1
|
Lv Y, Xu Y, Liu S, Zeng X, Yang B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem Biophys 2025; 83:1879-1895. [PMID: 39499389 PMCID: PMC12089181 DOI: 10.1007/s12013-024-01595-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/07/2024]
Abstract
Psoriasis is a long-term inflammatory skin condition marked by an overabundance of keratinocytes and the release of pro-inflammatory cytokines in the outer layer of skin. For the comprehensive management of intermediate to advanced psoriasis, innovative biological treatments have been developed. Products for the superficial therapy of mild to moderate psoriasis are still necessary, though. Trifolium pratense contains the isoflavone biochanin A (BCA), which exhibits antiviral, antioxidant, anti-carcinogenic, and anti-inflammatory properties, and helps protect the integrity and function of the endothelium. Although investigations have not shown that BCA is effective in treating psoriasis, it has been shown to slow down the breakdown of the skin barrier by regulating keratinocyte growth. We sought to clarify the basic mechanisms behind BCA's impact on psoriasis in vitro and in vivo using experimental research via regulating Nrf2/HO-1 signaling pathway. By subjecting human primary keratinocytes to psoriasis-related cytokines, psoriasis-like keratinocytes were produced. The CCK8 test was used in this investigation to assess cell viability. BCA reduced keratinocyte growth and inflammatory cascade stimulation produced by TNF-α and IL-6, according to in vitro investigations conducted on HaCaT cells. The in vivo findings showed that six days of BCA therapy significantly decreased the skin, hematological indicators, levels of NO, TBARS, histopathological, and pro-inflammatory factors of COX-2, iNOS, NF-κB pathway. It additionally influenced the protein content of pro-inflammatory cytokines such as IL-17, IL-23, IL-1β in the epidermis along with IL-6, TNF-α among the epidermis and serum. In addition, in contrast to the IMQ group, BCA improved the skin's level of Nrf2/HO-1 protein, anti-inflammatory cytokine IL-10, and antioxidant indicators like SOD, CAT, GST, GSH, GR, and Vit-C. Ultimately, our research shows that BCA was effective in treating psoriasis in pre-clinical animal models by activating the Nrf2/HO-1 pathway, leading to an increase in antioxidant and anti-inflammatory markers.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Dermatology and Venereology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| | - Yingsheng Xu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Songchun Liu
- Department of Clinical Nutrition, Ezhou Central Hospital, Ezhou, Hubei, 436000, China
| | - Xianjing Zeng
- General Practice Medicine, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China
| | - Bin Yang
- Department of Dermatology, Affiliated Hospital of Jinggangshan University, Ji 'an, Jiangxi, 343000, China, Jinggangshan University, Ji 'an, Jiangxi, 343009, China.
| |
Collapse
|
2
|
Rendine M, Venturi S, Marino M, Gardana C, Møller P, Martini D, Riso P, Del Bo C. Effects of Quercetin Metabolites on Glucose-Dependent Lipid Accumulation in 3T3-L1 Adipocytes. Mol Nutr Food Res 2025:e70070. [PMID: 40255141 DOI: 10.1002/mnfr.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
The aim of the study was to assess the effects of quercetin metabolites (QMs) on lipid accumulation in adipocytes under high-glucose and physiological-glucose concentrations and to elucidate the mechanisms involved. 3T3-L1 mature adipocytes were exposed to a physiological glucose concentration, as a model of caloric restriction (CR), or high glucose (control), with and without QMs (quercetin-3-glucuronide [Q3G] and isorhamnetin [ISOR]). Cells were treated with Q3G (0.3 and 0.6 µmol/L) and ISOR (0.2 and 0.4 µmol/L) for 48 h. Lipid accumulation (Oil Red O staining) and Δ glucose level (HPLC) were assessed. Under high glucose, Q3G and ISOR reduced lipid accumulation (-10.8% and -10.4%; p < 0.01) and Δ glucose level (-13.6% and -14.2%; p < 0.05). Under CR, QMs increased Δ glucose level (+21.6% for Q3G and +21% for ISOR; p < 0.05). ISOR increased pAMPK levels under high glucose (+1.4-fold; p < 0.05). Under CR, Q3G and ISOR increased pAMPK (+1.4- and +1.5-fold; p < 0.05), while ISOR upregulated SIRT1 and PGC-1α (+2.3- and +1.5-fold; p < 0.05). Findings support, for the first time, the potential contribution of QMs, especially ISOR, in the regulation of lipid metabolism in vitro, possibly via AMPK activation. Further studies, including in vivo, are encouraged to strengthen evidence of the mechanisms observed.
Collapse
Affiliation(s)
- Marco Rendine
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Samuele Venturi
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Mirko Marino
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Claudio Gardana
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Martini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Cristian Del Bo
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Liu J, Liu Y, Huang C, He C, Yang T, Ren R, Xin Z, Wang X. Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m 6A/CYP8B1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412865. [PMID: 39888270 PMCID: PMC11948036 DOI: 10.1002/advs.202412865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/19/2024] [Indexed: 02/01/2025]
Abstract
Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A. muciniphila). Enrichment of A. muciniphila leads to generate more indole-3-lactic acid (ILA) to upregulate the expression of 12α-hydroxylase (CYP8B1) via fat mass and obesity-associated protein (FTO)/ N6-methyladenosine (m6A)/YTHDF2 manner, thereby facilitating cholesterol converts to cholic acid (CA). CA in turn drastically suppresses lipid accumulation via activating the farnesoid X receptor (FXR) in adipose tissue. This work introduces a novel therapeutic target for addressing obesity and expands upon the current limited understanding of the mediator function of m6A modifications in microorganism-influenced bile acid (BA) metabolism.
Collapse
Affiliation(s)
- Jiaqi Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Youhua Liu
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chaoqun Huang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Chuan He
- Department of ChemistryDepartment of Biochemistry and Molecular BiologyInstitute for Biophysical DynamicsHoward Hughes Medical InstituteThe University of Chicago929 East 57th StreetChicagoIL60637USA
| | - Tongyudan Yang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Ruiti Ren
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Zimeng Xin
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| | - Xinxia Wang
- College of Animal SciencesZhejiang UniversityHangzhou310058China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University)Ministry of EducationHangzhou3100058China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China)Ministry of Agriculture and Rural AffairsHangzhou310058China
- Zhejiang Key Laboratory of Nutrition and Breeding for High‐quality Animal ProductsHangzhou310058China
| |
Collapse
|
4
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Principe G, Lezcano V, Tiburzi S, Miravalles AB, García BN, Gumilar F, González-Pardo V. In vitro and in vivo evidence of the antineoplastic activity of quercetin against endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Biochimie 2025; 229:30-41. [PMID: 39369938 DOI: 10.1016/j.biochi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 μM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Virginia Lezcano
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Silvina Tiburzi
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Betina N García
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina; Bioquímica Austral, Laboratorio de Análisis Clínicos y Gestión, 25 de Mayo 1007, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Domingos AE, Breves CMDC, Boa LF, de Souza IIA, Maciel L, Seara FAC, Fortunato RS, Nascimento JHM. Quercetin Reduces the Susceptibility to Cardiac Reperfusion Arrhythmias in Ovariectomized Rats. Mol Nutr Food Res 2025; 69:e202400284. [PMID: 39865950 DOI: 10.1002/mnfr.202400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Decrease in female sex hormones during menopause increases the risk of cardiovascular disease, mainly ischemic heart disease (IHD). Quercetin, a flavonoid, has beneficial properties in CVDs due to its antioxidant, anti-inflammatory, and anti-apoptotic effects. The aim of this study was to investigate the effects of quercetin on susceptibility to cardiac reperfusion arrhythmias and mitochondrial function in ovariectomized rats (OVX). Three-month-old Wistar female rats were randomly assigned to the following experimental groups: SHAM-operated, vehicle-treated (DMSO 10% + PBS, 1 mL kg-1); OVX (vehicle-treated); and OVX+Q (25 mg·kg-1). The three experimental groups were carried out for 4 weeks (five times a week) by oral gavage. Quercetin treatment effectively decreased myocardial infarct size and susceptibility to reperfusion arrhythmias. Quercetin treatment was also effective in preventing mitochondrial swelling, while increased ATP production compared to the OVX group. In conclusion, our results indicate that quercetin could have a therapeutic effect in preventing some of the pathophysiological changes caused by low estrogen levels in the cardiovascular system.
