1
|
Hao X, Song H, Su X, Li J, Ye Y, Wang C, Xu X, Pang G, Liu W, Li Z, Luo T. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease. Ann Med 2025; 57:2464223. [PMID: 39943720 PMCID: PMC11827040 DOI: 10.1080/07853890.2025.2464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and its prevalence has risen sharply. However, whether nutrition, dietary strategies, exercise, lifestyle and environment have preventive value for NAFLD remains unclear. METHODS Through searching 4 databases (PubMed, Web of Science, Embase and the Cochrane Library) from inception to January 2025, we selected studies about nutrition, dietary strategies, exercise, lifestyle and environment in the prevention of NAFLD and conducted a narrative review on this topic. RESULTS Reasonable nutrient intake encompassing macronutrients and micronutrients have an independent protective relationship with NAFLD. Besides, proper dietary strategies including mediterranean diet, intermittent fasting diet, ketogenic diet, and dietary approaches to stop hypertension diet have their inhibitory effects on the developmental process of NAFLD. Moreover, right exercises including walking, jogging, bicycling, and swimming are recommended for the prevention of NAFLD because they could effectively reduce weight, which is an important risk factor for NAFLD, and improve liver function. In addition, embracing a healthy lifestyle including reducing sedentary behavior, not smoking, sleeping well and brushing teeth regularly is integral since it not only could reduce the risk of NAFLD but also significantly contribute to overall prevention and control. Finally, the environment, including the social and natural environments, plays a potential role in NAFLD prevention. CONCLUSION Nutrition, dietary strategies, exercise, lifestyle and environment play an important role in the prevention of NAFLD. Moreover, this review offers comprehensive prevention recommendations for people at high risk of NAFLD.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hao Song
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xin Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Jian Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Youbao Ye
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cailiu Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiao Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guanglong Pang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Wenxiu Liu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Zihan Li
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tian Luo
- The Institute for Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Dou J, Xiao H, Chen Y, Han W, Zhang S, Wu D, Chen S, Ma Y, Cai Z, Luan Q, Cui L. Diesel exhaust promoted diethylnitrosamine-induced hepatocarcinogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138219. [PMID: 40220387 DOI: 10.1016/j.jhazmat.2025.138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Exposure to diesel exhaust (DE) has been linked to an increased risk of various cancers, including liver cancer. However, the underlying mechanisms driving this association remain insufficiently understood. In this study, we employed a diethylnitrosamine (DEN)-induced mouse liver tumor model and conducted a 19-week combined exposure (750 μg/m3) using a DE exposure system. Our results demonstrated that long-term DE exposure activates cancer-related genes and enhances the formation of DEN-induced liver tumors. Compared to the DEN group, mice in the DEN + diesel exhaust exposure (DEE) group exhibited lower body weight, higher tumor formation rates and more severe DNA damage. The tumor-promoting effect of DE may be associated with the upregulation of SEMA4D and the activation of the PI3K/AKT signaling pathway. Additionally, liver cells in the DEE group exhibited nuclear atypia, a characteristic feature of cancerous transformation. In vitro studies have revealed that exposure to diesel exhaust particles (DEP) promotes the proliferation of HepG2 cells and HUH7 cells by upregulating SEMA4D and activating the PI3K/AKT signaling pathway. This effect was attenuated by inhibiting either SEMA4D or PI3K. This study was the first to identify that DE exposure promotes the development of DEN-induced liver tumors in mice, with the mechanism potentially involving the SEMA4D/PI3K/AKT pathway. These findings provide novel insights into the hepatotoxic effects of DE and highlight the need for further investigation into its carcinogenic potential.
