1
|
Lee HY, Min YH, Lee DG, Lee KH, Kim J, Lee MK, Byun JY, Shin YB. CRISPR/Cas12a Collateral Cleavage-Driven Transcription Amplification for Direct Nucleic Acid Detection. Anal Chem 2024. [PMID: 39018310 DOI: 10.1021/acs.analchem.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The clustered regularly interspaced short palindromic repeat/Cas (CRISPR/Cas) system is a powerful tool for nucleic acid detection owing to specific recognition as well as cis- and trans-cleavage capabilities. However, the sensitivity of CRISPR/Cas-based diagnostic approaches is determined by nucleic acid preamplification, which has several limitations. Here, we present a method for direct nucleic acid detection without preamplification, by combining the CRISPR/Cas12a system with signal enhancement based on light-up RNA aptamer transcription. We first designed two DNA templates to transcribe the light-up RNA aptamer and kleptamer (Kb) RNA: the first DNA template encodes a Broccoli RNA aptamer for fluorescence signal generation, and the Kb DNA template comprises a dsDNA T7 promoter sequence and an ssDNA sequence that encodes an antisense strand for the Broccoli RNA aptamer. Hepatitis B virus (HBV) target recognition activates a CRISPR/Cas12a complex, leading to the catalytic cleavage of the ssDNA sequence. Transcription of the added Broccoli DNA template can then produce several Broccoli RNA aptamer transcripts for fluorescence enhancement. The proposed strategy exhibited excellent sensitivity and specificity with 22.4 fM detection limit, good accuracy, and stability for determining the target HBV dsDNA in human serum samples. Overall, this newly designed signal enhancement strategy can be employed as a universal sensing platform for ultrasensitive nucleic acid detection.
Collapse
Affiliation(s)
- Ha-Yeong Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Deok-Gyu Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Kyung-Ho Lee
- Apteasy MJ Inc., 333 Cheomdangwagi-ro, Technopark, Gwangju 61008, Korea
| | - Jinhyung Kim
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Mi-Kyung Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Proteome Structural Biology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
2
|
Abstract
Hepadnaviruses have been identified in several animal species. The hepadnavirus prototype, human hepatitis B virus (HBV), is a major public health problem associated with chronic liver diseases and hepatocellular carcinoma. Recently, a novel hepadnavirus, similar to HBV, was identified in domestic cats. Since several pathogens can be shared between cats and dogs, we hypothesized that dogs could also harbor hepadnaviruses and we tested a collection of canine sera with multiple molecular strategies. Overall, hepadnavirus DNA was identified in 6.3% (40/635) of canine serum samples, although the viral load in positive sera was low (geometric mean of 2.70 × 102 genome copies per mL, range min 1.36 × 102—max 4.03 × 104 genome copies per mL). On genome sequencing, the canine hepadnaviruses revealed high nucleotide identity (about 98%) and similar organization to the domestic cat hepadnavirus. Altered hepatic markers were found in hepadnavirus-positive dogs, although the role of hepadnavirus in canine health remains to be elucidated.
Collapse
|
3
|
Rasmi Y. Testing and diagnosis of SARS-CoV-2 infection. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217735 DOI: 10.1016/b978-0-323-85156-5.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly spread around the world since its discovery in China, in December 2019. The current standard method for determining whether a patient is infected with the SARS-CoV-2 virus involves taking a nasal or throat swab sample, which is then sent to laboratories for testing. The laboratories then use polymerase chain reaction (PCR)-based technology on respiratory specimens remain the gold standard to determine if the genetic material of the virus is present in the sample and use this information to diagnose the patient. However, serologic immunoassays and point-of-care technologies are rapidly emerging with high specificity and sensitivity as well. Even if there are excellent techniques for diagnosing symptomatic patients with COVID-19 in equipped laboratories, critical gaps still exist in the screening of asymptomatic individuals who are in the incubation phase of the virus, as well as in the accurate determination of live virus shedding during convalescence to inform decisions for ending isolation.
Collapse
|
4
|
Ingasia LAO, Wose Kinge C, Kramvis A. Genotype E: The neglected genotype of hepatitis B virus. World J Hepatol 2021; 13:1875-1891. [PMID: 35069995 PMCID: PMC8727212 DOI: 10.4254/wjh.v13.i12.1875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) (sub)genotypes A1, D3 and E circulate in sub-Saharan Africa, the region with one of the highest incidences of HBV-associated hepatocellular carcinoma globally. Although genotype E was identified more than 20 years ago, and is the most widespread genotype in Africa, it has not been extensively studied. The current knowledge status and gaps in its origin and evolution, natural history of infection, disease progression, response to antiviral therapy and vaccination are discussed. Genotype E is an African genotype, with unique molecular characteristics that is found mainly in Western and Central Africa and rarely outside Africa except in individuals of African descent. The low prevalence of this genotype in the African descendant populations in the New World, phylogeographic analyses, the low genetic diversity and evidence of remnants of genotype E in ancient HBV samples suggests the relatively recent re-introduction into the population. There is scarcity of information on the clinical and virological characteristics of genotype E-infected patients, disease progression and outcomes and efficacy of anti-HBV drugs. Individuals infected with genotype E have been characterised with high hepatitis B e antigen-positivity and high viral load with a lower end of treatment response to interferon-alpha. A minority of genotype E-infected participants have been included in studies in which treatment response was monitored. Of concern is that current guidelines do not consider patients infected with genotype E. Thus, there is an urgent need for further large-scale investigations into genotype E, the neglected genotype of HBV.
Collapse
Affiliation(s)
- Luicer Anne Olubayo Ingasia
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Constance Wose Kinge
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Implementation Science, Right to Care, Johannesburg 0046, Gauteng, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| |
Collapse
|
5
|
Murugan C, Ramamoorthy S, Kuppuswamy G, Murugan RK, Sivalingam Y, Sundaramurthy A. COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. Int J Biol Macromol 2021; 193:1165-1200. [PMID: 34710479 PMCID: PMC8545698 DOI: 10.1016/j.ijbiomac.2021.10.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.