Collapse
Affiliation(s)
- Ainá E Domingos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Professor Aloísio Teixeira, Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cíntia M da Costa Breves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F Boa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Itanna I A de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
| | - Fernando A C Seara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Selvaraju V, Babu SR, Judd RL, Geetha T. Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes. Biomolecules 2025; 15:129. [PMID: 39858523 PMCID: PMC11763665 DOI: 10.3390/biom15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity.
Collapse
Affiliation(s)
| | - Shivani R. Babu
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Yi R, Liu Y, Zhang X, Sun X, Wang N, Zhang C, Deng H, Yao X, Wang S, Yang G. Unraveling Quercetin's Potential: A Comprehensive Review of Its Properties and Mechanisms of Action, in Diabetes and Obesity Complications. Phytother Res 2024; 38:5641-5656. [PMID: 39307545 DOI: 10.1002/ptr.8332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
The prevalence of diabetes is escalating alarmingly, placing a significant economic burden on the global healthcare system. The use of chemical substances extracted from plants has been demonstrated to be an effective method for the treatment and control of insulin resistance and Type 2 diabetes mellitus (T2DM). New research indicates that natural phytochemicals present in fruits and vegetables are expected to become drugs for the treatment of diabetes and the prevention of related complications. Quercetin, a widely distributed flavonoid, is well-known for its antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. This article provides a comprehensive account of the mechanism of action of quercetin on diabetes and obesity complications in vivo and in vitro. It elucidates the impact of quercetin on various cells. These include hepatocytes, renal cells, skeletal muscle cells, and adipocytes. Furthermore, this article discusses the mechanism of quercetin on organ damage in diabetic mice induced by STZ, alloxan, diet, and spontaneous Type 2 diabetic mice caused by genetic defects. Additionally, it addresses the pharmacokinetics of quercetin and its potential for synergistic effects with existing diabetic drugs.
Collapse
Affiliation(s)
- Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
10
|
Lee MS, Doo M, Kim Y. Effects of quercetin nanoemulsion on SIRT1 activation and mitochondrial biogenesis in the skeletal muscle of high-fat diet-fed mice. Nutr Res Pract 2024; 18:806-817. [PMID: 39651323 PMCID: PMC11621433 DOI: 10.4162/nrp.2024.18.6.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Quercetin (QT) is a plant flavonoid that offers health benefits owing to its various bioactive properties; however, as a hydrophobic substance, it has considerably low bioavailability. We previously demonstrated that QT nanoemulsion (QT+NE) formulated via oil-in-water nanoemulsification exhibited more effective cholesterol-lowering activity than ordinary QT in high cholesterol-fed rats. In this study, we investigated the effects of QT+NE on the regulation of skeletal muscle mitochondrial function in high-fat diet (HD)-fed mice. MATERIALS/METHODS C57BL/6J mice were fed a normal chow diet (ND), HD (45% of calories from fat), or HD with 0.05% QT+NE or QT for 11 weeks. We analyzed sirtuin 1 (SIRT1) activation, mitochondrial changes, and the expression of genes involved in mitochondrial biogenesis in skeletal muscle. RESULTS Body weight and body weight gain decreased in the QT+NE group compared with that in the HD group (P < 0.05), but not in the QT group. Epididymal adipose tissue weight decreased in both the QT and QT+NE groups (P < 0.05). Plasma lipid levels also improved in both the QT and QT+NE groups (P < 0.05). QT+NE intake upregulated the messenger RNA levels of SIRT1, peroxisome proliferator-activated receptor-γ coactivator 1-α, nuclear respiratory factor 1, and mitochondrial transcription factor A in skeletal muscle compared with HD intake alone (P < 0.05), whereas QT did not. In particular, SIRT1 activity was significantly increased in the QT+NE group compared with that in the QT group (P < 0.05). HD intake reduced mitochondrial DNA content compared with ND intake; nevertheless, QT+NE intake retained it (P < 0.05). CONCLUSION Collectively, our findings suggest that QT+NE may be beneficial in enhancing mitochondrial biogenesis in skeletal muscle of HD-fed mice, which may be associated with SIRT1 activation.
Collapse
Affiliation(s)
- Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Miae Doo
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: https:/doi.org/10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
12
|
Wang J, Zheng S, Li Z, Tang Y, Huang Y, Wang J, Li R, Peng J. Pentadecanoic acid (C15:0, PA) induces mild maternal glucose intolerance and promotes the growth of the offspring partly through up-regulating liver PPARα and MAPK signaling pathways. Food Funct 2024; 15:11400-11414. [PMID: 39434548 DOI: 10.1039/d4fo03970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common metabolic disturbances during pregnancy, which poses a serious threat to both maternal and offspring health. Pentadecanoic acid (C15:0, PA) is one of the most common odd-chain saturated fatty acids (OCS-FAs). However, its safety and nutritional value are yet to be verified. Herein, we provide a systematic assessment of the effects of PA on maternal and progeny health and insulin sensitivity for the first time. Our results showed that consumption of 1% PA during pregnancy could increase the contents of PA and heptadecanoic acid (C17:0) in maternal plasma, fetal tissue and offspring plasma, but it had no effect on embryonic development. During pregnancy, PA treatment caused mild insulin resistance, while it had little effect on the maternal body composition. During lactation, PA treatment caused mild insulin resistance and oxidative stress. Maternal body fat deposition was also reduced, but the growth rate of the offspring was faster. It is worth noting that PA treatment decreased plasma and liver TG content and increased the antioxidant capacity of the offspring. The effect of PA on the transcription and expression genes in the liver of pregnant mice was investigated using RNA-seq. PPARα and MAPK signaling pathways, both closely related to lipolysis, inflammation, oxidative stress, and insulin resistance were significantly increased. The expression of c-JUN, ERK, JNK and P65 proteins was also significantly up-regulated. In conclusion, our results suggest that 1% PA can induce a mild decrease in the maternal glucose tolerance and lipolysis mainly by activated MAPK and PPARα signaling. Moreover, low concentrations of PA may be an effective nutrient to alleviate the oxidative stress and reduce blood lipid levels of offspring.
Collapse
Affiliation(s)
- Jun Wang
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China.
| | - Shiqi Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Ziying Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yimei Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junwen Wang
- Division of AOS & CDC, Faculty of Dentistry, and State Key Lab of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077 China
| | - Rui Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, National Engineering Laboratory for Poultry Breeding Pollution Control and Resource Technology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Jie Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| |
Collapse
|
13
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
14
|
Kábelová A, Malínská H, Marková I, Hüttl M, Liška F, Chylíková B, Šeda O. Quercetin supplementation in metabolic syndrome: nutrigenetic interactions with the Zbtb16 gene variant in rodent models. GENES & NUTRITION 2024; 19:22. [PMID: 39455928 PMCID: PMC11515271 DOI: 10.1186/s12263-024-00757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Quercetin is a promising phytochemical in treating abnormalities associated with metabolic syndrome (MetS). This study aimed to explore the morphometric, metabolic, transcriptomic, and nutrigenetic responses to quercetin supplementation using two genetically distinct MetS models that only differ in the variant of the MetS-related Zbtb16 gene (Zinc Finger And BTB Domain Containing 16). RESULTS Quercetin supplementation led to a significant reduction in the relative weight of retroperitoneal adipose tissue in both investigated strains. A decrease in visceral (epididymal) fat mass, accompanied by an increase in brown fat mass after quercetin treatment, was observed exclusively in the SHR strain. While the levels of serum triglycerides decreased within both strains, the free fatty acids levels decreased in SHR-Zbtb16-Q rats only. The total serum cholesterol levels were not affected by quercetin in either of the two tested strains. While there were no significant changes in brown adipose tissue transcriptome, quercetin supplementation led to a pronounced gene expression shift in white retroperitoneal adipose tissue, particularly in SHR-Zbtb16-Q. CONCLUSION Quercetin administration ameliorates certain MetS-related features; however, the efficacy of the treatment exhibits subtle variations depending on the specific variant of the Zbtb16 gene.