Collapse
Affiliation(s)
- Junjie Dou
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Occupational disease, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of General Practice, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Dong Wu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhengguo Cai
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qi Luan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Qiao Z, Feng X, Sun W, Wang F, Lu C. Independent and synergistic effects of extreme heat and NO 2 pollution on diabetic nephropathy in a type II diabetes mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126321. [PMID: 40294690 DOI: 10.1016/j.envpol.2025.126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Extreme heat and traffic-related air pollution (TRAP) have been linked to worsening chronic health disorders, however, their combined effects on diabetic nephropathy (DN) are little understood. Type II diabetic mice were exposed to heat (40 °C) and NO2 (5 ppm) separately for 4 h per day over 6 weeks to investigate the synergistic effects on the progression of DN. We found that exposure to high temperature and NO2 elevated blood glucose levels and exacerbated histopathological changes. Additionally, there were increased oxidation indicators (ROS, MDA, 8-OHdG) and decreased antioxidant indicators (CAT, SOD, GSH-PX), along with elevated inflammation markers (TNF-α, IL-1β, IL-6). The expressions of transient receptor potential (TRP) ion channels (TRPV1, TRPV4, TRPA1, TRPM2) were also upregulated. Our findings suggest that simultaneous exposure to high temperature and NO2 impairs metabolic and autophagy pathways. Exposure to both high temperature and NO2 produces a synergistic effect, leading to more severe damage than exposure to either factor individually. This resulted in increased expression of APOA1, P62, and p-mTOR/mTOR while decreasing the expression of p-AMPKα/AMPKα and LC3-II/I. This disruption promoted the progression of DN. In contrast, capsazepine (CZP) reduced TRP expression, inflammatory markers, oxidative stress, metabolic and autophagy disorders, thereby mitigating renal damage and alleviating the progression of diabetic nephropathy. Our study provides some potential strategies for early prevention and effective reduction of DN.
Collapse
Affiliation(s)
- Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Xiangling Feng
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Wenying Sun
- XiangYa School of Public Health, Central South University, Changsha, 410013, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-communicable Diseases, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, 410013, China; FuRong Laboratory, Changsha, 410078, Hunan, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha, 410083, China.
| |
Collapse
|
4
|
Wen C, Liu X, Lian Y, Guo W, Zhang L, Chen Y, Lan X, Li M, Zhang S, Huang W, Zou J, Chen H. Analysis of the association between long-term exposure to low-dose ionizing radiation and dyslipidemia and its components in medical radiologists: The mediating role of inflammatory markers. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 25:200406. [PMID: 40290399 PMCID: PMC12023881 DOI: 10.1016/j.ijcrp.2025.200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Introduction Our study aimed to explore the association between long-term exposure to low-dose ionizing radiation (LDIR) and dyslipidemia and its components among medical radiologists, and to identify the mediating role of inflammatory markers. Methods This cross-sectional study was conducted on 3918 medical radiologists, with data collected through questionnaires and occupational external exposure dosimeters. The multifactorial logistic regression and restricted cubic spline model were used to analyze the association between long-term exposure to LDIR and dyslipidemia and its components among medical radiologists, and mediation analysis was used to identify potential mediation effects. Results Of 3918 medical radiologists, 995 (25.4 %) had dyslipidemia. The gender, age, body mass index (BMI), and smoking status were influential factors for dyslipidemia of medical radiologists. After adjusting for confounders, the OR and 95 % CI for the occurrence of dyslipidemia and high TG in the highest tertile group (Q3) were 1.32 (95 % CI: 1.04, 1.67) and 1.51 (95 % CI: 1.11, 2.07), respectively. Restricted cubic spline model showed that the cumulative effective dose was linearly associated with both dyslipidemia and high TG, and the risk of dyslipidemia and high TG increased with the cumulative effective dose. Mediation analysis suggested that the inflammatory marker SII significantly mediated the association between cumulative effective dose and TG levels. Conclusion Our study shows that medical radiologists have a high detection rate of dyslipidemia, and the risk of dyslipidemia and high TG increases with increasing cumulative effective dose. Inflammatory marker SII may play a mediating role in the association between cumulative effective dose and TG levels.
