1
|
Zhu D, Wang B, Xu Z, Yan Z, Kulyar MF, Li S, Chen Y, Khateeb E, He S, Shen Y. Vitamin B 12-producing Cetobacterium: An important biomarker linked to snake hibernation. Int J Biol Macromol 2025; 306:141827. [PMID: 40057061 DOI: 10.1016/j.ijbiomac.2025.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 05/01/2025]
Abstract
Hibernation poses significant physiological challenges to the animals, making it an excellent model for investigating the impacts of extreme environment changes on animal health. This study explored the gut microbiota and host metabolism in hibernating snakes using 16S rRNA gene sequencing and untargeted metabolomics. Ten king ratsnakes were divided into active and hibernating groups, and their gut microbial compositions and serum metabolomic profiles were analyzed. Results demonstrated a significant reduction in gut microbial diversity during hibernation, with the abundance of Cetobacterium increasing dramatically from 5.57 % to 49.56 %, establishing it as the predominant genus in hibernating snakes. Metabolomic analysis revealed significant alterations in lipid and amino acid metabolism, with 69 metabolites downregulated during hibernation. Correlation analyses identified Cetobacterium as a central hub in the correction networks, influencing numerous gut microorganisms and showing a strong association with host metabolic depression. In addition to the recognized ability to produce vitamin B12 and short-chain fatty acids, this study further confirmed the robust antioxidant ability of snake-derived Cetobacterium somerae strains. These findings highlight the potential role of Cetobacterium in the physiological adaptation of snakes during hibernation and provide a foundation for exploring its applications in reptilian health management.
Collapse
Affiliation(s)
- Di Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Boya Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Zhixiang Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Ziyin Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Siyu Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Yuji Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Emaan Khateeb
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Su He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, RP, China.
| |
Collapse
|
2
|
Tang H, Fan Q, Lu Y, Lin X, Lan R, Hu D, Zhang S, Wang R, Zhao R, Liu L, Xu J. Weissella confusa alleviates experimental colitis in mice by regulating inflammatory pathways and gut microbiota. Front Microbiol 2025; 16:1574548. [PMID: 40356657 PMCID: PMC12068860 DOI: 10.3389/fmicb.2025.1574548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 05/15/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic condition with no cure. Probiotics may offer a new strategy for the treatment of IBD. Weissella confusa has been shown to have antibacterial, anti-inflammatory, and antioxidant beneficial effects in animal models. However, the anti-inflammatory effect of W. confusa at host cellular level and their effect on the gut microbiota are unclear. This study aimed to investigate the effects of W. confusa Wc1982 on inflammation and gut microbiota alterations in a dextran sulfate sodium (DSS) induced colitis mouse model. Method Female C57BL/6J mice were randomly divided into control, DSS, and Wc1982 groups (n = 6/group). The Wc1982 group was given continuous gavage of W. confusa Wc1982 for 14 days with the last 7 days also treated with 3% DSS. Disease phenotypes including daily body weight, disease activity index (DAI), colon length and histological changes were evaluated. The composition of colon flora, α-diversity and β-diversity were analyzed by 16S rRNA sequencing. The colonic gene expression profile was analyzed by RNA-seq, and serum and colonic proinflammatory cytokines were assessed by enzyme-linked immunosorbent assay. Analysis of variance (ANOVA) was used to analyze the differences among groups, and Spearman rank test was used to calculate the correlation between species relative abundance and pro-inflammatory markers. Results Compared with DSS group, W. confusa Wc1982 significantly improved the disease phenotypes of colitis mice including decreased DAI and pathological score and reduced colon shortening, decreased colonic IL-17, IL-6, and TNF-α levels and serum lipopolysaccharide (p < 0.05), and downregulated the expression of key genes of IL-17 pathway (Lcn2, Mmp3, Mmp13, Ptgs2; p < 0.05). W. confusa Wc1982 modified the gut microbiota community of colitis mice, with increased α-diversity, increased abundance of W. confusa and Akkermansia muciniphila, and decreased abundance of Enterococcus faecalis and Escherichia coli (all p < 0.05). Conclusion Supplementation with W. confusa Wc1982 offers a promising strategy for alleviating colitis.
