road, 200092 Shanghai, India; Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Xu Huang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Hong-Li Lu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Xiang-Min Meng
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Ni-Na Song
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Lu Chen
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China
| | - Young-Chul Kim
- Department of Physiology, Chungbuk National University College of Medicine, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jie Chen
- Department of Pediatric Surgery, Xin Hua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, 1665 Kong Jiang Road, 200092 Shanghai, India.
| | - Wen-Xie Xu
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
16
|
Leeson HC, Chan-Ling T, Lovelace MD, Brownlie JC, Gu BJ, Weible MW. P2X7 receptor signaling during adult hippocampal neurogenesis. Neural Regen Res 2019; 14:1684-1694. [PMID: 31169175 PMCID: PMC6585562 DOI: 10.4103/1673-5374.257510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis is a persistent and essential feature of the adult mammalian hippocampus. Granular neurons generated from resident pools of stem or progenitor cells provide a mechanism for the formation and consolidation of new memories. Regulation of hippocampal neurogenesis is complex and multifaceted, and numerous signaling pathways converge to modulate cell proliferation, apoptosis, and clearance of cellular debris, as well as synaptic integration of newborn immature neurons. The expression of functional P2X7 receptors in the central nervous system has attracted much interest and the regulatory role of this purinergic receptor during adult neurogenesis has only recently begun to be explored. P2X7 receptors are exceptionally versatile: in their canonical role they act as adenosine triphosphate-gated calcium channels and facilitate calcium-signaling cascades exerting control over the cell via calcium-encoded sensory proteins and transcription factor activation. P2X7 also mediates transmembrane pore formation to regulate cytokine release and facilitate extracellular communication, and when persistently stimulated by high extracellular adenosine triphosphate levels large P2X7 pores form, which induce apoptotic cell death through cytosolic ion dysregulation. Lastly, as a scavenger receptor P2X7 directly facilitates phagocytosis of the cellular debris that arises during neurogenesis, as well as during some disease states. Understanding how P2X7 receptors regulate the physiology of stem and progenitor cells in the adult hippocampus is an important step towards developing useful therapeutic models for regenerative medicine. This review considers the relevant aspects of adult hippocampal neurogenesis and explores how P2X7 receptor activity may influence the molecular physiology of the hippocampus, and neural stem and progenitor cells.
Collapse
Affiliation(s)
- Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Tailoi Chan-Ling
- Discipline of Anatomy and Histology, School of Medical Science; Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael D Lovelace
- Discipline of Anatomy and Histology, School of Medical Science, The University of Sydney; Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research; Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Weible
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland; Bosch Institute, The University of Sydney, Sydney, New South Wales; School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci Rep 2018; 8:13472. [PMID: 30194439 PMCID: PMC6128851 DOI: 10.1038/s41598-018-31534-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
L-Lactate is a positive modulator of NMDAR-mediated signaling resulting in plasticity gene induction and memory consolidation. However, L-Lactate is also able to protect neurons against excito-toxic NMDAR activity, an indication of a mitigating action of L-Lactate on NMDA signaling. In this study, we provide experimental evidence that resolves this apparent paradox. Transient co-application of glutamate/glycine (1 μM/100 μM; 2 min) in primary cultures of mouse cortical neurons triggers a NMDA-dependent Ca2+ signal positively modulated by L-Lactate (10 mM) or DTT (1 mM) but decreased by Pyruvate (10 mM). This L-Lactate and DTT-induced potentiation is blocked by Ifenprodil (2 μM), a specific blocker of NMDARs containing NR2B sub-units. In contrast, co-application of glutamate/glycine (1 mM/100 μM; 2 min) elicits a NMDAR-dependent excitotoxic death in 49% of neurons. L-Lactate and Pyruvate significantly reduce this rate of cell death processes (respectively to 23% and 9%) while DTT has no effect (54% of neuronal death). This L-Lactate-induced neuroprotection is blocked by carbenoxolone and glibenclamide, respectively blockers of pannexins and KATP. In conclusion, our results show that L-Lactate is involved in two distinct and independent pathways defined as NMDAR-mediated potentiation pathway (or NADH pathway) and a neuroprotective pathway (or Pyruvate/ATP pathway), the prevalence of each one depending on the strength of the glutamatergic stimulus.