Collapse
Affiliation(s)
- Changyong Wen
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Xiaolian Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Yiqing Lian
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Weizhen Guo
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Lingyu Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Yanting Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Xin Lan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Mingfang Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Sufen Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Weixu Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Jianming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| | - Huifeng Chen
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China
| |
Collapse
|
5
|
India-Aldana S, Midya V, Betanzos-Robledo L, Yao M, Alcalá C, Andra SS, Arora M, Calafat AM, Chu J, Deierlein A, Estrada-Gutierrez G, Jagani R, Just AC, Kloog I, Landero J, Oulhote Y, Walker RW, Yelamanchili S, Baccarelli AA, Wright RO, Téllez Rojo MM, Colicino E, Cantoral A, Valvi D. Impact of metabolism-disrupting chemicals and folic acid supplementation on liver injury and steatosis in mother-child pairs. J Hepatol 2025; 82:956-966. [PMID: 39674324 DOI: 10.1016/j.jhep.2024.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND & AIMS Scarce knowledge about the impact of metabolism-disrupting chemicals (MDCs) on steatotic liver disease limits opportunities for intervention. We evaluated pregnancy MDC-mixture associations with liver outcomes, and effect modification by folic acid (FA) supplementation in mother-child pairs. METHODS We studied ∼200 mother-child pairs from the Mexican PROGRESS cohort, with 43 MDCs measured during pregnancy (estimated air pollutants, blood/urine metals or metalloids, urine high- and low-molecular-weight phthalate [HMWPs, LMWPs] and organophosphate-pesticide metabolites), and serum liver enzymes (ALT, AST) at ∼9 years post-parturition. Outcomes included elevated liver enzymes in children and established clinical scores for steatosis and fibrosis in mothers (i.e. , AST ALT, FLI, HSI, FIB-4). Bayesian-weighted quantile sum regression assessed MDC-mixture associations with liver outcomes. We further examined chemical-chemical interactions and effect modification by self-reported FA supplementation. RESULTS In children, many MDC-mixtures were associated with liver injury. Per quartile HMWP-mixture increase, ALT increased by 10.1% (95% CI 1.67%, 19.4%) and AST by 5.27% (95% CI 0.80%, 10.1%). LMWP-mixtures and air pollutant-mixtures were associated with higher AST and ALT, respectively. Air pollutant and non-essential metal/element associations with liver enzymes were attenuated by maternal cobalt blood concentrations (p-interactions <0.05). In mothers, only the LMWP-mixture was associated with odds for steatosis (odds ratio = 1.53, 95% CI 1.01-2.28 for HSI >36, and odds ratio 1.62, 95% CI 1.05-2.49 for AST:ALT <1). In mothers and children, most associations were attenuated (null) at FA supplementation ≥600 μg/day (p-interactions <0.05). CONCLUSIONS Pregnancy MDC exposures may increase risk of liver injury and steatosis, particularly in children. Adequate FA supplementation and maternal cobalt levels may attenuate these associations. IMPACT AND IMPLICATIONS The effects of environmental chemical exposures on steatotic liver diseases are not well understood. In a parallel investigation of mothers and children, we found that pregnancy exposures to metabolism-disrupting chemicals may increase the risk of liver injury and steatosis, especially in the child, and that these associations could be attenuated by higher folic acid and/or cobalt levels. These findings can inform policies to decrease environmental chemical pollution and contribute to the design of clinical interventions addressing the metabolic dysfunction-associated steatotic liver disease epidemic.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larissa Betanzos-Robledo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Meizhen Yao
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cecilia Alcalá
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Deierlein
- New York University School of Global Public Health, New York, NY, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Itai Kloog
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio Landero
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Youssef Oulhote
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan W Walker
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirisha Yelamanchili
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Jang TY. Role of Air Pollution Among Patients With Fatty Liver Disease. Liver Int 2025; 45:e70117. [PMID: 40317647 DOI: 10.1111/liv.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Affiliation(s)
- Tyng-Yuan Jang
- Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Ping-Tung, Taiwan
| |
Collapse
|
7
|
Nikolaou N, Wolf K, Breitner S, Pickford R, Schikowski T, Peters A, Schneider A. Long-term exposure to traffic-related air pollution is associated with impaired odor identification: Results from the population-based KORA FIT study in Augsburg, Germany. ENVIRONMENT INTERNATIONAL 2025; 200:109528. [PMID: 40378474 DOI: 10.1016/j.envint.2025.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/07/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Ambient air pollution has been linked to neurodegenerative diseases. Nevertheless, the literature on the effects of air pollution on the olfactory system and early cognitive impairment is scarce. In this study, we investigated the association between long-term air pollution exposure and odor identification, which can serve as an early indicator of various neurodegenerative conditions. We used data collected in Augsburg, Germany in 2018-2019 for the population-based KORA FIT study of 3,059 participants born between 1945-1964. The Sniffin' Sticks 12-Item Test was used to assess each participant's odor identification. Air pollution concentrations at residential addresses were estimated using land use regression modeling. We dichotomized the odor identification score to normosmia (score ≥ 10) versus hyposmia (score < 7) or anosmia (score < 10) and applied logistic regression. The models were adjusted for age, sex, socioeconomic characteristics (education, income, socioeconomic status), lifestyle factors (physical activity, smoking, body mass index, alcohol consumption) and disease history (e.g., allergies). We observed increased odds of hyposmia or anosmia compared to normosmia per interquartile range increase in the concentrations of PNC, PM2.5, PM2.5abs, PMcoarse, PM10, NO2 and NOx [OR (95 % CI): 1.12 (1.02, 1.24), 1.10 (0.98, 1.25), 1.14 (1.00, 1.30), 1.20 (1.06, 1.35), 1.20 (1.06, 1.36), 1.20 (1.06, 1.37) and 1.13 (1.01, 1.27); respectively]. For O3, no clear effects were detected. Females and physically active people appeared to be more susceptible. No further significant indications of effect modification were found. The results were consistent across sensitivity analyses. This study provides robust evidence for an association between long-term exposure to traffic-related air pollution and poor odor identification, even in a region with relatively low air pollution levels. These findings suggest a potential link between prolonged air pollution exposure and early changes in the olfactory system and could be indicative of early signs of detrimental effects on the brain.