Collapse
Affiliation(s)
- Adéla Kábelová
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Hana Malínská
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Liška
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, the First Faculty of Medicine, Charles University, General University Hospital in Prague, Albertov 4, Prague 2, 128 00, Czech Republic.
| |
Collapse
|
15
|
Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, Fleischmann-delaParra P, Hernández-Pineda J, Flores-Soto E, García-delaTorre P, Estrella-Parra EA, Gomez-Verjan JC. Exploring the Geroprotective Potential of Nutraceuticals. Nutrients 2024; 16:2835. [PMID: 39275153 PMCID: PMC11396943 DOI: 10.3390/nu16172835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damages over time, meaning that "the more damage we accumulate, the higher the possibility to develop age-related diseases". Therefore, to reduce the incidence of such diseases and improve human health, it becomes important to find ways to combat such damage. In this sense, geroprotectors have been suggested as molecules that could slow down or prevent age-related diseases. On the other hand, nutraceuticals are another set of compounds that align with the need to prevent diseases and promote health since they are biologically active molecules (occurring naturally in food) that, apart from having a nutritional role, have preventive properties, such as antioxidant, anti-inflammatory and antitumoral, just to mention a few. Therefore, in the present review using the specialized databases Scopus and PubMed we collected information from articles published from 2010 to 2023 in order to describe the role of nutraceuticals during the aging process and, given their role in targeting the hallmarks of aging, we suggest that they are potential geroprotectors that could be consumed as part of our regular diet or administered additionally as nutritional supplements.
Collapse
Affiliation(s)
| | | | - Selma Karime Castillo-Vazquez
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Mexico City 10200, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Jessica Hernández-Pineda
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, SSA, Mexico City 11000, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad No. 3000, Alcaldía de Coyoacán, Mexico City 04510, Mexico
| | - Paola García-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | | |
Collapse
|
16
|
Liu Y, Liu Z, Wu N. Association between intake of flavanones and the overweight/obesity and central obesity in children and adolescents: a cross-sectional study from the NHANES database. Front Nutr 2024; 11:1430140. [PMID: 39086546 PMCID: PMC11288817 DOI: 10.3389/fnut.2024.1430140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Aim The prevalence of obesity (Ob), overweight (Ow) and central obesity (CO) in children and adolescents has increased dramatically over the past decades globally. Flavanones have been recently studied as adjuvants for the treatment of obesity. This study was aimed at evaluating the association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents. Methods This cross-sectional study extracted the data of children and adolescents with Ow/Ob and CO from the National Health and Nutrition Examination Survey (NHANES) database for 2007-2010 and 2017-2018. Ow and Ob were defined as a body mass index (BMI) ≥ 85th percentile. CO was defined as a waist circumference (WC) ≥ 90th percentile. The association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents was determined by weighted univariate and multivariate Logistic regression models adjusted for potential covariates, and odds ratios (ORs) with 95% confidence intervals (CIs) was calculated. To further explore association between intake of flavanones and its subclasses and the Ow/Ob and CO in children and adolescents, subgroup analyses stratified by age, and gender. Results Of the total 5,970 children and adolescents, 2,463 (41.2%) developed Ow/Ob and 1,294 (21.7%) patients developed CO. High intake of flavanones, eriodictyol, hesperetin, and naringenin were associated with lower odds of Ow/Ob in children and adolescents. (OR: 0.75, 95%CI: 0.62-0.92, OR: 0.69, 95%CI: 0.55-0.87, OR: 0.69, 95%CI: 0.55-0.87, and OR: 0.76, 95%CI: 0.63-0.92, respectively). In addition, high intake of flavanones, eriodictyol, and naringenin were associated with lower odds of CO in children and adolescents (OR: 0.71, 95%CI: 0.57-0.88, OR: 0.67, 95%CI: 0.51-0.86, and OR: 0.69, 95%CI: 0.55-0.86, respectively). Subgroup analyses showed that among all the different subgroups, high intake of flavanones was associated with lower odds of Ow/Ob and CO in children and adolescents. Conclusion A diet loaded with high flavanones were associated with lower odds of Ow/Ob and CO in children and adolescents, and children and adolescents should be encouraged to increase their intake of flavanones.
Collapse
Affiliation(s)
- Yangyang Liu
- Developmental Behavior Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuoqiong Liu
- Developmental Behavior Pediatrics, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wu
- Child Health Section, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Kim JG, Sharma AR, Lee YH, Chatterjee S, Choi YJ, Rajvansh R, Chakraborty C, Lee SS. Therapeutic Potential of Quercetin as an Antioxidant for Bone-Muscle-Tendon Regeneration and Aging. Aging Dis 2024; 16:1414-1437. [PMID: 39012676 PMCID: PMC12096925 DOI: 10.14336/ad.2024.0282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Quercetin (QC), a naturally occurring bioflavonoid found in various fruits and vegetables, possesses many potential health benefits, primarily attributed to its robust antioxidant properties. The generation of oxidative stress in bone cells is a key modulator of their physiological behavior. Moreover, oxidative stress status influences the pathophysiology of mineralized tissues. Increasing scientific evidence demonstrates that manipulating the redox balance in bone cells might be an effective technique for developing bone disease therapies. The QC antioxidant abilities in skeletal muscle significantly enhance muscle regeneration and reduce muscle atrophy. In addition, QC has been shown to have protective effects against oxidative stress, inflammation, apoptosis, and matrix degradation in tendons, helping to maintain the structural integrity and functionality of tendons. Thus, the antioxidant properties of QC might be crucial for addressing age-related musculoskeletal disorders like osteoporosis, sarcopenia, and tendon-related inflammatory conditions. Understanding how QC influences redox signaling pathways involved in musculoskeletal disorders, including their effect on bone, muscle, and tendon differentiation, might provide insights into the diverse advantages of QC in promoting tissue regeneration and preventing cellular damage. Therefore, this study reviewed the intricate relationship among oxidative stress, inflammation, and tissue repair, affected by the antioxidative abilities of QC, in age-related musculoskeletal tissues to improve the overall health of bones, muscles, and tendons of the skeletal system. Also, reviewing the ongoing clinical trials of QC for musculoskeletal systems is encouraging. Given the positive effect of QC on musculoskeletal health, further scientific investigations and controlled human intervention studies are necessary to explore the therapeutic potential to its optimum strength.
Collapse
Affiliation(s)
- Jae Gyu Kim
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yeon-Hee Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Yean Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul 01795, Korea.
| | - Roshani Rajvansh
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Korea.
| |
Collapse
|
18
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
19
|
Wang Y, Li Z, He J, Zhao Y. Quercetin Regulates Lipid Metabolism and Fat Accumulation by Regulating Inflammatory Responses and Glycometabolism Pathways: A Review. Nutrients 2024; 16:1102. [PMID: 38674793 PMCID: PMC11053503 DOI: 10.3390/nu16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fat synthesis and lipolysis are natural processes in growth and have a close association with health. Fat provides energy, maintains physiological function, and so on, and thus plays a significant role in the body. However, excessive/abnormal fat accumulation leads to obesity and lipid metabolism disorder, which can have a detrimental impact on growth and even harm one's health. Aside from genetic effects, there are a range of factors related to obesity, such as excessive nutrient intake, inflammation, glycometabolism disease, and so on. These factors could serve as potential targets for anti-obesity therapy. Quercetin is a flavonol that has received a lot of attention recently because of its role in anti-obesity. It was thought to have the ability to regulate lipid metabolism and have a positive effect on anti-obesity, but the processes are still unknown. Recent studies have shown the role of quercetin in lipid metabolism might be related to its effects on inflammatory responses and glycometabolism. The references were chosen for this review with no date restrictions applied based on the topics they addressed, and the databases PubMed and Web of Sicence was used to conduct the references research, using the following search terms: "quercetin", "obesity", "inflammation", "glycometabolism", "insulin sensitivity", etc. This review summarizes the potential mechanisms of quercetin in alleviating lipid metabolism through anti-inflammatory and hypoglycemic signaling pathways, and describes the possible signaling pathways in the interaction of inflammation and glycometabolism, with the goal of providing references for future research and application of quercetin in the regulation of lipid metabolism.
