1
|
Zhang J, Tan B, Wu H, Han T, Fang D, Cai H, Hu B, Kang A. Scutellaria baicalensis Extracts Restrict Intestinal Epithelial Cell Ferroptosis by Regulating Lipid Peroxidation and GPX4/ACSL4 in Colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156708. [PMID: 40220415 DOI: 10.1016/j.phymed.2025.156708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/23/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Ferroptosis in colonic epithelial cells has been implicated in the development of ulcerative colitis (UC) and the accompanying gut leakage. Scutellaria baicalensis Georgi (Scu) is widely used herb medicine for alleviating UC. PURPOSE We aimed to clarify the therapeutic effect of Scu on UC by inhibiting intestinal epithelial cell ferroptosis and explore its regulatory mechanisms on lipid peroxidation and the GPX4/ACSL4 pathways. METHODS UPLC-Q-TOF/MS was employed to analyze chemicals in the herbal extract and the colonic exposure of prototypes in Scu-treated mice. Additionally, the main compounds were quantified using HPLC-UV. The ameliorative effects of Scu were comprehensively explored in a UC mouse model established by feeding with dextran sulfate sodium (DSS). HPLC-MS based metabolomic studies were conducted to identify the differential metabolites in colon tissues from Scu or vehicle treated UC mice. Network pharmacology was conducted for target prediction and potential pathway analysis. In conjunction with these bioinformatic analyses, we performed RT-qPCR, immunofluorescence, immunohistochemistry and immunoblotting to elucidate the regulatory mechanisms of Scu on ferroptosis-related pathways in both in vivo and in vitro models. RESULTS 78 chemical constituents in Scu were characterized, with 42 detected in the colonic tissues of Scu-treated mice. Scu could alleviate UC related symptoms in mice, including increased colon length and decreased pathological score. Furthermore, Scu inhibited pro-inflammatory cytokines and mediators, while improving gut barrier function by increasing the expression of ZO-1 and Occludin at both mRNA and protein levels. Based on metabolomic studies, a total of 71 differential metabolites exhibited a reversal trend following Scu administration. These findings, combined with results from network pharmacology, suggest that arachidonic acid (AA) metabolism and ferroptosis may serve as potential pathways for Scu intervention in UC. Further experiments indicated that the amelioratory actions of Scu on ferroptosis partially contributed to its modulation on lipid peroxidation and its regulatory influence on the GPX4/ASCL4 axis to ameliorate UC. When AA was administered at the same time as concurrently with Scu, the regulatory effects of Scu on ferroptosis, GPX4/ASCL4 axis, and its protective effects against UC were significantly reduced. Moreover, the inhibitory effect of Scu on ferroptosis was weakened when we knocked down GPX4 or overexpressed ACSL4 in vitro. CONCLUSION The ameliorative effect of Scu in UC is closely related to the regulation of lipid peroxidation and GPX4/ASCL4 mediated intestinal epithelial ferroptosis.
Collapse
Affiliation(s)
- Jingyan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyan Tan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hong Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tai Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hong Cai
- Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou 221009, China
| | - Bing Hu
- Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou 221009, China.
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu S, Yang X, Zheng S, Chen C, Qi L, Xu X, Zhang D. Research progress on the use of traditional Chinese medicine to treat diseases by regulating ferroptosis. Genes Dis 2025; 12:101451. [PMID: 40070365 PMCID: PMC11894312 DOI: 10.1016/j.gendis.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/28/2024] [Accepted: 08/25/2024] [Indexed: 03/14/2025] Open
Abstract
Ferroptosis is an emerging form of programmed cell death triggered by iron-dependent lipid peroxidation. It is distinguished from other forms of cell death by its unique morphological changes and characteristic fine-tuned regulatory gene network. Since its pivotal involvement in the pathogenesis and therapeutic interventions of various diseases, such as malignant tumors, cardiovascular and cerebrovascular diseases, and traumatic disorders, has been well-established, ferroptosis has garnered significant attention in contemporary physiological and pathological research. For the advantage of alleviating the clinical symptoms and improving life quality, traditional Chinese medicine (TCM) holds a significant position in the treatment of these ailments. Moreover, increasing studies revealed that TCM compounds and monomers showed evident therapeutic efficacy by regulating ferroptosis via signaling pathways that tightly regulate redox reactions, iron ion homeostasis, lipid peroxidation, and glutathione metabolism. In this paper, we summarized the current knowledge of TCM compounds and monomers in regulating ferroptosis, aiming to provide a comprehensive review of disease management by TCM decoction, Chinese patent medicine, and natural products deriving from TCM through ferroptosis modulation. The formulation composition, chemical structure, and possible targets or mechanisms presented here offer valuable insights into the advancement of TCM exploration.
Collapse
Affiliation(s)
- Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Sanxia Zheng
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Changjing Chen
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Lei Qi
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| |
Collapse
|
3
|
Wang R, Zhu J, Zhou J, Li J, Wang M, Wu Y, Zhao D, Chen X, Chen X, Wang Y, Zou J. Bioinspired Claw-Engaged Adhesive Microparticles Armed with γGC Alleviate Ulcerative Colitis via Targeted Suppression of Macrophage Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503903. [PMID: 40298904 DOI: 10.1002/advs.202503903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, characterized by focal iron overload. Herein, we reported that γ-glutamylcysteine (γGC) deletion in UC lesions intensified the disease by depleting intracellular GSH to induce macrophage ferroptosis, leading to macrophage M1 reprogramming and eventually exacerbating inflammation. To counteract this, the advanced microparticles (MPs)-based delivery system is selected to encapsulate γGC. The resulting γGC-MPs displayed the same porous and spiky morphology as their substrate's natural pollens, resulting in improved intestinal adhesion and enhanced lesion contact of γGC-MPs. Our results demonstrated that exogenous γGC supplementation could inhibit macrophage M1 polarization by restraining ferroptosis, as well as suppressing the PI3K/AKT pathway and TNF signaling pathway. Compared with free γGC, γGC-MPs significantly alleviated typical UC symptoms in dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced intestinal inflammation, restored intestinal barrier function, and improved microbiota composition. Consequently, this study addressed critical gaps in understanding the causes of ferroptosis and its impact on macrophage reprogramming in UC, offering a novel synergistic therapeutic strategy for UC.
Collapse
Affiliation(s)
- Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Jianwei Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
| | - Jinyang Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Min Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuqi Wu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
| | - Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210029, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210046, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| |
Collapse
|
4
|
Zeng Z, Deng J, Wang G, Luo Z, Xiao W, Xie W, Liu J, Li K. Ferroptosis-related protein biomarkers for diagnosis, differential diagnosis, and short-term mortality in patients with sepsis in the intensive care unit. Front Immunol 2025; 16:1528986. [PMID: 40264754 PMCID: PMC12011590 DOI: 10.3389/fimmu.2025.1528986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background Sepsis is a disease with high mortality caused by a dysregulated response to infection. Ferroptosis is a newly discovered type of cell death. Ferroptosis-related genes are involved in the occurrence and development of sepsis. However, research on the diagnostic value of ferroptosis-related protein biomarkers in sepsis serum is limited. This study aims to explore the clinical value of Ferroptosis-related proteins in diagnosing sepsis and predicting mortality risk. Methods A single-center, prospective, observational study was conducted from January to December 2023, involving 170 sepsis patients, 49 non-septic ICU patients, and 50 healthy individuals. Upon ICU admission, biochemical parameters, GCS, SOFA, and APACHE II scores were recorded, and surplus serum was stored at -80°C for biomarker analysis via ELISA. Diagnostic efficacy was evaluated using ROC curve analysis. Results Baseline serum levels of ACSL4, GPX4, PTGS2, CL-11, IL-6, IL-8, PCT, and hs-CRP significantly differed among sepsis, non-septic, and healthy individuals (all p-value < 0.01). ACSL4, GPX4, PTGS2, IL-6, IL-8, PCT, and hs-CRP demonstrated high diagnostic and differential diagnostic performance (AUC: 0.6688 to 0.9945). IL-10 and TNF-α showed good diagnostic performance (AUC = 0.8955 and 0.7657, respectively). ACSL4 (AUC = 0.7127) was associated with predicting sepsis mortality. Serum levels of ACSL4, CL-11, and IL-6 above the cut-off value were associated with shorter survival times. ACSL4 levels were positively correlated with SOFA (Rho = 0.354, p-value < 0.0001), APACHE II (Rho = 0.317, p-value < 0.0001), and septic shock (Rho = 0.274, p-value = 0.003) scores but negatively correlated with the GCS score (Rho = -0.218, p-value = 0.018). GPX4 levels were positively correlated with SOFA (Rho = 0.204, p-value = 0.027) and APACHE II (Rho = 0.233, p-value = 0.011) scores. Conclusion ACSL4 and GPX4 have strong diagnostic and differential diagnostic value in sepsis, including the ability to predict 28-day mortality in sepsis patients, and may become new potential serum markers for the diagnostic and differential diagnostic of sepsis.