Collapse
Affiliation(s)
- Chandran Murugan
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Guruprasad Kuppuswamy
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Rajesh Kumar Murugan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India; Department of Chemical Engineering, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 423:130189. [PMID: 33994842 PMCID: PMC8103773 DOI: 10.1016/j.cej.2021.130189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus diseases-2019 (COVID-19) is becoming increasing serious and major threat to public health concerns. As a matter of fact, timely testing enhances the life-saving judgments on treatment and isolation of COVID-19 infected individuals at possible earliest stage which ultimately suppresses spread of infectious diseases. Many government and private research institutes and manufacturing companies are striving to develop reliable tests for prompt quantification of SARS-CoV-2. In this review, we summarize existing diagnostic methods as manual laboratory-based nucleic acid assays for COVID-19 and their limitations. Moreover, vitality of rapid and point of care serological tests together with emerging biosensing technologies has been discussed in details. Point of care tests with characteristics of rapidity, accurateness, portability, low cost and requiring non-specific devices possess great suitability in COVID-19 diagnosis and detection. Besides, this review also sheds light on several preventive measures to track and manage disease spread in current and future outbreaks of diseases.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Fei Xiao
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
7
|
Chowdhury FR, McNaughton AL, Amin MR, Barai L, Saha MR, Rahman T, Das BC, Hasan MR, Islam KMS, Faiz MA, Al-Mahtab M, Mokaya J, Kronsteiner B, Jeffery K, Andersson MI, de Cesare M, Ansari MA, Dunachie S, Matthews PC. Endemic HBV among hospital in-patients in Bangladesh, including evidence of occult infection. J Gen Virol 2021; 102. [PMID: 34328828 PMCID: PMC8491891 DOI: 10.1099/jgv.0.001628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bangladesh is one of the top-ten most heavily burdened countries for viral hepatitis, with hepatitis B (HBV) infections responsible for the majority of cases. Recombinant and occult HBV infections (OBI) have been reported previously in the region. We investigated an adult fever cohort (n=201) recruited in Dhaka, to determine the prevalence of HBV and OBI. A target-enrichment deep sequencing pipeline was applied to samples with HBV DNA >3.0 log10 IU ml−1. HBV infection was present in 16/201 (8 %), among whom 3/16 (19 %) were defined as OBI (HBsAg-negative but detectable HBV DNA). Whole genome deep sequences (WGS) were obtained for four cases, identifying genotypes A, C and D. One OBI case had sufficient DNA for sequencing, revealing multiple polymorphisms in the surface gene that may contribute to the occult phenotype. We identified mutations associated with nucleos(t)ide analogue resistance in 3/4 samples sequenced, although the clinical significance in this cohort is unknown. The high prevalence of HBV in this setting illustrates the importance of opportunistic clinical screening and DNA testing of transfusion products to minimise OBI transmission. WGS can inform understanding of diverse disease phenotypes, supporting progress towards international targets for HBV elimination.
Collapse
Affiliation(s)
- Fazle Rabbi Chowdhury
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand
| | - Anna L McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | | | - Lovely Barai
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Mili Rani Saha
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Tanjila Rahman
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - Bikash Chandra Das
- Surveillance and Immunization Unit, World Health Organization Office, Dhaka 1200, Bangladesh
| | - M Rokibul Hasan
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - K M Shahidul Islam
- Department of Microbiology, BIRDEM General Hospital, Dhaka 1200, Bangladesh
| | - M A Faiz
- Dev Care Foundation, Dhaka 1200, Bangladesh
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka 1200, Bangladesh
| | - Jolynne Mokaya
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Barbara Kronsteiner
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Katie Jeffery
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Monique I Andersson
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - M Azim Ansari
- Wellcome Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| | - Susanna Dunachie
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok 10400, Thailand.,Centre for Tropical Medicine and Global Health, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Philippa C Matthews
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX1 3SY, UK.,Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Rd, Oxford OX1 3SY, UK
| |
Collapse
|
8
|
Panchal D, Prakash O, Bobde P, Pal S. SARS-CoV-2: sewage surveillance as an early warning system and challenges in developing countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22221-22240. [PMID: 33733417 PMCID: PMC7968922 DOI: 10.1007/s11356-021-13170-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/22/2021] [Indexed: 04/15/2023]
Abstract
Transmission of novel coronavirus (SARS-CoV-2) in humans happens either through airway exposure to respiratory droplets from an infected patient or by touching the virus contaminated surface or objects (fomites). Presence of SARS-CoV-2 in human feces and its passage to sewage system is an emerging concern for public health. Pieces of evidence of the occurrence of viral RNA in feces and municipal wastewater (sewage) systems have not only warned reinforcing the treatment facilities but also suggest that these systems can be monitored to get epidemiological data for checking trend of COVID-19 infection in the community. This review summarizes the occurrence and persistence of novel coronavirus in sewage with an emphasis on the possible water environment contamination. Monitoring of novel coronavirus (SARS-CoV-2) via sewage-based epidemiology could deliver promising information regarding rate of infection providing a valid and complementary tool for tracking and diagnosing COVID-19 across communities. Tracking the sewage systems could act as an early warning tool for alerting the public health authorities for necessary actions. Given the impracticality of testing every citizen with limited diagnostic resources, it is imperative that sewage-based epidemiology can be tested as an early warning system. The need for the development of robust sampling strategies and subsequent detection methodologies and challenges for developing countries are also discussed.