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; School of Public Health, Department of Environment and Health, University of Bielefeld, Bielefeld, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
8
|
Ye D, Wang J, Shi J, Ma Y, Li Y, Li Q, Hu X, Chen J, Bao Z. Prevalence of MAFLD in the U.S. based on NHANES 2009-2018: differences in demographic characteristics, physical indices and lifestyle conditions. BMC Gastroenterol 2025; 25:329. [PMID: 40316899 PMCID: PMC12046859 DOI: 10.1186/s12876-025-03956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) is high among U.S. adults, but studies on its occurrence in different ethnic and age groups are limited. The aim of the present study was to assess MAFLD occurrence among the U.S. adults by considering demographic characteristics, physical indices, and lifestyle conditions. METHODS This study utilized the National Health and Nutrition Examination Survey (NHANES) data 2009-2018 from 23,546 participants aged ≥ 20 years. Variables such as age, sex, race, body mass index (BMI), waist circumference (WC), blood pressure, sedentary behavior, sleep, and depression were analyzed. RESULTS Among 9933 participants, 3562 had MAFLD (34.1%), with notably higher percentages of Mexican-Americans (54.1%) and lower percentages of blacks (20.5%). The incidence of MAFLD was significantly greater (P < 0.001) in males (39%) than in females (29.2%), which was particularly evident within the 36-40 years age group. The MAFLD incidence exhibited an age-dependent pattern, initially increasing and subsequently declining (except for whites). Compared to white MAFLD patients, black MAFLD patients exhibited greater BMI, WC, systolic blood pressure (SBP), and diastolic blood pressure (DBP) values, whereas values for these measures were lower among Mexican-American patients. Logistic regression analysis adjusting for age and sex revealed that depression was more common among MAFLD patients (P < 0.001), except for severe depression (P > 0.05). Notably, the MAFLD incidence was not significantly associated with sedentary behavior or sleep duration. CONCLUSIONS The MAFLD incidence varies across different racial, age, and sex groups, and targeted interventions are essential for reducing the burden of MAFLD. However, further research is necessary to explore the correlations among MAFLD incidence, sleep patterns, and an inactive lifestyle.
Collapse
Affiliation(s)
- Dan Ye
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiaofeng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Shanghai Institute of Geriatrics and Gerontology, Shanghai, China
| | - Jiaheng Shi
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yiming Ma
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanglei Li
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qingshang Li
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaona Hu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Jie Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Shanghai Institute of Geriatrics and Gerontology, Shanghai, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
- Shanghai Institute of Geriatrics and Gerontology, Shanghai, China.
| |
Collapse
|
9
|
Younossi ZM, Razavi H, Sherman M, Allen AM, Anstee QM, Cusi K, Friedman SL, Lawitz E, Lazarus JV, Schuppan D, Romero-Gómez M, Schattenberg JM, Vos MB, Wong VWS, Ratziu V, Hompesch M, Sanyal AJ, Loomba R. Addressing the High and Rising Global Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Metabolic Dysfunction-Associated Steatohepatitis (MASH): From the Growing Prevalence to Payors' Perspective. Aliment Pharmacol Ther 2025; 61:1467-1478. [PMID: 39967239 DOI: 10.1111/apt.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND The continuum of metabolic syndrome encompasses a spectrum of dysfunctions impacting obesity-linked insulin resistance, glucose homeostasis, lipid metabolism and pro-inflammatory immune responses. The global prevalence of metabolic diseases, including diabetes, chronic liver disease, cardiometabolic disease and kidney disease, has surged in recent decades, contributing significantly to population mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a leading cause of liver disease worldwide. MASLD poses a significant global health challenge with its rising prevalence, placing a substantial burden on healthcare systems, impacts patient well-being and incurs significant economic costs. Addressing MASLD requires a comprehensive understanding of its interconnected factors, including its prevalence, healthcare burden and economic implications. Lack of awareness, imprecise non-invasive diagnostic methods and ineffective preventive interventions are core components of the MASLD-related problem. AIM The aim of this article was to summarise the global burden of MASLD from the payer's perspective. METHODS We carried out a review of the global comprehensive burden of MASLD. These topics led to discussions and insights by an expert panel during the 7th Metabolic Continuum Roundtable meeting, which took place in November 2023. This meeting focused on the burden, patient-reported outcomes and health economics, from payor and societal perspectives, and aimed to identify opportunities for improving patient care, optimise resource allocation and mitigate the overall impact on individuals and society related to MASLD. During the roundtable, an emphasis emerged on the need for greater awareness and strategic deployment of diagnostic, therapeutic and preventative measures to address MASLD effectively. CONCLUSION The global burden of MASLD is high and growing. Prioritising the prevention of metabolic dysregulation and timely therapeutic interventions can yield a holistic strategy to combat MASLD, its progression and potentially lower disease costs. TRIAL REGISTRATION NCT06309992.
