1
|
Jia X, He K, Cai L, Liu Y, Li H, Dong X, He M, Zhang L, Le G, Wang S, Chen J. Coaxially fabricated electrospinning near-infrared light-responsive nanofibrous membranes for combating drug-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138106. [PMID: 40199072 DOI: 10.1016/j.jhazmat.2025.138106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Nowadays, the rapid emergence of drug-resistant bacteria has posed a global threat to the public health, leading to increased cost of environmental hygiene and healthcare treatment, which urges the development of safe and efficient antibacterial strategies. Here, coaxially fabricated electrospun nanofibrous membrane (ENMs) consisted of quercetin (Qu) stabilized selenium nanoparticles (Qu@SeNPs) and electro-synthesized molybdenum disulfide (MoS2) nanosheets were facilely formed as core/shell structure with polyvinyl alcohol (PVA) and α-Lipoic acid (LA) as cross-linker. The obtained ENMs formed by core-shell PVA/MoS2/LA/Qu@SeNPs (PMLQS) showed good air permeability and near-infrared-light photothermal responsiveness to kill bacteria efficiently. Moreover, the obtained ENMs resembling extracellular matrix-like properties showed superior biocompatibility with negligible development toxicity of zebrafish. The antibacterial experiments indicated that the produced PMLQS fibrous membrane exhibited more pronounced bactericidal activity against Gram-positive (G+) Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) as compared to that of Gram-negative (G-) Escherichia coli (E. coli). Furthermore, transcriptomic analysis revealed MRSA inactivation by PMLQS ENMs involved disruption of ion transport, antioxidant system, carbohydrate metabolism and energy metabolism. Notably, the MRSA ADI pathway was also blocked supporting the minimized antibiotic resistance development. Therefore, the constructed near-infrared light-responsive PMLQS nanofibrous membrane held promise in tackling drug-resistant bacteria with enormous environmental and biomedical utilizations.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kaiting He
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Dong
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Min He
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shoulin Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Lawson MK. Copper-quercetin complexes: methods of study, relevance to cell death pathways, therapeutic applications. Biomed Pharmacother 2025; 187:118055. [PMID: 40288175 DOI: 10.1016/j.biopha.2025.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Copper-quercetin complexes, CuQ, have been an active area of research for several decades. In vitro experiments show complexes are better antioxidants than quercetin alone. There seems to be a synergy effect. Cancer cell culture experiments also show prooxidant and DNA damaging properties which may be exploitable in cancer cell therapy. The effect of copper in combination with quercetin on cell death pathways needs to be investigated, especially regarding the cuproptosis pathway. CuQ complexes may require formulations similar to quercetin. The use of nanoparticles has enabled practical formulations of quercetin and/or their complexes to be made which guarantee stability, satisfactory bioavailability, and clinical effectiveness. In vivo studies are also being reported as well of planning of applications including skin infections and bone healing. Zn, Cu and quercetin tested on mice shows strong potential to treat Androgenic Alopecia. Copper-quercetin complexes seem to be easy to make and have good pharmacological potential in antimicrobial function, osteogenesis, angiogenesis and cancer treatment. Complexes such as those involving phenoanthroline, quercetin and copper may be found to be superior and zinc might be better for cancer therapy.
Collapse
Affiliation(s)
- Michael Kenneth Lawson
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava 83232, Slovakia.
| |
Collapse
|
3
|
Plank BCA, Guergoletto KB, Rocha TS. Improved Bacterial Survival and Antioxidant Activity After In Vitro Digestion of Fermented Dairy Beverages by Lacticaseibacillus casei LC-01 and Lactiplantibacillus plantarum BG-112 Containing Yacon. Probiotics Antimicrob Proteins 2025; 17:1584-1595. [PMID: 38326639 DOI: 10.1007/s12602-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
The fermentation of milk containing 0%, 3%, 6%, and 9% (w/v) yacon root flour (YRF) by Lacticaseibacillus casei LC-1 and Lactiplantibacillus plantarum BG-112 was evaluated for bacterial survival and antioxidant activity (AA) before and after simulated gastrointestinal digestion. After 28 days of refrigerated storage, samples of the beverages were analyzed for cell viability, AA (using ferric ion reducing antioxidant power (FRAP) and (ABTS), and molecular mass profile of proteins (using electrophoresis). The presence of 9% YRF increased bacterial survival during 28 days of storage and passage through the gastrointestinal tract for both L. casei and L. plantarum, which showed a greater capacity to reduce ferric ions compared to 0% YRF, and the ability to capture free radicals increased from below 5 mM to over 15 mM TE after digestion. Milk proteins are hydrolyzed during digestion, and the generation of bioactive peptides with AA may explain the increase in AA levels. Since peptides are generated from milk proteins, YRF did not influence AA after digestion. These results showed that fermentation of milk by L. casei and L. plantarum with YRF increased the chances of these bacteria reaching the colon in adequate quantities. After simulated digestion, the beverages showed improved AA due to milk protein hydrolysis.
Collapse
Affiliation(s)
- Bruna C A Plank
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, Brazil
| | - Karla B Guergoletto
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, Brazil
| | - Thais S Rocha
- Department of Food Science and Technology, State University of Londrina, Londrina, PR, Brazil.
| |
Collapse
|
4
|
Hong J, Xu B, Hu X, Liu C, Liu H, Tian J, Li L, Ding S, Zhou C, Lu L. Hyaluronic Acid Microneedles Loaded with Chinese Herbal Extracts as an Intradermal Delivery System for Hair Regeneration. Biomacromolecules 2025; 26:2945-2959. [PMID: 40219945 DOI: 10.1021/acs.biomac.5c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Androgenic alopecia is one of the most common chronic problems for dermatologists worldwide. Some Chinese herbal extracts have been shown to promote hair growth, but the active ingredients are difficult to enter the dermis. Therefore, delivering the active ingredients into the dermis becomes a key factor. Herein, Platycladus orientalis leaf extract (PO-ex) was obtained using ethanol as a solvent, and then hyaluronic acid methacrylate/hyaluronic acid (HAMA/HA) hydrogel was loaded with PO-ex to prepare hyaluronic acid microneedles (PO-ex MN). The double cross-linked HAMA/HA provides sufficient mechanical strength to pierce the stratum corneum and deliver PO-ex into the dermis; PO-ex can effectively improve the environment for hair follicle cell proliferation by removing reactive oxygen free radicals; in addition, the self-repair reaction caused by microneedle mechanical stimulation activates the Wnt/β-catenin pathway associated with trauma repair and promotes hair follicle growth. PO-ex MN is a potential therapeutic strategy for the treatment of androgenic alopecia.
Collapse
Affiliation(s)
- Jiaquan Hong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Bocheng Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaole Hu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chun Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hongsheng Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinhuan Tian
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
5
|
Ayad AS, Benchaabane S, Daas T, Smagghe G, Loucif-Ayad W. Propolis Stands out as a Multifaceted Natural Product: Meta-Analysis on Its Sources, Bioactivities, Applications, and Future Perspectives. Life (Basel) 2025; 15:764. [PMID: 40430191 DOI: 10.3390/life15050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Honeybee (Apis spp.) products have been used for centuries due to their nutritional value and diverse healing properties. Propolis, produced by honeybees, is a unique resin collected from tree buds, sap flows, and other plant exudates, which is then mixed with bee enzymes, beewax, and secretions. This comprehensive review starts with a meta-analysis following the PRISMA approach to explore recent advances in the chemical composition of propolis, its biological activities and pharmacological properties, its applications and products, and future perspectives. The composition of propolis varies depending on plant source, season of harvest, geography, type of bee flora, climate, and honeybee species at the site of collection, and some of these are related. Flavonoids, aromatic acids, phenolic acids, and their esters are key bioactive compounds in propolis, contributing to their diverse pharmacological properties, such as antioxidant, antibacterial, antiparasitic, antiviral, antileishmanial, antidiabetic, anti-inflammatory, immunomodulatory, and anticancer effects. In summary, propolis stands out as a multifaceted natural product with a broad spectrum of biological activities. This review aims to provide valuable insights for researchers, practitioners, and decision-makers involved in studying the sources, composition, and biological activities of propolis. The highlighted hotspots and emerging frontiers presented herein are poised to unlock the full potential of propolis, paving the way for innovative applications in health and wellness.
Collapse
Affiliation(s)
- Ahmed Sabri Ayad
- Pharmaceutical Sciences Research Center (CRSP), Constantine 25000, Algeria
| | - Samia Benchaabane
- Laboratory of Excellence Applied Animal Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - Tarek Daas
- Laboratory of Excellence Applied Animal Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Wahida Loucif-Ayad
- Laboratory of Excellence Applied Animal Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
- Faculty of Medicine, Badji Mokhtar University, Annaba 23000, Algeria
| |
Collapse
|
6
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025; 99:1893-1997. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
7
|
Pîrnău A, Mic M, Floare CG, Oniga O, Oniga SD, Crișan O, Vlase L, Marc G. New Antioxidant Triphenol-Derived Hydrazide-Hydrazone Thiazole: Formation and Analysis of Inclusion Complex with β-CD Using Experimental and Computational Approaches. Molecules 2025; 30:1842. [PMID: 40333858 PMCID: PMC12029814 DOI: 10.3390/molecules30081842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
A new water-soluble not-colored antioxidant (Z)-N'-(4-(3,4-dihydroxyphenyl)-3-ethylthiazol-2(3H)-ylidene)-4-hydroxybenzohydrazide hydrochloride (DHTH) was obtained and characterized. The interaction between DHTH and β-CD was studied by experimental thermodynamic methods such as isothermal titration calorimetry (ITC) and 1H NMR spectroscopy and confirmed by in silico calculations. Thermodynamic data indicated that the inclusion process is driven by enthalpy, predominantly as a result of the guest-host hydrophobic interactions. 1H NMR measurements were applied to study the interaction with β-CD by changing the studied compound concentration in the solution. UV-vis titration and in vitro antiradical assay were performed, to study the antioxidant activity of DHTH, free and included in β-CD. A molecular docking study added supplementary insight to the experimental analyses regarding the binding conformation of the new polyphenolic compound to β-CD.
Collapse
Affiliation(s)
- Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.G.F.)
| | - Mihaela Mic
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.G.F.)
| | - Călin G. Floare
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (A.P.); (C.G.F.)
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Smaranda Dafina Oniga
- Department of Therapeutic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Ovidiu Crișan
- Department of Organic Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (O.C.); (G.M.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Gabriel Marc
- Department of Organic Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (O.C.); (G.M.)
| |
Collapse
|
8
|
Pedisić S, Zorić Z, Repajić M, Levaj B, Dobrinčić A, Balbino S, Čošić Z, Dragović-Uzelac V, Elez Garofulić I. Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods 2025; 14:1354. [PMID: 40282756 PMCID: PMC12026826 DOI: 10.3390/foods14081354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The increased production of high-quality berry products in recent years has led to considerable quantities of by-products such as pomace (25-50%), which consists of skin, seeds, stems and leaves. The improper management of pomace can lead to environmental pollution and potential public health problems due to microbial contamination, and storage causes additional processing costs. However, due to their high content of various valuable bioactive compounds (BACs), berry by-products have gained much attention as sustainable and functional ingredients with applications in the food and nutraceutical industries. The health benefits are primarily attributed to the phenolic compounds, which exhibit numerous biological activities, especially good antioxidant and antibacterial activity as well as health-promoting effects. This review summarizes the bioactive content and composition of extracts from berry by-products (genera Ribes, Rubus, Fragaria, Sambucus, Aronia and Vaccinium) obtained using advanced extraction technologies and their stabilization through sophisticated encapsulation technologies that make them suitable for various food applications. The addition of berry pomace to beverages, bakery, dairy and meat products improves sensory quality, extends shelf life, increases nutritional value and reduces the environmental footprint. This information can provide food scientists with valuable insights to evaluate the potential of berry by-products as functional ingredients with health-promoting and disease-preventing properties that create value-added products for human consumption while reducing food waste.