Collapse
Affiliation(s)
- Deepak Panchal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Om Prakash
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Prakash Bobde
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Department of Research & Development, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Sukdeb Pal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| |
Collapse
|
9
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
10
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
11
|
Downs LO, McNaughton AL, de Cesare M, Ansari MA, Martin J, Woodrow C, Bowden R, Collier J, Barnes E, Matthews PC. Case Report: Application of hepatitis B virus (HBV) deep sequencing to distinguish between acute and chronic infection. Wellcome Open Res 2021; 5:240. [PMID: 33458253 PMCID: PMC7802106 DOI: 10.12688/wellcomeopenres.16157.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Deep sequencing of the full-length hepatitis B virus (HBV) genome provides the opportunity to determine the extent to which viral diversity, genotype, polymorphisms, insertions and deletions may influence presentation and outcomes of disease. Increasing experience with analysis of HBV genomic data opens up the potential for using these data to inform insights into pathophysiology of infection and to underpin decision making in clinical practice. We here set out to undertake whole genome HBV sequencing from an adult who presented acutely unwell with a new diagnosis of HBV infection, and tested positive for both HBV anti-core IgM and IgG, possibly representing either acute hepatitis B infection (AHB) or chronic hepatitis B with an acute reactivation (CHB-AR). The distinction between these two scenarios may be important in predicting prognosis and underpinning treatment decisions, but can be challenging based on routine laboratory tests. Through application of deep whole-genome sequencing we typed the isolate as genotype-D1, and identified several minority variants including G1764A and G1986A substitutions in the pre-core promoter and pre-core regions, which support CHB-AR rather than AHB. In the longer term, enhanced deep sequencing data for HBV may provide improved evidence to distinguish between acute and chronic infection, to predict outcomes and to stratify treatment.
Collapse
Affiliation(s)
- Louise O. Downs
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
| | - Anna L. McNaughton
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - Jacqueline Martin
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Charles Woodrow
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - Jane Collier
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford NIHR BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Philippa C. Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
- Oxford NIHR BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| |
Collapse
|
12
|
Moulahoum H, Ghorbanizamani F, Zihnioglu F, Turhan K, Timur S. How should diagnostic kits development adapt quickly in COVID 19-like pandemic models? Pros and cons of sensory platforms used in COVID-19 sensing. Talanta 2021; 222:121534. [PMID: 33167242 PMCID: PMC7423517 DOI: 10.1016/j.talanta.2020.121534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 01/08/2023]
Abstract
As COVID-19 has reached pandemic status and the number of cases continues to grow, widespread availability of diagnostic testing is critical in helping identify and control the emergence of this rapidly spreading and serious illness. However, a lacking in making a quick reaction to the threat and starting early development of diagnostic sensing tools has had an important impact globally. In this regard, here we will review critically the current developed diagnostic tools in response to the COVID-19 pandemic and compare the different types through the discussion of their pros and cons such as nucleic acid detection tests (including PCR and CRISPR), antibody and protein-based diagnosis tests. In addition, potential technologies that are under development such as on-site diagnosis platforms, lateral flow, and portable PCR units are discussed. Data collection and epidemiological analysis could also be an interesting factor to incorporate with the emerging technologies especially with the wide access to smartphones. Lastly, a SWOT analysis and perspectives on how the development of novel sensory platforms should be treated by the different decision-makers are analyzed.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey
| | - Kutsal Turhan
- Department of Thoracic Surgery, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Sciences, Ege University, 35100, Bornova, Izmir, Turkey; Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
13
|
Lebossé F, Inchauspé A, Locatelli M, Miaglia C, Diederichs A, Fresquet J, Chapus F, Hamed K, Testoni B, Zoulim F. Quantification and epigenetic evaluation of the residual pool of hepatitis B covalently closed circular DNA in long-term nucleoside analogue-treated patients. Sci Rep 2020; 10:21097. [PMID: 33273565 PMCID: PMC7712874 DOI: 10.1038/s41598-020-78001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) covalently closed circular (ccc)DNA is the key genomic form responsible for viral persistence and virological relapse after treatment withdrawal. The assessment of residual intrahepatic cccDNA levels and activity after long-term nucleos(t)ide analogues therapy still represents a technical challenge. Quantitative (q)PCR, rolling circle amplification (RCA) and droplet digital (dd)PCR assays were used to quantify residual intrahepatic cccDNA in liver biopsies from 56 chronically HBV infected patients after 3 to 5 years of telbivudine treatment. Activity of residual cccDNA was evaluated by quantifying 3.5 kB HBV RNA (preC/pgRNA) and by assessing cccDNA-associated histone tails post-transcriptional modifications (PTMs) by micro-chromatin immunoprecipitation. Long-term telbivudine treatment resulted in serum HBV DNA suppression, with most of the patients reaching undetectable levels. Despite 38 out of 56 patients had undetectable cccDNA when assessed by qPCR, RCA and ddPCR assays detected cccDNA in all-but-one negative samples. Low preC/pgRNA level in telbivudine-treated samples was associated with enrichment for cccDNA histone PTMs related to repressed transcription. No difference in cccDNA levels was found according to serum viral markers evolution. This panel of cccDNA evaluation techniques should provide an added value for the new proof-of-concept clinical trials aiming at a functional cure of chronic hepatitis B.
Collapse
Affiliation(s)
- Fanny Lebossé
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Aurore Inchauspé
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Maëlle Locatelli
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Clothilde Miaglia
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Audrey Diederichs
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Judith Fresquet
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Fleur Chapus
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, UMR_S1052, CRCL, Lyon, France
| | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Barbara Testoni
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France.
- University of Lyon, UMR_S1052, CRCL, Lyon, France.
| | - Fabien Zoulim
- INSERM U1052-Cancer Research Center of Lyon (CRCL), Lyon, France.
- University of Lyon, UMR_S1052, CRCL, Lyon, France.