Collapse
Affiliation(s)
- Huijing Tang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianhua Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yao Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoying Lin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Shuwei Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruoshi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiqing Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Jianguo Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Cao J, Zhang J, Wu H, Lin Y, Fang X, Yun S, Du M, Su S, Liu Y, Wang N, Bao T, Bai D, Zhao Y. Probiotic Potential of Pediococcus pentosaceus M6 Isolated from Equines and Its Alleviating Effect on DSS-Induced Colitis in Mice. Microorganisms 2025; 13:957. [PMID: 40431130 PMCID: PMC12114451 DOI: 10.3390/microorganisms13050957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
Colitis in equines has high morbidity and mortality rates, which severely affects the development of the equine-breeding industry. With the issuance of antibiotic bans, there is an urgent need for healthier and more effective alternatives. In recent years, probiotics have been widely used as microbial feed additives in animal husbandry, playing a crucial role in preventing and treating diarrhea and regulating host immune function. In this study, we isolated and screened a strain with rapid and stable acid production using bromocresol purple, litmus milk coloration tests, and acid production performance assessments. Based on morphological characteristics, physiological and biochemical properties, and 16S rDNA identification, the strain was identified as Pediococcus pentosaceus and named M6. The Pediococcus pentosaceus M6 exhibited stable growth and tolerance to high temperatures, acid and bile salt concentrations, and simulated gastrointestinal fluid environments. The M6 strain demonstrated good antibacterial effects against Escherichia coli, Staphylococcus aureus, and Salmonella. The M6 strain did not produce hemolysis zones on Columbia blood agar plates, indicating its high safety, and was found to be insensitive to 12 antibiotics, including cephalexin and neomycin. Additionally, intervention in mice with dextran sulfate sodium (DSS)-induced colitis alleviated weight loss and shortened colon length. To a certain extent, it regulated the expression of inflammatory cytokines and the gut microbiota within the body and reduced inflammatory cell infiltration and intestinal barrier damage. In summary, the isolated Pediococcus pentosaceus M6 strain exhibited excellent probiotic properties and could alleviate DSS-induced colitis in mice, suggesting its potential application value as a probiotic in animal husbandry.
Collapse
Affiliation(s)
- Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianqiang Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Wu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinlan Fang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Siqin Yun
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China;
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (J.C.); (J.Z.); (H.W.); (Y.L.); (X.F.); (S.Y.); (M.D.); (Y.L.); (N.W.); (T.B.); (D.B.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Huang F, Yang N, Zhang Q, Luo C, Wang J, Yang Y, Yue B, Chen P, Zhang X. Marine-Derived Enterococcus faecalis HY0110 as a Next-Generation Functional Food Probiotic: Comprehensive In Vitro and In Vivo Bioactivity Evaluation and Synergistic Fermentation of Periplaneta americana Extract Powder. Foods 2025; 14:1181. [PMID: 40238337 PMCID: PMC11988638 DOI: 10.3390/foods14071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in vivo, and metabolomic analyses, we demonstrated its superior antibacterial effects compared to Lactobacillus rhamnosus GG, along with significantly enhanced antioxidant and free-radical scavenging capacities. Notably, elevated acetic acid production strongly correlated with its antimicrobial efficacy (R ≥ 0.999). HY0110 also exerted antiproliferative effects on HT-29 colorectal cancer cells by attenuating β-catenin and BCL-2 expression while upregulating pro-apoptotic markers P62 and c-PARP. In a DSS-induced colitis model, HY0110 alleviated inflammation, restored gut microbial homeostasis, and enhanced deterministic processes in community assembly dynamics. Furthermore, fermenting Periplaneta americana powder with HY0110 triggered extensive metabolic remodeling, notably a 668.73-fold rise in astragaloside A, plus increases in L-Leucyl-L-Alanine, S-lactoylglutathione, and 16,16-dimethyl prostaglandin A1. These shifts diminished harmful components and amplified essential amino acids and peptides to bolster immune modulation, redox balance, and anti-inflammatory responses. This work established a transformative paradigm for utilizing marine probiotics and novel entomological substrates in functional foods, presenting strategic pathways for precision nutrition and inflammatory disease management.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Nan Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Qingqing Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Cuiling Luo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Jingheng Wang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
| | - Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China; (F.H.); (Q.Z.); (C.L.); (J.W.); (Y.Y.); (B.Y.)