Collapse
Affiliation(s)
- Sandra Pedisić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Zoran Zorić
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia;
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Branka Levaj
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Zrinka Čošić
- Centre for Food Technology and Biotechnology, University of Zagreb Faculty of Food Technology and Biotechnology, P. Kasandrića 3, 23000 Zadar, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.R.); (B.L.); (A.D.); (S.B.); (V.D.-U.); (I.E.G.)
| |
Collapse
|
9
|
Thakur M, Verma R, Kumar D, Sivakumar M, Malik T. Investigation Into the Impact of Solvents on the Phytochemical Composition, Antioxidant Capacities, and Antihyperglycemic Activities of Erigeron annuus (L.) Pers. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6650124. [PMID: 40264643 PMCID: PMC12014270 DOI: 10.1155/bmri/6650124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/20/2025] [Indexed: 04/24/2025]
Abstract
This study aims to assess the phytochemical composition, antioxidant potential, and antidiabetic properties of Erigeron annuus (L.) Pers. The ethyl acetate fraction of Erigeron annuus leaves exhibited the highest extraction rate (22.42%). The preliminary qualitative phytochemical analysis in crude extract and fractions is often performed using chemical tests. For quantitative analysis, spectrophotometric methods are widely used to estimate the concentration of phytochemicals. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay, which measures the reduction of Fe3+ to Fe2+. Qualitative screening revealed the presence of tannins, flavonoids, phenols, saponins, and alkaloids. Notably, the ethyl acetate fraction showed significantly (p < 0.05) higher total phenolic content (70.01 ± 1.1 mg/g) and total flavonoid content (80.29 ± 1.03 mg/g). This fraction also demonstrated substantial α-amylase inhibitory activity and antioxidant potential, suggesting the ability of polyphenols to reduce α-amylase activity. The α-amylase inhibition (23.15 ± 1.22% to 67.31 ± 2.01%) activity and IC50 value (40.59 ± 0.03 μg/mL) were notably higher in the ethyl acetate fraction compared with the standard drug metformin (19.88 ± 1.51 μg/mL). Erigeron annuus ethyl acetate fraction exhibited significantly higher glucose levels (10.88% ± 1.29% to 65.11 ± 0.94%) and conducted a lipid peroxidation experiment utilizing egg yolk as the source of lipids with high content. The most bioactive fraction was evaluated for cytotoxicity against the HEK293 cell line. The cytotoxicity assay revealed that 50% cell viability was observed at a concentration of 50 μg/mL, indicating that the plant extract is nontoxic at concentrations below this threshold. Furthermore, the dominant fraction was further investigated using liquid chromatography-mass spectroscopy and high-performance thin-layer chromatography techniques from the selected plant. Moreover, an in vivo study will be performed to evaluate the antidiabetic efficacy of Erigeron annuus, isolate and characterize its bioactive components, and examine its molecular mechanism of action to improve its therapeutic applicability.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advance Innovation Technologies, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Manickam Sivakumar
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Tabarak Malik
- Department of Biomedical Science, Institute of Health, Jimma University, Jimma, Oromia Region, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
10
|
Rustage K, Rai N, Sinha SK, Goyal J, Chouhan P, Baniya B, Dubey D, Singhal R, Malani P, Pareek A, Pant M, Jain S, Bisht A, Pareek A, Ratan Y, Ashraf GM, Jain V. Evaluation of the Sporadic Anti-Alzheimer's Activity of Purpurin Using In Silico, In Vitro, and In Vivo Approaches. Mol Neurobiol 2025:10.1007/s12035-025-04910-9. [PMID: 40210836 DOI: 10.1007/s12035-025-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Purpurin, a naturally occurring compound found in certain plants, has demonstrated promising neuroprotective effects in the context of Alzheimer's disease (AD). This study investigated the efficacy of purpurin in mitigating neurodegenerative changes induced by streptozotocin (3 mg/kg ICV) and amyloid beta (20 μM) in murine models. Neuroprotective effects were assessed through in vitro and in vivo experiments complemented by in silico simulation studies. SH-SY5Y cell viability, behavioral, biochemical, and histopathological studies were also conducted. The results revealed that purpurin interacts with acetylcholinesterase (AChE) and amyloid-beta (Aβ), exhibiting glide scores of - 10.72 and - 3.05 kcal/mol, respectively. Purpurin (8 μM) significantly alleviated Aβ-induced cellular damage by decreasing malondialdehyde production and enhancing superoxide dismutase and Thio barbituric acid reactive substances levels in a dose-dependent manner. Intraperitoneal administration of purpurin at 50 mg/kg significantly improved both long-term and short-term memory and enhanced social interactions. These benefits were linked to the reductions in AChE activity and oxidative and inflammatory marker levels triggered by streptozotocin. Neuroprotective effects were also supported by restoring neuronal DNA content in the hippocampus, cerebellum and prefrontal cortex. Histological findings further corroborated the reduction in neurodegenerative marker levels. In silico simulations supported these findings by indicating that purpurin primarily binds to the Trp 286 and Tyr 341 residues of AChE, inhibiting its catalytic activity at the peripheral anionic site. In conclusion, the neuroprotective activity of purpurin in AD models is attributed to its inhibitory effects on AChE, coupled with reductions in inflammation and oxidative stress and the restoration of neuronal DNA integrity in critical brain regions.
Collapse
Affiliation(s)
- Kajol Rustage
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Nitish Rai
- Department of Biotechnology, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Saurabh Kumar Sinha
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Juhi Goyal
- Department of Biotechnology, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Pragati Chouhan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Bhuvanesh Baniya
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Deepti Dubey
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Pooja Malani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Malvika Pant
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India.
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| | - Ghulam Md Ashraf
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, SIP, Suzhou, Jiangsu Province, 215123, People's Republic of China
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India.
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India.
| |
Collapse
|
11
|
Trang Thuy NN, Men TT. Phytochemical and Bioactive Analysis of Extracted Brown Macroalgae ( Dictyota implexa) Collected in Vietnam. Biochem Res Int 2025; 2025:9461117. [PMID: 40191803 PMCID: PMC11972136 DOI: 10.1155/bri/9461117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Brown algae are considered a marine algae resource for human health. This study investigated ethanol extract's chemical composition and biological activity from brown algae Dictyota implexa. The extract from D. implexa was examined for total contents of quercetin, tannic acid, phenolic, flavonoid, polysaccharides, agar, and fucoidan, and the antioxidant, anti-inflammatory, antibacterial, cytotoxic, and α-amylase inhibitory activities of the crude extract were determined. Results revealed the presence of a source of phenolic (85.95 ± 1.21 mg GAE/g of the sample), flavonoid (245.6 ± 2.83 mg QE/g of the sample), and tannin (172.179 mg/g DW) compounds in the extract. Evaluating antioxidant activity proved the ethanol extract of D. implexa possessed the highest activity on two testing methods of DPPH scavenging capacity and reducing power. Besides, the anti-inflammatory activity was potent in the extract with an IC50 value of 9.95 ± 1.51 μg/mL. Concerning antimicrobial activities, the ethanol extract of D. implexa (70 mg/mL) showed potential inhibitory ability against E. coli and B. cereus. Moreover, the algal extract displayed cytotoxic activity against HeLa cells and inhibited α-amylase activity with an IC50 value of 276.82 μg/mL. The current findings demonstrated that exploring novel natural resources offers a promising avenue for advancements in human health and economic well-being.
Collapse
Affiliation(s)
- Nguyen Ngoc Trang Thuy
- Faculty of Food Technology Biotechnology and Chemical Technology, Can Tho University of Technology, Can Tho, Vietnam
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Tran Thanh Men
- College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
12
|
Muceniece R, Revina BL, Kviesis J, Jansons A, Kopiks K, Jekabsons K, Saleniece K, Namniece J, Grigale-Sorocina Z, Jansone B. Nettle Leaf Water Extracts for Hepatoprotection: Insights into Bioactivity and Mitochondrial Function. PLANTS (BASEL, SWITZERLAND) 2025; 14:992. [PMID: 40219059 PMCID: PMC11990370 DOI: 10.3390/plants14070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
This study aimed to evaluate the hepatoprotective effects of nettle (Urtica dioica L.) leaf water extracts on oxygen consumption in the fatty acid oxidation (FAO) pathway using an in vitro fatty liver HepG2 cell model and employing an oxygraphy approach. It also examined the impact of these extracts on HepG2 cell lipid accumulation and viability under oxidative stress. The extracts were obtained via maceration with preservatives or by sonication with/without preservatives. Their chemical composition, including polyphenols, vitamins, and minerals, was analyzed. Bioactivity was confirmed through antioxidant and antiglycation in vitro assays. The extracts contained minerals, water-soluble vitamins, and polyphenols, primarily phenolic acids and rutin. Sonication increased the polyphenol yield, advanced glycation end-product (AGE) inhibition, and total antioxidant capacity compared to maceration. The added preservatives enhanced DPPH scavenging, while SOD-mimicking effects were comparable across extraction methods. In the liver steatosis model, the nettle extracts improved HepG2 cell viability under oxidative stress, reduced lipid accumulation, and enhanced mitochondrial oxygen consumption in the FAO pathway at mitochondria complex I. These findings demonstrate the impact of nettle leaf water extracts on oxygen flux in different oxidative phosphorylation states of the FAO pathway and deepen the understanding of nettle's protective role in hepatic steatosis. The obtained results confirm the hepatoprotective effects of nettles through multiple mechanisms, primarily involving antioxidant activity, modulation of lipid accumulation, and mitochondrial protection.
Collapse
Affiliation(s)
- Ruta Muceniece
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | | | - Jorens Kviesis
- Faculty of Science and Technology, University of Latvia, LV-1004 Riga, Latvia;
| | - Aris Jansons
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | - Kirills Kopiks
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | - Kaspars Jekabsons
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | - Kristine Saleniece
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | - Jana Namniece
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| | | | - Baiba Jansone
- Faculty of Medicine and Life Sciences, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|
13
|
Degachi NEH, Ali-Rachedi F, Guehria I, Laoud A, Gheid A. Phytochemical and biological investigations of Salvia microphylla leaf extracts using LC-MS/MS. Nat Prod Res 2025:1-10. [PMID: 40114414 DOI: 10.1080/14786419.2025.2480665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
In this research, the total phenolics, antioxidant activity, and antibacterial susceptibility of Salvia microphylla leaf extracts were studied using solvents of varying polarity (n-hexane, dichloromethane, ethyl acetate, and 80% methanol). Total phenolic content (TPC) and total flavonoid content (TFC) were estimated using the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. Phytochemical analysis was conducted using the LC-ESI-MS/MS method. By using the FRAP and DPPH methods, the antioxidant activities were measured spectrophotometrically. The antimicrobial assay was done through the agar-well diffusion method against the Gram-negative and Gram-positive bacteria. All extracts showed potent antimicrobial activity, with the hexane extract displaying strong inhibitory effects. These findings indicate that S. microphylla leaf extracts contain promising bioactive compounds possessing antioxidant and antibacterial properties, suggesting further research to isolate and characterise these bioactive compounds and assess their in vivo effects.
Collapse
Affiliation(s)
- Nour El Houda Degachi
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Fahima Ali-Rachedi
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| | - Ines Guehria
- Faculty of Science, Laboratory of Biochemistry and Biotechnology, University of Tunis El Manar, Tunis, Tunisia
| | - Aicha Laoud
- University of Salah Boubnider - Constantine 3, Constantine, Algeria
| | - Abdelhak Gheid
- Departement of chemistry, Water and Environment Science and Technology Laboratory, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
| |
Collapse
|
14
|
Cornea AC, Marc G, Ionuț I, Moldovan C, Stana A, Oniga SD, Pîrnău A, Vlase L, Oniga I, Oniga O. Synthesis, Characterization, and Antioxidant Activity Evaluation of New N-Methyl Substituted Thiazole-Derived Polyphenolic Compounds. Molecules 2025; 30:1345. [PMID: 40142121 PMCID: PMC11944991 DOI: 10.3390/molecules30061345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Reactive oxygen species play a significant role in various pathological conditions, driving the need for novel, potent antioxidants. While polyphenols are known for their antioxidant properties, their limited stability and bioavailability present challenges for therapeutic applications. To address these limitations, a series of novel thiazolyl-polyphenolic compounds was synthesized via a multi-step synthetic route incorporating Hantzsch heterocyclization in the final step. The synthesized compounds 7a-k were structurally characterized using spectroscopic techniques, including NMR, MS, and IR. In silico thermodynamic calculations, including HOMO-LUMO gap and bond dissociation enthalpy (BDE) calculations, revealed a promising antioxidant profile for these compounds and indicated that the substitution in position 2 of the thiazole ring does not substantially influence the antioxidant activity conferred by the catechol moiety in position 4. The antioxidant capacity of the synthesized compounds was experimentally validated using a panel of six distinct assays: two radical scavenging assays (ABTS and DPPH) and four electron transfer-based assays (RP, TAC, FRAP, and CUPRAC). The in vitro evaluation demonstrated that compounds 7j and 7k exhibited significantly enhanced antioxidant activity compared to the established antioxidant standards, ascorbic acid and Trolox. These findings suggest that the strategic modifications in position 2 of the thiazole scaffold represent a promising direction for future research aimed at developing novel therapeutic agents with enhanced antioxidant properties. The present study is limited to the in vitro evaluation of compounds based on the N-methyl substituted thiazole scaffold, but future studies can include modifications such as changing the substituent on the thiazole nitrogen, the hydrazone linker or possible insertion of substituents in position 5 of thiazole ring of substituents with various electronic or physico-chemical properties.