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
14
|
Downs LO, McNaughton AL, de Cesare M, Ansari MA, Martin J, Woodrow C, Bowden R, Collier J, Barnes E, Matthews PC. Case Report: Application of hepatitis B virus (HBV) deep sequencing to distinguish between acute and chronic infection. Wellcome Open Res 2020; 5:240. [PMID: 33458253 PMCID: PMC7802106 DOI: 10.12688/wellcomeopenres.16157.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/01/2024] Open
Abstract
Deep sequencing of the full-length hepatitis B virus (HBV) genome provides the opportunity to determine the extent to which viral diversity, genotype, polymorphisms, insertions and deletions may influence presentation and outcomes of disease. Increasing experience with analysis of HBV genomic data opens up the potential for using these data to inform insights into pathophysiology of infection and to underpin decision making in clinical practice. We here set out to undertake whole genome HBV sequencing from an adult who presented acutely unwell with a new diagnosis of HBV infection, and tested positive for both HBV anti-core IgM and IgG, possibly representing either acute hepatitis B infection (AHB) or chronic hepatitis B with an acute reactivation (CHB-AR). The distinction between these two scenarios may be important in predicting prognosis and underpinning treatment decisions, but can be challenging based on routine laboratory tests. Through application of deep whole-genome sequencing we typed the isolate as genotype-D1, and identified several minority variants including G1764A and G1986A substitutions in the pre-core promoter and pre-core regions, which support CHB-AR rather than AHB. In the longer term, enhanced deep sequencing data for HBV may provide improved evidence to distinguish between acute and chronic infection, to predict outcomes and to stratify treatment.
Collapse
Affiliation(s)
- Louise O. Downs
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
| | - Anna L. McNaughton
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - Jacqueline Martin
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Charles Woodrow
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, Wellcome Centre for Human Genetics, Oxford, OX3 9DU, UK
| | - Jane Collier
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Oxford NIHR BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Philippa C. Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Rd, Oxford, OX1 3SY, UK
- Oxford NIHR BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| |
Collapse
|
15
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection. The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
16
|
Kumar M, Taki K, Gahlot R, Sharma A, Dhangar K. A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139278. [PMID: 32434058 PMCID: PMC7227583 DOI: 10.1016/j.scitotenv.2020.139278] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 04/13/2023]
Abstract
In order to benefit the public, community workers and scientific community, we hereby present a chronicle of SARS-CoV-2 that leads to the unseen precedent of social distancing and lockdown owing to coronavirus disease (COVID-19). Information on this life-threatening pandemic of COVID-19 is sparse and discrete; and the urgency is such that the dissemination of information is increasing with numerous daily publications on the topic. Therefore, we developed a comprehensive review on various aspects of SARS-CoV-2 and COVID-19. We scientifically compiled published research, news, and reports from various sources to comprehend and summarize the information and findings on Coronaviruses. The review explicitly covers the aspects like genome and pedigree of SARS-CoV-2; epidemiology, prognosis, pathogenesis, symptoms and diagnosis of COVID-19 in order to catalog the right information on transmission route, and influence of environmental factors on virus transmissions, for the robust understanding of right strategical steps for proper COVID-19 management. We have explicitly highlighted several useful information and facts like: i) No established relationship between progression of SARS-CoV-2 with temperature, humidity and/or both, ii) The underlying mechanism of SARS-CoV-2 is not fully understood, iii) Respiratory droplet size determines drop and airborne-based transmission, iv) Prognosis of COVID-19 can be done by its effects on various body organs, v) Infection can be stopped by restricting the binding of S protein and AE2, vi) Hydroxychloroquine is believed to be better than chloroquine for COVID-19, vii) Ivermectin with Vero-hSLAM cells is able to reduce infection by ~5000 time within 2 days, and viii) Nafamostat mesylate can inhibit SARS-CoV-2 S protein-initiated membrane fusion. We have also suggested future research perspectives, challenges and scope.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Rohit Gahlot
- Discipline of Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Ayushi Sharma
- Department of Pharmacology, Vallabhbhai Patel Chest Institute (VPCI), Delhi University, Delhi 110007, India
| | - Kiran Dhangar
- Discipline of Earth Sciences, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| |
Collapse
|
17
|
Jalandra R, Yadav AK, Verma D, Dalal N, Sharma M, Singh R, Kumar A, Solanki PR. Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Biomed Pharmacother 2020; 129:110446. [PMID: 32768943 PMCID: PMC7303646 DOI: 10.1016/j.biopha.2020.110446] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
To develop diagnostics and detection methods, current research is focussed on targeting the detection of coronavirus based on its RNA. Besides the RNA target, research reports are coming to develop diagnostics by targeting structure and other parts of coronavirus. PCR based detection system is widely used and various improvements in the PCR based detection system can be seen in the recent research reports. This review will discuss multiple detection methods for coronavirus for developing appropriate, reliable, and fast alternative techniques. Considering the current scenario of COVID-19 diagnostics around the world and an urgent need for the development of reliable and cheap diagnostic, various techniques based on CRISPR technology, antibody, MIP, LAMP, microarray, etc. should be discussed and tried.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Damini Verma
- Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, 201313, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
18
|
Mokaya J, Maponga TG, McNaughton AL, Van Schalkwyk M, Hugo S, Singer JB, Sreenu VB, Bonsall D, de Cesare M, Andersson M, Gabriel S, Taljaard J, Barnes E, Preiser W, Van Rensburg C, Matthews PC. Evidence of tenofovir resistance in chronic hepatitis B virus (HBV) infection: An observational case series of South African adults. J Clin Virol 2020; 129:104548. [PMID: 32663786 PMCID: PMC7408481 DOI: 10.1016/j.jcv.2020.104548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Tenofovir disoproxil fumarate (TDF) is widely recommended for treatment of chronic hepatitis B virus (HBV) infection because it is safe, affordable and has a high genetic barrier to resistance. TDF resistance associated mutations (RAMs) have been reported, but data are limited, particularly for Africa. We set out to identify potential RAMs in individuals with detectable HBV viraemia on TDF treatment. METHODS We recruited adults with chronic HBV infection from Cape Town, South Africa, identifying individuals with a TDF resistance phenotype, defined as persistent HBV vireamia despite >12 months of TDF treatment. We sequenced HBV DNA using MiSeq Illumina with whole genome target enrichment, and sought potential TDF RAMs, based on a pre-defined list of polymorphisms. RESULTS Among 66 individuals with chronic HBV (genotypes A and D), three met our clinical definition for TDF resistance, of whom two were coinfected with HIV. In one participant, the consensus HBV sequence contained nine polymorphisms that have been described in association with TDF resistance. Significant treatment non-adherence in this individual was unlikely, as HIV RNA was suppressed. TDF RAMs were also present in HBV sequences from the other two participants, but other factors including treatment non-adherence may also have had a role in failure of HBV DNA suppression in these cases. DISCUSSION Our findings add to the evidence that RAMs in HBV reverse transcriptase may underpin a TDF resistant phenotype. This is the first time these RAMs have been reported from Africa in association with clinical evidence of TDF resistance.