Collapse
Affiliation(s)
- Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Washington, DC, USA
| | - Homie Razavi
- Center for Disease Analysis Foundation, Lafayette, Colorado, USA
| | - Michael Sherman
- RA Capital Management, L.P., Boston, Massachusetts, USA
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Quentin M Anstee
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes & Metabolism, University of Florida, Gainesville, Florida, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jeffrey V Lazarus
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
| | - Detlef Schuppan
- Mainz University, Mainz, Germany
- Germany & Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel Romero-Gómez
- Department of Medicine, UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), CIBEREHD, ISCIII, University of Seville, Seville, Spain
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Miriam B Vos
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Vlad Ratziu
- Sorbonne Université and Pitié-Salpêtrière Hospital Paris, Paris, France
| | | | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology at UC San Diego, MASLD Research Center California, La Jolla, California, USA
| |
Collapse
|
10
|
She C, Guo Z, Lin Y, Zhou S, Pang M, Liu J, Cao L, Su L, Sun Y, Fang C, Shao X, Nie S. Acute kidney injury is associated with liver-related events in patients with metabolic dysfunction-associated fatty liver disease. DIABETES & METABOLISM 2025; 51:101639. [PMID: 40101895 DOI: 10.1016/j.diabet.2025.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Evidence regarding the role of acute kidney injury (AKI) in long-term development of metabolic dysfunction-associated fatty liver disease (MAFLD) is limited. We aimed to investigate the associations between AKI and liver-related events in patients with MAFLD. METHODS This study involved 50,499 Chinese adults with MAFLD from the China Renal Data System (CRDS) database. We identified AKI using patient-level serum creatinine data according to the Kidney Disease Improving Global Outcomes (KDIGO) criteria. The primary outcome was a composite of liver-related mortality and major adverse liver outcomes. The secondary outcome was an escalation of fibrosis-4 (FIB-4) risk scores. Cox proportional hazard models were performed to assess the association between AKI and the study outcomes. RESULTS The median age of the patients was 59.17 years, with 54.7% being male. There were 3,711 (7.3%) patients who experienced AKI during hospitalization. A total of 1,660 (3.3%) patients experienced composite liver outcome. Patients with AKI during hospitalization had higher risk of composite liver outcomes (adjusted hazard ratio (aHR) 1.83 [95% confidence interval 1.38;2.41] P < 0.001), especially among those with severe AKI (stage 2/3) (aHR 2.36 [1.57;3.54] P < 0.001). Regarding the secondary outcome, AKI was also associated with an increased risk of escalation of FIB-4 risk scores (aHR 1.28 [1.14;1.44] P < 0.001). These associations remained consistent across various subgroups and sensitivity analyses. CONCLUSIONS AKI was significantly associated with an increased risk of liver-related events among patients with MAFLD. These findings suggest that enhanced vigilance toward AKI may be justifiable in MAFLD patients.