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zeng Z, Gong S, Quan C, Zhou S, Kulyar MFEA, Iqbal M, Li Y, Li X, Li J. Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model. Appl Microbiol Biotechnol 2024; 108:139. [PMID: 38229401 DOI: 10.1007/s00253-023-12866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024]
Abstract
Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, Tibet, China.
| |
Collapse
|
6
|
Fernandes FG, da Costa WKA, Dos Santos Lima M, de Lima Costa IH, Magnani M, da Silva Campelo Borges G. A new plant-based probiotic from juá: Source of phenolics, fibers and antioxidant properties. Food Chem 2024; 458:140162. [PMID: 38943964 DOI: 10.1016/j.foodchem.2024.140162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The objective of this study was to evaluate the viability of juá pulp for fermentation by monoculture L. casei (Lc - 01) and L. acidophilus (La - 05) and co-culture (25 and 37 °C) for 72 h. Viable strain values (> 7 log CFU/g), pH reduction (below 3.7), fructose and glucose and increased of lactic acid showed that the pulp of juá served as a good matrix for fermentation. Catechin, epicatechin, epigallocatechin procyanidin B1, and gallic acid were the main phenolics that contributed to antioxidant activity. Fermentation by mono or co-culture increased or reduced the content of phenolics and antioxidant activity. Results showed that culture, time and temperature have effects in the fermentation of juá pulp. The co-cultivation of La - 05 + Lc - 01 contributed to improving the bioaccessibility of gallic acid (72.9%) of the jua pulp. Finding indicate juá pulp as a promising substrate to obtaining a new probiotic plant-based fermented beverage.
Collapse
Affiliation(s)
- Flávio Gomes Fernandes
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Federal Institute of Education Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, CEP, 56314-520 Petrolina, Pernambuco, Brazil
| | - Igor Henrique de Lima Costa
- Graduate Program in Food Science and Technology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
7
|
Mikshina P, Kharina M, Sungatullina A, Petrova T, Sibgatullin T, Nikitina E. Influence of flaxseed mucilage on the formation, composition, and properties of exopolysaccharides produced by different strains of lactic acid bacteria. Int J Biol Macromol 2024; 281:136092. [PMID: 39349088 DOI: 10.1016/j.ijbiomac.2024.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L. delbrueckii ssp. bulgaricus and LAB from clover silage (L. fermentum AG8, L. plantarum AG9) after growth on Man, Rogosa, and Sharpe broth (MRS) and with the addition of flaxseed mucilage (FSM) using chromatography, microscopy, and biochemical methods. We found that adding 0.4 % FSM does not drastically alter the medium's rheology but substantially increases EPS yield (by 3.1 to 3.8 times) and modifies the composition and macrostructure of EPS, as well as changes the spatial organization of LAB cells. The presence of FSM led to the production of xylose- and glucose-enriched EPS, which also contained varying proportions of fucose, rhamnose, arabinose, mannose, glycosamines, and uronic acids, depending on the strain. Most EPS had a low molecular weight (up to 32 kDa), except for EPS produced by L. fermentum AG8 in FSM-containing medium, which had molecular weight of 163 kDa. All EPS exhibited a porous microstructure and demonstrated scavenging capacity for OH- and DPPH-radicals, as well as high levels of α-glucosidase and lipase inhibitory activities, even at low concentrations (<1 g·L-1 of EPS). These characteristics make them promising for use in functional food production and medicine.
Collapse
Affiliation(s)
- Polina Mikshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia; Kazan (Volga Region) Federal University, 420008, Kremlevskaya, 18, Kazan, Russia.
| | - Maria Kharina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia; Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Alya Sungatullina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Tatyana Petrova
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| | - Timur Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Lobachevsky Str., 2/31, Kazan, Russia
| | - Elena Nikitina
- Kazan National Research Technological University, 420015, Karl Marx Str., 68, Kazan, Russia
| |
Collapse
|
8
|
Xu M, Hu M, Han J, Wang L, He Y, Kulyar MF, Zhang X, Lu Y, Mu S, Su H, Cao J, Li J. The Therapeutic Effects of Lactic Acid Bacteria Isolated from Spotted Hyena on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Nutrients 2024; 16:3682. [PMID: 39519515 PMCID: PMC11547871 DOI: 10.3390/nu16213682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic condition characterized by recurrent episodes and an unclear etiology. Given the limitations of current therapeutic options, which include suboptimal efficacy and significant side effects, there is a pressing need to explore novel treatments. Probiotics derived from diverse species have been identified as a promising approach for managing IBD, owing to their anti-inflammatory properties and their ability to regulate gut flora, among other beneficial effects. METHODS In this study, three strains of lactic acid bacteria (LAB) were isolated from the feces of the scavenger spotted hyena (Crocuta crocuta), a scavenging mammal. Based on their capability to survive within and adhere to the gastrointestinal tract, along with their profile of antibiotic resistance, a high-quality strain of Lactobacillus acidophilus (LA) was selected and demonstrated to be safe for mice. Subsequently, the therapeutic efficacy of LA was evaluated using a dextran sulfate sodium (DSS)-induced model of ulcerative colitis in mice. RESULTS The results indicated that LA restored the disease activity index and improved histopathological lesions in the model group. It also reduced inflammation and oxidative stress and significantly restored the expression of mucins and intestinal tight junction (TJ) proteins (ZO-1, Occludin). Furthermore, LA corrected the DSS-induced disruption of the intestinal flora, leading to a significant decrease in the prevalence of potentially harmful bacterial genera, such as Bacteroides, and an increase in beneficial bacterial genera, including Lactobacillus. In conclusion, Lactobacillus acidophilus LA1, isolated from spotted hyena feces, has potential as a functional supplement for alleviating symptoms of IBD and regulating intestinal flora.