Collapse
|
19
|
Kaczmarek-Hajek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, Bruzzone S, Engel T, Jooss T, Krautloher A, Schuster S, Magnus T, Stadelmann C, Sirko S, Koch-Nolte F, Eulenburg V, Nicke A. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. eLife 2018; 7:36217. [PMID: 30074479 PMCID: PMC6140716 DOI: 10.7554/elife.36217] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
The P2X7 channel is involved in the pathogenesis of various CNS diseases. An increasing number of studies suggest its presence in neurons where its putative functions remain controversial for more than a decade. To resolve this issue and to provide a model for analysis of P2X7 functions, we generated P2X7 BAC transgenic mice that allow visualization of functional EGFP-tagged P2X7 receptors in vivo. Extensive characterization of these mice revealed dominant P2X7-EGFP protein expression in microglia, Bergmann glia, and oligodendrocytes, but not in neurons. These findings were further validated by microglia- and oligodendrocyte-specific P2X7 deletion and a novel P2X7-specific nanobody. In addition to the first quantitative analysis of P2X7 protein expression in the CNS, we show potential consequences of its overexpression in ischemic retina and post-traumatic cerebral cortex grey matter. This novel mouse model overcomes previous limitations in P2X7 research and will help to determine its physiological roles and contribution to diseases. The human body relies on a molecule called ATP as an energy source and as a messenger. When cells die, for example if they are damaged or because of inflammation, they release large amounts of ATP into their environment. Their neighbors can detect the outpouring of ATP through specific receptors, the proteins that sit at the cell’s surface and can bind external agents. Scientists believe that one of these ATP-binding receptors, P2X7, responds to high levels of ATP by triggering a cascade of reactions that results in inflammation and cell death. P2X7 also seems to play a role in several brain diseases such as epilepsia and Alzheimer’s, but the exact mechanisms are not known. In particular, how this receptor is involved in the death of neurons is unclear, and researchers still debate whether P2X7 is present in neurons and in other types of brain cells. To answer this, Kaczmarek-Hájek, Zhang, Kopp et al. created genetically modified mice in which the P2X7 receptors carry a fluorescent dye. Powerful microscopes can pick up the light signal from the dye and help to reveal which cells have the receptors. These experiments show that neurons do not carry the protein; instead, P2X7 is present in certain brain cells that keep the neurons healthy. For example, it is found in the immune cells that ‘clean up’ the organ, and the cells that support and insulate neurons. Kaczmarek-Hájek et al. further provide preliminary data suggesting that, under certain conditions, if too many P2X7 receptors are present in these cells neuronal damage might be increased. It is therefore possible that the brain cells that carry P2X7 indirectly contribute to the death of neurons when large amounts of ATP are released. The genetically engineered mouse designed for the experiments could be used in further studies to dissect the role that P2X7 plays in diseases of the nervous system. In particular, this mouse model might help to understand whether the receptor could become a drug target for neurodegenerative conditions.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hajek
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jiong Zhang
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robin Kopp
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Antje Grosche
- Institute for Human Genetics, University of Regensburg, Regensburg, Germany.,Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany
| | - Björn Rissiek
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Santina Bruzzone
- Department of Experimental Medicine and CEBR, University of Genova, Genova, Italy
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tina Jooss
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Schuster
- Institute of Biochemistry, University Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Magnus
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Swetlana Sirko
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, University Erlangen-Nürnberg, Erlangen, Germany.,Department of Anaesthesiology and Intensive Care Therapy, University of Leipzig, Leipzig, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
20
|
Xia M, Li X, Yang L, Ren J, Sun G, Qi S, Verkhratsky A, Li B. The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J Neurochem 2017; 146:63-75. [PMID: 29222907 DOI: 10.1111/jnc.14272] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD) can trigger neuroinflammation in the brain. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome is reported to be relevant to the neuroinflammation induced by SD, but the regulatory signaling that governs the NLRP3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD. The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP3 inflammasomes and the maturation of IL-1β/18 via suppressing the phosphorylation of STAT3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK-3β, which inhibited the phosphorylation of STAT3; (iii) the NLRP3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT3 could significantly abolish the expression of NLRP3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP3 inflammasome expression and function by SD through elevating the activation of STAT3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD.