Collapse
Affiliation(s)
| | | | - Jianhua He
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Z.L.)
| | - Yurong Zhao
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Z.L.)
| |
Collapse
|
20
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
21
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Kudo M, Gao M, Hayashi M, Kobayashi Y, Yang J, Liu T. Ilex paraguariensis A.St.-Hil. improves lipid metabolism in high-fat diet-fed obese rats and suppresses intracellular lipid accumulation in 3T3-L1 adipocytes via the AMPK-dependent and insulin signaling pathways. Food Nutr Res 2024; 68:10307. [PMID: 38327997 PMCID: PMC10845893 DOI: 10.29219/fnr.v68.10307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 02/09/2024] Open
Abstract
Background Obesity is closely associated with several chronic diseases, and adipose tissue plays a major role in modulating energy metabolism. Objective This study aimed to determine whether Mate, derived from I. paraguariensis A.St.-Hil., ameliorates lipid metabolism in 3T3-L1 adipocytes and high-fat diet (HFD)-fed obese Sprague-Dawley (SD) rats. Design 3T3-L1 adipocytes were cultured for 7 days, following which intracellular lipid accumulation and expression levels of lipid metabolism-related factors were examined. Dorsomorphin was used to investigate the potential pathways involved, particularly the adenosine monophosphate-activated protein kinase (AMPK)- dependent pathway. Mate was administered to rat HFD-fed obese SD models for 8 consecutive weeks. The expression of lipid metabolism-related factors in the organs and tissues collected from dissected SD rats was evaluated. Results Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes, increased the protein and gene expression levels of AMPK, hormone sensitive lipase (HSL), calmodulin kinase kinase (CaMKK), liver kinase B1 (LKB1), protein kinase A (PKA), CCAAT/enhancer binding protein β (C/EBPβ), insulin receptor b (IRβ), and insulin receptor substrate 1 (IRS1) (Tyr465), and decreased those of sterol regulatory element binding protein 1C (Srebp1c), fatty acid synthase (FAS), peroxisome-activated receptor γ (PPARγ), and IRS1 (Ser1101). Furthermore, an AMPK inhibitor abolished the effects exerted by Mate on intracellular lipid accumulation and HSL and FAS expression levels. Mate treatment suppressed body weight gain and improved serum cholesterol levels in HFD-fed obese SD rats. Treatment with Mate increased the protein and gene expression levels of AMPK, PKA, Erk1/Erk2 (p44/p42), and uncoupling protein 1 and reduced those of mammalian target of rapamycin, S6 kinase, Srebp1c, ap2, FAS, Il6, Adiponectin, Leptin, and Fabp4 in rat HFD-fed obese SD models. Discussion and conclusions Mate suppressed intracellular lipid accumulation in 3T3-L1 adipocytes and improved lipid metabolism in the epididymal adipose tissue of HFD-fed obese SD rats via the activation of AMPK-dependent and insulin signaling pathways.
Collapse
Affiliation(s)
- Maya Kudo
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Ming Gao
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | - Misa Hayashi
- School of Pharmacy and Pharmaceutical Science, Mukogawa Women’s University, Nishinomiya, Hyogo, Japan
| | | | - Jinwei Yang
- Tokiwa Phytochemical Co., Ltd., Sakura, Chiba, Japan
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Wang T, Yang J, Huang Z, Wang F, Liu R, Liu Y, Li X. Integrated 16s RNA sequencing and network pharmacology to explore the effects of polyphenol-rich raspberry leaf extract on weight control. Front Nutr 2024; 10:1306037. [PMID: 38260083 PMCID: PMC10800909 DOI: 10.3389/fnut.2023.1306037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Obesity is recognized as a chronic low-grade inflammation associated with intestinal flora imbalance, leading to dyslipidemia and inflammation. Modern research has found that polyphenols have anti-obesity effects. However, the mechanism of action of raspberry leaf extract (RLE) with high polyphenols in regulating obesity is still unknown. This study investigated the improvement effect of supplementing RLE on high-fat diet (HFD) induced obesity in mice. Methods RLE was used to intervene in HFD induced C57BL/6J male mice during prevention stage (1-16 weeks) and treatment stage (17-20 weeks). Their weight changes and obesity-related biochemical indicators were measured. The changes in intestinal flora were analyzed using 16S rRNA sequencing, and finally the targets and pathways of the 7 typical polyphenols (quercetin-3-O-glucuronide, ellagic acid, kaempferol-3-O-rutinoside, chlorogenic acid, brevifolin carboxylic acid, quercetin-3-O-rutinoside, and quercetin) of RLE in the regulation of obesity were predicted by network pharmacology approach. Results and discussion The results showed that RLE effectively prevented and treated weight gain in obese mice induced by HFD, alleviated adipocyte hypertrophy, reduced Interleukin-6 and Tumor Necrosis Factor Alpha levels, and improved intestinal flora, especially Muriaculaceae, Alistipes and Alloprevotella, and decreased the Firmicutes/Bacteroidota ratio. Network pharmacology analysis selected 60 common targets for 7 RLE polyphenols and obesity. Combined with protein-protein interaction network, enrichment analysis and experimental results, TNF, IL-6, AKT1, and PPAR were predicted as potential key targets for RLE polyphenols. Conclusion The potential mechanism by which polyphenol-rich RLE regulates obesity may be attributed to the specific polyphenols of RLE and their synergistic effects, therefore RLE has a great anti-obesity potential and may be used as a means to alleviate obesity and related diseases.
Collapse
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Jing Yang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Ziang Huang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou, Shandong, China
| | - Fei Wang
- The Hospital of North University of China, Taiyuan, Shanxi, China
| | - Ruzi Liu
- Dezhou Yongshengzhai Braised Chicken Group Co., Ltd., Dezhou, Shangdong, China
| | - Yongping Liu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
24
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
25
|
Craciunescu O, Seciu-Grama AM, Mihai E, Utoiu E, Negreanu-Pirjol T, Lupu CE, Artem V, Ranca A, Negreanu-Pirjol BS. The Chemical Profile, Antioxidant, and Anti-Lipid Droplet Activity of Fluid Extracts from Romanian Cultivars of Haskap Berries, Bitter Cherries, and Red Grape Pomace for the Management of Liver Steatosis. Int J Mol Sci 2023; 24:16849. [PMID: 38069172 PMCID: PMC10706173 DOI: 10.3390/ijms242316849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to investigate, for the first time, the chemical composition and antioxidant activity of fluid extracts obtained from three Romanian cultivars of haskap berries (Lonicera caerulea L.) var. Loni, bitter cherries (Prunus avium var. sylvestris Ser.) var. Silva, and pomace from red grapes (Vitis vinifera L.) var. Mamaia, and their capacity to modulate in vitro steatosis, in view of developing novel anti-obesity products. Total phenolic, flavonoid, anthocyanin, and ascorbic acid content of fluid extracts was spectrophotometrically assessed and their free radical scavenging capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assays. The Pearson coefficients showed a moderate correlation between the antioxidant activity of fluid extracts and their phenolic content, but a strong correlation between anthocyanin and ascorbic acid content. HPLC analysis identified and quantified the main phenolic compounds of chlorogenic and syringic acid, catechin, and glycosylated kaempferol, apigenin, and quercetin, in variable proportions. An in vitro experimental model of steatosis was developed in HepG2 hepatocytes treated with a mixture of free fatty acids. Cell culture analyses showed that cytocompatible concentrations of fluid extracts could significantly reduce the lipid accumulation and inhibit the reactive oxygen species, malondialdehyde, and nitric oxide secretion in stressed hepatocytes. In conclusion, these results put an emphasis on the chemical compounds' high antioxidant and liver protection capacity of unstudied fluid extracts obtained from Romanian cultivars of bitter cherries var. Silva and pomace of red grapes var. Mamaia, similar to the fluid extract of haskap berries var. Loni, in particular, the positive modulation of fat deposition next to oxidative stress and the lipid peroxidation process triggered by fatty acids in HepG2 hepatocytes. Consequently, this study indicated that these fluid extracts could be further exploited as hepatoprotective agents in liver steatosis, which provides a basis for the further development of novel extract mixtures with synergistic activity as anti-obesity products.
Collapse
Affiliation(s)
- Oana Craciunescu
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Ana-Maria Seciu-Grama
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Elena Mihai
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Elena Utoiu
- National Institute of R&D for Biological Sciences, 060031 Bucharest, Romania; (A.-M.S.-G.); (E.M.); (E.U.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, University Ovidius of Constanta, 900470 Constanta, Romania; (C.E.L.); (B.-S.N.-P.)