Collapse
Affiliation(s)
- Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Miao Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jingbo Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Yaozhong Lu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Siyang Mu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Hang Su
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China (M.H.); (M.F.K.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| |
Collapse
|
9
|
Wang M, Ma Y, Yu G, Zeng B, Yang W, Huang C, Dong Y, Tang B, Wu Z. Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer. Biomed Pharmacother 2024; 179:117292. [PMID: 39151314 DOI: 10.1016/j.biopha.2024.117292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.
Collapse
Affiliation(s)
- Mengxia Wang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China; Academician Workstation,NingBo College of Health Sciences, NingBo, China
| | - Yan Ma
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Guodong Yu
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Bao Zeng
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Wenhao Yang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Cuihong Huang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China
| | - Yujuan Dong
- GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, China.
| | - Benqin Tang
- Dpartment of Medical Science, Shunde Polytechnic, Foshan, China.
| | - Zhengzhi Wu
- Academician Workstation,NingBo College of Health Sciences, NingBo, China; The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; Shenzhen Institute of Geriatrics, Shenzhen, China.
| |
Collapse
|
10
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Zhao N, Huang X, Liu Z, Gao Y, Teng J, Yu T, Yan F. Probiotic characterization of Bacillus smithii: Research advances, concerns, and prospective trends. Compr Rev Food Sci Food Saf 2024; 23:e13308. [PMID: 38369927 DOI: 10.1111/1541-4337.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Bacillus smithii is a thermophilic Bacillus that can be isolated from white wine, hot spring soil, high-temperature compost, and coffee grounds, with various biofunctions and wide applications. It is resistant to both gastric acid and high temperature, which makes it easier to perform probiotic effects than traditional commercial probiotics, so it can maintain good vitality during food processing and has great application prospects. This paper starts with the taxonomy and genetics and focuses on aspects, including genetic transformation, functional enzyme production, waste utilization, and application in the field of food science as a potential probiotic. According to available studies during the past 30 years, we considered that B. smithii is a novel class of microorganisms with a wide range of functional enzymes such as hydrolytic enzymes and hydrolases, as well as resistance to pathogenic bacteria. It is available in waste degradation, organic fertilizer production, the feed and chemical industries, the pharmaceutical sector, and food fortification. Moreover, B. smithii has great potentials for applications in the food industry, as it presents high resistance to the technological processes that guarantee its health benefits. It is also necessary to systematically evaluate the safety, flavor, and texture of B. smithii and explore its biological mechanism of action, which is of great value for further application in multiple fields, especially in food and medicine.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jialuo Teng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Zeng Z, Huang Z, Yue W, Nawaz S, Chen X, Liu J. Lactobacillus plantarum modulate gut microbiota and intestinal immunity in cyclophosphamide-treated mice model. Biomed Pharmacother 2023; 169:115812. [PMID: 37979376 DOI: 10.1016/j.biopha.2023.115812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
Gut microbiota (GM) contributes to the production of immune-regulatory molecules and cytokines. However, our understanding regarding intricate relationship between Lactobacillus plantarum and GM on regulation of immune function remained limited. To investigate the effect of Lactobacillus plantarum on an immunosuppressed mouse model, we employed cyclophosphamide treatment and conducted various analysis including H&E (hematoxylin-eosin staining), immunohistochemistry, 16S rRNA gene sequencing, and RT-PCR. Our results demonstrated that the administration of Lactobacillus plantarum had significant immunoenhancing effects in the immune-suppressed mice, as evidenced by the restoration of functional expression of specific immune markers in the spleen and an increase in the number of goblet cells in intestine (P < 0.05). Microbial taxonomic analysis revealed alterations in the gut microbiota composition, characterized by a decrease in the richness of Firmicutes and an increase in the proportion of Verrucomicrobia and Actinobacteria following cyclophosphamide treatment. Furthermore, cyclophosphamide treatment significantly suppressed the mRNA expression of inflammatory cytokines (P < 0.05), which were subsequently restored after administration of Lactobacillus plantarum. These observations provide valuable insights into the complex interplay between probiotics, gut microbiota, and immune system functioning.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Zonghao Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Shah Nawaz
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
13