Collapse
Affiliation(s)
- Jolynne Mokaya
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Tongai G Maponga
- Division of Medical Virology, Stellenbosch University / National Health Laboratory Service Tygerberg, Cape Town, South Africa
| | - Anna L McNaughton
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Marije Van Schalkwyk
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University / Tygerberg Academic Hospital, Cape Town, South Africa
| | - Susan Hugo
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University / Tygerberg Academic Hospital, Cape Town, South Africa
| | - Joshua B Singer
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow, G61 1QH, UK
| | - Vattipally B Sreenu
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow, G61 1QH, UK
| | - David Bonsall
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; Big Data Institute, Old Road, Oxford OX3 7FZ, UK
| | | | - Monique Andersson
- Division of Medical Virology, Stellenbosch University / National Health Laboratory Service Tygerberg, Cape Town, South Africa; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Shiraaz Gabriel
- Division of Gastroenterology, Department of Medicine, Stellenbosch University / Tygerberg Academic Hospital, Cape Town, South Africa
| | - Jantje Taljaard
- Division of Infectious Diseases, Department of Medicine, Stellenbosch University / Tygerberg Academic Hospital, Cape Town, South Africa
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK; Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; National Institutes of Health Research Health Informatics Collaborative, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Wolfgang Preiser
- Division of Medical Virology, Stellenbosch University / National Health Laboratory Service Tygerberg, Cape Town, South Africa
| | - Christo Van Rensburg
- Division of Gastroenterology, Department of Medicine, Stellenbosch University / Tygerberg Academic Hospital, Cape Town, South Africa
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Medawar Building, South Parks Road, Oxford OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; National Institutes of Health Research Health Informatics Collaborative, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
19
|
Sood S, Aggarwal V, Aggarwal D, Upadhyay SK, Sak K, Tuli HS, Kumar M, Kumar J, Talwar S. COVID-19 Pandemic: from Molecular Biology, Pathogenesis, Detection, and Treatment to Global Societal Impact. CURRENT PHARMACOLOGY REPORTS 2020; 6:212-227. [PMID: 32837855 PMCID: PMC7382994 DOI: 10.1007/s40495-020-00229-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW In December 2019, there was an outbreak of viral disease in Wuhan, China which raised the concern across the whole world. The viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or novel coronavirus or COVID-19 (CoV-19) is known as a pandemic. After SARS-CoV and Middle East respiratory syndrome (MERS)-related CoV, COVID-19 is the third most pathogenic virus, hazardous to humans which have raised worries concerning the capacity of current security measures and the human services framework to deal with such danger. RECENT FINDINGS According to WHO, the mortality rate of COVID-19 exceeded that of SARS and MERS in view of which COVID-19 was declared as public health emergency of international concern. Coronaviruses are positive-sense RNA viruses with single stranded RNA and non-segmented envelopes. Recently, genome sequencing confirmed that COVID-19 is similar to SARS-CoV and bat coronavirus, but the major source of this pandemic outbreak, its transmission, and mechanisms related to its pathogenicity to humans are not yet known. SUMMARY In order to prevent the further pandemic and loss to humanity, scientists are studying the development of therapeutic drugs, vaccines, and strategies to cure the infections. In this review, we present a brief introduction to emerging and re-emerging pathogens, i.e., coronavirus in humans and animals, its taxonomic classification, genome organization, its replication, pathogenicity, impact on socioeconomic growth, and drugs associated with COVID-19.
Collapse
Affiliation(s)
- Shivani Sood
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | | | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, 134007 India
| | - Jayant Kumar
- Department of Biotechnology, Mukand Lal National College, Yamuna Nagar, India
| | - Shivangi Talwar
- Amity Institute of Biotechnology, Amity University, Noida, India
| |
Collapse
|
20
|
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing COVID-19: The Disease and Tools for Detection. ACS NANO 2020; 14:3822-3835. [PMID: 32223179 PMCID: PMC7144809 DOI: 10.1021/acsnano.0c02624] [Citation(s) in RCA: 1069] [Impact Index Per Article: 213.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 04/14/2023]
Abstract
COVID-19 has spread globally since its discovery in Hubei province, China in December 2019. A combination of computed tomography imaging, whole genome sequencing, and electron microscopy were initially used to screen and identify SARS-CoV-2, the viral etiology of COVID-19. The aim of this review article is to inform the audience of diagnostic and surveillance technologies for SARS-CoV-2 and their performance characteristics. We describe point-of-care diagnostics that are on the horizon and encourage academics to advance their technologies beyond conception. Developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak would be useful in preventing future epidemics.