Collapse
Affiliation(s)
- Caoxiang She
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zhixin Guo
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yaduan Lin
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shiyu Zhou
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Mingzhen Pang
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jiao Liu
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lisha Cao
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Licong Su
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yinfang Sun
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Chuyao Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, PR China
| | - Xian Shao
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | - Sheng Nie
- Division of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
11
|
Qin Z, Li Y, Qin Y, Chen Z, Guo J, Fang F, Schäffer A, Hollert H, Shao Y. Correlation between 6PPD-Q and immune along with metabolic dysregulation induced liver lesions in outdoor workers. ENVIRONMENT INTERNATIONAL 2025; 199:109455. [PMID: 40250241 DOI: 10.1016/j.envint.2025.109455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Outdoor workers who are exposed to traffic-derived pollutants often suffer from a range of diseases, with liver disease being particularly notable. Recently, a rubber stabilizing additive antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its transformed-quinone product 6PPD-quinone (6PPD-Q) attracted attention. However, their implication for human health remains inadequately elucidated. In this study, outdoor and indoor workers were recruited to analyze 6PPD and 6PPD-Q distribution in their serum and urine. Simultaneously, blood cell counts, liver function, renal function, blood glucose level, and lipid profile were evaluated by 23 physiological parameters. For the first time, we found that the concentrations of 6PPD (0.54 - 1.66 μg L-1) and 6PPD-Q (0.58 - 4.04 μg L-1) in outdoor group serum were two- and three-fold in the indoor group, respectively. Compared with indoor workers, 18 biochemical parameters, notably total bilirubin and indirect bilirubin, were elevated in outdoor workers (p < 0.05). A computed tomography scan showed liver lesions in 60% of the outdoor group, whereas only 30% of the indoor group. The statistical analysis exhibited that significant positive correlations exist between the serum 6PPD-Q and immune cell counts, total bilirubin, indirect bilirubin, and triglycerides in human beings (p < 0.05). The logistic regression implied that for each 1 μg L-1 increase of 6PPD-Q in serum, the risk of human liver lesions increased by 2.31 times. Our results suggest that outdoor exposure is associated with increased concentrations of 6PPD-Q in serum, which could potentially influence glucose and lipid metabolism, immune cell regulation, and liver health.
Collapse
Affiliation(s)
- Zhihao Qin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China
| | - Yan Li
- Chongqing University-Affiliated Three Gorges Hospital, 404000 Chongqing, PR China
| | - Yanlan Qin
- Chongqing University-Affiliated Three Gorges Hospital, 404000 Chongqing, PR China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Nanjing, PR China
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt am Main 60438 Frankfurt am Main, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany; Kompetenzzentrum Wasser Hessen, 60438 Frankfurt am Main, Germany
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, 400044 Chongqing, PR China.
| |
Collapse
|
12
|
Xi JY, Wang YJ, Li XH, Sun NM, Ming RQ, Yan HL, Cai HL, Bai JJ, Xiang YN, Gu J, Lin X, Liu G, Hao YT. Impact of healthy lifestyles on the risk of metabolic dysfunction-associated steatotic liver disease among adults with comorbid hypertension and diabetes: Novel insight from a largely middle-aged and elderly cohort in South China. Diabetes Obes Metab 2025; 27:2800-2809. [PMID: 40051375 DOI: 10.1111/dom.16289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
AIMS The association between lifestyle and metabolic dysfunction-associated steatotic liver disease (MASLD) has been well documented. However, evidence is still limited from vulnerable populations, especially middle-aged and elderly adults with comorbid hypertension and diabetes, who are at higher risk of developing MASLD than the general population. We aimed to examine the potential causal links of a healthy lifestyle with the risk of MASLD in this vulnerable population. MATERIALS AND METHODS A total of 41,964 middle-aged and elderly participants with comorbid hypertension and diabetes were included in a longitudinal cohort from 2010 to 2023. Weighted scores for lifestyle were evaluated by exercise frequency, alcohol consumption, smoking status and salt intake. Marginal structural models were used to estimate the single lifestyle-MASLD associations, which were further risk stratified by quartile ranges of weighted scores. RESULTS A mean follow-up period of 5.2 years (217 972 person-years) revealed that 21 697 participants developed MASLD. The hazard ratio (HR) of daily exercise, never consuming alcohol, never smoking and low salt intake for the risk of MASLD was 0.617 (95% confidence interval: 0.365 ~ 1.042), 0.237 (0.093 ~ 0.603), 0.153 (0.097 ~ 0.240) and 0.945 (0.919 ~ 0.971), respectively. Compared with weighted scores that were below the 25th percentile, the HR was 0.952 (0.902 ~ 1.005), 0.747 (0.694 ~ 0.803) and 0.097 (0.065 ~ 0.144) for the 25th, 50th and 75th percentiles, respectively. CONCLUSIONS In this vulnerable population, daily exercise, abstinence from alcohol and smoking and a low-salt diet may reduce the risk of MASLD, and the most stringent combination of healthy lifestyles could reduce the risk of MASLD by over 90%.