|
Jin W, Ai H, Huang Q, Li C, He X, Jin Z, Zuo Y. Preclinical evidence of probiotics in ulcerative colitis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1187911. [PMID: 37361217 PMCID: PMC10288114 DOI: 10.3389/fphar.2023.1187911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The imbalance of gastrointestinal microbial composition has been identified as the main factor of chronic inflammatory diseases. At present, probiotics have a beneficial effect on the microbial composition of the human gastrointestinal tract, but it is still controversial and the specific mechanism is unknown. The purpose of this network meta-analysis is to compare the mechanism of different probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were searched till 16 November 2022. The SYRCLE risk bias assessment tool was used to assess the quality of the research studies. A total of 42 studies, 839 ulcerative colitis models, and 24 kinds of probiotics were finally included. The results showed that L. rhamnosus has the best effect in relieving weight loss and improving the Shannon index in the ulcerative colitis model. E. faecium has the best effect in reducing colon injury; L. reuteri has the best effect in reducing the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing the expression of tight junction protein ZO-1; and L. coryniformis has the best effect in reducing the content of serum pro-inflammatory factor TNF-α. It indicated that probiotics can improve ulcerative colitis by improving histopathological manifestations, reducing inflammatory reaction, and repairing the mucosal barrier, and different probiotics showed different effects. However, considering the limitations of this study, preclinical studies that require more large samples and high-quality and more reliable and rigorous experimental designs and reports need to be conducted in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record details, identifier CRD42022383383.
Collapse
Affiliation(s)
- Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuncai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
He Y, Xu M, Lu S, Zou W, Wang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li K. Seaweed polysaccharides treatment alleviates injury of inflammatory responses and gut barrier in LPS-induced mice. Microb Pathog 2023; 180:106159. [PMID: 37201636 DOI: 10.1016/j.micpath.2023.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using microscope and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced momentous transformation in its composition, including a significantly increased in some pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decreased in several beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharide administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.
Collapse
Affiliation(s)
- Yuanyuan He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Roy S, Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol 2023; 29:2078-2100. [PMID: 37122604 PMCID: PMC10130969 DOI: 10.3748/wjg.v29.i14.2078] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Experimental evidence supports the fact that changes in the bowel microflora due to environmental or dietary factors have been investigated as implicating factors in the etiopathogenesis of inflammatory bowel disease (IBD). The amassing knowledge that the inhabited microbiome regulates the gut physiology and immune functions in IBD, has led researchers to explore the effectiveness of prebiotics, probiotics, and synbiotics in treating IBD. This therapeutic approach focuses on restoring the dynamic balance between the microflora and host defense mechanisms in the intestinal mucosa to prevent the onset and persistence of intestinal inflammation. Numerous microbial strains and carbohydrate blends, along with their combinations have been examined in experimental colitis models and clinical trials, and the results indicated that it can be an attractive therapeutic strategy for the suppression of inflammation, remission induction, and relapse prevention in IBD with minimal side effects. Several mechanisms of action of probiotics (for e.g., Lactobacillus species, and Bifidobacterium species) have been reported such as suppression of pathogen growth by releasing certain antimicrobial mediators (lactic and hydrogen peroxide, acetic acid, and bacteriocins), immunomodulation and initiation of an immune response, enhancement of barrier activity, and suppression of human T-cell proliferation. Prebiotics such as lactulose, lactosucrose, oligofructose, and inulin have been found to induce the growth of certain types of host microflora, resulting in an enriched enteric function. These non-digestible food dietary components have been reported to exert anti-inflammatory effects by inhibiting the expression of tumor necrosis factor-α-related cytokines while augmenting interleukin-10 levels. Although pro-and prebiotics has established their efficacy in healthy subjects, a better understanding of the luminal ecosystem is required to determine which specific bacterial strain or combination of probiotics and prebiotics would prove to be the ideal treatment for IBD. Clinical trials, however, have given some conflicting results, requiring the necessity to cite the more profound clinical effect of these treatments on IBD remission and prevention. The purpose of this review article is to provide the most comprehensive and updated review on the utility of prebiotics, probiotics, and synbiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida 201313, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai 410206, Maharashtra, India