Collapse
Affiliation(s)
- Maosheng Xia
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Xiaowei Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Li Yang
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Guangfeng Sun
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Shuang Qi
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Purinergic P2X7 receptor functional genetic polymorphisms are associated with the susceptibility to obesity in Chinese postmenopausal women. Menopause 2017; 25:329-335. [PMID: 29088017 DOI: 10.1097/gme.0000000000000991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE We conducted a case-control study to investigate the associations of functional single-nucleotide polymorphisms in the purinergic P2X7 receptor (P2X7R) gene (rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143) with obesity and overweight in a population of Chinese postmenopausal women. METHODS Our study included 180 obese women, 179 overweight women, and 204 controls. All participants were genotyped at the P2X7R rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143 loci via allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism procedures. The relationships between P2X7R genetic polymorphisms and their associated haplotypes with obesity (body mass index [BMI] ≥30 kg/m] and overweight (25 kg/m ≤ BMI < 30 kg/m) were evaluated. RESULTS Our results showed that P2X7R rs2230911G and rs1718119A were associated with an increased risk of obesity; in particular, both carriers of the rs2230911G allele and GG/(CG + GG) genotypes (G vs C, P < 0.001, odds ratio [OR] 2.87, 95% confidence interval [CI] 1.98-4.16; GG vs CC, P < 0.001, OR 8.76, 95% CI 3.29-23.35; CG + GG vs CC, P < 0.001, OR 2.54, 95% CI 1.63-3.95) and carriers of the rs17181191A allele and GA/(GA + AA) genotypes (A vs G, P < 0.001, OR 2.97, 95% CI 1.86-4.74; GA vs GG, P = 0.001, OR 2.72, 95% CI 1.55-4.79; GA + AA vs GG, P < 0.001, OR 3.05, 95% CI 1.79-5.19) were at a higher risk of obesity. No association with obesity or overweight was observed for the other three P2X7R polymorphisms (rs2393799, rs7958311, and rs3751143). Haplotype analysis indicated that P2X7R rs1718119A-rs2230911G-rs3751143C appeared to be a significant risk haplotype with obesity (P = 0.0005, OR 2.37, 95% CI 1.45-3.90). CONCLUSIONS P2X7R functional genetic polymorphisms and their estimated haplotypes are associated with obesity in Chinese postmenopausal women.
Collapse
|
22
|
Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J Neurosci 2017; 37:7063-7072. [PMID: 28747389 DOI: 10.1523/jneurosci.3104-16.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The proposed presence of P2X7 receptor (P2X7R) in neurons has been the source of some contention. Initial studies suggested an absence of P2X7R mRNA in neurons, and the apparent nonspecificity of the antibodies used to identify P2X7R raised further doubts. However, subsequent studies using new pharmacological and biomolecular tools provided conclusive evidence supporting the existence of functional P2X7Rs in neurons. The P2X7 receptor has since been shown to play a leading role in multiple aspects of neuronal physiology, including axonal elongation and branching and neurotransmitter release. P2X7R has also been implicated in neuronal pathologies, in which it may influence neuronal survival. Together, this body of research suggests that P2X7R may constitute an important therapeutic target for a variety of neurological disorders.
Collapse
|
23
|
Neuronal P2X7 receptor-induced reactive oxygen species production contributes to nociceptive behavior in mice. Sci Rep 2017; 7:3539. [PMID: 28615626 PMCID: PMC5471238 DOI: 10.1038/s41598-017-03813-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/03/2017] [Indexed: 11/27/2022] Open
Abstract
ATP can activate a variety of pathways through P2 purinoreceptors, leading to neuroprotection and pathology in the CNS. Among all P2X receptors, the P2X7 receptor (P2X7R) is a well-defined therapeutic target for inflammatory and neuropathic pain. Activation of P2X7R can generate reactive oxygen species (ROS) in macrophages and microglia. However, the role of ROS in P2X7R–induced pain remains unexplored. Here, we investigated the downstream effects of neuronal P2X7R activation in the spinal cord. We found that ATP induces ROS production in spinal cord dorsal horn neurons, an effect eliminated by ROS scavenger N-tert-butyl-α-phenylnitrone (PBN) and P2X7R antagonist A438079. A similar effect was observed with a P2X7R agonist, BzATP, and was attenuated by a NADPH oxidase inhibitor apocynin. Intrathecal administration of BzATP resulted in ROS production in the spinal cord and oxidative DNA damage in dorsal horn neurons. BzATP also induced robust biphasic spontaneous nociceptive behavior. Pre-treatment with A438079 abolished all BzATP-induced nociceptive behaviors, while ROS scavengers dose-dependently attenuated the secondary response. Here, we provide evidence that neuronal P2X7R activation leads to ROS production and subsequent nociceptive pain in mice. Together, the data indicate that P2X7R-induced ROS play a critical role in the P2X7R signaling pathway of the CNS.