Collapse
Affiliation(s)
- Zhangrui Zeng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Deng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zixiang Luo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Weijia Xiao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Wenchao Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, China
| | - Ke Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Zhou J, Lu P, He H, Zhang R, Yang D, Liu Q, Liu Q, Liu M, Zhang G. The metabolites of gut microbiota: their role in ferroptosis in inflammatory bowel disease. Eur J Med Res 2025; 30:248. [PMID: 40189555 PMCID: PMC11974165 DOI: 10.1186/s40001-025-02524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis, characterized by impaired function of the intestinal mucosal epithelial barrier. In recent years, ferroptosis, a novel form of cell death, has been confirmed to be involved in the pathological process of IBD and is related to various pathological changes, such as oxidative stress and inflammation. Recent studies have further revealed the complex interactions between the microbiome and ferroptosis, indicating that ferroptosis is an important target for the regulation of IBD by the gut microbiota and its metabolites. This article reviews the significant roles of gut microbial metabolites, such as short-chain fatty acids, tryptophan, and bile acids, in ferroptosis in IBD. These metabolites participate in the regulation of ferroptosis by influencing the intestinal microenvironment, modulating immune responses, and altering oxidative stress levels, thereby exerting an impact on the pathological development of IBD. Treatments based on the gut microbiota for IBD are gradually becoming a research hotspot. Finally, we discuss the potential of current therapeutic approaches, including antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, in modulating the gut microbiota, affecting ferroptosis, and improving IBD symptoms. With a deeper understanding of the interaction mechanisms between the gut microbiota and ferroptosis, it is expected that more precise and effective treatment strategies for IBD will be developed in the future.
Collapse
Affiliation(s)
- Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Penghui Lu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruhan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dican Yang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qiong Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Guoshan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
6
|
Lei L, Wang H, Zhao Z, Huang Y, Huang X, Guo X, Jiang G, Chen S, Wang W, Chen X, Zheng Z, Wang J, Chen F. Curculigoside upregulates BMAL1 to decrease nucleus pulposus cell apoptosis by inhibiting the JAK/STAT3 pathway. Osteoarthritis Cartilage 2025; 33:412-425. [PMID: 39622432 DOI: 10.1016/j.joca.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a natural process that occurs with aging and is the main cause of low back pain. Basic helix-loop-helix ARNT-like 1 (BMAL1) plays key roles in the pathogenesis of many diseases. The present study investigates the role of curculigoside (CUR), which has been reported to be a potential anti-apoptotic compound in other diseases. METHODS Dysregulated genes were identified by RNA sequencing (RNA-seq). Western blotting (WB), immunohistochemistry, immunofluorescence (IF) staining, and real-time fluorescent quantitative polymerase chain reaction were used to detect BMAL1 expression in 25 human intervertebral disc specimens (male: female =13:12), tissues from BMAL1-knockout mice and from an IVDD mouse model. The regulatory effects of CUR and BMAL1 in nucleus pulposus (NP) cells after Small Interfering RNA (siRNA) transfection were examined by flow cytometry, IF staining and WB. The therapeutic effect of intraperitoneal CUR injection was also evaluated in mice. RESULTS BMAL1 expression was negatively correlated with IVDD severity and was significantly lower in degenerative NP cells. After BMAL1 knockdown using siRNA, the apoptosis rate of degenerative NP cells was significantly higher, while transfection with a lentivirus overexpressing BMAL1 exerted the opposite effect. Bioinformatics analysis revealed that BMAL1 is regulated by the JAK-STAT3 pathway, and CUR upregulated BMAL1 expression by inhibiting STAT3 phosphorylation, subsequently alleviating NP cell apoptosis and increasing extracellular matrix (ECM) components., thus alleviating IVDD. CONCLUSIONS CUR can inhibit apoptosis and improve the ECM by upregulating BMAL1 expression, which is reduced in IVDD. This study provides a therapeutic strategy to alleviate apoptosis associated with inflammation-induced IVDD.
Collapse
Affiliation(s)
- Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Zhuoyang Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yuming Huang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xingyu Guo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guowei Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Shunlun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Hunan 410011, PR China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Pain Research Center, Sun Yat Sen University, PR China.
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China.
| | - Fan Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, PR China; Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Li S, Nordick KV, Elsenousi AE, Bhattacharya R, Kirby RP, Hassan AM, Hochman-Mendez C, Rosengart TK, Liao KK, Mondal NK. Warm-ischemia and cold storage induced modulation of ferroptosis observed in human hearts donated after circulatory death and brain death. Am J Physiol Heart Circ Physiol 2025; 328:H923-H936. [PMID: 40062653 DOI: 10.1152/ajpheart.00806.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
We investigated ferroptosis, a type of programmed cell death mechanism, in human hearts donated after brain death (DBD) and those donated after circulatory death (DCD), focusing on warm ischemia time (WIT) and cold storage. A total of 24 hearts were procured, with six from the DBD group and 18 from the DCD group. The DCD group was divided into three subgroups, each containing six hearts, based on different WITs of 20, 40, and 60 min. All procured hearts were placed in cold storage for up to 6 h. Left ventricular biopsies were performed at 0, 2, 4, and 6 h. We measured ferroptosis regulators [glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and transferrin receptor], iron content (Fe2+ and Fe3+), and lipid peroxidation (malondialdehyde, MDA) in the cardiac tissue. Modulation of ferroptosis was observed in both DBD and DCD hearts. Warm ischemia injury increased myocardial vulnerability to ferroptotic cell death. For DBD hearts, up to 6 h of cold storage increases cardiac levels of MDA, iron content, and ACSL4, thereby increasing vulnerability to ferroptotic cell death. In contrast, for DCD hearts with a WIT of 40 min or more, warm ischemia injury was identified as the primary factor contributing to increased myocardial susceptibility to ferroptotic cell death. Ferroptosis may serve as a promising target to optimize cold preservation for DBD hearts. For DCD hearts, strategies to inhibit ferroptosis should focus on the early warm ischemia phase to assess donor heart quality and suitability for transplantation.NEW & NOTEWORTHY The first human heart research explored the effects of ischemia on the myocardial ferroptotic cell death mechanism. Prolonged cold storage increases the susceptibility of DBD hearts to ferroptotic cell death. In contrast, warm ischemic injury appears to be the main factor leading to the vulnerability of DCD heart ferroptosis. Targeting ferroptosis could be beneficial in optimizing cold preservation for DBD hearts. However, for DCD hearts, interventions should focus on the early phase of warm ischemia.
Collapse
Affiliation(s)
- Shiyi Li
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Katherine V Nordick
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Abdussalam E Elsenousi
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Rishav Bhattacharya
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Randall P Kirby
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Adel M Hassan
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
| | - Kenneth K Liao
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| | - Nandan K Mondal
- Division of Cardiothoracic Transplantation and Circulatory Support, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, Texas, United States
| |
Collapse
|
8
|
Ma Z, Wang Y, Zhang X, Ding S, Fan J, Li T, Xiao X, Li J. Curculigoside exhibits multiple therapeutic efficacy to induce apoptosis and ferroptosis in osteosarcoma via modulation of ROS and tumor microenvironment. Tissue Cell 2025; 93:102745. [PMID: 39864205 DOI: 10.1016/j.tice.2025.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Patients with osteosarcoma (OS) exhibit metastasis upon diagnosis, and the condition frequently acquires resistance to traditional chemotherapy treatments, failing the therapy. The objective of this research was to examine the impact of curculigoside (Cur), a key phenolic compound discovered in the rhizome of C. orchioides Gaertn, on OS cells and the surrounding tumor environment. METHODS We assessed the impact of curculigoside on tumor inhibition in four osteosarcoma cell lines and mice tumor xenograft models using various techniques including cell viability assay, wound healing assay, cell apoptosis analysis, immunofluorescent staining, and IHC. Moreover, we created a mini-PDX model by utilizing freshly obtained primary OS cells from surgically removed OS tissues to evaluate the possible clinical use of Cur. RESULT The results of our study show that Cur triggers cell death in OS cells and enhances the maturation of RAW264.7 cells. By effectively inhibiting the growth of OS cells, these actions mechanistically trigger the catastrophic buildup of unbound iron and uncontrolled lipid peroxidation, ultimately resulting in ferroptosis. Moreover, additional validation of Cur's substantial antineoplastic impact is obtained through in vivo experiments employing xenograft and mini-PDX models. CONCLUSIONS To sum up, this research is the initial one to exhibit the anti-tumor effects of Cur on OS using various methods, indicating that Cur shows potential as a viable approach for treating OS.