| |
Collapse
|
16
|
The Profile of Exopolysaccharides Produced by Various Lactobacillus Species from Silage during Not-Fat Milk Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) and released into fermented milk play a protective role from stress factors as well as improve emulsifying and thickening properties of the product, reduce syneresis, and increase elasticity. Here we report the relationship between the properties, composition, and microstructure of EPS produced by six different strains of lactobacilli (L. bulgaricus and five strains isolated from silage). The presence of fructose together with negative-charged uronic acid was found to play a significant role in changing the EPS properties. Thus, the increased fraction of rhamnose and arabinose and a decrease in xylose leads to compaction of the EPS, decreased porosity and increased both OH- and superoxide scavenging and Fe-chelating activities. By contrast, increased xylose and low rhamnose and arabinose apparently leads to loss of large aggregates and high DPPH activity and FRAP. The high content of glucose, however, provides the formation of large pores. The increased fructan fraction (69.9 mol%) with a high fraction of galacturonic (18.2 mol%) and glucuronic acids (6.7 mol%) apparently determines the highly porous spongy-folded EPS microstructure. Taken together, our results indicate that both the quantitative characteristics of the individual components of the fraction and the structural features of EPS are important for the antioxidant potential of fermented milk and depend on the strain used for milk fermentation, suggesting the advantage of a multicomponent starter to achieve the optimal beneficial properties of fermented milk.
Collapse
|
17
|
Ma X, Li J, Yang L, Liu H, Zhu Y, Ren H, Yu F, Liu B. Short Term Effect of Ivermectin on the Bacterial Microbiota from Fecal Samples in Chinchillas ( Chinchilla lanigera). Vet Sci 2023; 10:vetsci10020169. [PMID: 36851473 PMCID: PMC9960913 DOI: 10.3390/vetsci10020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal microbiota plays an important role in health of the host animals and the detrimental influence of pharmaceutical treatment on the fecal microbiota receives an increasing concern. The clinical use of ivermectin on chinchillas has not yet been evaluated. The purpose of our study was to assess the influence of ivermectin injection on the fecal bacterial microbiota of chinchillas. A with-in subject, before and after study was performed on 10 clinically healthy chinchillas during a 14-day period, all chinchillas received the same ivermectin treatment, and the microbiota from their fecal samples before and after administration were compared as two experimental groups. Fecal samples were collected on day 0 (before ivermectin administration) and day 14 (post ivermectin administration). Fecal bacterial microbiota was analyzed by bacterial 16S rRNA gene sequencing. No clinical abnormalities were observed post subcutaneous administration of ivermectin. No significant alteration was found in the abundance and diversity of fecal bacterial microbiota after treatment, but the dominant position of some bacterial species changed. In conclusion, ivermectin administration was associated with minimal alternations of the fecal bacterial microbiota in healthy chinchillas, and these changes had no observed negative effect on general health of chinchillas in short term.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
| | - Luo Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoqian Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiping Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Honglin Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Feng Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
- Correspondence: (F.Y.); (B.L.)
| | - Bo Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- China Agricultural University Veterinary Teaching Hospital (Beijing Zhongnongda Veterinary Hospital Co., Ltd.), Beijing 100193, China
- Correspondence: (F.Y.); (B.L.)
| |
Collapse
|
18
|
Wang W, Li X, Shi F, Zhang Z, Lv H. Study on the preparation of EGCG-γ-Cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. Int J Pharm 2022; 630:122419. [PMID: 36423710 DOI: 10.1016/j.ijpharm.2022.122419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
In this study, γ-cyclodextrins (γ-CD) and epigallocatechin-3-gallate (EGCG) were designed to form an inclusion complex (EGCG-γ-IC) for ulcerative colitis (UC) treatment. The drug-excipient combined therapeutic potential of γ-CD and EGCG was verified, when stability and compliance were also achieved. EGCG-γ-IC effectively inhibited the secretions of NO, TNF-α, and IL-6 and the intracellular ROS in RAW264.7 cells. The effectiveness of EGCG-γ-IC in treating DSS-induced acute UC in mice was observed including improving the histological conditions of the colon, reducing the levels of IL-1β, IL-6, and TNF-α in serum, and restoring MPO, GSH, and sIgA levels in intestinal tissues. Moreover, EGCG-γ-IC had a more prominent effect on regulating bacterial dysbiosis caused by DSS than EGCG and γ-CD alone. Therefore, EGCG-γ-IC designed here displayed UC treating capacity with safety in the long-term application and promised an industrial production potential due to its excellent storage stability.