- Academy of Romanian Scientists, Ilfov Street, No. 3, 050044 Bucharest, Romania
| | - Carmen Elena Lupu
- Faculty of Pharmacy, University Ovidius of Constanta, 900470 Constanta, Romania; (C.E.L.); (B.-S.N.-P.)
| | - Victoria Artem
- Research-Development Station for Viticulture and Winemaking of Murfatlar, 905100 Murfatlar, Romania; (V.A.); (A.R.)
| | - Aurora Ranca
- Research-Development Station for Viticulture and Winemaking of Murfatlar, 905100 Murfatlar, Romania; (V.A.); (A.R.)
| | | |
Collapse
|
26
|
Bu N, Jamil A, Hussain L, Alshammari A, Albekairi TH, Alharbi M, Jamshed A, Bazmi RR, Younas A. Phytochemical-Based Study of Ethanolic Extract of Saraca asoca in Letrozole-Induced Polycystic Ovarian Syndrome in Female Adult Rats. ACS OMEGA 2023; 8:42586-42597. [PMID: 38024692 PMCID: PMC10652831 DOI: 10.1021/acsomega.3c05274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex metabolic and endocrine disorder which affects women of reproductive age. It is a condition in which ovaries produce an excessive amount of androgen (the male sex hormone). Saraca asoca (Roxb.) Willd. is a plant of the Fabaceae family. This plant has been traditionally used as a uterine tonic in leucorrhea and dysmenorrhea due to its various pharmacological activities. In this study, the ethanolic extract of S. asoca (EESA) was evaluated for its potential to be used for the management of PCOS. HPLC analysis revealed the presence of various phytoconstituents: kaempferol, rutin, (-)-epicatechin, salicylic acid, and gallic acid. For PCOS induction, 30 adult female rats were randomly divided into two groups: the control group (n = 5) and the PCOS group (n = 25). Letrozole (1 mg/kg/day) was administered per orally (p.o.) for a period of 7 weeks for the induction of disease. Weekly body weight measurements and daily vaginal cytology examinations were performed for disease confirmation. After disease induction, the PCOS group was further divided into five groups (n = 5), that is, disease control, metformin, and EESA (200, 400, and 600 mg/kg) groups, respectively, and given treatment doses for next 5 weeks. After the treatment period, all animals were weighed and euthanized humanly. Blood samples were collected for hormonal assays, lipid profiles, and liver function tests. For histological assessment of ovarian cysts, ovaries were dissected. Livers were preserved to evaluate EESA's antioxidant properties. Histopathology analysis revealed that EESA reduced body weight and the number of cystic follicles. Furthermore, it also lowered the elevated levels of serum testosterone, luteinizing hormone, insulin, and malonaldehyde in PCOS rats while increasing the levels of follicle-stimulating hormone, estradiol, progesterone, prolactin, and other antioxidant enzymes such as superoxide dismutase, glutathione, and catalase. It can be concluded that EESA exhibited beneficial effects in normalizing the perturbed hormonal profile and improved the ovary status by decreasing the cystic follicle and improving the ovulation status in a dose-dependent manner.
Collapse
Affiliation(s)
- Na Bu
- Department
of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 31006, P. R. China
| | - Alina Jamil
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Liaqat Hussain
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Abdulrahman Alshammari
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ayesha Jamshed
- Department
of Pharmacology, Faculty of Pharmacy, Islamia
University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rizwan Rashid Bazmi
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Anam Younas
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| |
Collapse
|
27
|
Espírito-Santo DA, Cordeiro GS, Santos LS, Silva RT, Pereira MU, Matos RJB, Boaventura GT, Barreto-Medeiros JM. Cardioprotective effect of the quercetin on cardiovascular remodeling and atherosclerosis in rodents fed a high-fat diet: A systematic review. Chem Biol Interact 2023; 384:110700. [PMID: 37690744 DOI: 10.1016/j.cbi.2023.110700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death globally, estimated at 17.9 million premature deaths. Several risk factors contribute to the development of CVD, including unhealthy diet rich in saturated fat. Quercetin (Q) is a important natural flavonoid with cardioprotective effect. However, it is crucial to understand and clarify which dosages and intervention times quercetin promotes better cardioprotective effects when exposed to a High-Fat Diet (HFD). We aim was to carry out a review to identify and compare experimental studies that investigated the quercetin effect on cardiac parameters in rodents fed a HFD. This literature search was performed through the specialized databases PubMed, Embase, Web of Science and Lilacs in May 2022. The following information was collected and assessed: Species of animals, dietary fat content, intervention protocol (quercetin), and main results of alterations associated with cardiac change. A total of 116 articles were selected from the database and 30 articles were included in this study. The administration form of quercetin was used in the diet supplemented in 73.4% (n = 22) of the studies. The dosage ranged between 10 and 100 mg/kg, 0.01%-0.36%, and 4-8 g/kg diet. The treatment time ranged between 14 and 63 days in 48.4% studies and most of the selected studies observed changes in the: Serum concentrations of lipids (60%, n = 18) mainly decrease in TC and TG, left ventricle (LV) (16.13%, n = 5) includes attenuation of the cardiac hypertrophy; inhibition of atherosclerotic progression (32%, n = 10) with decrease in lesions and plaque formation; improvement in the expression of gene and protein associated with cardiac functionality and oxidative stress (51.6%; n = 16). Quercetin supplementation at different concentrations/doses promotes important cardioprotective effects in experimental models exposed to a HFD. The supplemented diet was shown to be the better administration option. The methodological variation presented in the articles selected in this review proves that the most appropriate intervention protocol, as well as the most effective route of administration, promotes these effects.
Collapse
Affiliation(s)
- Djane A Espírito-Santo
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil.
| | - Gabriele S Cordeiro
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Lucimeire S Santos
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rafael T Silva
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Márcia U Pereira
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | - Rhowena Jane B Matos
- Health Sciences Center, Federal University of the Recôncavo of Bahia, Santo Antonio de Jesus, Bahia, Brazil
| | - Gilson T Boaventura
- Department of Nutrition, Graduate Program of Food Nutrition and Health, Federal University of Bahia, Brazil
| | | |
Collapse
|
28
|
Stępień AE, Trojniak J, Tabarkiewicz J. Health-Promoting Properties: Anti-Inflammatory and Anticancer Properties of Sambucus nigra L. Flowers and Fruits. Molecules 2023; 28:6235. [PMID: 37687064 PMCID: PMC10489118 DOI: 10.3390/molecules28176235] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Sambucus nigra L. has been used for centuries in traditional medicine thanks to its valuable healing properties. The healing properties result from its high content of biologically active compounds, mainly antioxidants, which contribute to its anti-inflammatory and anticancer properties. In our review, we have presented scientific studies evaluating the anti-inflammatory and anticancer effects of extracts and their components from S. nigra L. flowers and fruits. The results of the research show that the effect of antioxidant phytochemicals contained in their composition reduces the level of free radicals and pro-inflammatory cytokines, prevents mutations that increase the risk of cancer development, and inhibits cell proliferation, induction of apoptosis, and changes in intracellular signaling, consequently inhibiting the growth of malignant tumors and the formation of metastases. Flowers and fruits of S. nigra L. are a valuable source of nutraceutical and pharmacological substances that can support prevention and anti-inflammatory and oncological therapy without negative side effects for the patient.
Collapse
Affiliation(s)
- Agnieszka Ewa Stępień
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland
| | - Julia Trojniak
- Student’s Scientific Club Immunology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland;
| | - Jacek Tabarkiewicz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszów, Poland;
| |
Collapse
|
29
|
Shi P, Chen J, Ge W, Liu Z, Han N, Yin J. Antichilblain Components in Eggplant Based on Network Pharmacology and Biological Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37467304 DOI: 10.1021/acs.jafc.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Eggplant, the fruit of Solanum melongena L. (Solanaceae), is applied externally to relieve the symptoms of chilblains in the folk in East Asia. However, the mechanisms and biological ingredients are not clear. A network pharmacology approach was used to shed light on the mechanisms of eggplant against chilblains, which illustrated that anti-inflammation and antioxidation are mainly involved in the curative effects. Bioassay-guided assays led to the isolation of 44 ingredients (1-44), including two new natural compounds (1-2) and 42 known compounds. Thirteen compounds (3-15) were first reported from the Solanum genus. The anti-inflammatory and antioxidative effects of all isolates were evaluated, and the results showed that 11 compounds have anti-inflammatory activity and 27 have antioxidant activity. Fatty acids, flavonoids, alkaloids, phenolic acids, saponins, and lignans from eggplant have certain anti-inflammatory and antioxidant effects. These results provide a scientific basis for eggplant to treat chilblains.