Collapse
Affiliation(s)
- Ziyang Ma
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Yirong Wang
- Department of Endodontics, School of Stomatology, The Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoyu Zhang
- Affiliated Medical College, Yan'an University, Xi'an 716000, China
| | - Shi Ding
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Jian Fan
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| | - Xin Xiao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| | - Jing Li
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
9
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2025; 39:1776-1807. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Liu Y, Zhang JT, Sun M, Song J, Sun HM, Wang MY, Wang CM, Liu W. Targeting ferroptosis in the treatment of ulcerative colitis by traditional Chinese medicine: A novel therapeutic strategies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156539. [PMID: 39987602 DOI: 10.1016/j.phymed.2025.156539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND The incidence of ulcerative colitis (UC) has been rising rapidly in recent years, and there is currently no effective method to prevent its recurrence. Owing to its long treatment duration, difficulty in treatment, prolonged remission, and high costs, it has attracted global attention. Exploring safe, effective, and sustainable treatment regimens has become an urgent global issue. Traditional Chinese medicine (TCM) has unique advantages such as low cost, low drug resistance, and fewer side effects, and has accumulated rich experience in the treatment of UC. PURPOSE Ferroptosis, as a new form of non-apoptotic cell death, is characterized by iron homeostatic imbalance and lipid peroxidation in the redox system. Studies have shown that inhibited ferroptosis in intestinal epithelial cells can protect the intestinal mucosa. Targeted intervention in ferroptosis may be a new direction for the treatment of UC. METHODS We conducted a systematic literature search with Google Scholar, PubMed, Web of Science, ScienceDirect and X-mol databases have been utilized to retrieve relevant literature up to October 2024, using keywords included ferroptosis, Inflammatory bowel disease (IBD), UC, Crohn's disease and TCM, Chinese traditional prescription, Chinese medicine extract and active ingredients. The existing literature was comprehensively studied and sorted out. RESULTS Currently, UC is mainly treated with drugs, including corticosteroids, amino salicylates, biologics, and immunomodulators, but drug resistance and adverse reactions are common. Increasing evidence suggests that TCM may treat UC by interfering with ferroptosis. Scholars have confirmed that TCM can inhibit ferroptosis, and recent studies have shown that TCM can not only inhibit iron dependent lipid peroxidation in intestinal cells but also enhance the antioxidant and anti-inflammatory abilities of intestinal mucosa, thus playing a role in the treatment of UC. This review explores the relevance of TCM intervention in ferroptosis and the treatment of UC, discusses the possible mechanisms of ferroptosis in UC, and aims to provide a basis for the diagnosis and treatment of UC. CONCLUSION It is revealed that TCM targeted ferroptosis has a good application prospect in the treatment of UC, providing a theoretical basis for elucidating the pathogenesis of UC and the study of TCM targeting ferroptosis regulating lipid metabolism in the treatment of UC, and providing a new perspective for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Ying Liu
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Jian Song
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Hai-Ming Sun
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Meng-Yang Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Chun-Mei Wang
- College of Pharmacy, Beihua University, jilin 132013, China
| | - Wei Liu
- College of Pharmacy, Beihua University, jilin 132013, China.
| |
Collapse
|
11
|
Hou Y, Liang C, Sui L, Li Y, Wang K, Li X, Zheng K, Su H, Xie D, Lin D, Guo D, Wang L. Curculigoside Regulates Apoptosis and Oxidative Stress Against Spinal Cord Injury by Modulating the Nrf-2/NQO-1 Signaling Pathway In Vitro and In Vivo. Mol Neurobiol 2025; 62:3082-3097. [PMID: 39230866 PMCID: PMC11790752 DOI: 10.1007/s12035-024-04409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/23/2024] [Indexed: 09/05/2024]
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that can lead to paralysis or death. Oxidative stress during SCI is a critical phase causing extensive nerve cell damage and apoptosis, thereby impairing spinal cord healing. Thus, a primary goal of SCI drug therapy is to mitigate oxidative stress. Curculigoside (CUR), a phenolic glucoside extracted from the dried root and rhizome of Curculigo orchioides Gaertn, possesses neuroprotective and antioxidant properties. This study aimed to investigate whether CUR effectively promotes the recovery of spinal cord tissue following SCI and elucidate its mechanism. We employed a hydrogen peroxide (H2O2)-induced PC12 cell model and an SCI rat model to observe the effects of CUR on oxidation and apoptosis. The results demonstrated that CUR significantly reduced the expression of apoptosis-related proteins (Bax and Caspase-3), Annexin V/propidium iodide (PI), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), while increasing the expression of the anti-apoptotic protein Bcl-2. Moreover, CUR effectively enhanced levels of antioxidants (glutathione [GSH)] and decreased reactive oxygen species (ROS) in vitro. Furthermore, CUR facilitated functional recovery through its anti-apoptotic and anti-oxidative stress effects on spinal cord tissues in SCI rats. These effects were mediated via the Nrf2/NQO1 signaling pathway. Therefore, our study showed that CUR acted as an anti-apoptotic and anti-oxidative stress agent, inhibiting astrocyte activation and promoting neuronal reconstruction and functional recovery. These findings may contribute significantly to the development of SCI treatments and advance the field of SCI drug therapy.
Collapse
Affiliation(s)
- Yu Hou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Chaolun Liang
- Department of Orthopedics (Joint Surgery), Guangdong Province Hospital of Chinese Medicine, Zhuhai, 519015, Guangdong, China
| | - Lili Sui
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Yang Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Kai Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Xing Li
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Kunrui Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Haitao Su
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Dianweng Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Dingkun Lin
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Da Guo
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.
| | - Le Wang
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
12
|
Zhang Q, Feng T, Chang Q, Yang D, Li Y, Shang Y, Gao W, Zhao J, Li X, Ma L, Liang Z. Exploring the potential active components and mechanisms of Tetrastigma hemsleyanum against ulcerative colitis based on network pharmacology in LPS-induced RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119384. [PMID: 39863095 DOI: 10.1016/j.jep.2025.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic form of inflammatory bowel disease, which current treatments often show limited effectiveness. Ferroptosis, a newly recognized form of programmed cell death has been implicated in UC pathogenesis, suggesting that it may be viable therapeutic target. Tetrastigma hemsleyanum (TH) has shown potential anti-UC effects, though it is unclear whether its therapeutic benefits are mediated by ferroptosis. AIM OF THE STUDY This study investigated the involvement of ferroptosis in the therapeutic effects of TH and identified key active components and pathways of TH against UC. MATERIALS AND METHODS The ethyl acetate extract of TH (TH_E) was found to be the most effective anti-inflammatory extract compared with the petroleum ether extract (TH_P), n-butanol extract (TH_N), and water-soluble extract (TH_W). TH_E's components were identified using UHPLC-MS/MS, ADME parameters, and network pharmacology. Additionally, TH_E's effects on ferroptosis were evaluated in an LPS-induced RAW264.7 cell model. RESULTS TH_E exhibited the strongest anti-inflammatory activity among four extracts. 10 compounds (Linolenic acid; Apigenin; Protocatechualdehyde; Asiatic acid; Quercetin; Isorhamnetin; Kaempferol; Azelaic acid; Oleic Acid; Palmitic acid) were selected from SwissADME database. Then a total of 281 targets for these 10 compounds and 1330 UC-related targets were identified from different database. Isorhamnetin was selected as the most promising anti-inflammatory component among 10 components. Furthermore, enrichment analysis revealed that ferroptosis was involved in UC development, with both TH_E and isorhamnetin exhibited inhibition of ferroptosis. Finally, isorhamnetin's anti-ferroptosis effects were linked to the Keap1/Nrf2/HO-1 pathway. CONCLUSIONS The results demonstrate that TH_E and isorhamnetin alleviate LPS-induced UC through restraining ferroptosis. Moreover, isorhamnetin's anti-UC properties are mediated by inhibiting ferroptosis via activation of the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Tinghui Feng
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qinxiang Chang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Dongfeng Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Yuan Li
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Yujie Shang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Wenxin Gao
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Jiayan Zhao
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China
| | - Xiaohu Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Lei Ma
- Food Nutrition Sciences Centre (FNSC), School of Food Science and Biotechnology Zhejiang Gongshang University, 310012, Hangzhou, People's Republic of China
| | - Zongsuo Liang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Xuelin Road, Xiasha District, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
13
|
Huang Y, Ru Q, Ruan H, Zhang J, Wang Y, Wang C, Chen C, Yu D, Luo J, Yang M. Changyanning tablet alleviates Crohn's disease by inhibiting GPX4-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119415. [PMID: 39870334 DOI: 10.1016/j.jep.2025.119415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Changyanning tablets (CYN) are a marketed traditional Chinese medicine composed of Diijincao (Euphorbia humifusa Willd.), Jinmaoercao (Hedyotis chrysotricha (Palib.) Merr.), Zhangshugen (root of Cinnamomum camphora (L.) J.Presl), Xiangru (Elsholtzia ciliate (Thunb.) Hyl.), and Fengxiangshuye (leaf of Liquidambar formosana Hance). They possess the functions of clearing heat, removing dampness, and regulating qi. CYN is used for the treatment of diarrhea and dysentery caused by damp heat in the large intestine, with symptoms such as diarrhea, or stools with pus and blood, tenesmus, abdominal pain and distension, acute and chronic gastroenteritis, diarrhea, bacterial diarrhea, and indigestion in children. AIM OF THE STUDY This study aims to explore the intervention effects of CYN on Crohn's disease (CD) and its potential mechanisms. MATERIALS AND METHODS The therapeutic effect and potential mechanism of CYN on CD were investigated based on the 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS)-induced rat model. In vivo and in vitro experiments confirmed that CYN can alleviate CD by inhibiting GPX4-mediated ferroptosis. siRNA was used to knock down GPX4 for reverse validation. Finally, active components of CYN inhibiting ferroptosis were identified using UPLC-MS and the RSL3-induced HCoEpiC ferroptosis cell model. RESULTS CYN significantly improved ferroptosis-related indicators (GSH, MDA, GPX4, and SLC7A11) in the colons of TNBS-induced CD rats. Screening with three ferroptosis inducers (RSL3, FINO2, and erastin) revealed that CYN was most effective against RSL3 (a ferroptosis inducer targeting GPX4)-induced apoptosis. Subsequently, the resistance effect of CYN on RSL3-induced ferroptosis was confirmed in vitro. Further in vivo experiments showed that CYN alleviated local CD-like intestinal injury induced by RSL3 enema. siRNA knockdown of GPX4 in HCoEpiC cells further validated GPX4 as major target of CYN in inhibiting ferroptosis. Finally, UPLC-MS and in vitro experiments identified rutin, rosmarinic acid, and kaempferol-3-O-sophoroside as key active components of CYN for inhibiting ferroptosis. CONCLUSIONS CYN alleviates CD by inhibiting GPX4-mediated ferroptosis, highlighting its clinical potential for treating CD and enhancing the understanding of the pathogenic and therapeutic mechanisms associated with CD.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Qing Ru
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Chuang Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Changyong Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Defa Yu
- Jiangxi Kangenbei Traditional Chinese Medicine Co., Ltd., Shangrao, 334400, China.