Collapse
Affiliation(s)
- Weiqin Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Xuefeng Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Fanli Shi
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Jiangsu Province Academy of Traditional Chinese Medicine, 210028 Nanjing, China.
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211198 Nanjing, China.
| |
Collapse
|
19
|
Zhang Y, Feng D, Zeng Y, Zhang H, Du X, Fu Y, Wang X, Lian D, Wang R, Xiao H, Wei N, Zhai F, Liu H. Xuedan Sustained Release Pellets Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis in Rats by Targeting Gut Microbiota and MAPK Signaling Pathways. Front Pharmacol 2022; 13:833972. [PMID: 35652042 PMCID: PMC9149600 DOI: 10.3389/fphar.2022.833972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cucurbitacins have a variety of bioactivities, such as anticancer, anti-inflammatory, antidepressant-like, and antiviral effects, but their pharmacological effect in ulcerative colitis (UC) has not been reported until now. Thus, this study aims to investigate the preventive effects of Xuedan sustained release pellets (XSPs) on UC rats and the underlying mechanisms. XSPs were prepared by extracting cucurbitacins from Hemsleya. Experimental UC rats were induced by the intake of 4% dextran sulfate sodium (DSS) for a week and treated with different doses of XSP (0.95, 1.90, and 3.8 mg/kg). The body weight, colon length, disease activity index (DAI), and histological changes of colonic tissue were measured. In addition, the expressions of pro-inflammatory cytokines were detected by using the enzyme-linked immunosorbent assay. Pathways involved in the intestinal inflammation were targeted by RNA-sequencing. Moreover, the changes of gut microbial diversity and composition were analyzed by the 16SrNA analysis and the contents of short-chain fatty acids (SCFAs) were detected by GC-MS. The results revealed that XSP intervention greatly restored the weight loss and colonic shortening (p < 0.05) and reduced the raised DAI scores, myeloperoxidase, and nitric oxide activities in UC in rats (p < 0.05). XSP administration also downregulated the protein levels of pro-inflammatory factors IL-1β, IL-6, and TNF-α. Notably, it was found that XSP considerably suppressed the activation of the MAPK signaling pathway. In addition, XSP treatment improved the balance of gut microbiota that was disturbed by DSS. The beneficial bacteria Lachnospiraceae_NK4A136 group and Lactobacillus at the genus level significantly increased in the XSP group, which had decreased with the use of DSS (p < 0.05). Pathogenic bacteria including Escherichia-Shigella and Bacteroides in UC in rats were reduced by XSP intervention. Furthermore, XSP significantly elevated the production of SCFAs in UC in rats (p < 0.05). These alterations in inflammatory status were accompanied with changes in gut microbiota diversity and SCFA production. In conclusion, XSP exhibited protective effects against DSS-induced UC in rats. XSP treatment decreased inflammation via modulation of gut microbiota composition and SCFA production.