Collapse
Affiliation(s)
- Alexandra Cătălina Cornea
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (A.S.); (O.O.)
| | - Gabriel Marc
- Department of Organic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (A.S.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (A.S.); (O.O.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (A.S.); (O.O.)
| | - Smaranda Dafina Oniga
- Department of Therapeutic Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, RO-400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, RO-400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, RO-400010 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, RO-400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (A.S.); (O.O.)
| |
Collapse
|
15
|
Patitucci F, Motta MF, Mileti O, Dattilo M, Malivindi R, Pezzi G, Gabriele D, Parisi OI, Puoci F. Enhancing burn wound care with pre-crosslinked 3D-printed patches: Bromelain delivery and aloe vera bioactives integration for improved healing outcomes. Int J Pharm 2025; 672:125304. [PMID: 39914510 DOI: 10.1016/j.ijpharm.2025.125304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Burn wounds remain a major clinical challenge due to the limitations of traditional dressings, which often fail to address the diverse needs of patients and varying wound types. This study aimed to advance burn care by developing a 3D-printed patch incorporating natural bioactive compounds from bromelain and aloe vera. The patch was formulated using pre-crosslinked chitosan and alginate hydrogels to ensure suitability for 3D printing and subsequent use. Rheological analysis revealed weak gel behaviour and shear-thinning properties, ensuring excellent printability. The patches exhibited outstanding swelling behaviour and controlled degradation (30 %), alongside notable antioxidant and anti-inflammatory potential, with a polyphenolic content of 1.43 ± 0.07 mg CAE/g and effective scavenging of DPPH, ABTS, and NO radicals, with IC50 values of 29.51 ± 0.30, 10.31 ± 0.28, and 5.94 ± 0.42 mg/mL, respectively. Bioactive compounds from bromelain were consistently released across various pH levels, supporting their therapeutic efficacy. Cell viability studies confirmed strong support for cell growth, while in vitro scratch tests demonstrated biocompatibility and promotion of wound closure. Histological analysis of ex vivo burn models revealed cellular necrosis and protein denaturation characteristic of burn wounds. Application of the patches significantly improved epidermal morphology and enhanced proliferation markers such as Ki67 and α-SMA, indicative of accelerated wound healing. While further clinical validation is needed, these findings underscore the potential of the 3D-printed patches as an innovative solution for burn wound care, offering improved bioactive delivery and enhanced healing outcomes compared to conventional dressings.
Collapse
Affiliation(s)
- Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Marisa Francesca Motta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Olga Mileti
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Pezzi
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, 87036 Rende, CS, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| |
Collapse
|
16
|
Xing Z, Fu X, Huang H, Xu Y, Wei L, Shan C, Du Y. Recent advances in Lactobacillus plantarum fermentation in modifying fruit-based products: Flavor property, bioactivity, and practical production applications. Compr Rev Food Sci Food Saf 2025; 24:e70160. [PMID: 40135439 DOI: 10.1111/1541-4337.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
Lactobacillus plantarum is a widely distributed gram-positive anaerobic or partially anaerobic fermenting bacteria that has been extensively applied in the fields of medicine, cosmetics, and the food industry owing to their variety of functional properties. L. plantarum is suitable for the fermentation of fruit and vegetable media. The resulting fermented product is significantly enhanced in terms of the overall quality compared to that in the prefermentation period. This study summarizes the impact of fermentation with L. plantarum on the modification of flavor and volatile compounds in fruit products, its effect on functional activities, and its practical application in fermented fruit production. Fruits fermented by L. plantarum are rich in volatile components, possess a higher content of functional compounds, and exhibit better bioactivities, including antioxidant, anti-inflammatory, and regulatory effects on type 2 diabetes and gut microbes, compared to nonfermented fruits. This study provides new insights into the development of fruit-derived functional foods processed via fermentation with L. plantarum.
Collapse
Affiliation(s)
- Zhibin Xing
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Xizhe Fu
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Hao Huang
- College of Ecology, Lishui University, Lishui, P. R. China
| | - Yuerong Xu
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Lili Wei
- Ministry of Education Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| | - Yinglin Du
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
- Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, P. R. China
| |
Collapse
|
17
|
Bandiwadekar A, Jose J, Gopan G, Augustin V, Ashtekar H, Khot KB. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: a novel approach for the treatment of Parkinson's disease. Drug Deliv Transl Res 2025; 15:1043-1073. [PMID: 38949746 DOI: 10.1007/s13346-024-01656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Parkinson's disease (PD), affecting millions of people worldwide and expected to impact 10 million by 2030, manifests a spectrum of motor and non-motor symptoms linked to the decline of dopaminergic neurons. Current therapies manage PD symptoms but lack efficacy in slowing disease progression, emphasizing the urgency for more effective treatments. Resveratrol (RSV), recognized for its neuroprotective and antioxidative properties, encounters challenges in clinical use for PD due to limited bioavailability. Researchers have investigated lipid-based nanoformulations, specifically solid lipid nanoparticles (SLNs), to enhance RSV stability. Oral drug delivery via SLNs faces obstacles, prompting exploration into transdermal delivery using SLNs integrated with microneedles (MNs) for improved patient compliance. In this study, an RSV-loaded SLNs (RSV -SLNs) incorporated into the MN patch was developed for transdermal RSV delivery to improve its stability and patient compliance. Characterization studies demonstrated favorable physical properties of SLNs with a sustained drug release profile of 78.36 ± 0.74%. The developed MNs exhibited mechanical robustness and skin penetration capabilities. Ex vivo permeation studies displayed substantial drug permeation of 68.39 ± 1.4% through the skin. In an in vivo pharmacokinetic study, the RSV-SLNs delivered through MNs exhibited a significant increase in Cmax, Tmax, and AUC0 - t values, alongside a reduced elimination rate in blood plasma in contrast to the administration of pure RSV via MNs. Moreover, an in vivo study showcased enhanced behavioral functioning and increased brain antioxidant levels in the treated animals. In-vivo skin irritation study revealed no signs of irritation till 24 h which permits long-term MNs application. Histopathological analysis showed notable changes in the brain regions of the rat, specifically the striatum and substantia nigra, after the completion of the treatment. Based on these findings, the development of an RSV-SLN loaded MNs (RSVSNLMP) patch presents a novel approach, with the potential to enhance the drug's efficiency, patient compliance, and therapeutic outcomes for PD, offering a promising avenue for advanced PD therapy.
Collapse
Affiliation(s)
- Akshay Bandiwadekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Jobin Jose
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India.
| | - Gopika Gopan
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Varsha Augustin
- NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Department of NITTE University Center for Animal Research & Experimentation (NUCARE), Mangalore, 575018, India
| | - Harsha Ashtekar
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, NITTE Deemed-to-be University, Mangalore, 575018, India
| | - Kartik Bhairu Khot
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics,, NITTE Deemed-to-be University, Mangalore, 575018, India
| |
Collapse
|
18
|
Husakova M, Patakova P. Purified Monascus Pigments: Biological Activities and Mechanisms of Action. JOURNAL OF NATURAL PRODUCTS 2025; 88:607-615. [PMID: 39906945 DOI: 10.1021/acs.jnatprod.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Monascus pigments having yellow, orange, and red colors are widely studied for their potential beneficial properties. Many different biological activities have been reported regarding Monascus pigments and their derivatives, but the usual method is to test complex extracts from the mycelium of the fungus or from a fungus-fermented substrate. However, this review is mainly concerned with the biological activities of purified Monascus pigments. Both yellow (ankaflavin, monascin) and red (rubropunctamine, monascorubramine) Monascus pigments are proven antioxidants if used in concentrations of 10 μg/mL or higher. Antimicrobial activity against Gram-positive and Gram-negative bacteria and fungi has been observed with all Monascus pigments. However, the best antimicrobials are red Monascus pigments, and their amino acid derivatives (l-cysteine derivatives have MIC 4 μg/mL against Enterococcus faecalis). Yellow monaphilones and orange monaphilols seem to have the highest anti-inflammatory activity (IC50 1.7 μM of monaphilol D) and, together with red Monascus pigment derivatives, have mild antiobesity and antidiabetic activities. Further, monascin and ankaflavin in daily doses of 0.5 and 0.08 mg, respectively, lowered serum blood levels of low-density lipoprotein cholesterol complexes in rats on a high-fat diet. Orange Monascus pigments, rubropunctatin and monaphilols A and C, exhibit cytotoxic and antitumor activities (IC50 8-10 μM).
Collapse
Affiliation(s)
- Marketa Husakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00 Prague, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 160 00 Prague, Czech Republic
| |
Collapse
|
19
|
Soni A, Patel A, Acharya S, Patel A, Shah U, Patel S, Solanki N, Patel M. Novel approaches to improve systemic bioavailability of curcumin using probiotics for rotenone-induced Parkinson's disease in rodents. Am J Transl Res 2025; 17:868-877. [PMID: 40092095 PMCID: PMC11909508 DOI: 10.62347/tkqk8110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/18/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIM The prevalence of Parkinson's Disease (PD) is high, and treatment is not optimal to date. Curcumin possesses neuroprotective effects. Nevertheless, oral use is incommodious due to its poor bioavailability. Numerous attempts have been made to increase its systemic bioavailability. Among these, an effective way to increase the bioavailability of curcumin is by combining it with probiotics to target the glucuronidation reaction. The present study focuses on the bio-enhancement of curcumin using probiotics in animal models of PD by alleviating oxidative stress and ameliorating dopamine levels. MATERIALS AND METHODS Forty-two male rats were used for the study. Twelve animals were used for a bio-availability study in which curcumin was administered orally alone and concomitantly with a probiotic (Lactobacillus Rhamnus, 109 cfu, PO) to prove probiotics' ability to enhance curcumin's serum level by inhibition of β-glucuronidase activity. Serum curcumin level was estimated using the LC-MS/MS technique on 21 days of dosing. The remaining animals were used in an experimental study. PD was induced through 2.5 mg/kg rotenone (ROT). Subsequently, the animals were allocated to five groups and treated commensurately along with ROT. Three treatment groups were administered curcumin (alone, with 108 cfu, with 109 cfu). The standard control and disease control groups were supplied with sunflower oil. Effect on behavioral patterns, neurotransmitter and enzyme levels, and oxidative stress parameters were measured. Moreover, the brain was isolated for histopathology. RESULTS AND CONCLUSIONS The bioavailability study revealed a significant (P-value <0.001) increase in the serum level of curcumin in concomitantly administered probiotics with curcumin-treated animals compared to curcumin-only treated animals. An experimental study showed improved behavioral parameters, brain dopamine level, acetylcholinesterase (AchE), and oxidative stress combined in the curcumin and L. Rhamnosus treated groups. A notable improvement in the histology of the brain was observed. These findings strongly indicate that combining L. Rhamnosus with curcumin may be an effective therapeutic solution.