Collapse
Affiliation(s)
- Jun-Yan Xi
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
- Center for Health Information Research, Sun Yat-sen University, Guangzhou, China
| | - Yi-Jing Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-Heng Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Nuo-Min Sun
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rui-Qi Ming
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hua-Ling Yan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Huan-Le Cai
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
- Center for Health Information Research, Sun Yat-sen University, Guangzhou, China
| | - Jian-Jun Bai
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yi-Ning Xiang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Gu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
- Center for Health Information Research, Sun Yat-sen University, Guangzhou, China
| | - Xiao Lin
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
- Center for Health Information Research, Sun Yat-sen University, Guangzhou, China
| | - Gang Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuan-Tao Hao
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Peking, China
| |
Collapse
|
13
|
Jang TY, Zeng YT, Liang PC, Wu CD, Wei YJ, Tsai PC, Hsieh MY, Lin YH, Hsieh MH, Wang CW, Yang JF, Yeh ML, Huang CF, Chuang WL, Huang JF, Cheng YY, Dai CY, Chen PC, Yu ML. Air Pollution Associated With Mortality Among Chronic Hepatitis B Patients Treated With Nucleotide/Nucleoside Analogues. Aliment Pharmacol Ther 2025; 61:1458-1466. [PMID: 39968810 DOI: 10.1111/apt.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND AND AIMS Air pollution is associated with advanced liver fibrosis in patients with chronic liver diseases, including chronic hepatitis B (CHB). This study aimed to investigate the association between air pollution and mortality in patients with CHB treated with nucleotide/nucleoside analogues. METHODS We enrolled 697 patients with CHB treated with nucleotide/nucleoside analogues and analysed the incidence and risk factors for mortality. Daily air pollutant concentrations were estimated from the year before enrolment. RESULTS All-cause mortality showed an annual incidence of 1.1/100 person-years after a follow-up period of 3798.1 person-years. Factors with the strongest association with all-cause mortality were liver cirrhosis (hazard ratio [HR]/95% confidence interval [CI]: 3.95/1.69-9.23; p = 0.02), age ([HR]/CI: 1.07/1.03-1.17, p < 0.001) and pre-treatment gamma-glutamyl transferase (GGT) levels (HR/CI: 1.004/1.001-1.006, p = 0.004). Among patients with cirrhosis, the factors associated with all-cause mortality were age (HR/CI: 1.08/1.04-1.12, p < 0.001), pre-treatment GGT levels (HR/CI: 1.004/1.001-1.008, p = 0.01), platelet count (HR/CI: 0.988/0.977-0.998, p = 0.02) and NOx concentration (per unit increment, ppb) (1.045/1.001-1.091; p = 0.046). The best NOx cut-off value for predicting all-cause mortality in patients with cirrhosis was 25.5 ppb (AUROC 0.63; p = 0.03). NOx levels > 25.5 ppb were associated with a higher incidence of mortality in patients with cirrhosis (HR/CI:2.49/1.03-6.02; p = 0.04). CONCLUSIONS Air pollution influences all-cause mortality in patients with CHB receiving nucleotide/nucleoside analogue therapy. Long-term NOx exposure may increase liver-related mortality in patients with chronic hepatitis B and cirrhosis receiving nucleotide/nucleoside analogue treatment.
Collapse
Affiliation(s)
- Tyng-Yuan Jang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Ping-Tung, Taiwan
| | - Yu-Ting Zeng
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Tainan, Taiwan
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Fu Yang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic-Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Yun Cheng
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic-Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic-Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Ran S, Zhang J, Lin H. Reply to: "Rethinking methodology and data integrity in Mendelian randomization: Insights from air pollution and MASLD research". J Hepatol 2025; 82:e232-e233. [PMID: 39746466 DOI: 10.1016/j.jhep.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Priego-Parra BA, Gallego-Durán R, Román-Calleja BM, Velarde-Ruiz Velasco JA, Romero-Gómez M, Gracia-Sancho J. Advancing precision medicine in metabolic dysfunction-associated steatotic liver disease. Trends Endocrinol Metab 2025:S1043-2760(25)00052-9. [PMID: 40221323 DOI: 10.1016/j.tem.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a pressing global health concern. The complexity of MASLD and the lack of universally effective treatments expose the limitations of current interventions, which focus mainly on lifestyle modifications. Here, we explore the multilayered nature of MASLD, emphasizing its pathophysiology in shaping future medical and lifestyle interventions from a personalized medicine perspective, based on individual molecular profiles. Additionally, we address the limitations of current animal models in reflecting human metabolic syndrome and sex-specific differences. We argue that a holistic approach, integrating social determinants of health, patient preferences, and adherence patterns, is essential for advancing MASLD management effectively.