Collapse
Affiliation(s)
- Buddhisha Udugama
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Pranav Kadhiresan
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Hannah N. Kozlowski
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Ayden Malekjahani
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Matthew Osborne
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Vanessa Y. C. Li
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Hongmin Chen
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology,
Faculty of Medicine, University of Toronto, Toronto, Ontario
M5S 1A1, Canada
- Biological Sciences, Sunnybrook Research
Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jonathan B. Gubbay
- Department of Laboratory Medicine and Pathobiology,
Faculty of Medicine, University of Toronto, Toronto, Ontario
M5S 1A1, Canada
- Public Health Ontario,
Toronto, Ontario M5G 1V2, Canada
- Hospital for Sick Children,
Toronto, Ontario M5G 1V2, Canada
| | - Warren C. W. Chan
- Institute of Biomaterials and Biomedical Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
- Terrence Donnelly Center for Cellular and Biomolecular
Research, University of Toronto, Toronto, Ontario M5S 3E1,
Canada
- Department of Chemistry, University of
Toronto, Toronto, Ontario M5S 3H6, Canada
- Materials Science and Engineering,
University of Toronto, Toronto, Ontario M5S 3G9,
Canada
| |
Collapse
|
21
|
Boyce CL, Willis S, Archampong TNA, Lartey M, Sagoe KW, Obo-Akwa A, Kenu E, Kwara A, Blackard JT. Identification of hepatitis B virus genotype A/E recombinants in Ghana. Virus Genes 2019; 55:707-712. [PMID: 31346975 PMCID: PMC6750976 DOI: 10.1007/s11262-019-01690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
Hepatitis B virus (HBV) exhibits a high degree of heterogeneity with at least 10 genotypes (A-J) identified to date. Intergenotypic recombination is relatively common. Previously, we investigated HBV drug resistance in HIV/HBV co-infected individuals in Ghana. After identifying multiple circulating genotypes and a novel D/E recombinant, we sought to determine if additional individuals were also infected with recombinant HBV. Partial genome sequences from three individuals were initially identified as genotype A4. Full-length HBV genomes were obtained using rolling circle amplification followed by PCR and shown to cluster with known A/E recombinant viruses. Similar recombination breakpoints were observed in these three individuals suggesting local spread of this novel recombinant HBV in Ghana.
Collapse
Affiliation(s)
- Ceejay L Boyce
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephaney Willis
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy N A Archampong
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Korle-Bu Teaching Hospital, Accra, Ghana
| | - Margaret Lartey
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Korle-Bu Teaching Hospital, Accra, Ghana
| | - Kwamena W Sagoe
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adjoa Obo-Akwa
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ernest Kenu
- Korle-Bu Teaching Hospital, Accra, Ghana
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Awewura Kwara
- Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Jason T Blackard
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
McNaughton AL, Roberts HE, Bonsall D, de Cesare M, Mokaya J, Lumley SF, Golubchik T, Piazza P, Martin JB, de Lara C, Brown A, Ansari MA, Bowden R, Barnes E, Matthews PC. Illumina and Nanopore methods for whole genome sequencing of hepatitis B virus (HBV). Sci Rep 2019; 9:7081. [PMID: 31068626 PMCID: PMC6506499 DOI: 10.1038/s41598-019-43524-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Advancing interventions to tackle the huge global burden of hepatitis B virus (HBV) infection depends on improved insights into virus epidemiology, transmission, within-host diversity, drug resistance and pathogenesis, all of which can be advanced through the large-scale generation of full-length virus genome data. Here we describe advances to a protocol that exploits the circular HBV genome structure, using isothermal rolling-circle amplification to enrich HBV DNA, generating concatemeric amplicons containing multiple successive copies of the same genome. We show that this product is suitable for Nanopore sequencing as single reads, as well as for generating short-read Illumina sequences. Nanopore reads can be used to implement a straightforward method for error correction that reduces the per-read error rate, by comparing multiple genome copies combined into a single concatemer and by analysing reads generated from plus and minus strands. With this approach, we can achieve an improved consensus sequencing accuracy of 99.7% and resolve intra-sample sequence variants to form whole-genome haplotypes. Thus while Illumina sequencing may still be the most accurate way to capture within-sample diversity, Nanopore data can contribute to an understanding of linkage between polymorphisms within individual virions. The combination of isothermal amplification and Nanopore sequencing also offers appealing potential to develop point-of-care tests for HBV, and for other viruses.
Collapse
Affiliation(s)
- Anna L McNaughton
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Hannah E Roberts
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David Bonsall
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
- Big Data Institute, Old Road, Oxford, OX3 7FZ, UK
| | | | - Jolynne Mokaya
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Sheila F Lumley
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Tanya Golubchik
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
- Big Data Institute, Old Road, Oxford, OX3 7FZ, UK
| | - Paolo Piazza
- Imperial BRC Genomics Facility, Imperial College, London, UK
| | - Jacqueline B Martin
- Gastroenterology and Hepatology Clinical Trials Facility, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Catherine de Lara
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Anthony Brown
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - M Azim Ansari
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
- Department of Hepatology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Philippa C Matthews
- Nuffield Department of Medicine, Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
A novel hepatitis B virus recombinant genotype D4/E identified in a South African population. Heliyon 2019; 5:e01477. [PMID: 31008405 PMCID: PMC6453802 DOI: 10.1016/j.heliyon.2019.e01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genetic diversity is a characteristic trait of the hepatitis B virus (HBV) and has been associated with different clinical outcomes. In South Africa, HBV infection is a major public health concern. Most HBV infections are caused by genotype A strains. However rare cases of infection with HBV genotype D have been reported. The purpose of this study was to investigate the molecular characteristics of a rare HBV subgenotype D4 isolate. Methods The full-length genome of isolate ZADGM6964 was amplified in a one-step polymerase chain reaction. The amplified product was purified and cloned into a pGEM®-T Easy Vector System to investigate the genetic diversity of the viral quasi-populations. The primary isolate and clones were then directly sequenced and analysed using an array of bioinformatics software. Results Phylogenetic analysis showed that the primary isolate and cloned sequences formed a monophyletic cluster away from subgenotype D4 reference strains. Further recombination analysis revealed that isolate ZADGM6964 was in fact a D4/E recombinant strain with breakpoints identified within the X and overlapping pre-Core/Core open reading frames with a >70% bootstrap confidence level. The recombinant genotype D4/E was found to be unique from other D/E strains archived in the genetic database, GenBank. Conclusion This study represents the first ever report on the isolation and molecular characterization of an HBV D4/E recombinant strain in South Africa. The findings provide evidence of further HBV genetic diversity in South Africa than has been previously reported.