Collapse
Affiliation(s)
- Arun Soni
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
- Department of Pharmacology, SSR College of PharmacySayli-Silvassa Road, Union Territory of Dadra and Nagar Haveli and Daman Diu, Sayli, Silvassa 396230, India
| | - Adarsh Patel
- Department of Pharmacology, SSR College of PharmacySayli-Silvassa Road, Union Territory of Dadra and Nagar Haveli and Daman Diu, Sayli, Silvassa 396230, India
| | - Sanjeev Acharya
- Department of Pharmacology, SSR College of PharmacySayli-Silvassa Road, Union Territory of Dadra and Nagar Haveli and Daman Diu, Sayli, Silvassa 396230, India
- Department of Pharmacognosy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat UniversityGanpat Vidhyanagar, Mehsana-Gandhinagar Highway, Kherva, Gujarat 384012, India
| | - Alkesh Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
| | - Swayamprakash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
| | - Nilay Solanki
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT CampusChanga, Anand, Gujarat 388421, India
| |
Collapse
|
20
|
da Silva TL, Pinheiro JGDO, de Moura ATC, Maia Neto CG, Correia FLP, Comin MSK, da Silva RCF, de Araújo SVF, Barreto SMAG, Oliveira ADS, Damasceno GADB, Ferrari M. Evaluation of the antioxidant and antityrosinase activities of Prosopis juliflora fruit extract as a novel multifunctional bioactive ingredient and its potential applicability in pro-ageing and skin colour harmonization cosmetic products. Int J Cosmet Sci 2025; 47:101-112. [PMID: 39138627 DOI: 10.1111/ics.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Prosopis juliflora, commonly known as algaroba or mesquite, was introduced and has since proliferated throughout the semi-arid region of the Caatinga biome. Various studies have documented its properties, including antimicrobial, antioxidant, and antitumor activities, attributed to the presence of diverse secondary metabolites such as alkaloids, terpenoids, tannins, and flavonoids. The objective of this study was to evaluate the antioxidant and antityrosinase activities of P. juliflora fruit extract as a multifunctional active ingredient, and to develop cosmetic formulations containing this vegetal extract for potential applications in skincare products targeting pro-ageing and skin colour homogenization properties. METHODS The extraction process followed established protocols. Chemical characterization of the extract involved quantification of total flavonoids and phenolic compounds, along with Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. In vitro antioxidant activity was assessed using different methods. Antityrosinase activity was determined by employing enzymatic assays. Cosmetic formulations containing Disodium EDTA, Phenoxyethanol (and) Ethylhexyl Glycerin, Distilled Water, Sodium Acrylates Copolymer Lecithin, Polyacrylamide (and) C13-14 Isoparaffin (and) Laureth-7, and 3.0% of the investigated plant extract were subjected to preliminary and accelerated stability tests. RESULTS The extract demonstrated a concentration of total flavonoids (1.71 ± 0.26 μg EQ/mg) and exhibited concentrations of phenolic compounds at 0.21 ± 0.01 mg EAG/g. Metabolites such as flavonoids and saponins were annotated, as well as some of their respective glycosidic derivatives. The extract showed antioxidant potential and the ability to inhibit the oxidation cascade in both the initiation and propagation phases. Moreover, the extract exhibited noteworthy inhibition of antityrosinase activity, presenting 62.48 ± 2.09 at a concentration of 30.00 mg/mL. The formulations were stable in accelerated stability tests over a 60-day period. CONCLUSION This research not only demonstrates scientifically by demonstrating the potential of a plant from the Caatinga biome with antioxidant and antityrosinase properties in the development of cosmetic products aimed at pro-ageing effects and skin colour harmonization, but also adds value to the P. juliflora production chain. This valorization encompasses various aspects which include environmental, social, and biodiversity responsibilities.
Collapse
Affiliation(s)
- Tássyo Leandro da Silva
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | | | - Arthur Thomaz Coutinho de Moura
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Christovam Gondim Maia Neto
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Francisco Lucas Pereira Correia
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Marcielle Sayuri Kubo Comin
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Rafaela Costa Ferreira da Silva
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | | | | | - Artur de Santana Oliveira
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| | - Gabriel Azevedo de Brito Damasceno
- Multidisciplinary Health Institute, Anísio Teixeira Campus, Federal University of Bahia - UFBA, Rua Hormindo Barros, Vitória da Conquista, BA, Brazil
| | - Márcio Ferrari
- Departament of Pharmacy, Federal University of Rio Grande Do Norte - UFRN, Rua Gustavo Cordeiro de Farias, Natal, RN, Brazil
| |
Collapse
|
21
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
22
|
Carrasqueira J, Bernardino S, Bernardino R, Afonso C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar Drugs 2025; 23:60. [PMID: 39997184 PMCID: PMC11857343 DOI: 10.3390/md23020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Marine-derived polysaccharides have sparked immense interest in the nutraceutical industry as they possess a wide range of bioactivities which are highlighted in this review. These include antioxidants, anti-inflammatory, anti-cancer, gut microbiota regulator, anti-diabetic, and anti-obesity. Algae, marine invertebrates, vertebrates, and microorganisms are the main sources of marine polysaccharides, such as alginate, fucoidan, laminarin, carrageenan, chitosan, glycosaminoglycans, and exopolysaccharides. The structure and functional groups of these compounds influence their bioactive properties. Moreover, the functional properties of polysaccharides, such as gelling, thickening, and stabilising capabilities, are also crucial in product development, where they can serve as gluten substitutes in bakery goods and stabilisers in icings, sauces, and yoghurts. The potential of commercial products under development, such as marine polysaccharide supplements, is discussed, along with already commercialised products in the nutraceutical market. This review emphasises the enormous potential of marine-derived polysaccharides as bioactive compounds with health benefits and commercial value.
Collapse
Affiliation(s)
- Joana Carrasqueira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Susana Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| | - Raul Bernardino
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Clélia Afonso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, 2520-614 Peniche, Portugal; (J.C.); (S.B.); (R.B.)
| |
Collapse
|
23
|
Hashem MM, Hassanen EI, Hassan NH, Ibrahim MA, Issa MY, Farag MA, Hamdy SA. Physalis peruviana calyces extract ameliorate oxidative stress, inflammation, and immune loss in rats-exposed to hexaflumuron. BMC Complement Med Ther 2025; 25:21. [PMID: 39844243 PMCID: PMC11756176 DOI: 10.1186/s12906-025-04750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Hexaflumuron (HFM), a common pesticide, can disrupt the immune system and cause oxidative stress. This study investigated the potential of Physalis peruviana L. calyces extract (PP) to counteract these effects in rats. METHODS Rats were divided into 6 groups including control, PP-treated, HFM-exposed, and co-treated (HFM + PP) groups. Immune function, antioxidant activity, and organ damage were assessed. Furthermore, UPLC-MS/MS analysis identified potential bioactive compounds in PP extract. RESULTS HFM exposure suppressed immune responses and caused organ damage. Notably, the co-administration of PP extract with HFM reversed these effects, indicating its ability to reduce oxidative stress and protect the immune system. UPLC-MS/MS analysis of PP calyces ethanolic extract revealed its richness in various health-promoting metabolites, including acyl sucrose sugar, withanolides, and flavonoids, which may provide valuable insight into the underlying mechanisms of PP's calyces protective effects against HFM toxicity. CONCLUSIONS This study provides novel insights into the potential of P. peruviana L. calyces ethanolic extract as a natural agent to counteract the harmful effects of HFM exposure. These findings have significant implications for developing effective strategies to mitigate pesticide-induced toxicity and promote human health.
Collapse
Affiliation(s)
- Mona M Hashem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st, P.B. 11562, Cairo, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Y Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st, P.B. 11562, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st, P.B. 11562, Cairo, Egypt.
| | - Sherif A Hamdy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini st, P.B. 11562, Cairo, Egypt
| |
Collapse
|
24
|
Shahbaz S, Sharif A, Akhtar B, Mobashar A, Shazly GA, Metouekel A, Bourhia M. Therapeutic potential of 3-acetyl coumarin against polycystic ovarian syndrome induced by letrozole using female rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03720-5. [PMID: 39715882 DOI: 10.1007/s00210-024-03720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Polycystic ovarian syndrome is a heterogeneous endocrine disorder characterized by ovarian cysts, anovulation, endocrine variations, which includes oligo-amenorrhea along with associated subfertility and hyperandrogenism manifested as acne, hirsutism, and male-pattern alopecia. Coumarins are fused benzene and pyrone ring systems that exhibit a wide spectrum of bioactivities. This study aimed to investigate the effects of 3-acetyl coumarin (3-AC) on polycystic ovarian syndrome in female rats. Acute oral toxicity conducted according to OECD guidelines 425 (a test conducted in scenarios where there is information indicating that the test material is non-toxic) exhibited no mortality. In vitro DPPH assay demonstrated anti-oxidant potential of 3-AC. Letrozole, a nonsteroidal aromatase inhibitor was used to induce PCOS (1 mg/kg-21 days). Normal and PCOS control rats were administered a vehicle solution (0.5% CMC), whereas 3-AC (10, 20, and 30 mg/kg) and metformin (300 mg/kg) was administered to treatment groups for 15 days. Vaginal smears were taken to assess estrous cycle. Rats were euthanized at day 37. In vivo analysis included measurement of fasting blood glucose, total-cholesterol, triglycerides, FSH, LH, and testosterone levels. ELISA was used for measurement of inflammatory markers (IL-1β, IL-6, and TNF-α). Oxidative stress markers (SOD, CAT, GSH, MDA, NO) were also evaluated. Expression levels of NF-κB and LHCGR were detected by RT-qPCR. Molecular docking was also performed. One-way analysis of variance was employed followed by Tukey's test for statistical analysis. Treatment with 3-AC led to favorable effects in PCOS rats. Specifically, inflammatory levels, antioxidant status, lipid profile, and glucose concentrations were all improved. These findings suggest that 3-acetyl coumarin (3-AC) may serve as a promising therapeutic agent for alleviating symptoms of PCOS in this animal model.
Collapse
Affiliation(s)
- Saliha Shahbaz
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan.
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, Masaka, Uganda
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Amira Metouekel
- University of Technology of Compiègne, EA 4297 TIMR, 60205, Compiègne Cedex, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| |
Collapse
|
25
|
He M, Peng Q, Xu X, Shi B, Qiao Y. Antioxidant capacities and non-volatile metabolites changes after solid-state fermentation of soybean using oyster mushroom ( Pleurotus ostreatus) mycelium. Front Nutr 2024; 11:1509341. [PMID: 39713777 PMCID: PMC11660803 DOI: 10.3389/fnut.2024.1509341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Given the abundance of beneficial properties and enzymes secreted by edible oyster mushrooms, their mycelium could serve as a starter for fermented foods to enhance their nutritional and bioactive quality. This study aimed to investigate the effects on the nutritional ingredients, antioxidant activity, and non-volatile metabolites during solid-state fermentation (SSF) of soybeans by Pleurotus ostreatus mycelium. The results indicated that the contents of dietary fiber and starch in fermented soybeans decreased, while the amounts of protein and lipid increased after SSF (P < 0.05). Analysis of the total phenolic content (TPC) and antioxidant activities of the fermented soybeans revealed that the methanolic extracts significantly increased TPC and antioxidant activities against intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, as well as against DPPH and ABTS radicals in vitro. A total 154 differential metabolites were identified after SSF, and a Spearman correlation study revealed a direct relationship between antioxidant activities and certain metabolites including phenolic compounds, oligopeptides, and free fatty acids etc. Among these metabolites, phenolic compounds produced by the shikimic acid pathway were diverse in variety and had the greatest multiple differences. The study discovered that a potential mechanism involving SSF with P. ostreatus mycelium increased the antioxidant activity of soybeans.