Collapse
|
24
|
Fujiwara M, Ohbori K, Ohishi A, Nishida K, Uozumi Y, Nagasawa K. Species Difference in Sensitivity of Human and Mouse P2X7 Receptors to Inhibitory Effects of Divalent Metal Cations. Biol Pharm Bull 2017; 40:375-380. [DOI: 10.1248/bpb.b16-00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Makiko Fujiwara
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kenshi Ohbori
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | | | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
25
|
Furuta T, Mukai A, Ohishi A, Nishida K, Nagasawa K. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity. Metallomics 2017; 9:1839-1851. [DOI: 10.1039/c7mt00257b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure of astrocytes to oxidative stress induces an increase of intracellular labile zinc and a decrease of functional expression of P2X7 receptorviaits translocation from the plasma membrane to the cytosol by altering the expression profile of P2X7 receptor and its splice variants, leading to a decrease of their engulfing activity.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Ayumi Mukai
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Akihiro Ohishi
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kentaro Nishida
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| |
Collapse
|
26
|
Engel T, Brennan GP, Sanz-Rodriguez A, Alves M, Beamer E, Watters O, Henshall DC, Jimenez-Mateos EM. A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:255-266. [PMID: 27840225 DOI: 10.1016/j.bbamcr.2016.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022]
Abstract
Cells have developed complex transcriptional regulatory mechanisms to maintain intracellular homeostasis and withstand pathophysiological stressors. Feed-forward loops comprising transcription factors that drive expression of both target gene and a microRNA as negative regulator, are gaining increasing recognition as key regulatory elements of cellular homeostasis. The ATP-gated purinergic P2X7 receptor (P2X7R) is an important driver of inflammation and has been implicated in the pathogenesis of numerous brain diseases including epilepsy. Changes in P2X7R expression have been reported in both experimental models and in epilepsy patients but the mechanism(s) controlling P2X7R levels remain incompletely understood. The specificity protein 1 (Sp1) has been shown to induce P2X7R transcription in vitro and recent data has identified microRNA-22 as a post-transcriptional repressor of P2X7R expression after seizures. In the present study we show that Sp1 can induce the transcription of both microRNA-22 and P2X7R in vitro during increased neuronal activity and in vivo in a mouse model of status epilepticus. We further show that Sp1-driven microRNA-22 transcription is calcium-sensitive and Sp1 occupancy of the microRNA-22 promoter region is blocked under conditions of seizure activity sufficient to elicit neuronal death. Taken together, our results suggest a neuronal activity-dependent P2X7R expression which is induced by the transcription factor Sp1 and repressed in a calcium-dependent manner by microRNA-22.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Gary P Brennan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
27
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
28
|
Activated Müller Cells Involved in ATP-Induced Upregulation of P2X 7 Receptor Expression and Retinal Ganglion Cell Death. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9020715. [PMID: 27738636 PMCID: PMC5050355 DOI: 10.1155/2016/9020715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/10/2016] [Accepted: 08/28/2016] [Indexed: 11/17/2022]
Abstract
P2X7 receptor (P2X7R), an ATP-gated ion channel, plays an important role in glaucomatous retinal ganglion cell (RGC) apoptotic death, in which activated retinal Müller glial cells may be involved by releasing ATP. In the present study, we investigated whether and how activated Müller cells may induce changes in P2X7R expression in RGCs by using immunohistochemistry and Western blot techniques. Intravitreal injection of DHPG, a group I metabotropic glutamate receptor (mGluR I) agonist, induced upregulation of GFAP expression, suggestive of Müller cell activation (gliosis), as we previously reported. Accompanying Müller cell activation, P2X7R protein expression was upregulated, especially in the cells of ganglion cell layer (GCL), which was reversed by coinjection of brilliant blue G (BBG), a P2X7R blocker. In addition, intravitreal injection of ATP also induced upregulation of P2X7R protein expression. Similar results were observed in cultured retinal neurons by ATP treatment. Moreover, both DHPG and ATP intravitreal injection induced a reduction in the number of fluorogold retrogradely labeled RGCs, and the DHPG effect was partially rescued by coinjection of BBG. All these results suggest that activated Müller cells may release ATP and, in turn, induce upregulation of P2X7R expression in the cells of GCL, thus contributing to RGC death.
Collapse
|