Collapse
|
24
|
Boyce CL, Ganova-Raeva L, Archampong TNA, Lartey M, Sagoe KW, Obo-Akwa A, Kenu E, Kwara A, Blackard JT. Identification and comparative analysis of hepatitis B virus genotype D/E recombinants in Africa. Virus Genes 2017; 53:538-547. [PMID: 28567562 PMCID: PMC5710801 DOI: 10.1007/s11262-017-1469-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/25/2017] [Indexed: 12/17/2022]
Abstract
Globally, there are approximately 240 million people chronically infected with hepatitis B virus (HBV)-a major cause of hepatocellular carcinoma. Ten different HBV genotypes (A-J) have been identified with distinct geographic distributions. Novel variants generated by recombination between different HBV genotypes have been documented worldwide and represent an important element of genetic variability with possible clinical implications. Here, the complete genome sequence of an HBV genotype D/E recombinant from Ghana is reported. The full-length sequence was obtained using rolling circle amplification followed by PCR and sequenced using next-generation sequencing (NGS). A consensus sequence was extracted from the NGS data and underwent phylogenetic analysis to determine genotype, as well as the recombination pattern. Subsequently, the sequence was compared to recombinants described previously in Africa. Based on MCMC phylogenetic analysis, SimPlot recombination analyses, and intragroup genetic distance, the isolate 007N full-length genome is unique compared to other reported D/E recombinants in Africa.
Collapse
Affiliation(s)
- Ceejay L Boyce
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lilia Ganova-Raeva
- Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Timothy N A Archampong
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Korle-Bu Teaching Hospital, Accra, Ghana
| | - Margaret Lartey
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Korle-Bu Teaching Hospital, Accra, Ghana
| | - Kwamena W Sagoe
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Adjoa Obo-Akwa
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ernest Kenu
- Korle-Bu Teaching Hospital, Accra, Ghana
- School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Awewura Kwara
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- The Miriam Hospital, Providence, RI, USA
- Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Jason T Blackard
- Division of Digestive Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
25
|
Wang R, Zhang F, Wang L, Qian W, Qian C, Wu J, Ying Y. Instant, Visual, and Instrument-Free Method for On-Site Screening of GTS 40-3-2 Soybean Based on Body-Heat Triggered Recombinase Polymerase Amplification. Anal Chem 2017; 89:4413-4418. [PMID: 28345860 DOI: 10.1021/acs.analchem.7b00964] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
On-site monitoring the plantation of genetically modified (GM) crops is of critical importance in agriculture industry throughout the world. In this paper, a simple, visual and instrument-free method for instant on-site detection of GTS 40-3-2 soybean has been developed. It is based on body-heat recombinase polymerase amplification (RPA) and followed with naked-eye detection via fluorescent DNA dye. Combining with extremely simplified sample preparation, the whole detection process can be accomplished within 10 min and the fluorescent results can be photographed by an accompanied smart phone. Results demonstrated a 100% detection rate for screening of practical GTS 40-3-2 soybean samples by 20 volunteers under different ambient temperatures. This method is not only suitable for on-site detection of GM crops but also demonstrates great potential to be applied in other fields.
Collapse
Affiliation(s)
- Rui Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University , Fuzhou, 350108, China
| | - Liu Wang
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Wenjuan Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University , Hangzhou, 310058, China
| |
Collapse
|
26
|
Powell EA, Razeghi S, Zucker S, Blackard JT. Occult Hepatitis B Virus Infection in a Previously Vaccinated Injection Drug User. HEPATITIS MONTHLY 2016; 16:e34758. [PMID: 27148386 PMCID: PMC4851822 DOI: 10.5812/hepatmon.34758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/13/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Occult hepatitis B virus (HBV) is defined by the presence of HBV DNA in patient sera in the absence of HBsAg. Occult HBV has been associated with hepatocellular carcinoma, reactivation during immune suppression, and transmission to others. While the hepatitis B vaccine is very effective at preventing chronic HBV infection, recent studies indicate it is less effective at preventing occult HBV following infant vaccination. No studies, however, have examined the efficacy of adult HBV vaccination at preventing occult HBV. Here, we present the first report of occult HBV following adult vaccination. CASE PRESENTATION A 21-year old Caucasian female presented with tricuspid valve endocarditis secondary to methicillin-susceptible Staphylococcus aureus with non-ischemic cardiomyopathy. She reported active use of intravenous drugs. Her liver enzymes were elevated (ALT = 1873 IU/mL; AST = 4518 IU/mL), and she was found to have HCV and occult HBV. HBV viral loads ranged from 4608 - 8364 copies IU/mL during hospitalization. The patient's HBV was sequenced and found to be genotype D3 without any known diagnostic escape mutations. Immune complexes that may have prevented HBsAg detection were not observed. CONCLUSIONS HBV vaccination in infancy is effective at preventing chronic HBV infection but is less effective at preventing occult HBV infection. Similar studies examining the efficacy of adult HBV vaccination in preventing occult HBV have not been performed. This case highlights the importance of carefully determining the HBV status of high-risk individuals, as vaccination history and the presence of anti-HBs may not be adequate to rule out HBV infection, even in the absence of HBsAg.