Collapse
Affiliation(s)
- Peixin Shi
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Chen
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiying Ge
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihui Liu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Han
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
30
|
Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel) 2023; 16:1020. [PMID: 37513932 PMCID: PMC10384403 DOI: 10.3390/ph16071020] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Quercetin, a flavonoid found in fruits and vegetables, has been a part of human diets for centuries. Its numerous health benefits, including antioxidant, antimicrobial, anti-inflammatory, antiviral, and anticancer properties, have been extensively studied. Its strong antioxidant properties enable it to scavenge free radicals, reduce oxidative stress, and protect against cellular damage. Quercetin's anti-inflammatory properties involve inhibiting the production of inflammatory cytokines and enzymes, making it a potential therapeutic agent for various inflammatory conditions. It also exhibits anticancer effects by inhibiting cancer cell proliferation and inducing apoptosis. Finally, quercetin has cardiovascular benefits such as lowering blood pressure, reducing cholesterol levels, and improving endothelial function, making it a promising candidate for preventing and treating cardiovascular diseases. This review provides an overview of the chemical structure, biological activities, and bioavailability of quercetin, as well as the different delivery systems available for quercetin. Incorporating quercetin-rich foods into the diet or taking quercetin supplements may be beneficial for maintaining good health and preventing chronic diseases. As research progresses, the future perspectives of quercetin appear promising, with potential applications in nutraceuticals, pharmaceuticals, and functional foods to promote overall well-being and disease prevention. However, further studies are needed to elucidate its mechanisms of action, optimize its bioavailability, and assess its long-term safety for widespread utilization.
Collapse
Affiliation(s)
- Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, UAB-Campus, 08193 Bellaterra, Spain
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
31
|
Che H, Wang Y, Lao J, Deng Y, Xu C, Yin H, Tang Z, Huang Y, Xu H. Role of purinergic signalling in obesity-associated end-organ damage: focus on the effects of natural plant extracts. Front Endocrinol (Lausanne) 2023; 14:1181948. [PMID: 37476493 PMCID: PMC10354445 DOI: 10.3389/fendo.2023.1181948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Obesity has become one of the major public health problems in both the developing and developed countries. Recent studies have suggested that the purinergic signalling is involved in obesity-associated end-organ damage through purine P1 and P2 receptors. In the search for new components for the treatments of obesity, we and other researchers have found much evidence that natural plant extracts may be promising novel therapeutic approaches by modulating purinergic signalling. In this review, we summarize a critical role of purinergic signalling in modulating obesity-associated end-organ damage, such as overhigh appetite, myocardial ischemia, inflammation, atherosclerosis, non-alcoholic fatty liver disease (NAFLD), hepatic steatosis and renal inflammation. Moreover, we focus on the potential roles of several natural plant extracts, including quercetin, resveratrol/trans-resveratrol, caffeine, evodiamine and puerarin, in alleviating obesity-associated end-organ damage via purinergic signalling. We hope that the current knowledge of the potential roles of natural plant extracts in regulating purinergic signalling would provide new ideas for the treatment of obesity and obesity-associated end-organ damage.
Collapse
Affiliation(s)
- Hangxiu Che
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
- Joint Program of Nanchang University and Queen Mary University of London, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yaqun Wang
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Jinhui Lao
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yixin Deng
- Basic Medicine, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Chirui Xu
- Huankui Academy, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hanxiao Yin
- Huankui Academy, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Zheng Tang
- The Second Clinical Medicine, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hong Xu
- Department of Physiology, Jiangxi Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Kim KH, Ki MR, Min KH, Pack SP. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy. Antioxidants (Basel) 2023; 12:antiox12051048. [PMID: 37237914 DOI: 10.3390/antiox12051048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.
Collapse
Affiliation(s)
- Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Mi-Ran Ki
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
33
|
Quercetin alleviates atherosclerosis by suppressing oxidized LDL-induced senescence in plaque macrophage via inhibiting the p38MAPK/p16 pathway. J Nutr Biochem 2023; 116:109314. [PMID: 36924853 DOI: 10.1016/j.jnutbio.2023.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Quercetin is a widely known and biologically active phytochemical and exerts therapeutic effects against atherosclerosis. The removal of senescent plaque macrophages effectively slows the progression of atherosclerosis and decreases the plaque burden. Still, whether quercetin alleviates atherosclerosis by inhibiting the senescence of plaque macrophages, including the potential mechanisms, remains unclear. ApoE-/- mice were fed with a normal chow diet or high-fat diet (HFD) supplemented or not with quercetin (100 mg/kg of body weight) for 16 weeks. An accumulation of senescent macrophages was observed in the plaque-rich aortic tissues from the mice with HFD, but quercetin supplementation effectively reduced the amount of senescent plaque macrophage, inhibited the secretion of key senescence-associated secretory phenotype (SASP) factors, and alleviated atherosclerosis by inhibiting p38MAPK phosphorylation and p16 expression. In vitro, SB203580 (a specific inhibitor of p38 MAPK) significantly inhibited oxidized low-density lipoprotein (ox-LDL)-induced senescence in mouse RAW264.7 macrophages, as evidenced by decreased senescence-associated markers (SA-β-gal staining positive cells and p16 expression). Furthermore, quercetin not only effectively reversed ox-LDL-induced senescence in RAW264.7 cells but also decreased the mRNA levels of several key SASP factors by suppressing p38 MAPK phosphorylation and p16 expression. The p38 MAPK agonist asiatic acid reversed the effects of quercetin. In conclusion, these findings indicate that quercetin suppresses ox-LDL-induced senescence in plaque macrophage and attenuates atherosclerosis by inhibiting the p38 MAPK/p16 pathway. This study elucidates the mechanisms of quercetin against atherosclerosis and supports quercetin as a nutraceutical for the management of atherosclerosis.
Collapse
|
34
|
Basu T, Selman A, Reddy AP, Reddy PH. Current Status of Obesity: Protective Role of Catechins. Antioxidants (Basel) 2023; 12:antiox12020474. [PMID: 36830032 PMCID: PMC9952428 DOI: 10.3390/antiox12020474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is a growing health concern in today's society. Current estimates indicate that obesity occurs in both adults and young people. Recent research also found that the Hispanic population in the U.S. is 1.9 times more likely to be overweight as compared to their non-Hispanic population. Obesity is a multifactorial disease that has a variety of causes. All current treatment options incorporate dietary changes aimed at establishing a negative energy balance. According to current scientific research, multiple factors are involved with the development of obesity, including genetic, biochemical, psychological, environmental, behavioral, and socio-demographic factors. The people who suffer from obesity are far more likely to suffer serious health problems, such as stroke, diabetes, lung disease, bone and joint disease, cancer, heart disease, neurological disorders, and poor mental health. Studies indicate that multiple cellular changes are implicated in the progression of obesity, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others. This article highlights the role that oxidative stress plays in obesity and current obesity-prevention techniques with an emphasis on the impact of catechins to prevent and treat obesity.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3194; Fax: +1-806-743-2334
| |
Collapse
|
35
|
Lee M, Yun YR, Choi EJ, Song JH, Kang JY, Kim D, Lee KW, Chang JY. Anti-obesity effect of vegetable juice fermented with lactic acid bacteria isolated from kimchi in C57BL/6J mice and human mesenchymal stem cells. Food Funct 2023; 14:1349-1356. [PMID: 36630124 DOI: 10.1039/d2fo02998g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the effect of fermented vegetable juice (VJ) obtained from a blend of four crops (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) on adipogenesis along with the identification of active compounds. Two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124), isolated from kimchi, were used to ferment the VJ and their effectiveness was evaluated in differentiated human mesenchymal stem cells and obese mice. In vitro antibody array analysis was done to understand signaling proteins in adipogenesis. Gene Ontology enrichment analysis showed that differentially expressed proteins are related to biological processes including immunological processes. These were effectively regulated by LAB and fermented VJ. Supplementation of fermented VJ reduced the weight gain, blood biochemical indicators, and liver fat accumulation in mice. Oil Red O staining indicated that the fermentation metabolites of VJ (indole-3-lactic acid, leucic acid, and phenyllactic acid) had an inhibitory effect on lipid accumulation in vitro. Therefore, it can be concluded that LAB-fermented VJ and its metabolites have the potential to counter obesity, and thus can be therapeutically effective.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea. .,Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea.
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Jin Yong Kang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Daun Kim
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea. .,Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea.
| |
Collapse
|
36
|
Inflammation and Obesity: The Pharmacological Role of Flavonoids in the Zebrafish Model. Int J Mol Sci 2023; 24:ijms24032899. [PMID: 36769222 PMCID: PMC9917473 DOI: 10.3390/ijms24032899] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A Mediterranean-style diet is highly encouraged thanks to its healthy food pattern, which includes valuable nutraceuticals such as polyphenols. Among these, flavonoids are associated with relevant biological properties through which they prevent or fight the onset of several human pathologies. Globally, the enhanced incidence of overweight and obese people has caused a dramatic increase in comorbidities, raising the need to provide better therapies. Therefore, the development of sophisticated animal models of metabolic dysregulation has allowed for a deepening of knowledge on this subject. Recent advances in using zebrafish (Danio rerio) as model for metabolic disease have yielded fundamental insights into the potential anti-obesity effects of flavonoids. Chronic low-grade inflammation and immune system activation seem to characterize the pathogenesis of obesity; thus, their reduction might improve the lipid profile of obese patients or prevent the development of associated metabolic illnesses. In this review, we highlight the beneficial role of flavonoids on obesity and related diseases linked to their anti-inflammatory properties. In light of the summarized studies, we suggest that anti-inflammatory therapies could have a relevant place in the prevention and treatment of obesity and metabolic disorders.