Collapse
Affiliation(s)
| | | | | | | | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Verma R, Dash S, Ankita, Thakur S, Kumar R, Singh G, Kaur C. Genus Bauhinia (Fabaceae): A review from phytochemistry to pharmacology- Exploring traditional uses and toxicological insights across Asia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156246. [PMID: 39571414 DOI: 10.1016/j.phymed.2024.156246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND The genus Bauhinia and its species has been known since ages by tribal people and medicinal practitioners in tropical and subtropical regions for the treatment of diabetes, diarrhea, cough, fever, stomach disorders, skin diseases, and other diseases. STUDY DESIGN Our aim was to collect and explore the literature available on the traditional applications and medicinal potential of genus Bauhinia across Asia, so that this review can be used as standard to analyze the immense potential of this genus and can be explored further for clinical use. METHODS The information was rigorously gathered from Google Scholar, Pub Med, Elsevier, Wiley Online Search, Science Direct, and other literature sources. RESULTS As per the literature, this genus possesses antimicrobial, antioxidant, nephroprotective, anticancer, hepatoprotective, antidiabetic, anti-inflammatory, and antidepressant activities both in vitro and in vivo, due to the presence of flavonoids, steroidal saponins, bauhinioxepins, chromanones, and phenolic compounds. CONCLUSION In this review, we have detailed for the first time the categorized information about traditional uses, geographical distribution, morphological features, phytochemistry, pharmacological, and toxicological effects, and patents associated with Bauhinia species. However, more research is needed to explore the mechanisms of action, pharmacokinetics of the phytoconstituents, and clinical evaluation for their future use in treating various ailments.
Collapse
Affiliation(s)
- Rupali Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Shubham Dash
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Ankita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Shorya Thakur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab.
| |
Collapse
|
27
|
Woźniak Ł, Moya MSP. Assessment of chemical risks and benefits connected with macroalgae consumption. EFSA J 2024; 22:e221109. [PMID: 39712918 PMCID: PMC11659724 DOI: 10.2903/j.efsa.2024.e221109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Reducing animal-based food production and consumption due to environmental issues and undergoing upcoming changes in food dietary patterns is pushing European society to search for new protein sources. Consuming macroalgae (seaweed) is one of the possible solutions, and it is an exciting alternative for both sustainability and consumers' health. The aim of this work, implemented under the EU-FORA fellowship programme, was to evaluate the current and projected consumption of macroalgae in terms of possible beneficial and detrimental effects on consumers. The risk-benefit assessment methodology was selected as a tool for this task, and a broad range of qualitative analyses of raw material composition (e.g. fatty acids, micro-, macroelements, heavy metals, biogenic amines). The current levels of macroalgae consumption in the EU are deficient; therefore, alternate scenarios using data from other countries and substitution scenarios are needed. Iodine turned out to be the most pivotal constituent - on the one hand; it is an element essential for life, often fortified in foods like milk or salt; on the other, its overdosing leads to serious thyroid complications. A very high variance in iodine levels between algal species was observed; therefore, it was suggested that this valuable knowledge is helpful in dietary recommendations.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Food Safety and Chemical AnalysisInstitute of Agricultural and Food BiotechnologyWarsawPoland
| | | |
Collapse
|
28
|
Karunarathna BSW, Gajasinghe GMST, Wanniarachchi JD, Govender KK, Seneweera S. A DFT analysis of the antioxidant capacity of scopolin and scopoletin. J Mol Model 2024; 30:424. [PMID: 39615016 DOI: 10.1007/s00894-024-06192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT Scopolin and scopoletin belong to the class of coumarins and have experimentally proven natural antioxidants. Natural antioxidants are crucial in mitigating the impact of oxidants in the human body through radical scavenging. Even though scopolin and scopoletin are proven antioxidants by experimental results, their antioxidant mechanisms still remained unexplained. In this study, Density functional theory (DFT) calculations were used to study the radical scavenging mechanisms of both scopolin and scopoletin using kinetic and thermodynamics parameters. The global parameters indicated that both scopolin and scopoletin have antioxidant properties. The band gap energy ( Δ E HOMO - LUMO ) revealed that scopoletin (4.18 eV) has strong antioxidant activity compared to scopolin (4.31 eV). These studies found that hydrogen atom transfer (HAT) is the primary mechanism for CH3OO• radical scavenging at the C-H bond in scopolin (91.98 kcal.mol-1) and the O-H bond in scopoletin (77.05 kcal.mol-1) due to their lowest bond dissociation energies. The calculated activation energy ( E a ) for the radical scavenging reaction, reconfirmed scopoletin ( E a =11.19 kcal.mol-1) performed as a better antioxidant compared to scopolin ( E a =20.91 kcal.mol-1). In this study, the results of DFT calculations confirmed that scopoletin exhibits a higher antioxidant capacity, and HAT mechanism is the most effective radical scavenging mechanism. METHODS The antioxidant activity of scopolin and scopoletin was determined by DFT at the B3LYP/6-31G(d) level of theory. Global parameter calculations and frontier molecular orbital analysis were conducted to assess these compounds' capacity for scavenging radicals. Hydrogen atom transfer (HAT), sequential electron transfer proton transfer (SETPT), and sequential proton loss electron transfer (SPLET) mechanisms were the three main mechanisms that were taken into consideration. The potential energy surface (PES) verified the most appropriate processes shown by the enthalpy calculations.
Collapse
Affiliation(s)
| | - G M Supun Tharaka Gajasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Jayamal Damsith Wanniarachchi
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - K K Govender
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Saman Seneweera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Royal Parade, Parkville, VIC, 3010, Australia.
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka.
| |
Collapse
|
29
|
Liu Y, Zeng Y, Chen L, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Peng G. Isolation and evaluation of multi-functional properties of lactic acid bacteria strains derived from canine milk. Front Vet Sci 2024; 11:1505854. [PMID: 39669658 PMCID: PMC11634844 DOI: 10.3389/fvets.2024.1505854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Lactic acid bacteria (LAB) are Gram-positive bacteria that produce lactic acid during fermentation, with some strains enhancing host health by modulating the gut microbiota, boosting immune responses, and reducing inflammation. Methods In this study, 6 LAB strains were isolated from two dog milk samples, and their probiotic properties were comprehensively evaluated. The evaluation included growth properties, stress resistance, antipathogen activity, adhesion activity, safety assessment, antioxidant capacity, and prebiotic metabolites assessment. Results In comparison to the control strain Lactobacillus rhamnosus LGG, all 6 LAB isolates exhibited favorable probiotic properties. Additionally, the results of the antioxidant tests indicated that these strains demonstrated high tolerance to 0.5 mmol/L H2O2 and exhibited significant scavenging abilities for the free radicals 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). Furthermore, the 6 LAB isolates were found to produce elevated concentrations of prebiotic metabolites, including exopolysaccharides (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study presents a comprehensive analysis of LAB isolates derived from canine milk. These isolates exhibited multifunctional properties, with strain L221 performing the best overall, making it a promising candidate for probiotic use in dogs.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueyan Zeng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Thakur M, Verma R, Kumar D, Manickam S, Ullah R, Ibrahim MA, Bari A, Lalhenmawia H, Kumar D. Hypoglycemic and antioxidant activities of Jasminum officinale L. with identification and characterization of phytocompounds. Heliyon 2024; 10:e39165. [PMID: 39524716 PMCID: PMC11547964 DOI: 10.1016/j.heliyon.2024.e39165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The utilization of plant-derived chemicals with anti-diabetic properties is widely promoted for its advantageous tactics in managing diabetes, as they are cost-effective and have minimal or no adverse effects. Therefore, this work investigates the medicinal plant Jasminum officinale L. leaves by extraction and bio-guided fractionation. The ethyl acetate fraction showed a higher yield of 36.4 %. A phytochemical test on Jasminum officinale confirmed flavonoids, saponins, phenols, and tannins. The highest total phenol and flavonoid contents in the ethyl acetate fraction of J. officinale are 103.01 ± 1.1 mg GAE/g and 80.29 ± 1.03 mg QUE/ value found in methanol crude extract. Furthermore, HPTLC analysis of the ethyl acetate fraction detected the existence of flavonoids (kaempferol) and phenols (gallic acid, quercetin, and rutin). The compounds detected at the greatest concentrations in the LC-M/MS analysis of the ethyl acetate fraction were cirsiliol, kaempferol, and 2-tridecanone. Additionally, J. officinale (IC50 33.845 ± 1.09 μg/mL) demonstrated the highest DPPH scavenging activity in EAF like that of ascorbic acid (IC50 22.27 ± 0.96 μg/mL). Also, in the FRAP assay, the IC50 of this fraction is 15.14 ± 0.25 μM Fe equivalents. In the range of alpha-amylase deactivating action, from 13.25 % to 74.51 %, and IC50 value (47.40 ± 0.29 μg/mL) was significantly higher in the ethyl acetate fraction of J. officinale leaf extract. Moreover, J. officinale leaf extract had a substantially higher retention of glucose level (23.92 ± 0.85 % to 87.21 ± 0.6 %), significantly higher anti-inflammatory activity with the lowest IC50 value (66.00 ± 1.84), and lipid peroxidation (IC50 value 34.67 ± 1.69) by utilizing egg yolk as a substrate for lipids. Overall, the study revealed that J. officinale has considerable anti-diabetic characteristics. However, further comprehensive research is necessary to ascertain the medicinal purposes of J. officinale and its chemical components, pharmacological effects, and clinical uses.
Collapse
Affiliation(s)
- Mehak Thakur
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173212, India
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173212, India
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, HP, 173229, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, University Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Riaz Ullah
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Ibrahim
- Department of Pharmaceutics, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - H. Lalhenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Aizawl, 796017, Mizoram, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, HP, 173229, India
| |
Collapse
|
31
|
Wang J, Liu Y, Zheng H, Xin J, Zhong Z, Liu H, Huang Y, Fu H, Zhou Z, Peng G. Screening and genome analysis of heat-resistant and antioxidant lactic acid bacteria from Holstein cow milk. Front Microbiol 2024; 15:1455849. [PMID: 39611093 PMCID: PMC11602510 DOI: 10.3389/fmicb.2024.1455849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Background Heat stress significantly impacts dairy cows, primarily through oxidative stress, which undermines their health. The problem is exacerbated by the ongoing global warming trend. Lactic acid bacteria (LAB) are safe, economical, and readily accessible options for enhancing the host's antioxidant defenses and preventing oxidative damage. They have been proven effective in alleviating heat stress-related damage, making them an excellent choice for protecting dairy cows from the adverse effects of heat stress. Method In this study, five strains of LAB from Holstein cow milk (Lactobacillus plantarum L5, L14, L17, L19, L20) were evaluated for their heat resistance and antioxidant capacity by evaluating the growth characteristics and tolerance of the strains under high-temperature conditions, as well as their H2O2 tolerance, free radical scavenging ability (DPPH, OH-, ABTS), reducing ability, and EPS production ability. Furthermore, we employed Caco-2 cells to assess the adhesion rate of the strain, thereby confirming its ability to successfully colonize the host's intestinal tract and ensuring the effective execution of its probiotic functions. The strain with excellent heat resistance and antioxidant capacity was then subjected to genomic analysis to gain insight into the molecular mechanisms behind their heat resistance, antioxidant capacity, and safety. Results Among the two strains, Lactobacillus plantarum L19 emerges as a highly promising candidate. The strain exhibits robust growth even at high temperatures at 40°C and maintains a survival rate of 16.42% at the extreme temperature of 65°C. Furthermore, it demonstrates superior tolerance to hydrogen peroxide (27.3%), and possesses a notably higher free radical scavenging capacity with a high adhesion rate to Caco-2 cell (22.19%) compared to the other four strains tested. Genomic analysis revealed its' genome has 17 genes related to antioxidants and three genes related to heat resistance. Importantly, L19 lacks any resistance genes, ensuring its safety as a probiotic. Conclusion The results imply that Lactobacillus plantarum L19 has the potential to serve as an effective food additive in mitigating damages associated with heat stress. This research offers a valuable reference for the prevention and management of heat stress in dairy cows, while also expanding the scope of applications for LAB derived from cow milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
32
|
Tian H, Gao Z, Han L, Wan J, Yang X, Li M, Chu W, Lai M, Ji X. Analysis of Water Adsorption Capacity, Thermal Behavior, Antioxidant Activity, and Smoke Volume by Polyol Ester in Reconstituted Tobacco. ACS OMEGA 2024; 9:44336-44346. [PMID: 39524655 PMCID: PMC11541444 DOI: 10.1021/acsomega.4c05199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
A series of ester derivatives with hydroxyl groups were created by esterification of 1,2-propanediol and glycerol with o-toluoyl chloride via the catalyst 4-dimethylaminopyridine (DMAP). All the compounds were verified using nuclear magnetic resonance (1H NMR, 13C NMR), infrared spectroscopy, and high resolution mass spectrometry. Moisture absorption and desorption experiments were carried out on the compounds' pure systems and their systems in reconstituted tobacco, while their hygroscopicity and moisturizing properties were evaluated using low-field nuclear magnetic resonance imaging. Two compounds with better absorption and moisture retention were selected: 4 (1-hydroxypropan-2-yl 2-methylbenzoate) and 6 (2,3-dihydroxypropyl 2-methylbenzoate), respectively. Moreover, the thermal stability of compounds 4 and 6 were investigated using thermogravimetric (TG) analysis. The results of TG-DTG showed that the maximum mass loss rate of compound 4 appeared at 251.67 °C, with a mass loss rate of 87.61%. At the peak temperature of 291.83 °C, 6 showed the highest decomposition rate with 49.23% mass loss rate. To explore the antioxidant properties, we constructed three different antioxidant systems. Furthermore, compound 6 showed excellent effects, with scavenging rates reaching 69.28%, 71.92%, and 75.93%, respectively. Smoke volume results indicated that the compounds optimally replaced propanediol and glycerol at a rate of 40%. The results provide a theoretical reference for the development of new moisturizing agents based on polyol esters in the tobacco industry.