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
14
|
Zhang Y, Huang R, Liu X, Cai M, Su M, Cheng Y, Jiang J, Wang X, Peng D. Taohong siwu decoction ameliorates abnormal uterine bleeding via inhibiting ACSL4-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119130. [PMID: 39566864 DOI: 10.1016/j.jep.2024.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD) is a well-known traditional Chinese medicine (TCM) prescription. It consists of six crude herbs, including Rehmannia glutinosa Libosch, Paeonia lactiflora Pall, Angelica sinensis (Oliv.) Diels, Ligusticum chuanxiong Hort., Prunus persica (L.) Batsch, Cauthamus tinctorius L. It has been used to treat blood stasis syndrome in Chinese clinics for thousands of years. According to recent research, TSD may be useful in the management of abnormal uterine bleeding (AUB). The aim of the present study is to investigate the possible mechanism of TSD on AUB after drug-induced incomplete abortion. AIM OF THE STUDY To investigate whether TSD could be effective in ameliorating AUB through inhibiting acyl-CoA synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis. MATERIALS AND METHODS An incomplete medical aborting model was established and Ishikawa cell lines were utilized in vitro. The quantity of uterine bleeding was measured by alkaline hemoglobin photometry. Pathological results were observed by hematoxylin-eosin staining (HE). Mitochondrial morphology and function were measured by transmission electron microscopy. The related protein and mRNA were detected by western blot, the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). We used knockdown and overexpression of ACSL4 to investigate the influence of ferroptosis in Ishikawa cells and the impact of TSD on ferroptosis. RESULTS TSD dramatically reduced the amount and duration of bleeding as well as the endometrial inflammation of AUB. TSD improved mitochondrial characteristics, decreased ACSL4 protein and mRNA levels. The ferroptosis marker glutathione (GSH) levels were increased, on the contrary, reactive oxygen species (ROS) and iron levels decreased when TSD intervened. TSD decreased levels of the inflammatory factors and the oxidative products. CONCLUSION TSD alleviated endometrial inflammation by inhibiting ACSL4-mediated ferroptosis and exerts a protective effect of AUB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China
| | - Rong Huang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Xiaochuang Liu
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China.
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230001, PR China
| | - Mengyu Su
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Yao Cheng
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Juanjuan Jiang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Xuekai Wang
- Department of Pharmacology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, PR China; Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Daiyin Peng
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| |
Collapse
|
15
|
Liu Y, Li T, Niu C, Yuan Z, Sun S, Liu D. Hyperoxia-activated Nrf2 regulates ferroptosis in intestinal epithelial cells and intervenes in inflammatory reaction through COX-2/PGE2/EP2 pathway. Mol Med 2025; 31:1. [PMID: 39754066 PMCID: PMC11697811 DOI: 10.1186/s10020-024-00993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025] Open
Abstract
The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo. The results showed that ferroptosis was involved in intestinal oxidative damage caused by hyperoxia and was regulated by Nrf2. Moreover, hyperoxia-induced oxidative damage regulated inflammation through ferroptosis by upregulating the COX-2/PGE2/EP2 signaling pathway. These findings have important implications for future clinical prevention and therapeutic approaches to neonatal organ injury caused by hyperoxia treatment.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China
| | - Tianming Li
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China
- Department of Pathology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, People's Republic of China
| | - Changping Niu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China
| | - Zhengwei Yuan
- Laboratory of Health Ministry for Congenital Malformation, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
| | - Siyu Sun
- Department of Gastroenterology, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
| | - Dongyan Liu
- Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
16
|
Fu W, Zhang M, Meng Y, Wang J, Sun L. Increased NPM1 inhibit ferroptosis and aggravate renal fibrosis via Nrf2 pathway in chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167551. [PMID: 39437857 DOI: 10.1016/j.bbadis.2024.167551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Recent findings underscore the significance of ferroptosis, an innovative iron-dependent mode of cell death, in the etiology and progression of chronic kidney disease (CKD). Nucleophosmin 1 (NPM1), a nucleolar protein, contributes to fibrogenesis and modulates cellular functions and mortality. Initial investigations utilized bioinformatics techniques to pinpoint genes with altered expression in CKD and to forecast the potential links between NPM1, ferroptosis, and renal fibrosis. Increased NPM1 expression was verified in the renal tissues of CKD patients. Experimental models of renal fibrosis in both animals and cells were then used for further study. The suppression of NPM1 led to an augmentation in iron metabolism and lipid peroxidation processes integral to ferroptosis, contributing to the mitigation of renal fibrosis. In contrast, an elevation in NPM1 expression had the opposite effect. This modulation may be interconnected with the nuclear factor erythroid 2-related factor 2 pathway. Moreover, the application of the ferroptosis inhibitor, Fer-1, not only obstructed ferroptosis but also diminished NPM1 expression, which, in turn, contributed to the alleviation of renal fibrosis. Thus, our findings suggest that in CKD the NPM1 level increased and led to decreased ferroptosis and aggravated renal fibrosis via an Nrf2 pathway. Ferroptosis inhibitor can alleviate renal fibrosis.
Collapse
Affiliation(s)
- Wenjing Fu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Mingyu Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yilin Meng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
17
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
18
|
Ji W, Zhang Y, Qian X, Hu C, Huo Y. Palmatine alleviates inflammation and modulates ferroptosis against dextran sulfate sodium (DSS)-induced ulcerative colitis. Int Immunopharmacol 2024; 143:113396. [PMID: 39423661 DOI: 10.1016/j.intimp.2024.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
UC, also known as ulcerative colitis, is an inflammatory bowel disease that is chronic and nonspecific. Palmatine (PAL), a natural alkaloid active ingredient, has demonstrated predominant protective effects on UC. In spite of this, PAL on UC is unclear in terms of its underlying mechanisms. Thus, this study aimed to investigate its effects and mechanism. By inducing rats with 5 % dextran sulfate sodium (DSS), an in vivo model of UC was developed. and then oral PAL administration. In vitro viability of NCM460 cells was measured using Cell Counting Kit-8. An enzyme-linked immunosorbent assay was used to determine the levels of inflammatory factores. The levels of oxidative stress parameters were also assessed, and the expression level of cyclooxygenase-2 (COX-2), acyl-CoA synthetase long-chain family member 4 (ACSL4), glutathione peroxidase 4 (GPX4), NF-E2-related factor 2(Nrf2), phospho-Nrf2, and heme oxygenase-1 (HO-1) was detected by Western blot. An iron kit was employed to measure iron content in cells and colonic tissues. Results indicated that PAL treatment significantly improved UC in rats, as shown by reduced disease activity index scores and increased colon length, which decreased IL-18, IL-1β, IL-6, TNF-α, MDA, NO, and LDH levels, but increased GSH level in DSS-induced rats and NCM460 cells. Further, PAL treatment markedly decreased COX-2, ACSL4, Nrf2, and HO-1 expression levels while increasing that of GPX4 and phospho-Nrf2. Furthermore, PAL inhibited the iron overload in the cells and colonic tissues. PAL may protect against UC by inhibiting the inflammatory response, oxidative stress, iron load, and suppressing ferroptosis pathway.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Xiaojing Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Huo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
19
|
Gu K, Wu A, Liu C, Yu B, He J, Lai X, Chen J, Luo Y, Yan H, Zheng P, Luo J, Pu J, Wang Q, Wang H, Chen D. Absence of gut microbiota alleviates iron overload-induced colitis by modulating ferroptosis in mice. J Adv Res 2024:S2090-1232(24)00608-8. [PMID: 39710300 DOI: 10.1016/j.jare.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear. OBJECTIVES The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism. METHODS Male C57BL/6N mice were fed with ferrous sulfate to establish an iron overload model. Antibiotics and dextran sulfate sodium salt (DSS) were used to create germ-free and colitis models, respectively. RESULTS Results showed that iron overload caused disruption of systemic iron homeostasis via activating pro-inflammation response, which caused induction of ferroptosis and eventually resulted in colitis in mice. Notably, iron overload inhibited System Xc- and activated the nuclear factor E2-related factor 2/heme oxygenase-1 pathway, driving ferroptosis and colitis progression. Similar results were observed in mouse colon epithelial cells, which were treated with high doses ferric ammonium citrate. Additionally, iron overload exacerbated DSS-induced colitis by activating the ferroptosis and increasing harmful bacteria (e.g., Mucispirillum) abundance. Interestingly, eliminating gut microbiota attenuated iron overload-induced colitis, without affecting systemic inflammation through inhibiting ferroptosis of mice. Depletion of the gut microbiota partially mitigated the exacerbating effect of iron overload on DSS-induced colitis through inhibiting ferroptosis of mice. CONCLUSION Iron overload activates ferroptosis in colonic cells, increases the relative abundance of harmful bacteria, and exacerbates DSS-induced colitis in mice. Iron overload exacerbates DSS-induced ferroptosis and colitis in a microbiota-dependent manner. Targeting gut microbiota may offer new strategies for managing iron overload-induced colitis.