Collapse
|
37
|
Zhang J, Wu X, Zhong B, Liao Q, Wang X, Xie Y, He X. Review on the Diverse Biological Effects of Glabridin. Drug Des Devel Ther 2023; 17:15-37. [PMID: 36647530 PMCID: PMC9840373 DOI: 10.2147/dddt.s385981] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Glabridin is a prenylated isoflavan from the roots of Glycyrrhiza glabra Linne and has posed great impact on the areas of drug development and medicine, due to various biological properties such as anti-inflammation, anti-oxidation, anti-tumor, anti-microorganism, bone protection, cardiovascular protection, neuroprotection, hepatoprotection, anti-obesity, and anti-diabetes. Many signaling pathways, including NF-κB, MAPK, Wnt/β-catenin, ERα/SRC-1, PI3K/AKT, and AMPK, have been implicated in the regulatory activities of glabridin. Interestingly, glabridin has been considered as an inhibitor of tyrosinase, P-glycoprotein (P-gp), and CYP2E1 and an activator of peroxisome proliferator-activated receptor γ (PPARγ), although their molecular regulating mechanisms still need further investigation. However, poor water solubility and low bioavailability have greatly limited the clinical applications of glabridin. Hopefully, several effective strategies, such as nanoemulsions, microneedles, and smartPearls formulation, have been developed for improvement.
Collapse
Affiliation(s)
- Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xinhui Wu
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiao He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China,Correspondence: Xiao He, Email
| |
Collapse
|
38
|
Cao Y, Han S, Lu H, Luo Y, Guo T, Wu Q, Luo F. Targeting mTOR Signaling by Dietary Polyphenols in Obesity Prevention. Nutrients 2022; 14:nu14235171. [PMID: 36501200 PMCID: PMC9735788 DOI: 10.3390/nu14235171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid β-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.
Collapse
Affiliation(s)
- Yunyun Cao
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuai Han
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han Lu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Tianyi Guo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qi Wu
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Feijun Luo
- Hunan Provincial Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, Hunan Provincial Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
39
|
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin. Int J Mol Sci 2022; 23:ijms232214413. [PMID: 36430891 PMCID: PMC9696847 DOI: 10.3390/ijms232214413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions.
Collapse
|
40
|
Zakaria Z, Othman ZA, Suleiman JB, Mustaffa KMF, Jalil NAC, Ghazali WSW, Zulkipli NN, Mohamed M, Kamaruzaman KA. Therapeutic Effects of Heterotrigona itama (Stingless Bee) Bee Bread in Improving Hepatic Lipid Metabolism through theActivation of the Keap1/Nrf2 Signaling Pathway in an Obese Rat Model. Antioxidants (Basel) 2022; 11:2190. [PMID: 36358563 PMCID: PMC9686663 DOI: 10.3390/antiox11112190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Bee bread (BB) has traditionally been used as a dietary supplement to treat liver problems. This study evaluated the therapeutic effects of Heterotrigona itama BB from Malaysia on obesity-induced hepatic lipid metabolism disorder via the regulation of the Keap1/Nrf2 pathway. Male Sprague Dawley rats were fed with either a normal diet or high-fat diet (HFD) for 6 weeks to induce obesity. Following 6 weeks, obese rats were treated either with distilled water (OB group), BB (0.5 g/kg body weight/day) (OB + BB group) or orlistat (10 mg/kg body weight/day) (OB + OR group) concurrent with HFD for another 6 weeks. BB treatment suppressed Keap1 and promoted Nrf2 cytoplasmic and nuclear translocations, leading to a reduction in oxidative stress, and promoted antioxidant enzyme activities in the liver. Furthermore, BB down-regulated lipid synthesis and its regulator levels (SIRT1, AMPK), and up-regulated fatty acid β-oxidation in the liver of obese rats, being consistent with alleviated lipid levels, improved hepatic histopathological changes (steatosis, hepatocellular hypertrophy, inflammation and glycogen expression) and prevented progression to non-alcoholic steatohepatitis. These results showed the therapeutic potentials of H. itama BB against oxidative stress and improved lipid metabolism in the liver of obese rats possibly by targeting the Keap1/Nrf2 pathway, hence proposing its role as a natural supplement capable of treating obesity-induced fatty liver disease.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Unit of Physiology, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Joseph Bagi Suleiman
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.O. Box 1007, Ebonyi State, Nigeria
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ninie Nadia Zulkipli
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Khaidatul Akmar Kamaruzaman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
41
|
Hill EB, Siebert JC, Yazza DN, Ostendorf DM, Bing K, Wayland L, Scorsone JJ, Bessesen DH, MacLean PS, Melanson EL, Catenacci VA, Borengasser SJ. Proteomics, dietary intake, and changes in cardiometabolic health within a behavioral weight-loss intervention: A pilot study. Obesity (Silver Spring) 2022; 30:2134-2145. [PMID: 36321274 PMCID: PMC9634672 DOI: 10.1002/oby.23574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Identifying associations among circulating proteins, dietary intakes, and clinically relevant indicators of cardiometabolic health during weight loss may elucidate biologically relevant pathways affected by diet, allowing for an incorporation of precision nutrition approaches when designing future interventions. This study hypothesized that plasma proteins would be associated with diet and cardiometabolic health indicators within a behavioral weight-loss intervention. METHODS This secondary data analysis included participants (n = 20, mean [SD], age: 40.1 [9.5] years, BMI: 34.2 [4.0] kg/m2 ) who completed a 1-year behavioral weight-loss intervention. Cardiovascular disease-related plasma proteins, diet, and cardiometabolic health indicators were evaluated at baseline and 3 months. Associations were determined via linear regression and integrated networks created using Visualization Of LineAr Regression Elements (VOLARE). RESULTS A total of 16 plasma proteins were associated with ≥1 diet or health indicator at baseline (p < 0.001); changes in 42 proteins were associated with changes in diet or health indicators from baseline to 3 months (p < 0.005). Baseline tumor necrosis factor receptor superfamily member 10C (TNFRSF10C) was associated with intakes of dark green vegetables (r = -0.712), and fatty acid-binding protein 4 (FABP4) was associated with intakes of unsweetened coffee (r = -0.689). Changes in refined-grain intakes were associated with changes in scavenger receptor cysteine-rich type 1 protein M130 (CD163; r = 0.725), interleukin-1 receptor type 1 (IL1R-T1; r = 0.624), insulin (r = 0.656), and triglycerides (r = 0.648). CONCLUSIONS Circulating cardiovascular disease-related proteins were associated with diet and cardiometabolic health indicators prior to and in response to weight loss.