Collapse
Affiliation(s)
- Haiying Tian
- Technology
Center of China Tobacco Henan Industry Co., Ltd., Zhengzhou 450002, P. R. China
| | - Ziting Gao
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, No. 218, Ping’an Avenue, Zhengdong New District, Zhengzhou 450046, P. R. China
| | - Lu Han
- Technology
Center of China Tobacco Henan Industry Co., Ltd., Zhengzhou 450002, P. R. China
| | - Jiqiang Wan
- Technology
Center of China Tobacco Henan Industry Co., Ltd., Zhengzhou 450002, P. R. China
| | - Xiaopeng Yang
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, No. 218, Ping’an Avenue, Zhengdong New District, Zhengzhou 450046, P. R. China
| | - Mengxue Li
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, No. 218, Ping’an Avenue, Zhengdong New District, Zhengzhou 450046, P. R. China
| | - Wenjuan Chu
- Technology
Center of China Tobacco Henan Industry Co., Ltd., Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, No. 218, Ping’an Avenue, Zhengdong New District, Zhengzhou 450046, P. R. China
| | - Xiaoming Ji
- Flavors
and Fragrance Engineering & Technology Research Center of Henan
Province, College of Tobacco Science, Henan
Agricultural University, No. 218, Ping’an Avenue, Zhengdong New District, Zhengzhou 450046, P. R. China
| |
Collapse
|
33
|
Vijayanand M, Guru A, Shaik MR, Hussain SA, Issac PK. Assessing the therapeutic potential of KK14 peptide derived from Cyprinus Carpio in reducing intercellular ROS levels in oxidative Stress-Induced In vivo zebrafish larvae model: An integrated bioinformatics, antioxidant, and neuroprotective analysis. J Biochem Mol Toxicol 2024; 38:e70027. [PMID: 39467211 DOI: 10.1002/jbt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
H2O2 is a significant reactive oxygen species (ROS) that hinders redox-mediated processes and contributes to oxidative stress and neurodegenerative disorders. Oxidative stress causes impairment of cell macromolecules, which results in cell dysfunction and neurodegeneration. Alzheimer's disease and other neurodegenerative diseases are serious conditions linked to oxidative stress. Antioxidant treatment approaches are a novel and successful strategy for decreasing neurodegeneration and reducing oxidative stress. This study explored the antioxidant and neuroprotective characteristics of KK14 peptide synthesized from LEAP 2B (liver-expressed antimicrobial peptide-2B) derived from Cyprinus carpio L. Molecular docking studies were used to assess the antioxidant properties of KK14. The peptide at concentrations 5-45 μM was examined by using in vitro and in vivo assessment. Analysis was done on the developmental and neuroprotective potential of KK14 peptide treatment in H2O2-exposed zebrafish larvae which showed Nonlethal deformities. KK14 improves antioxidant enzyme activity like catalase and superoxide dismutase. Furthermore, it reduces neuronal damage by lowering lipid peroxidation and nitric oxide generation while increasing acetylcholinesterase activity. It improved the changes in swimming behavior and the cognitive damage produced by exposure to H2O2. To further substantiate the neuroprotective potential of KK14, intracellular ROS levels in zebrafish larvae were assessed. This led to a reduction in ROS levels and diminished lipid peroxidation. The KK14 has upregulated the antioxidant genes against oxidative stress. Overall, this study proved the strong antioxidant activity of KK14, suggesting its potential as a strong therapeutic option for neurological disorders caused by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Ojo OA, Adeyemo TR, Iyobhebhe M, Adams MD, Asaleye RM, Evbuomwan IO, Abdurrahman J, Maduakolam-Aniobi TC, Nwonuma CO, Odesanmi OE, Ojo AB. Beta vulgaris L. beetroot protects against iron-induced liver injury by restoring antioxidant pathways and regulating cellular functions. Sci Rep 2024; 14:25205. [PMID: 39448782 PMCID: PMC11502780 DOI: 10.1038/s41598-024-77503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B. vulgaris on Fe2+-mediated oxidative liver damage through in vitro, ex vivo, and in silico studies to establish a strong rationale for its protective effect. To induce oxidative damage, we incubated the livers of healthy male rats with 0.1 mM FeSO4 to induce oxidative injury and coincubated them with an aqueous extract of B. vulgaris root (BVFE) (15-240 µg/mL). Induction of liver damage significantly (p < .05) decreased the levels of GSH, SOD, CAT, and ENTPDase activities, with a corresponding increase in MDA and NO levels and Na+/K+ ATPase, G6 Pase, and F-1,6-BPase enzyme activities. BVFE treatment (p < .05) reduced these levels and activities to almost normal levels, with the most prominent effects observed at 240 µg/mL BVFE. An HPLC investigation revealed sixteen compounds in BVFE, with quercetin being the most abundant. Chlorogenic acid and iso-orientation showed the highest binding affinities for G6 Pase and Na+/K + ATPase, respectively. These findings suggest that B. vulgaris can protect against Fe2+-mediated liver damage by suppressing oxidative stress and cholinergic and purinergic activities while regulating gluconeogenesis. Overall, the hepatoprotective activity of this extract might be driven by the synergistic effect of the identified compounds and their probable interactions with target proteins.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria.
| | | | | | - Moses Dele Adams
- Clinical Biochemistry, Phytopharmacology and Biochemical Toxicology Research Laboratory (CBPBT-RL), Department of Biochemistry, Baze University, Abuja, Nigeria
| | | | | | | | | | | | | | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
35
|
Kumar A, Parveen M, Ali Khan A, Nami SAA, Murad Ghalib R, Malik A, Alam M. Phytochemical investigation and spectral characterization of isolated compounds from Pyracantha crenulata (D. Don) M. Roem (syn. Crataegus crenulata Roxb) leaves: evaluation of antioxidant activity and molecular docking analysis. Nat Prod Res 2024:1-10. [PMID: 39370978 DOI: 10.1080/14786419.2024.2411375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Pyracantha crenulata (D. Don) M. Roem (syn. Crataegus crenulata Roxb.) is an evergreen shrub in the Rosaceae family, notable for its chemical diversity and biological potential. This study isolates and characterises six compounds (Cc-1 to Cc-6), including four new ones, using repeated column chromatography. Structural elucidation employed IR, UV-vis, 1H and 13 C NMR, and mass spectrometry. The DPPH assay was used to test the antioxidant activity in vitro. Compounds Cc-4, Cc-2, Cc-1, and Cc-5 had IC50 values of 15.734 μg/ml, 51.422 μg/ml, 62.864 μg/ml, and 71.622 μg/ml, in that order. Quantitative phytochemical analysis revealed flavonoid content (22.81 mg/g), tannin content (385.15 mg/g), and total phenolic content (128.78 mg/g). Human cyclin-dependent kinase 2 (CDK2) (PDB ID: 1hck) docked with compound Cc-4, which demonstrated strong antioxidant activity and revealed significant non-bonding interactions. The pkCSM and SwissADME analyses suggested promising drug-like properties for Cc-4, supported by BOILED-Egg diagrams highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Avadhesh Kumar
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Mehtab Parveen
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shahab A A Nami
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh, India
| | - Raza Murad Ghalib
- Division of Organic Synthesis, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University, Gyeongju, Gyeongbuk, South Korea
| |
Collapse
|
36
|
Barbari R, Bruggink V, Hofstetter RK, Tupini C, Fagnani S, Baldini E, Durini E, Lampronti I, Vertuani S, Baldisserotto A, Werz O, Manfredini S. Synthesis and Biological Activity Assessment of 2-Styrylbenzothiazoles as Potential Multifunctional Therapeutic Agents. Antioxidants (Basel) 2024; 13:1196. [PMID: 39456450 PMCID: PMC11504387 DOI: 10.3390/antiox13101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
A current trend in healthcare research is to discover multifunctional compounds, able to interact with multiple biological targets, in order to simplify multi-drug therapies and improve patient compliance. The aim of this work was to outline the growing demand for innovative multifunctional compounds, achieved through the synthesis, characterisation and SAR evaluation of a series of 2-styrylbenzothiazole derivatives. The six synthesised compounds were studied for their potential as photoprotective, antioxidant, antiproliferative, and anti-inflammatory agents. In order to profile antioxidant activity against various radical species, in vitro DPPH, FRAP and ORAC assays were performed. UV-filtering activity was studied, first in solution and then in formulation (standard O/W sunscreen containing 3% synthesised molecules) before and after irradiation. Compound BZTst6 proved to be photostable, suitable for broad-spectrum criteria, and is an excellent UVA filter. In terms of antioxidant activity, only compound BZTst4 can be considered a promising candidate, due to the potential of the catechol moiety. Both also showed exceptional inhibitory action against the pro-inflammatory enzyme 5-lipoxygenase (LO), with IC50 values in the sub-micromolar range in both activated neutrophils and under cell-free conditions. The results showed that the compounds under investigation are suitable for multifunctional application purposes, underlining the importance of their chemical scaffolding in terms of different biological behaviours.
Collapse
Affiliation(s)
- Riccardo Barbari
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Vera Bruggink
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Robert Klaus Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Chiara Tupini
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Sofia Fagnani
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Erika Baldini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Elisa Durini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Ilaria Lampronti
- Department of Life Science and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Via Fossato di Mortara 74, I-44121 Ferrara, Italy; (C.T.); (S.F.); (I.L.)
| | - Silvia Vertuani
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Anna Baldisserotto
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany; (V.B.); (R.K.H.)
| | - Stefano Manfredini
- Department of Life Science and Biotechnology, Section of Medicines and Health Products, University of Ferrara, Via Fossato di Mortara 17-19, I-44121 Ferrara, Italy; (R.B.); (E.B.); (E.D.); (S.V.); (S.M.)
| |
Collapse
|
37
|
Maldonado-Sanabria LA, Rodriguez-Saavedra IN, Reyes-Peña IV, Castillo-Aguirre A, Maldonado M, Crespo A, Esteso MA. Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. Int J Mol Sci 2024; 25:10010. [PMID: 39337498 PMCID: PMC11432429 DOI: 10.3390/ijms251810010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
C-tetra(4-methoxyphenyl)calix[4]resorcinarene was synthesized by hydrochloric acid-catalysed cyclocondensation of resorcinol and 4-methoxybenzaldehyde. Under these conditions, the reaction produces a conformational mixture of crown and chair structural conformers, which were separated and characterized by chromatographic and spectroscopic techniques. The antioxidant activity of both conformers was measured by using the DPPH assay, through which it was observed that the chair conformer showed greater antioxidant activity (IC50 = 47.46 ppm) than the crown conformer (IC50 = 78.46 ppm). Additionally, it was observed that the mixture of both conformers presented lower antioxidant activity than either conformer in isolation. The results found suggest that the chair conformer has efficient antioxidant activity that makes it a potential target for further research.