Collapse
Affiliation(s)
- Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China; Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin Lai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Junning Pu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
20
|
Zou P, He Q, Xia H, Zhong W. Ferroptosis and its impact on common diseases. PeerJ 2024; 12:e18708. [PMID: 39713140 PMCID: PMC11663406 DOI: 10.7717/peerj.18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system. The role of ferroptosis in common diseases, its therapeutic potential, and even its translation into clinical drug treatments are currently significant research topics worldwide. This study preliminarily explores the theoretical basis of ferroptosis, its mechanism and treatment prospect in common diseases including ischaemia-reperfusion injury, inflammatory bowel diseases, liver fibrosis, acute kidney injury, diabetic kidney disease, stroke, Alzheimer's disease, cardiovascular disease, immune and cancer. This review provides a theoretical foundation for the further study and development of ferroptosis, as well as for the prevention and treatment of common diseases.
Collapse
Affiliation(s)
- Pengjian Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
22
|
Xie H, Cao C, Shu D, Liu T, Zhang T. The important role of ferroptosis in inflammatory bowel disease. Front Med (Lausanne) 2024; 11:1449037. [PMID: 39434776 PMCID: PMC11491328 DOI: 10.3389/fmed.2024.1449037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is a type of regulated cell death that occurs due to the iron-dependent accumulation of lethal reactive oxygen species (ROS) from lipids. Ferroptosis is characterized by distinct morphological, biochemical, and genetic features that differentiate it from other regulated cell death (RCD) types, which include apoptosis, various necrosis types, and autophagy. Recent reports show that ferritin formation is correlated to many disorders, such as acute injury, infarction, inflammation, and cancer. Iron uptake disorders have also been associated with intestinal epithelial dysfunction, particularly inflammatory bowel disease (IBD). Studies of iron uptake disorders may provide new insights into the pathogenesis of IBD, thereby improving the efficacy of medical interventions. This review presents an overview of ferroptosis, elucidating its fundamental mechanisms and highlighting its significant involvement in IBD.
Collapse
Affiliation(s)
- Hanhan Xie
- The Second Affiliated Hospital of Chengdu Medical College, China Nation Nuclear Corporation 416 Hospital, Chengdu, China
| | - Chun Cao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Shu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Tong Liu
- The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Tao Zhang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
23
|
Gao BB, Wang L, Li LZ, Fei ZQ, Wang YY, Zou XM, Huang MC, Lei SS, Li B. Beneficial effects of oxymatrine from Sophora flavescens on alleviating Ulcerative colitis by improving inflammation and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118385. [PMID: 38797379 DOI: 10.1016/j.jep.2024.118385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora flavescens is often used in traditional Chinese medicine for skin issues, diarrhea, and vaginal itching (Plant names have been checked with http://www.the/plant/list.org on Feb 22nd, 2024). Oxymatrine (OY), a major bioactive compound from Sophora flavescens, is commonly used in China to treat ulcerative colitis, but its mechanisms are still unclear. AIM OF THE STUDY Recent studies have found that the crosstalk between ferroptosis and inflammation is an important mechanism in the pathogenesis of UC. The aim of this study was to investigate the potential underlying mechanisms of OY treatment on DSS-induced ulcerative colitis, specifically focusing on the processes of ferroptosis and inflammation. MATERIALS AND METHODS Bioinformatics methods were used to identify key targets of OY for ferroptosis and inflammation in ulcerative colitis, based on GEO data and FerrDb database. Then, 4% DSS solution was used to induce UC model. OY's impact on morphological changes was assessed using colon views, Hematoxylin and eosin (HE) staining, and transmission electron microscopy (TEM). Ferroptosis phenotype index and inflammations factors were detected by ELISA or chem-bio detection kits. The screen out hub related genes about ferroptosis and inflammation were verified by RT-PCR, immunohistochemistry (IHC), and western blotting (WB) respectively. RESULTS Bioinformatics results show that there are 16 key target genes involved in ferroptosis and inflammation interaction of OY treatment for UC, such as IL6, NOS2, IDO1, SOCS1, and DUOX. The results of animal experiments show that OY could depress inflammatory factors (IL-1β, IL-6, TNF-α, HMGB1, and NLRP3) and reduce iron deposition (Fe2+, GSH). Additionally, OY suppressed the hub genes or proteins expression involved in ferroptosis and inflammation, including IL-1β, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2. CONCLUSION This present study combines bioinformatics, molecular biology, and animal experimental research evidently demonstrated that OY attenuates UC by improving ferroptosis and inflammation, mainly target to the expression of IL-1β, IL-6, NOS2, HIF1A, IDO1, TIMP1, and DUOX2.
Collapse
Affiliation(s)
- Bing Bing Gao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, PR China
| | - Li Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250118, PR China
| | - Lin Zi Li
- Jingmen Central Hospital, Jingmen, Hubei, 48000, PR China
| | - Zhang Qing Fei
- University of California, Los Angeles, 90095, Los Angeles, USA
| | - Yu Yan Wang
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China
| | - Xiao Ming Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310003, PR China
| | - Min Cong Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, 310053, PR China.
| | - Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, PR China.
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
24
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
25
|
Ma B, Hu X, Ai X, Zhang Y. Research progress of ferroptosis and inflammatory bowel disease. Biometals 2024; 37:1039-1062. [PMID: 38713412 DOI: 10.1007/s10534-024-00604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disorder of the gastrointestinal tract, imposing significant burdens on both society and individuals. As a new type of regulated cell death (RCD), ferroptosis is different from classic RCDs such as apoptosis and necrosis in cell morphology, biochemistry and genetics. The main molecular mechanisms of ferroptosis include dysregulation of iron metabolism, impaired antioxidant capacity, mitochondrial dysfunction, accumulation of lipid-associated super-oxides, and membrane disruption. In recent years, increasing evidence has shown that ferroptosis is involved in the pathophysiology of inflammatory bowel disease. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This article reviews the mechanism of ferroptosis in the occurrence and development of inflammatory bowel disease, in order to provide new ideas for the pathophysiological research of inflammatory bowel disease. Additionally, we discuss potential strategies for the prevention and treatment of inflammatory bowel disease by targeting ferroptosis.
Collapse
Affiliation(s)
- Baolian Ma
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaoxue Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaowen Ai
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yonglan Zhang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.
| |
Collapse
|
26
|
Huangfu S, Zheng J, He J, Liao J, Jiang H, Zhou H, Pan J. Protective role of seleno-amino acid against IBD via ferroptosis inhibition in enteral nutrition therapy. iScience 2024; 27:110494. [PMID: 39290833 PMCID: PMC11407031 DOI: 10.1016/j.isci.2024.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024] Open
Abstract
The interplay between intestinal barrier degradation and trace element insufficiency worsens inflammatory bowel disease (IBD). Selenium (se) is essential for glutathione peroxidase 4 (GPX4) synthesis, which protects against intestinal epithelial cell injury in IBD. However, malnutrition and malabsorption limit the availability of dietary selenium. This study investigated the protective effects of naturally occurring seleno-amino acids on the intestinal barrier in an IBD animal model by promoting GPX4 synthesis. L-se-methylselenocystine (seMc) supplementation reversed decreased GPX4 expression levels, alleviated glutathione depletion and scavenged reactive oxygen species in vitro. In vivo, enteral nutrition combined with seMc protected the intestinal barrier and alleviated IBD-related symptoms by inhibiting ferroptosis and reversing lipid peroxidation in epithelial cells while reducing immune cell infiltration. Our findings suggest that seleno-amino acid-based nutritional formulations may provide a basis for nutritional support to alleviate complex cycles between intestinal barrier damage and malnutrition in IBD patients.
Collapse
Affiliation(s)
- Shuchen Huangfu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiashuai He
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jin Liao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Haiping Jiang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
Li X, He J, Gao X, Zheng G, Chen C, Chen Y, Xing Z, Wang T, Tang J, Guo Y, He Y. GPX4 restricts ferroptosis of NKp46 +ILC3s to control intestinal inflammation. Cell Death Dis 2024; 15:687. [PMID: 39300068 PMCID: PMC11413021 DOI: 10.1038/s41419-024-07060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are essential for both pathogen defense and tissue homeostasis in the intestine. Dysfunction of ILC3s could lead to increased susceptibility to intestinal inflammation. However, the precise mechanisms governing the maintenance of intestinal ILC3s are yet to be fully elucidated. Here, we demonstrated that ferroptosis is vital for regulating the survival of intestinal ILC3. Ferroptosis-related genes, including GPX4, a key regulator of ferroptosis, were found to be upregulated in intestinal mucosal ILC3s from ulcerative colitis patients. Deletion of GPX4 resulted in a decrease in NKp46+ILC3 cell numbers, impaired production of IL-22 and IL-17A, and exacerbated intestinal inflammation in a T cell-independent manner. Our mechanistic studies revealed that GPX4-mediated ferroptosis in NKp46+ILC3 cells was regulated by the LCN2-p38-ATF4-xCT signaling pathway. Mice lacking LCN2 in ILC3s or administration of a p38 pathway inhibitor exhibited similar phenotypes of ILC3 and colitis to those observed in GPX4 conditional knock-out mice. These observations provide novel insights into therapeutic strategies for intestinal inflammation by modulating ILC3 ferroptosis.