Collapse
Affiliation(s)
- Emily B. Hill
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Deaunabah N. Yazza
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle M. Ostendorf
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Bing
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liza Wayland
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jared J. Scorsone
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel H. Bessesen
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S. MacLean
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward L. Melanson
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO, USA
| | - Victoria A. Catenacci
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Pérez-Pérez A, Gullón B, Lobato-Rodríguez Á, Garrote G, del Río PG. Microwave-assisted extraction of hemicellulosic oligosaccharides and phenolics from Robinia pseudoacacia wood. Carbohydr Polym 2022; 301:120364. [DOI: 10.1016/j.carbpol.2022.120364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
|
43
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Xu X, Wang L, Chen Q, Wang Z, Pan X, Peng X, Wang M, Wei D, Li Y, Wu B. Decoding the Mechanism of CheReCunJin Formula in Treating Sjögren's Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1193846. [PMID: 36248435 PMCID: PMC9553462 DOI: 10.1155/2022/1193846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Background Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by progressive oral and ocular dryness that correlates poorly with autoimmune damage to the glands. CheReCunJin (CRCJ) formula is a prescription formulated according to the Chinese medicine theory for SS treatment. Objective This study aimed to explore the underlying mechanisms of CRCJ against SS. Methods The databases, including Traditional Chinese Medicine System Pharmacology, Encyclopedia of Traditional Chinese Medicine, Bioinformatics Analysis Tool for the molecular mechanism of Traditional Chinese Medicine, and Traditional Chinese Medicine Integrated Databases, obtained the active ingredients and predicted targets of CRCJ. Then, DrugBank, Therapeutic Target Database, Genecards, Comparative Toxicogenomics Database, and DisGeNET disease databases were used to screen the predicted targets of SS. Intersected targets of CRCJ and SS were visualized by using Venn diagrams. The overlapping targets were uploaded to the protein-protein interaction network analysis search tool. Cytoscape 3.8.2 software constructed a "compound-targets-disease" network. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses characterized potential targets' biological functions and pathways. AutoDock Vina 1.1.2 software was used to research and verify chemical effective drug components and critical targets. Results From the database, we identified 878 active components and 2578 targets of CRCJ, and 827 SS-related targets. 246 SS-related genes in CRCJ were identified by intersection analysis, and then ten hub genes were identified as crucial potential targets from PPI, including ALB, IL-6, TNF, INS, AKT1, IL1B, VEGFA, TP53, JUN, and TLR4. The process of CRCJ action against SS was mainly involved in human cytomegalovirus infection and Th17 cell differentiation, as well as the toll-like receptor signaling and p53 signaling pathways. Molecular docking showed that the bioactive compounds of CRCJ had a good binding affinity with hub targets. Conclusions The results showed that CRCJ could activate multiple pathways and treat SS through multiple compounds and targets. This study lays a foundation for better elucidation of the molecular mechanism of CRCJ in the treatment of SS, and also provides basic guidance for future research on Chinese herbal compounds.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xun Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xike Peng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
45
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Ghaddar B, Gence L, Veeren B, Bringart M, Bascands JL, Meilhac O, Diotel N. Aqueous Extract of Psiloxylon mauritianum, Rich in Gallic Acid, Prevents Obesity and Associated Deleterious Effects in Zebrafish. Antioxidants (Basel) 2022; 11:antiox11071309. [PMID: 35883799 PMCID: PMC9312056 DOI: 10.3390/antiox11071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity has reached epidemic proportions, and its prevalence tripled worldwide between 1975 and 2016, especially in Reunion Island, a French overseas region. Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island registered in the French pharmacopeia, has recently gained interest in combating metabolic disorders because of its traditional lipid-lowering and “anti-diabetic” use. However, scientific data are lacking regarding its toxicity and its real benefits on metabolic diseases. In this study, we aim to determine the toxicity of an aqueous extract of P. mauritianum on zebrafish eleutheroembryos following the OECD toxicity assay (Organization for Economic Cooperation and Development, guidelines 36). After defining a non-toxic dose, we determined by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) that this extract is rich in gallic acid but contains also caffeoylquinic acid, kaempferol and quercetin, as well as their respective derivatives. We also showed that the non-toxic dose exhibits lipid-lowering effects in a high-fat-diet zebrafish larvae model. In a next step, we demonstrated its preventive effects on body weight gain, hyperglycemia and liver steatosis in a diet-induced obesity model (DIO) performed in adults. It also limited the deleterious effects of overfeeding on the central nervous system (i.e., cerebral oxidative stress, blood-brain barrier breakdown, neuro-inflammation and blunted neurogenesis). Interestingly, adult DIO fish treated with P. mauritianum display normal feeding behavior but higher feces production. This indicates that the “anti-weight-gain” effect is probably due to the action of P. mauritianum on the intestinal lipid absorption and/or on the microbiota, leading to the increase in feces production. Therefore, in our experimental conditions, the aqueous extract of P. mauritianum exhibited “anti-weight-gain” properties, which prevented the development of obesity and its deleterious effects at the peripheral and central levels. These effects should be further investigated in preclinical models of obese/diabetic mice, as well as the impact of P. mauritianum on the gut microbiota.
Collapse
Affiliation(s)
- Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Matthieu Bringart
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- CHU de La Réunion, 97400 Saint-Denis, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97400 Saint-Denis, La Réunion, France; (B.G.); (L.G.); (B.V.); (M.B.); (J.-L.B.); (O.M.)
- Correspondence:
| |
Collapse
|
47
|
Sánchez-Jaramillo EA, Gasca-Lozano LE, Vera-Cruz JM, Hernández-Ortega LD, Gurrola-Díaz CM, Bastidas-Ramírez BE, Vargas-Guerrero B, Mena-Enríquez M, Martínez-Limón FDJ, Salazar-Montes AM. Nanoparticles Formulation Improves the Antifibrogenic Effect of Quercetin on an Adenine-Induced Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23105392. [PMID: 35628203 PMCID: PMC9140764 DOI: 10.3390/ijms23105392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is the final stage of chronic kidney injury characterized by glomerulosclerosis and tubulointerstitial fibrosis with parenchymal destruction. Quercetin belongs to the most studied flavonoids with antioxidant, anti-inflammatory, antifibrogenic, and antitumor activity. It modifies the TGF-β/Smad signaling pathway, decreasing profibrogenic expression molecules and inducing the expression of antioxidant, anti-inflammatory, and antifibrogenic molecules. However, quercetin exhibits poor water solubility and low absorption and bioavailability. This limitation was solved by developing a nanoparticles formulation that improves the solubility and bioavailability of several bioactive compounds. Therefore, we aimed to investigate the in vivo antifibrogenic effect of a quercetin nanoparticles formulation. Male C57BL/6 mice were induced into chronic renal failure with 50 mg/kg of adenine for four weeks. The animals were randomly grouped and treated with 25, 50, or 100 mg/kg of quercetin, either macroparticles or nanoparticles formulation. We performed biochemical, histological, and molecular analyses to evaluate and compare the effect of macroparticles versus nanoparticles formulation on kidney damage. Here, we demonstrated that smaller doses of nanoparticles exhibited the same beneficial effect as larger doses of macroparticles on preventing kidney damage. This finding translates into less quercetin consumption reaching the desired therapeutic effect.
Collapse
Affiliation(s)
- Esteban Andrés Sánchez-Jaramillo
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Luz Elena Gasca-Lozano
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - José María Vera-Cruz
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Luis Daniel Hernández-Ortega
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | - Carmen Magdalena Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Blanca Estela Bastidas-Ramírez
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Belinda Vargas-Guerrero
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
| | - Mayra Mena-Enríquez
- Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico 555, Tonalá 45425, Jalisco, Mexico; (L.D.H.-O.); (M.M.-E.)
| | | | - Adriana María Salazar-Montes
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro de Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico; (E.A.S.-J.); (L.E.G.-L.); (C.M.G.-D.); (B.E.B.-R.); (B.V.-G.)
- Correspondence:
| |
Collapse
|
48
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Heat-Killed Enterococcus faecalis Prevents Adipogenesis and High Fat Diet-Induced Obesity by Inhibition of Lipid Accumulation through Inhibiting C/EBP-α and PPAR-γ in the Insulin Signaling Pathway. Nutrients 2022; 14:nu14061308. [PMID: 35334965 PMCID: PMC8953550 DOI: 10.3390/nu14061308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing consumption of food with high caloric density and a sedentary lifestyle have influenced the increasing obesity prevalence worldwide. The recent pandemic has contributed to this problem. Obesity refers to a state in which lipid accumulates excessively in adipocytes and adipose tissues. Dried heat-killed Enterococcus faecalis (EF-2001) prevents allergic mechanisms, inflammation, and tumor progression. In the present study, we investigated the effects of EF-2001 on high fat diet (HFD)-induced obese rats. The degree of obesity in experimental rats was reduced after 6 weeks of oral administration of 3 mg/kg or 30 mg/kg dosages of EF-2001, indicating regulating effects in rats with HFD-induced obesity. We found that EF-2001 decreased the amounts of total cholesterol, triglyceride, and non-high density lipoprotein (HDL) in HFD-induced obese rats. The effects of EF-2001 on 3T3-L1 adipocytes stained with Oil red O stain are shown in reductions of lipid accumulation, respectively. In addition, we examined the relationships between EF-2001 treatment and mechanisms for the insulin signaling of adipogenesis in 3T3-L1 cells. EF-2001 induced down-regulation in phosphorylation of Erk, JNK, and Akt through the inhibition of insulin receptor phosphorylation. EF-2001 inhibits the expressions of C/EBP-α and PPAR-γ, a lipid metabolism-related transcription factor through confocal microscope observation and Western blot on 3T3-L1 adipocytes and HFD-induced obese rats. Based on our results, intake of EF-2001 significantly prevented HFD-induced obesity in rats through inhibition of C/EBP-α and PPAR-γ in the insulin signaling pathway on lipid accumulation.
Collapse
|
50
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|