Collapse
Affiliation(s)
- Laura Angélica Maldonado-Sanabria
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ivette Nicole Rodriguez-Saavedra
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Ingrid Valentina Reyes-Peña
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Alver Castillo-Aguirre
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Mauricio Maldonado
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111311, Colombia; (L.A.M.-S.); (I.N.R.-S.); (I.V.R.-P.); (A.C.-A.); (M.M.)
| | - Almudena Crespo
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
| | - Miguel A. Esteso
- Universidad Católica de Ávila, Calle Los Canteros s/n, 05005 Ávila, Spain;
- U.D. Química Física, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| |
Collapse
|
38
|
Gallo AL, Marfetán JA, Vélez ML. Antioxidant Activities of Exopolysaccharides Extracts from Two Endemic Fungi from Patagonia. Curr Microbiol 2024; 81:361. [PMID: 39287836 DOI: 10.1007/s00284-024-03883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
A great number of free radicals have a negative impact on the human body, and an increased interest in the identification of new natural molecules with antioxidant properties has emerged due to concerns about synthetic antioxidants. Here, the antioxidant effect of four exo-polysaccharides (EPS) extracts obtained from submerged cultivation of Nothophellinus andinopatagonicus and Pseudoinonotus crustosus (N and P, respectively) in two culture media (M1 and M2) at 2 concentrations (100 and 250 µg/ml) was studied; then, its relation with the chemical composition of the EPS was evaluated. To assess the antioxidant activities of the extracts, several in vitro assays were performed: DPPH and ABTS radical scavenging, ferric-reducing antioxidant power, chelating ability on ferrous ions, and inhibition of the lipid peroxidation. The concentrations tested here were much lower than those reported in previous works. Despite variations in chemical composition and monosaccharide profiles among the extracts, all demonstrated antioxidant activity, although the type of activity differed; only P-M1 exhibited a good antioxidant activity across all assays. This extract contained the highest proportion of phenolic compounds, and also displayed the highest radical scavenging activity. Although the utilization of polysaccharides as functional food ingredients remains limited, we propose P-M1 as a promising candidate for a nutraceutical product. Additionally, a formulation could be made with a combination of extracts to create an antioxidant-rich supplement. Additional research is needed to confirm our findings in a cellular environment and to elucidate the mechanisms that drive their antioxidant activities, ultimately facilitating their development and utilization as nutraceutical products.
Collapse
Affiliation(s)
- Ana L Gallo
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+I), Buenos Aires, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina
| | - Jorge A Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María L Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), ruta 259 km 16, CP 9200, Esquel, Chubut, Argentina.
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), ruta 259, CP 9200, Esquel, Chubut, Argentina.
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
40
|
Atia A, Atmani-Kilani D, Atmani D, Ayouni K, Belkhir S, Benloukil M, Saidene N, Moulaoui K, Kasmi S, Medjahed Z, Boussebaa W, Atmani D. Wound healing potential of a formula based on Populus nigra L. flower buds extract with anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118319. [PMID: 38729538 DOI: 10.1016/j.jep.2024.118319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wound healing is a complex and dysnamic process supported by a myriad of cellular events that are tightly coordinated to repair efficiently damaged tissue. Populus nigra L. (Salicaceae) flower buds are traditionally used in the treatment of dermatitis, upper respiratory tract infections, rheumatism and wounds. AIM OF THE STUDY The aim of this study was to assess the wound healing potential of black poplar ointment containing 10 or 20 % of Populus nigra ethanolic flower buds extract using the excision model in rats. MATERIALS AND METHODS Two ointments (10 and 20 %) were prepared from Populus nigra flower buds ethanolic extract and topically applied on the area of excised skin of the rats for either 14 or 20 days. Morphological, macroscopic, histological and biochemical parameters were evaluated. RESULTS The results showed that the extract contained high amounts of total phenols (89.5 ± 7.7 mg caffeic acid equivalent/g of extract) and hydrolysable tannins (142.05 ± 2.55 mg tannic acid equivalent/g of extract), in correlation with strong DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and beta-carotene bleaching with values of 96.31 ± 3.42 and 85.27 ± 1.79 %, respectively. Anti-inflammatory potential was illustrated by lipoxygenase and cyclooxygenase inhibition (52.80 ± 0.2 and 53.88 ± 2.55 %, respectively). Treatment with Populus nigra ointment (10 and 20 %) promoted wound contraction of 97.37 ± 1.19 and 97.28 ± 0.91 %, respectively. The antioxidant marker enzymes, catalase (0.10 ± 0.001; 0.08 ± 0.003 U/mg protein) and superoxide dismutase (363.34 ± 24.37; 317.82 ± 53.83 U/mg protein) activities in the granulation tissues were upgraded with respective treatments of 10 or 20 % ointment. Concurrently, the myeloperoxidase activity (2.21 ± 1.01; 2.13 ± 0.75 U/mg protein) was repressed, indicating anti-inflammatory potential, when compared to untreated, standard and excipient groups. Moreover, a significant increase in respective levels of hydroxyproline (p < 0.001) (28.05 ± 1.20; 25.29 ± 1.17 μg/mg tissue) and hexosamine (p < 0.05) (20.18 ± 1.21; 18.95 ± 1.98 μg/mg tissue) was triggered, reflecting a high regeneration of collagen in the scarred tissue. Histological examination of treated skin tissue revealed higher rates of re-epithelialization, lower neutrophils infiltration and re-vascularization in comparison to the control group. CONCLUSION Given that the 10 % ointment was the optimal concentration, our findings offer an efficient drug formula for wound healing.
Collapse
Affiliation(s)
- Amina Atia
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria.
| | - Dina Atmani-Kilani
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria.
| | - Djebbar Atmani
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Karima Ayouni
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Sarra Belkhir
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Malika Benloukil
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Naima Saidene
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Kenza Moulaoui
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Souad Kasmi
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biochimie Appliquée, 06000, Bejaia, Algeria
| | - Zineb Medjahed
- Université de Jijel, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Toxicologie Moléculaire, 18000, Jijel, Algeria
| | - Walid Boussebaa
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Alger, Algeria
| | - Djamila Atmani
- Centre de Développement des Technologies Avancées, 16081, Alger, Algeria
| |
Collapse
|
41
|
Durdakova M, Kolackova M, Ridoskova A, Cernei N, Pavelicova K, Urbis P, Richtera L, Pelcova P, Adam V, Huska D. Exploring the potential nutritional benefits of Arthrospira maxima and Chlorella vulgaris: A focus on vitamin B 12, amino acids, and micronutrients. Food Chem 2024; 452:139434. [PMID: 38733680 DOI: 10.1016/j.foodchem.2024.139434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Arthrospira (Limnospira) maxima (A. maxima) and Chlorella vulgaris (Ch. vulgaris) are among the approved microalgae and cyanobacteria (MaC) in the food industry that are known to be safe for consumption. However, both organisms are controversial regarding their vitamin B12 content, due to the possible occurrence of pseudo-cobalamin. Concurrently, their nutrition profiles remain understudied. The main purpose of the present study was to identify their nutrition profiles, focusing mainly on vitamin B12, amino acids, and micronutrients under iron-induced hormesis (10 mg/L Fe in treated samples). Our findings indicate a higher B12 content in A. maxima compared to Ch. vulgaris (both control and treated samples). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the cyanocobalamin content was determined as 0.42 ± 0.09 μg/g dried weight (DW) in the A. maxima control and 0.55 ± 0.02 μg/g DW in treated A. maxima, resulting in an insignificant difference. In addition, the iron-enriched medium increased the amount of iron in both tested biomasses (p < 0.01). However, a more pronounced (approximately 100×) boost was observed in Ch. vulgaris, indicating a better absorption capacity (control Ch. vulgaris 0.16 ± 0.01 mg/g Fe, treated Ch. vulgaris 15.40 ± 0.34 mg/g Fe). Additionally, Ch. vulgaris also showed a higher micronutrient content. Using both tested microalgae, meeting the sufficient recommended daily mineral allowance for an adult is possible. By combining biomass from A. maxima and Ch. vulgaris in a ratio of 6:1, we can fulfill the recommended daily allowance of vitamin B12 and iron by consuming 6 tablets/6 g. Importantly, iron hormesis stimulated amino acid composition in both organisms. The profile of amino acids may suggest these biomasses as promising potential nutrition sources.
Collapse
Affiliation(s)
- Michaela Durdakova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Urbis
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc 779 00, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlína Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
42
|
Zăgrean-Tuza C, Matei A, Silaghi-Dumitrescu R. A biomimetic assay for antioxidant reactivity, based on liposomes and myoglobin. J Inorg Biochem 2024; 258:112613. [PMID: 38815361 DOI: 10.1016/j.jinorgbio.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Antioxidant assays are typically based on non-physiologically relevant reagents. We describe here a quantitative assay based on the inhibition of the liposome autooxidation in the presence of myoglobin (ILA-Mb), an oxidative process with direct biomedical relevance. Additional advantages of the assay include the use of standard and readily available reagents (lecithin and myoglobin) and the applicability to lipophilic antioxidants. The ILA-Mb assay is based on previously reported qualitative or semi-quantitative ones that employed cytochrome c instead of myoglobin. A number of antioxidants are tested, and their IC50 parameters are discussed and interpreted to involve direct interaction with both myoglobin and the liposomes.
Collapse
Affiliation(s)
- Cezara Zăgrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Alina Matei
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
43
|
Gunia-Krzyżak A, Popiół J, Słoczyńska K, Żelaszczyk D, Koczurkiewicz-Adamczyk P, Wójcik-Pszczoła K, Bucki A, Sapa M, Kasza P, Borczuch-Kostańska M, Marona H, Pękala E. Discovery of (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide among N-substituted cinnamamide derivatives as a novel cosmetic ingredient for hyperpigmentation. Bioorg Chem 2024; 150:107533. [PMID: 38878750 DOI: 10.1016/j.bioorg.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
Hyperpigmentation disorders may result from inappropriate melanin deposition and/or excessive melanin synthesis. They are classified mainly as aesthetic problems, but they can significantly affect human health by decreasing self-esteem. There are available only limited treatment options for hyperpigmentation disorder, among others, cosmetic products applied topically. Depigmenting ingredients were found to be ineffective and characterized by various side effects. As a result, many efforts are made to discover novel, potent, and safe melanogenesis inhibitors for possible use in topical cosmetic depigmenting formulations. Cinnamic acid derivatives constitute a widely tested group for that purpose. This article reports research in the group of N-alkyl cinnamamide derivatives (un)substituted in phenyl ring. Among tested series, (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide (compound 21) showed the most promising inhibitory properties in mushroom tyrosinase assay (IC50 = 36.98 ± 1.07 µM for monophenolase activity, IC50 = 146.71 ± 16.82 µM for diphenolase activity) and melanin production inhibition in B16F10 mouse melanoma cell line at concentration 6.25 µM resulting probably from decreasing of Tyr, Mitf, Tyrp-1, and Tyrp-2 genes expression. This compound also showed melanin production inhibitory properties in pigmented reconstructed human epidermis when used in 1 % and 2 % solutions in 50 % PEG400. In vitro evaluation of its safety profile showed no cytotoxicity to human keratinocytes HaCaT, human skin fibroblasts BJ, and human primary epidermal melanocytes HEMa, no mutagenicity in the Ames test, no genotoxicity in micronucleus test, no phototoxicity, as well as no skin irritation potential tested in PEG400 solution. This compound was also shown to penetrate across the epidermis to reach the possible site of action. The performed research led to classify (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide as a novel potential depigmenting cosmetic ingredient.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Michał Sapa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Patryk Kasza
- Department of Organic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magda Borczuch-Kostańska
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
44
|
Danduga RCSR, Kurapati AS, Shaik RA, Kola PK, Konidala SK, Varada HB. Synergistic Amelioration of Letrozole-induced Polycystic Ovary Syndrome in Rats: A Therapeutic Approach with Apple Cider Vinegar and Metformin Combination. Reprod Sci 2024; 31:2861-2876. [PMID: 38777948 DOI: 10.1007/s43032-024-01545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
The present study was conducted to evaluate the combination effect of apple cider vinegar (ACV) and metformin against letrozole-induced polycystic ovary syndrome (PCOS). Female Wistar rats were administered letrozole (1 mg/kg/day, p.o) for 21 days, except for the control group of animals. On the 22nd day, PCOS-induced animals were segregated into 4 groups and administered with CMC, ACV, metformin, and a combination of ACV and metformin, respectively. The treatments were continued for 15 days, and on the 36th day, all the animals were sacrificed for biochemical (blood glucose, lipid profile), hormonal (sex hormones and adiponectin), and pro-inflammatory mediator estimations in blood samples. The ovarian tissue samples were used for oxidative stress parameters and histological alterations. The PCOS control animals showed a significant alteration in the estrous cycle. The administration of letrozole resulted in the alteration of hormonal balance and elevation of body weights, glycemic state, lipid profile, pro-inflammatory mediators in serum, and oxidative stress in ovarian samples. Individual treatment groups and combination treatment groups reversed the letrozole-induced alterations in PCOS animals, and more promising results were observed with combination therapy than with individual treatment groups. Further, the therapeutic potential of the combination treatment group was also confirmed by the histological observations in the ovarian samples. The study showed that the combination of ACV and metformin significantly alleviated letrozole-induced PCOS complications in rats. This might have been achieved by mitigating the hormonal imbalance, pro-inflammatory, hyperglycemic, and hyperlipidemic states in serum, and oxidative stress in the ovary samples.