Collapse
Affiliation(s)
- Xinyao Li
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianci Wang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Zhao X, Yuan W, Yang L, Yan F, Cui D. Ginsenoside Rh2 suppresses ferroptosis in ulcerative colitis by targeting specific protein 1 by upregulating microRNA-125a-5p. Eur J Med Res 2024; 29:450. [PMID: 39223620 PMCID: PMC11370063 DOI: 10.1186/s40001-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Worldwide, ulcerative colitis (UC) is becoming increasingly fast growing. Ginsenoside Rh2 has been reported to alleviate UC. However, the latent biological mechanism of Rh2 in the treatment of UC remains uncertain. In this study, the goal was to determine the therapeutic effect of Rh2 on dextran sulfate sodium (DSS)-induced UC. METHODS A DSS-induced UC mouse model was established and divided into 7 groups for Rh2 gavage and/or miR-125a-5p lentivirus injection (n = 10 per group). Colonic specimens were collected for phenotypic and pathological analysis. miR-125a-5p and specific protein 1 (SP1) expression, inflammation-related factors IL-6 and IL-10, and apoptosis were detected in mice. Human normal colon epithelial cell line NCM460 was treated with H2O2 and ferric chloride hexahydrate to construct an in vitro cell model of colitis and induce ferroptosis. Independent sample t-test was used to compare cell proliferation, cell entry, apoptosis, and oxidative stress between the two groups. One way analysis of variance combined with the least significant difference t test was used for comparison between groups. Multiple time points were compared by repeated measurement analysis of variance. RESULTS DSS-induced UC mice had significantly decreased body weight, increased disease activity index, decreased colon length, and decreased miR-125a-5p expression (all P < 0.05). In the DSS-induced mouse model, the expression of miR-125a-5p rebounded and ferroptosis was inhibited after Rh2 treatment (all P < 0.05). Inhibition of miR-125a-5p or upregulation of SP1 expression counteracted the protective effects of Rh2 on UC mice and ferroptosis cell models (all P < 0.05). CONCLUSIONS Rh2 mitigated DSS-induced colitis in mice and restrained ferroptosis by targeting miR-125a-5p. Downregulating miR-125a-5p or elevating SP1 could counteract the protective impacts of Rh2 on ferroptotic cells. The findings convey that Rh2 has a latent application value in the treatment of UC.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - WenQiang Yuan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - LiuChan Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China
| | - DeJun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No. 83, East Zhongshan Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
29
|
Kao AT, Cabanlong CV, Padilla K, Xue X. Unveiling ferroptosis as a promising therapeutic avenue for colorectal cancer and colitis treatment. Acta Pharm Sin B 2024; 14:3785-3801. [PMID: 39309484 PMCID: PMC11413686 DOI: 10.1016/j.apsb.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/31/2024] [Accepted: 04/30/2024] [Indexed: 09/25/2024] Open
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) involving iron accumulation and lipid peroxidation. Since its discovery in 2012, various studies have shown that ferroptosis is associated with the pathogenesis of various diseases. Ferroptotic cell death has also been linked to intestinal dysfunction but can act as either a positive or negative regulator of intestinal disease, depending on the cell type and disease context. The continued investigation of mechanisms underlying ferroptosis provides a wealth of potential for developing novel treatments. Considering the growing prevalence of intestinal diseases, particularly colorectal cancer (CRC) and inflammatory bowel disease (IBD), this review article focuses on potential therapeutics targeting the ferroptotic pathway in relation to CRC and IBD.
Collapse
Affiliation(s)
| | | | - Kendra Padilla
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
30
|
Luo S, Zeng Y, Chen B, Yan J, Ma F, Zhuang G, Hao H, Cao G, Xiao X, Li S. Vitamin E and GPX4 cooperatively protect treg cells from ferroptosis and alleviate intestinal inflammatory damage in necrotizing enterocolitis. Redox Biol 2024; 75:103303. [PMID: 39137584 PMCID: PMC11372871 DOI: 10.1016/j.redox.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND The notable decline in the number of Tregs within Necrotizing enterocolitis (NEC) intestinal tissues,contribute to excessive inflammation and necrosis, yet the precise underlying factors remain enigmatic. Ferroptosis, a novel cell death stemming from a disrupted lipid redox metabolism, is the focus of this investigation. Specifically, this study delves into the ferroptosis of Treg cells in the context of NEC and observes the protective effects exerted by vitamin E intervention, which aims to mitigate ferroptosis of Treg cells. METHODS To investigate the reduction of Treg cells in NEC intestine, we analyzed its association with ferroptosis from multiple angles. We constructed a mouse with a specific knockout of Gpx4 in Treg cells, aiming to examine the impact of Treg cell ferroptosis on NEC intestinal injury and localized inflammation. Ultimately, we employed vitamin E treatment to mitigate ferroptosis in NEC intestine's Treg cells, monitoring the subsequent amelioration in intestinal inflammatory damage. RESULTS The diminution of Treg cells in NEC is attributed to ferroptosis stemming from diminished GPX4 expression. Gpx4-deficient Treg cells exhibit impaired immunosuppressive function and are susceptible to ferroptosis. This ferroptosis of Treg cells exacerbates intestinal damage and inflammatory response in NEC. Notably, Vitamin E can inhibit the ferroptosis of Treg cells, subsequently alleviating intestinal damage and inflammation in NEC. Additionally, Vitamin E bolsters the anti-lipid peroxidation capability of Treg cells by upregulating the expression of GPX4. CONCLUSION In the context of NEC, the ferroptosis of Treg cells represents a significant factor contributing to intestinal tissue damage and an exaggerated inflammatory response. GPX4 is pivotal for the viability and functionality of Treg cells. Vitamin E exhibits the capability to mitigate the ferroptosis of Treg cells, thereby enhancing their number and function, which plays a crucial role in mitigating intestinal tissue damage and inflammatory response in NEC.
Collapse
Affiliation(s)
- Shunchang Luo
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Yingying Zeng
- Department of Laboratory Medicine, Nanfang Hospital Baiyun Branch, Southern Medical University, Guangzhou, 510420, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Baozhu Chen
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Junjie Yan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Fei Ma
- Maternal & Child Health Research Institute, Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519001, China
| | - Guiying Zhuang
- The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, 510800, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Guangchao Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China.
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China; Department of Pediatrics, Xinyi People's Hospital, Maoming, 525300, China.
| |
Collapse
|
31
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
32
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Ren S, Sun C, Zhai W, Wei W, Liu J. Gaining new insights into the etiology of ulcerative colitis through a cross-tissue transcriptome-wide association study. Front Genet 2024; 15:1425370. [PMID: 39092429 PMCID: PMC11291327 DOI: 10.3389/fgene.2024.1425370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Background Genome-wide association studies (GWASs) have identified 38 loci associated with ulcerative colitis (UC) susceptibility, but the risk genes and their biological mechanisms remained to be comprehensively elucidated. Methods Multi-marker analysis of genomic annotation (MAGMA) software was used to annotate genes on GWAS summary statistics of UC from FinnGen database. Genetic analysis was performed to identify risk genes. Cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signatures (UTMOST) was performed to compare GWAS summary statistics with gene expression matrix (from Genotype-Tissue Expression Project) for data integration. Subsequently, we used FUSION software to select key genes from the individual tissues. Additionally, conditional and joint analysis was conducted to improve our understanding on UC. Fine-mapping of causal gene sets (FOCUS) software was employed to accurately locate risk genes. The results of the four genetic analyses (MAGMA, UTMOST, FUSION and FOCUS) were combined to obtain a set of UC risk genes. Finally, Mendelian randomization (MR) analysis and Bayesian colocalization analysis were conducted to determine the causal relationship between the risk genes and UC. To test the robustness of our findings, the same approaches were taken to verify the GWAS data of UC on IEU. Results Multiple correction tests screened PIM3 as a risk gene for UC. The results of Bayesian colocalization analysis showed that the posterior probability of hypothesis 4 was 0.997 and 0.954 in the validation dataset. MR was conducted using the inverse variance weighting method and two single nucleotide polymorphisms (SNPs, rs28645887 and rs62231924) were included in the analysis (p < 0.001, 95%CI: 1.45-1.89). In the validation dataset, MR result was p < 0.001, 95%CI: 1.19-1.72, indicating a clear causal relationship between PIM3 and UC. Conclusion Our study validated PIM3 as a key risk gene for UC and its expression level may be related to the risk of UC, providing a novel reference for further improving the current understanding on the genetic structure of UC.
Collapse
Affiliation(s)
- Shijie Ren
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chaodi Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenjing Zhai
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenli Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Gastroenterology, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
35
|
Zhu J, Wu Y, Ge X, Chen X, Mei Q. Discovery and Validation of Ferroptosis-Associated Genes of Ulcerative Colitis. J Inflamm Res 2024; 17:4467-4482. [PMID: 39006497 PMCID: PMC11246036 DOI: 10.2147/jir.s463042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Background Ulcerative colitis (UC) is a long-lasting idiopathic condition, but its precise mechanisms remain unclear. Meanwhile, evidence has demonstrated that ferroptosis seems to interlock with the progress of UC. This research sought to identify hub genes of UC related to ferroptosis. Methods First, the relevant profiles for this article were obtained from GEO database. From the FerrDb, 479 genes linked to ferroptosis were retrieved. Using analysis of the difference and WGCNA on colonic samples from GSE73661, the remaining six hub genes linked to ferroptosis and UC were discovered. Through logistic regression analyses, the diagnostic model was constructed and was then evaluated by external validation using dataset GSE92415. Afterwards, the correlation between immune cell filtration in UC and hub genes was examined. Finally, a mice model of colitis was established, and the results were verified using qRT-PCR. Results We acquired six hub genes linked to ferroptosis and UC. In order to create a diagnostic model for UC, we used logistic regression analysis to screen three of the six ferroptosis related genes (HIF1A, SLC7A11, and LPIN1). The ROC curve showed that the three hub genes had outstanding potential for disease diagnosis (AUC = 0.976), which was subsequently validated in samples from GSE92415 (AUC = 0.962) and blood samples from GSE3365 (AUC = 0.847) and GSE94648 (AUC = 0.769). These genes might be crucial for UC immunity based upon the results on the immune system. Furthermore, mouse samples examined using qRT-PCR also verified our findings. Conclusion In conclusion, the findings have important implications for ferroptosis and UC, and these hub genes may also offer fresh perspectives on the aetiology and therapeutic approaches of UC.