Collapse
Affiliation(s)
- Eleanor A. Powell
- Division of Digestive Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sanam Razeghi
- Division of Digestive Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen Zucker
- Division of Digestive Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason T. Blackard
- Division of Digestive Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Corresponding Author: Jason T. Blackard, Division of Digestive Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, ML 0595, 231 Albert Sabin Way Cincinnati, OH 45267, USA. Tel: +1-513-558-4389, Fax: +1-513-558-1744, E-mail:
| |
Collapse
|
27
|
Liu YP, Yao CY. Rapid and quantitative detection of hepatitis B virus. World J Gastroenterol 2015; 21:11954-11963. [PMID: 26576084 PMCID: PMC4641117 DOI: 10.3748/wjg.v21.i42.11954] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Despite availability of a universal vaccine, hepatitis B virus (HBV) infection has a huge impact on public health worldwide. Accurate and timely diagnosis of HBV infection is needed. Rapid developments have been made in the diagnostic and monitoring methods for HBV infection, including serological and molecular assays. In clinical practice, qualitative hepatitis B surface antigen (HBsAg) testing has long served as a diagnostic marker for individuals infected with HBV. More recently, HBsAg level has been used to predict treatment outcome when determined early during treatment or at baseline. However, identification of HBV DNA positive cases that do not have detectable HBsAg has encouraged the application of molecular tests. Hence, combination of quantitative detection of HBV DNA and HBsAg can be used to discriminate patients during the course of HBV infection and to monitor therapy. This article reviews the most commonly used quantitative methods for HBsAg and HBV DNA.
Collapse
|
28
|
Araujo NM. Hepatitis B virus intergenotypic recombinants worldwide: An overview. INFECTION GENETICS AND EVOLUTION 2015; 36:500-510. [PMID: 26299884 DOI: 10.1016/j.meegid.2015.08.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023]
Abstract
Novel variants generated by recombination events between different hepatitis B virus (HBV) genotypes have been increasingly documented worldwide, and the role of recombination in the evolutionary history of HBV is of significant research interest. In the present study, large-scale data retrieval and analysis on HBV intergenotypic recombinant genomes were performed. The geographical distribution of HBV recombinants as well as the molecular processes involved in recombination were examined. After review of published data, a total of 436 complete HBV sequences, previously identified as recombinants, were included in the recombination detection analysis. About 60% of HBV recombinants were B/C (n=179) and C/D (n=83) hybrids. A/B/C, A/C, A/C/G, A/D, A/E, A/G, B/C/U (U=unknown genotype), C/F, C/G, C/J, D/E, D/F, and F/G hybrids were additionally identified. HBV intergenotypic sequences were reported in almost all geographical regions with similar circulation patterns as their original genotypes, indicating the potential for spreading in a wide range of human populations and developing their own epidemiology. Recombination breakpoints were non-randomly distributed in the genome, and specific favored sites detected, such as within nt 1700-2000 and 2100-2300 regions, which displayed a statistically significant difference in comparison with the remaining genome. Elucidation of the effects of recombination events on the evolutionary history of HBV is critical to understand current and future evolution trends.
Collapse
Affiliation(s)
- Natalia M Araujo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-360 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Datta S, Chatterjee S, Veer V. Recent advances in molecular diagnostics of hepatitis B virus. World J Gastroenterol 2014; 20:14615-14625. [PMID: 25356025 PMCID: PMC4209528 DOI: 10.3748/wjg.v20.i40.14615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the important global health problems today. Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma. Presently, routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen (HBsAg). However, identification of HBV DNA positive cases, who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays, that are highly sensitive, specific and are to some extent tolerant to sequence variation. In the last few years, the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools, such as polymerase chain reaction (PCR) and real-time PCR. Recently, apart of PCR based amplification methods, a number of isothermal amplification assays, such as loop mediated isothermal amplification, transcription mediated amplification, ligase chain reaction, and rolling circle amplification have been utilized for HBV diagnosis. These assays also offer options for real time detection and integration into biosensing devices. In this manuscript, we review the molecular technologies that are presently available for HBV diagnostics, with special emphasis on isothermal amplification based technologies. We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV.
Collapse
|
30
|
Analysis of complete nucleotide sequences of Angolan hepatitis B virus isolates reveals the existence of a separate lineage within genotype E. PLoS One 2014; 9:e92223. [PMID: 24632784 PMCID: PMC3954871 DOI: 10.1371/journal.pone.0092223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/19/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus genotype E (HBV/E) is highly prevalent in Western Africa. In this work, 30 HBV/E isolates from HBsAg positive Angolans (staff and visitors of a private hospital in Luanda) were genetically characterized: 16 of them were completely sequenced and the pre-S/S sequences of the remaining 14 were determined. A high proportion (12/30, 40%) of subjects tested positive for both HBsAg and anti-HBs markers. Deduced amino acid sequences revealed the existence of specific substitutions and deletions in the B- and T-cell epitopes of the surface antigen (pre-S1- and pre-S2 regions) of the virus isolates derived from 8/12 individuals with concurrent HBsAg/anti-HBs. Phylogenetic analysis performed with 231 HBV/E full-length sequences, including 16 from this study, showed that all isolates from Angola, Namibia and the Democratic Republic of Congo (n = 28) clustered in a separate lineage, divergent from the HBV/E isolates from nine other African countries, namely Cameroon, Central African Republic, Côte d'Ivoire, Ghana, Guinea, Madagascar, Niger, Nigeria and Sudan, with a Bayesian posterior probability of 1. Five specific mutations, namely small S protein T57I, polymerase Q177H, G245W and M612L, and X protein V30L, were observed in 79-96% of the isolates of the separate lineage, compared to a frequency of 0–12% among the other HBV/E African isolates.
Collapse
|