Collapse
Affiliation(s)
- Ravi Chandra Sekhara Reddy Danduga
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| | - Aarathi Shalom Kurapati
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| | - Roohi Anju Shaik
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| | - Phani Kumar Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Sathish Kumar Konidala
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Sciences, Technology, and Research, Vadlamudi, Guntur, 522213, India
| | - Hema Bharathi Varada
- Department of Pharmacology, Acharya Nagarjuna University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Guntur, 522510, India
| |
Collapse
|
45
|
Velumani K, John A, Shaik MR, Hussain SA, Guru A, Issac PK. Exploring sesquiterpene lactone as a dual therapeutic agent for diabetes and oxidative stress: insights into PI3K/AKT modulation. 3 Biotech 2024; 14:205. [PMID: 39170770 PMCID: PMC11333395 DOI: 10.1007/s13205-024-04050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Diabetic mellitus (DM) is characterized by hyperglycaemia and defective macromolecular metabolism, arising from insulin resistance or lack of insulin production. The present study investigates the potential of artemisinin, a sesquiterpene lactone isolated from Artemisia annua, to exert anti-diabetic and antioxidant effects through modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Our computational analyses demonstrated a high binding affinity of artemisinin with proteins belonging to the PI3K/AKT signalling cascade. α-Amylase and α-glucosidase studies revealed a notable increase in inhibition percentages with artemisinin treatment across concentrations ranging from 10 to 160 µM. A similar significant (p < 0.05) dose-dependent inhibition of free radicals was observed for the in vitro anti-oxidant assays. Further, toxicological profiling of artemisinin in the in vivo zebrafish embryo-larvae model from 4 to 96 h post-fertilization (hpf) did not exhibit any harmful repercussions. In addition, gene expression investigations confirmed artemisinin's potential mechanism in modulating hyperglycaemia and oxidative stress through the regulation of the PI3K/AKT pathway. Overall, our investigation suggests that artemisinin can be used as a therapeutic intervention for diabetes and oxidative stress, opening up opportunities for future investigation in clinical settings. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04050-2.
Collapse
Affiliation(s)
- Kadhirmathiyan Velumani
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| | - Arun John
- Institute of Bioinformatics, Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh , 11451 Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh, 11451 Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu 602 105 India
| |
Collapse
|
46
|
Pálla T, Noszál B, Mirzahosseini A. Prediction of Antioxidant Capacity of Thiolate-Disulfide Systems Using Species-Specific Basicity Values. Antioxidants (Basel) 2024; 13:1053. [PMID: 39334712 PMCID: PMC11428801 DOI: 10.3390/antiox13091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The principal reactions that maintain redox homeostasis in living systems are the deprotonation of thiols, followed by the oxidative conversion of the produced thiolates into disulfides, which thus reduce the harmful oxidizing agents. The various biological thiols have different molecule-specific propensities to carry on the co-dependent deprotonation and redox processes. This study utilizes the known correlation between thiolate basicities and oxidizabilities, to quantify antioxidant or reducing capacities and pH-dependences of thiol-disulfide antioxidant systems, as a tool to find adequate molecules against oxidative stress.
Collapse
Affiliation(s)
- Tamás Pálla
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Béla Noszál
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| | - Arash Mirzahosseini
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary; (T.P.); (B.N.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
47
|
Liu Y, Wang J, Zheng H, Xin J, Zhong Z, Liu H, Fu H, Zhou Z, Qiu X, Peng G. Multi-functional properties of lactic acid bacteria strains derived from canine feces. Front Vet Sci 2024; 11:1404580. [PMID: 39161461 PMCID: PMC11330878 DOI: 10.3389/fvets.2024.1404580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Probiotics, especially Lactic Acid Bacteria (LAB), can promote the health of host animals in a variety of ways, such as regulating intestinal flora and stimulating the host's immune system. Methods In this study, 206 LAB strains were isolated from 48 canine fecal samples. Eleven LAB strains were selected based on growth performance, acid and bile salt resistance. The 11 candidates underwent comprehensive evaluation for probiotic properties, including antipathogenic activity, adhesion, safety, antioxidant capacity, and metabolites. Results The results of the antipathogenic activity tests showed that 11 LAB strains exhibited strong inhibitory effect and co-aggregation ability against four target pathogens (E. coli, Staphylococcus aureus, Salmonella braenderup, and Pseudomonas aeruginosa). The results of the adhesion test showed that the 11 LAB strains had high cell surface hydrophobicity, self-aggregation ability, biofilm-forming ability and adhesion ability to the Caco-2 cells. Among them, Lactobacillus acidophilus (L177) showed strong activity in various adhesion experiments. Safety tests showed that 11 LAB strains are sensitive to most antibiotics, with L102, L171, and L177 having the highest sensitivity rate at 85.71%, and no hemolysis occurred in all strains. Antioxidant test results showed that all strains showed good H2O2 tolerance, high scavenging capacity for 1, 1-diphenyl-2-trinitrophenylhydrazine (DPPH) and hydroxyl (OH-). In addition, 11 LAB strains can produce high levels of metabolites including exopolysaccharide (EPS), γ-aminobutyric acid (GABA), and bile salt hydrolase (BSH). Discussion This study provides a thorough characterization of canine-derived LAB strains, highlighting their multifunctional potential as probiotics. The diverse capabilities of the strains make them promising candidates for canine dietary supplements, offering a holistic approach to canine health. Further research should validate their efficacy in vivo to ensure their practical application.
Collapse
Affiliation(s)
- Yunjiang Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiali Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohong Zheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group Co., Ltd., Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
48
|
Cornea AC, Marc G, Ionuț I, Moldovan C, Fizeșan I, Petru AE, Creștin IV, Pîrnău A, Vlase L, Oniga O. Synthesis, Cytotoxicity and Antioxidant Activity Evaluation of Some Thiazolyl-Catechol Compounds. Antioxidants (Basel) 2024; 13:937. [PMID: 39199183 PMCID: PMC11351550 DOI: 10.3390/antiox13080937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
A series of thiazolyl-catechol compounds with antioxidant and cytotoxic activities were synthesized by a Hantzsch heterocyclization, using diverse thioamides as the thiocarbonyl component and 4-chloroacetyl-catechol as haloketone. These compounds were characterized by MS, IR spectroscopy, and NMR. Their antioxidant potential was evaluated by antiradical, electron transfer, and ferrous ion chelation assays using ascorbic acid, Trolox, and EDTA-Na2 as references. The cytotoxicity of the synthesized compounds was evaluated on two different cell types, normal human foreskin fibroblasts (BJ) and human pulmonary malignant cells (A549), using gefitinib as a reference anticancer drug. The results obtained from the tests highlighted compounds 3g and 3h with significant antioxidant activities. The highest cytotoxic potency against A549 cells was exhibited by compounds 3i and 3j, while compound 3g demonstrated exceptional selectivity on malignant cells compared to gefitinib. These promising results encourage further investigation into targeted modifications on position 2 of the thiazole ring, in order to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Alexandra Cătălina Cornea
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (O.O.)
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș, 400012 Cluj-Napoca, Romania; (A.-E.P.); (I.-V.C.)
| | - Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș, 400012 Cluj-Napoca, Romania; (A.-E.P.); (I.-V.C.)
| | - Ionuț-Valentin Creștin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș, 400012 Cluj-Napoca, Romania; (A.-E.P.); (I.-V.C.)
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.C.C.); (I.I.); (C.M.); (O.O.)
| |
Collapse
|
49
|
Liu J. Aged garlic therapeutic intervention targeting inflammatory pathways in pathogenesis of bowel disorders. Heliyon 2024; 10:e33986. [PMID: 39130474 PMCID: PMC11315124 DOI: 10.1016/j.heliyon.2024.e33986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, manifest as a result of intricate interactions involving genetic predisposition, environmental factors, intestinal microbiota dynamics, and immune dysregulation, ultimately leading to persistent mucosal inflammation. Addressing this complex pathology requires a nuanced understanding to inform targeted therapeutic strategies. Consequently, our study explored the viability of Aged Garlic Extract (AGE) as an alternative therapeutic regimen for IBD management. Utilizing gas chromatography-mass spectrometry (GC-MS) and scanning electron microscopy (SEM), we characterized AGE, revealing distinctions from Fresh Garlic Extract (FGE), particularly the absence of allicin in AGE and accompanying structural alterations. In In-Vivo experiments employing an IBD rat model, AGE intervention exhibited remarkable antioxidant, antibacterial, and anti-inflammatory properties. Noteworthy outcomes included improved survival rates, mitigation of intestinal damage, restoration of gut microbial diversity, reinforcement of tight junctions, and reversal of mitochondrial dysfunction. Collectively, these effects contributed to the preservation of enterocyte integrity and the attenuation of inflammation. In conclusion, the unique chemical composition of AGE, coupled with its substantial influence on gut microbiota, antioxidant defenses, and inflammatory pathways, positions it as a promising adjunctive therapy for the management of IBD. These observations, synergistically considered with existing research, provide significant insights into the potential utility of AGE in addressing the intricate pathophysiology inherent to IBD. The potential strength of study and rationale of using AGE against IBD includes exploring alternative therapeutic regimens if conventional treatments are associated with side effects, identification of potential hotspots/pathways involved in disease progression and study can provide economically cheaper and naturally occurring alternative to patient community who are struggling to afford expensive medications. These promising findings underscore the necessity for additional investigations to ascertain the feasibility of clinical translation, thereby substantiating the potential therapeutic role of AGE in the management of IBD.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| |
Collapse
|
50
|
Tian X, Zhang Z, Zhao Y, Tang A, Zeng Z, Zheng W, Zhang H, Luo Y, Lu W, Fan L, Shen L. Isolation and Characterization of Antioxidant Peptides from Dairy Cow ( Bos taurus) Placenta and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:913. [PMID: 39199159 PMCID: PMC11352039 DOI: 10.3390/antiox13080913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Our preliminary study identified dairy cow placenta extract (CPE) as a mixture of peptides with potent antioxidant activity both in vivo and in vitro. However, the specific antioxidant peptides (AOPs) responsible for this activity were not yet identified. In the current study, we employed virtual screening and chromatography techniques to isolate two peptides, ANNGKQWAEVF (CP1) and QPGLPGPAG (CP2), from CPE. These peptides were found to be less stable under extreme conditions such as high temperature, strong acid, strong alkali, and simulated digestive conditions. Nevertheless, under normal physiological conditions, both CP1 and CP2 exhibited significant antioxidant properties, including free-radical scavenging, metal chelating, and the inhibition of lipid peroxidation. They also up-regulated the activities of intracellular antioxidant enzymes in response to hydrogen-peroxide-induced oxidative stress, resulting in reduced MDA levels, a decreased expression of the Keap1 gene and protein, and increased levels of the Nrf2 and HO-1 genes and proteins. Furthermore, CP1 demonstrated superior antioxidant activity compared to CP2. These findings suggest that CP1 and CP2 hold potential for mitigating oxidative stress in vitro and highlight the efficacy of virtual screening as a method for isolating AOPs within CPE.
Collapse
Affiliation(s)
- Xinyu Tian
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| | - Wei Lu
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (X.T.); (Z.Z.); (Y.Z.); (A.T.); (Z.Z.); (W.Z.); (H.Z.); (Y.L.)
| |
Collapse
|