Collapse
Affiliation(s)
- Jiejie Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Yumei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Xiaoyuan Ge
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Xinwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People's Republic of China
- Key Laboratory of Digestive Diseases of Anhui Province, Hefei, People's Republic of China
| |
Collapse
|
36
|
Lin Y, Xu J, Gu Q. FerroLigandDB: A Ferroptosis Ligand Database of Structure-Activity Relations. J Chem Inf Model 2024; 64:5052-5062. [PMID: 38885636 DOI: 10.1021/acs.jcim.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Ferroptosis is an iron-dependent programmed cell death characterized by lipid peroxidation that is linked to the pathophysiological processes in many diseases, such as neurodegenerative diseases, cancers, ischemia-reperfusion injuries, and organ damages. Many proteins are associated with ferroptosis signal transduction pathways. Novel chemical compounds are demanded to explore and regulate these pathways. Therefore, a ferroptosis ligand database, which holds relations among chemical structures, targets, bioactivities, and diseases, is needed for discovering and designing new ferroptosis regulators. This work reports FerroLigandDB, a manually curated database for small-molecular ferroptosis regulators. The database comprises 466 ferroptosis inducer entries (with 380 unique molecular structures) and 539 ferroptosis inhibitor entries (with 468 unique molecular structures) (note: one compound can be recorded as multiple entries due to the different assays). Each ferroptosis ligand entry is detailed with compound IDs, structure attributes, bioactivity values, test objects, target information, associated diseases, and references. The fields in the FerroLigandDB database implicitly contain relationships among chemical structures, bioactivities, targets, and diseases. Thus, FerroLigandDB is a comprehensive resource for scientists to design and discover novel ferroptosis regulators. The user interface of FerroLigandDB is implemented with query features and data visualization facilities. With compound identifiers, the compounds are linked to the records of other chemoinformatics databases (such as PubChem and SciFinder). The FerroLigandDB database is freely accessible at http://ferr.gulab.org.cn/.
Collapse
Affiliation(s)
- Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
37
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
38
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
39
|
Wang Y, Hao Y, Yuan L, Tian H, Sun X, Zhang Y. Ferroptosis: a new mechanism of traditional Chinese medicine for treating ulcerative colitis. Front Pharmacol 2024; 15:1379058. [PMID: 38895617 PMCID: PMC11184165 DOI: 10.3389/fphar.2024.1379058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent, bloody stools. The pathogenesis of UC is not fully understood. At present, the incidence of UC has increased significantly around the world. Conventional therapeutic arsenals are relatively limited, with often poor efficacy and many adverse effects. In contrast, traditional Chinese medicine (TCM) holds promise due to their notable effectiveness, reduced recurrence rates, and minimal side effects. In recent years, significant progress has been made in the basic research on TCM for UC treatment. It has been found that the inhibition of ferroptosis through the intervention of TCM can significantly promote intestinal mucosal healing and reverse UC. The mechanism of action involves multiple targets and pathways. Aim of the review This review summarizes the experimental studies on the targeted regulation of ferroptosis by TCM and its impact on UC in recent years, aiming to provide theoretical basis for the prevention, treatment, and further drug development for UC. Results Ferroptosis disrupts antioxidant mechanisms in intestinal epithelial cells, damages the intestinal mucosa, and participates in the pathological process of UC. TCM acts on various pathways such as Nrf2/HO-1 and GSH/GPX4, blocking the pathological progression of ferroptosis in intestinal epithelial cells, inhibiting pathological damage to the intestinal mucosa, and thereby alleviating UC. Conclusion The diverse array of TCM single herbs, extracts and herbal formulas facilitates selective and innovative research and development of new TCM methods for targeting UC treatment. Although progress has been made in studying TCM compound formulas, single herbs, and extracts, there are still many issues in clinical and basic experimental designs, necessitating further in-depth scientific exploration and research.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingling Yuan
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huaie Tian
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Sun
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
41
|
Gong Y, Wang Y, Li Y, Weng F, Chen T, He L. Curculigoside, a traditional Chinese medicine monomer, ameliorates oxidative stress in Alzheimer's disease mouse model via suppressing ferroptosis. Phytother Res 2024; 38:2462-2481. [PMID: 38444049 DOI: 10.1002/ptr.8152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 03/07/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder where oxidative stress, induced by ferroptosis, has been linked to neuronal damage and cognitive deficits. The objective of this study is to investigate if the potential therapeutic agent, Curculigoside (CUR), could ameliorate AD by inhibiting ferroptosis. The potential therapeutic targets, such as GPX4 and SLC7A11, were identified using weighted gene co-expression network analysis (WGCNA). Concurrently, CUR was also screened against these potential targets using various analytical methods. For the in vivo studies, intragastric administration of CUR significantly ameliorated cognitive impairment in AD model mice induced by scopolamine and okadaic acid (OA). In vitro, CUR protected neuronal cells by altering the levels of ferroptosis-related specific markers in OA and scopolamine-induced neurotoxicity. The administration of CUR through intragastric route significantly reduced the levels of AD-promoting factors (such as Aβ1-42, p-tau) and ferroptosis-promoting factors in the hippocampus and cortex of AD mice. Furthermore, CUR up-regulated the expression of GPX4 and decreased the expression of SLC7A11 in the ferroptosis signaling pathway, thereby increasing the ratio of glutathione (GSH)/oxidized glutathione (GSSG) in vivo and vitro. In conclusion, the cumulative results suggest that the natural compound CUR may serve as a promising therapeutic agent to ameliorate AD by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yuhang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yanan Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Li
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Fanglin Weng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Wang Q, Liu C, Chen M, Zhao J, Wang D, Gao P, Zhang C, Zhao H. Mastoparan M promotes functional recovery in stroke mice by activating autophagy and inhibiting ferroptosis. Biomed Pharmacother 2024; 174:116560. [PMID: 38583338 DOI: 10.1016/j.biopha.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 μg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 μg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
43
|
Kaur G, Kumar A, Kurl S, Mittal N, Malik DS, Bassi P, Singh T, Khan AA, Alanazi AM, Kaur G. Leucaena leucocephala succinate based polyelectrolyte complexes for colon delivery of synbiotic in management of inflammatory bowel disease. Heliyon 2024; 10:e29429. [PMID: 38628770 PMCID: PMC11017066 DOI: 10.1016/j.heliyon.2024.e29429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Polyelectrolyte complexes (PECs) formed by the interaction between oppositely charged polymers have emerged as promising carriers for accomplishing colon-specific release. In this study, we have explored the potential of polyelectrolyte complexes between a succinate derivative of Leucaena leucocephala galactomannan and cationic guar gum for colon delivery of synbiotic. The PECs were prepared using a polyelectrolyte complexation method and characterized. The PECs exhibited excellent stability, with high encapsulation efficiency for both probiotics (95.53 %) and prebiotics (83.33 %). In vitro studies demonstrated enhanced survivability and proliferation of the encapsulated probiotics in the presence of prebiotics (93.29 %). The SEM images revealed a smooth and firm structure with reduced number of pores when both prebiotic and probiotic were encapsulated together. The treatment with synbiotic PECs in acetic acid induced IBD rats significantly relieves colitis symptoms as was evident from colon/body ratio, DAI score and histopathology studies. An increase in the protein and reduced glutathione levels and reduction in superoxide dismutase activity was observed in colitic rats that received synbiotic treatment as compared to colitic rats. Overall, this study highlights the potential of Leucaena leucocephala succinate-cationic guar gum PECs as a promising system for colon-specific synbiotic delivery, with implications for improved gut health and the treatment of various gastrointestinal disorders.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Punjab, 147002, India
| | - Aman Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Punjab, 147002, India
| | - Samridhi Kurl
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Punjab, 147002, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Pallavi Bassi
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, Medical Research, College of Medicine, Bryan, 77807, USA
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Punjab, 147002, India
| |
Collapse
|
44
|
Guo M, Du X, Wang X. Inhibition of ferroptosis: A new direction in the treatment of ulcerative colitis by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117787. [PMID: 38253272 DOI: 10.1016/j.jep.2024.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic idiopathic intestinal disease of unknown cause and has been classified as one of the modern intractable diseases by the World Health Organization (WHO). Ferroptosis, as an iron-ion-dependent mode of programmed cell death, is closely related to iron metabolism, lipid peroxidation, and imbalance of the antioxidant system, and plays an important role in the development of UC. In this paper, we will review the regulatory pathways of ferroptosis, the relationship between ferroptosis and the pathogenesis of UC, and the treatment of UC by TCM from the perspective of ferroptosis inhibition, and summarize the mechanism of action of the active ingredients of TCM and TCM compounds to improve UC through ferroptosis inhibition, and look forward to the prospect of the application of ferroptosis inhibition by TCM in the treatment of UC. AIM OF THIS REVIEW This paper aims to elucidate the mechanism of action of TCM active ingredients and TCM combinations in the treatment of UC by inhibiting ferroptosis. The active ingredients of TCM have the significant advantages of multi-targets and multi-pathways, and ferroptosis is the current research hotspot in the prevention and treatment of UC, so the inhibition of ferroptosis by TCM is a key direction for future research. MATERIALS AND METHODS The keywords "ferroptosis", "ulcerative colitis" and "TCM" were searched in Pubmed, CNKI, and Wed of Science databases. Papers related to clinical trials and pharmacological research up to August 2023 were screened for inclusion. Combined with the theory of TCM, we systematically summarized the effects of TCM active ingredients and TCM combinations in inhibiting ferroptosis and thus preventing UC. RESULTS A large number of studies have shown that TCM active ingredients and TCM combinations inhibit the inflammatory response and oxidative stress in the course of UC mainly by interfering with iron metabolism, correcting lipid metabolism and peroxidative accumulation, and regulating the processes of glutathione (GSH) and glutathione peroxidase 4 (GPX4), to improve colonic mucosal damage and promote the repair of colonic mucosal tissue. CONCLUSION Since the study of ferroptosis in UC is still in the exploratory stage, many issues still deserve attention in the future. This paper reviews the mechanism of ferroptosis inhibition by TCM active ingredients and TCM combinations to prevent and treat UC. In the future, we should also further increase the number of clinical experimental studies to explore whether more TCM medicines can play a therapeutic role in UC by inhibiting ferroptosis, and explore more pathways and genes targeting the inhibition of ferroptosis, to seek more TCM therapies for UC. We believe that the use of TCM active ingredients and TCM combinations to regulate ferroptosis is an important direction for future UC prevention and treatment.