Collapse
Affiliation(s)
- Yingchun Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Dan Feng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yue Zeng
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xiaohong Du
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Yang Fu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Xinhui Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Dingyue Lian
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Ruikang Wang
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Hongyu Xiao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Ning Wei
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| | - Fuqiang Zhai
- Research Institute for New Materials and Technology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hanru Liu
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Wang N, Li J, Wang Y, Wang Y, Zhang D, Shi C, Li Y, Bergmann SM, Mo X, Yin J, Wang Q. Recombinant Lactococcus lactis Expressing Grass Carp Reovirus VP6 Induces Mucosal Immunity Against Grass Carp Reovirus Infection. Front Immunol 2022; 13:914010. [PMID: 35634331 PMCID: PMC9132009 DOI: 10.3389/fimmu.2022.914010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp haemorrhagic disease caused by grass carp reovirus II is a serious disease of the aquaculture industry and vaccination is the only effective method of GCRV protection. In this study, Lactococcus lactis was used as oral vaccine delivery to express the GCRV II VP6 protein. We evaluated the protective efficacy of the live vaccine strain to induce mucosal immune protection. After oral administration, the recombinant strains remained in the hindgut for antigen presentation and increased the survival rate 46.7% and the relative percent survival 42.9%, respectively versus control vaccination. Though L. lactis alone can induce the inflammatory response by stimulating the mucosal immune system, the recombinant L. lactis expressing VP6 greatly enhanced nonspecific immune responses via expression of immune related genes of the fish. Furthermore, both systemic and mucosal immunity was elicited following oral immunization with the recombinant strain and this strain also elicited an inflammatory response and cellular immunity to enhance the protective effect. L. lactis can therefore be utilized as a mucosal immune vector to trigger high levels of immune protection in fish at both the systemic and mucosal levels. L. lactis is a promising candidate for oral vaccine delivery.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiahao Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yajun Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
21
|
Saccharomyces cerevisiae I4 Showed Alleviating Effects on Dextran Sulfate Sodium-Induced Colitis of Balb/c Mice. Foods 2022; 11:foods11101436. [PMID: 35627006 PMCID: PMC9140780 DOI: 10.3390/foods11101436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease. The purpose of this study was to investigate the ameliorating effects of three yeast strains, Saccharomyces cerevisiae I4, Clavispora lusitaniae 30 and Pichia kudriavzevii 11, isolated from traditional fermented dairy food in Xinjiang, China, on the ulcerative colitis symptoms of Balb/c mice treated by dextran sulfate sodium (DSS). Among which, S. cerevisiae I4 had good tolerance to simulated gastrointestinal juice and strong adhesion to HT–29 cells monolayers. Furthermore, the three yeast strains were oral administered to Balb/c mice with DSS induced colitis. The weight loss, colon shortening and histological injury of colitis mice were ameliorated. Then, oral administration of S. cerevisiae I4 improved the immune state by reducing the contents of TNF–α, IL–6 and IL–1β and increasing immunoglobulin. The relative expression of intestinal barrier proteins Claudin–1, Occludin and Zonula Occludins–1 (ZO–1) of the mice enhanced, and the short chain fatty acids (SCFAs) content such as Propionic acid, Butyric acid, Isobutyric acid and Isovaleric acid in the feces of the mice increased to varying degrees, after S. cerevisiae I4 treatment compared with the model group of drinking 3% DSS water without yeast treatment. Moreover, S. cerevisiae I4 treatment lifted the proportion of beneficial bacteria such as Muribaculaceae, Lactobacillaceae and Rikenellaceae in the intestinal tract of the mice, the abundance of harmful bacteria such as Staphylococcus aureus and Turicibacter was decreased. These results suggested that S. cerevisiae I4 could alleviate DSS induced colitis in mice by enhancing intestinal barrier function and regulating intestinal flora balance.
Collapse
|
22
|
Zeng Z, Zhang J, Li Y, Li K, Gong S, Li F, Wang P, Iqbal M, Kulyar MFEA, Li J. Probiotic Potential of Bacillus licheniformis and Bacillus pumilus Isolated from Tibetan Yaks, China. Probiotics Antimicrob Proteins 2022; 14:579-594. [PMID: 35445290 DOI: 10.1007/s12602-022-09939-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 01/02/2023]
Abstract
Yak (Bos grunniens) inhabit an oxygen-deficient environment at the altitude of 3000 m on the Tibetan Plateau, with a distinctive gut micro-ecosystem. This study evaluated the probiotic potential and physiological property of Bacillus licheniformis and Bacillus pumilus isolated from the gut of yaks. Four strains, two Bacillus licheniformis (named D1 and D2) and two Bacillus pumilus (named X1 and X2), were isolated and identified by 16S rRNA sequencing. All strains had potential antibacterial ability against three indicator pathogens: Escherichia coli C83902, Staphylococcus aureus BNCC186335, and Salmonella enteritidis NTNC13349. The antioxidant activity test showed that D2 sample showed the highest antioxidant activity. Furthermore, all four strains had a higher hydrophobicity, auto-aggregation, acid tolerance, bile tolerance, and antibiotic sensitivity, which all contribute to their survival in the gastrointestinal tract and clinical utility. The animal experimentation (40 KM mice, equally divided into five groups of eight mice each) showed that the strain supplementation not only increased daily weight gain and reduced feed conversion ratio, but also increased the length of the jejunum villi and the value of the V/C (Villi/Crypt). In conclusion, this is the first study demonstrated the probiotic potential of Bacillus licheniformis and Bacillus pumilus isolated from yaks, providing a theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|