Collapse
Affiliation(s)
- Meitong Guo
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, No.1035, Boshuo Road, Jingyue National Hi-Tech Industrial Development Zone, Changchun, 130117, China.
| | - Xingchen Du
- College of Basic Medical Sciences, Changchun University of Traditional Chinese Medicine, No.1035, Boshuo Road, Jingyue National Hi-Tech Industrial Development Zone, Changchun, 130117, China.
| | - Xiaoyan Wang
- The First Clinical Hospital of Jilin Academy of Traditional Chinese Medical Sciences, Changchun Economic and Technological Development Zone, No. 6426, Changchun, China.
| |
Collapse
|
45
|
Ye Y, Liu L, Jing Y, Yao S, Yang M, Dai X, Piao M, Xu X, Feng Z, Wang X, Liu Y, Miao J, Gao X, Yu Q, Cao X. Ferroptosis: A therapeutic opportunity of inflammatory bowel disease. Chin Med J (Engl) 2024; 137:874-876. [PMID: 38391159 PMCID: PMC10997284 DOI: 10.1097/cm9.0000000000002998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yang Jing
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuangzhe Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mo Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Meiyu Piao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xin Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yifei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Junming Miao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Qingxiang Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
46
|
Ni J, Zhang L, Feng G, Bao W, Wang Y, Huang Y, Chen T, Chen J, Cao X, You K, Tan S, Efferth T, Li H, Li B, Shen X, You Y. Vanillic acid restores homeostasis of intestinal epithelium in colitis through inhibiting CA9/STIM1-mediated ferroptosis. Pharmacol Res 2024; 202:107128. [PMID: 38438089 DOI: 10.1016/j.phrs.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The damage of integrated epithelial epithelium is a key pathogenic factor and closely associated with the recurrence of ulcerative colitis (UC). Here, we reported that vanillic acid (VA) exerted potent therapeutic effects on DSS-induced colitis by restoring intestinal epithelium homeostasis via the inhibition of ferroptosis. By the CETSA assay and DARTS assay, we identified carbonic anhydrase IX (CAIX, CA9) as the direct target of VA. The binding of VA to CA9 causes insulin-induced gene-2 (INSIG2) to interact with stromal interaction molecule 1 (STIM1), rather than SREBP cleavage-activating protein (SCAP), leading to the translocation of SCAP-SREBP1 from the endoplasmic reticulum (ER) to the Golgi apparatus for cleavage into mature SREBP1. The activation of SREBP1 induced by VA then significantly facilitated the transcription of stearoyl-CoA desaturase 1 (SCD1) to exert an inhibitory effect on ferroptosis. By inhibiting the excessive death of intestinal epithelial cells caused by ferroptosis, VA effectively preserved the integrity of intestinal barrier and prevented the progression of unresolved inflammation. In conclusion, our study demonstrated that VA could alleviate colitis by restoring intestinal epithelium homeostasis through CA9/STIM1-mediated inhibition of ferroptosis, providing a promising therapeutic candidate for UC.
Collapse
Affiliation(s)
- Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Weilian Bao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jieli Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sheng Tan
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Hong Li
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Center, 720 Cailun Road, Shanghai, China.
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China.
| | - Yan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Purushothaman K, Crawford AD, Rocha SD, Göksu AB, Lange BM, Mydland LT, Vij S, Qingsong L, Øverland M, Press CM. Cyberlindnera jadinii yeast as a functional protein source: Modulation of immunoregulatory pathways in the intestinal proteome of zebrafish ( Danio rerio). Heliyon 2024; 10:e26547. [PMID: 38468924 PMCID: PMC10925985 DOI: 10.1016/j.heliyon.2024.e26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.
Collapse
Affiliation(s)
- Kathiresan Purushothaman
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander D. Crawford
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio D.C. Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Aleksandar B. Göksu
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Byron Morales Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Shubha Vij
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Charles McL. Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
48
|
Zhou J, Wang J, Wang J, Li D, Hou J, Li J, Bai Y, Gao J. An inulin-type fructan CP-A from Codonopsis pilosula attenuates experimental colitis in mice by promoting autophagy-mediated inactivation of NLRP3 inflammasome. Chin J Nat Med 2024; 22:249-264. [PMID: 38553192 DOI: 10.1016/s1875-5364(24)60556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 04/02/2024]
Abstract
Inulin-type fructan CP-A, a predominant polysaccharide in Codonopsis pilosula, demonstrates regulatory effects on immune activity and anti-inflammation. The efficacy of CP-A in treating ulcerative colitis (UC) is, however, not well-established. This study employed an in vitro lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) and an in vivo dextran sulfate sodium (DSS)-induced colitis mouse model to explore CP-A's protective effects against experimental colitis and its underlying mechanisms. We monitored the clinical symptoms in mice using various parameters: body weight, disease activity index (DAI), colon length, spleen weight, and histopathological scores. Additionally, molecular markers were assessed through enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays. Results showed that CP-A significantly reduced reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), and interleukins (IL-6, IL-1β, IL-18) in LPS-induced cells while increasing IL-4 and IL-10 levels and enhancing the expression of Claudin-1, ZO-1, and occludin proteins in NCM460 cells. Correspondingly, in vivo findings revealed that CP-A administration markedly improved DAI, reduced colon shortening, and decreased the production of myeloperoxidase (MPO), malondialdehyde (MDA), ROS, IL-1β, IL-18, and NOD-like receptor protein 3 (NLRP3) inflammasome-associated genes/proteins in UC mice. CP-A treatment also elevated glutathione (GSH) and superoxide dismutase (SOD) levels, stimulated autophagy (LC3B, P62, Beclin-1, and ATG5), and reinforced Claudin-1 and ZO-1 expression, thereby aiding in intestinal epithelial barrier repair in colitis mice. Notably, the inhibition of autophagy via chloroquine (CQ) diminished CP-A's protective impact against colitis in vivo. These findings elucidate that CP-A's therapeutic effect on experimental colitis possibly involves mitigating intestinal inflammation through autophagy-mediated NLRP3 inflammasome inactivation. Consequently, inulin-type fructan CP-A emerges as a promising drug candidate for UC treatment.
Collapse
Affiliation(s)
- Jiangtao Zhou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jun Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiajing Wang
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Deyun Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jing Hou
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jiankuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Yun'e Bai
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, Jinzhong 030600, China.
| |
Collapse
|
49
|
Zhang EX, Hao WW, Wang ZH, Shi YR. Mechanism of prevention and treatment of ulcerative colitis from the perspective of iron death. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:109-115. [DOI: 10.11569/wcjd.v32.i2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
|
50
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L, Zhao K, Deng H, Sun Z. Natural compounds target programmed cell death (PCD) signaling mechanism to treat ulcerative colitis: a review. Front Pharmacol 2024; 15:1333657. [PMID: 38405669 PMCID: PMC10885814 DOI: 10.3389/fphar.2024.1333657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ulcerative colitis (UC) is a nonspecific inflammatory bowel disease characterized by abdominal pain, bloody diarrhea, weight loss, and colon shortening. However, UC is difficult to cure due to its high drug resistance rate and easy recurrence. Moreover, long-term inflammation and increased disease severity can lead to the development of colon cancer in some patients. Programmed cell death (PCD) is a gene-regulated cell death process that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD plays a crucial role in maintaining body homeostasis and the development of organs and tissues. Abnormal PCD signaling is observed in the pathological process of UC, such as activating the apoptosis signaling pathway to promote the progression of UC. Targeting PCD may be a therapeutic strategy, and natural compounds have shown great potential in modulating key targets of PCD to treat UC. For instance, baicalin can regulate cell apoptosis to alleviate inflammatory infiltration and pathological damage. This review focuses on the specific expression of PCD and its interaction with multiple signaling pathways, such as NF-κB, Nrf2, MAPK, JAK/STAT, PI3K/AKT, NLRP3, GPX4, Bcl-2, etc., to elucidate the role of natural compounds in targeting PCD for the treatment of UC. This review used (ulcerative colitis) (programmed cell death) and (natural products) as keywords to search the related studies in PubMed and the Web of Science, and CNKI database of the past 10 years. This work retrieved 72 studies (65 from the past 5 years and 7 from the past 10 years), which aims to provide new treatment strategies for UC patients and serves as a foundation for the development of new drugs.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Long Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hualiang Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|