Collapse
Affiliation(s)
- Bryan A Priego-Parra
- Instituto de Investigaciones Médico-Biológicas, Universidad Veracruzana, Veracruz, Mexico; Centro de Investigaciones Biomédicas, Universidad Veracruzana, Veracruz, Mexico
| | - Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Berenice M Román-Calleja
- División de Hepatología, Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | | | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. SeLiver Group, Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Liver Vascular Biology Lab, IDIBAPS - Hospital Clínic de Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
16
|
Ran S, Zhang J, Tian F, Qian ZM, Wei S, Wang Y, Chen G, Zhang J, Arnold LD, McMillin SE, Lin H. Association of metabolic signatures of air pollution with MASLD: Observational and Mendelian randomization study. J Hepatol 2025; 82:560-570. [PMID: 39349253 DOI: 10.1016/j.jhep.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND & AIMS Air pollution is a significant public health issue and an important risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD), though the underlying mechanisms of this association are unknown. Herein, we aimed to identify metabolic signatures associated with exposure to ambient air pollution and to explore their associations with the risk of MASLD. METHODS We utilized data from the UK Biobank cohort. Annual mean concentrations of PM2.5, PM10, NO2 and NOx were assessed for each participant using bilinear interpolation. The elastic net regression model was used to identify metabolites associated with four air pollutants and to construct metabolic signatures. Associations between air pollutants, metabolic signatures and MASLD were analyzed using Cox models. Mendelian randomization (MR) analysis was used to examine potential causality. Mediation analysis was employed to examine the role of metabolic signatures in the association between air pollutants and MASLD. RESULTS A total of 244,842 participants from the UK Biobank were included in this analysis. We identified 87, 65, 76, and 71 metabolites as metabolic signatures of PM2.5, PM10, NO2, and NOx, respectively. Metabolic signatures were associated with risk of MASLD, with hazard ratios (HRs) and 95% CIs of 1.10 (1.06-1.14), 1.06 (1.02-1.10), 1.24 (1.20-1.29) and 1.14 (1.10-1.19), respectively. The four pollutants were associated with increased risk of MASLD, with HRs (95% CIs) of 1.03 (1.01-1.05), 1.02 (1.01-1.04), 1.01 (1.01-1.02) and 1.01 (1.00-1.01), respectively. MR analysis indicated an association between PM2.5, NO2 and NOx-related metabolic signatures and MASLD. Metabolic signatures mediated the association of PM2.5, PM10, NO2 and NOx with MASLD. CONCLUSION PM2.5, PM10, NO2 and NOx-related metabolic signatures appear to be associated with MASLD. These signatures mediated the increased risk of MASLD associated with PM2.5, PM10, NO2 and NOx. IMPACT AND IMPLICATIONS Air pollution is a significant public health issue and an important risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD), however, the mechanism by which air pollution affects MASLD remains unclear. Our study used integrated serological metabolic data of 251 metabolites from a large-scale cohort study to demonstrate that metabolic signatures play a crucial role in the elevated risk of MASLD caused by air pollution. These results are relevant to patients and policymakers because they suggest that air pollution-related metabolic signatures are not only potentially associated with MASLD but also involved in mediating the process by which PM2.5, PM10, NO2, and NOx increase the risk of MASLD. Focusing on changes in air pollution-related metabolic signatures may offer a new perspective for preventing air pollution-induced MASLD and serve as protective measures to address this emerging public health challenge.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, USA
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lauren D Arnold
- Department of Epidemiology and Biostatistics College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, USA
| | | | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Jang TY, Zeng YT, Liang PC, Wu CD, Wei YJ, Tsai PC, Hsu PY, Hsieh MY, Lin YH, Hsieh MH, Wang CW, Yang JF, Yeh ML, Huang CF, Chuang WL, Huang JF, Cheng YY, Dai CY, Chen PC, Yu ML. Role of Air Pollution in Development of Hepatocellular Carcinoma Among Chronic Hepatitis B Patients Treated With Nucleotide/Nucleoside Analogues. Liver Int 2025; 45:e16149. [PMID: 39588868 DOI: 10.1111/liv.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND AND AIMS To investigate the association between air pollution and hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients treated with nucleotide/nucleoside analogues. METHODS We enrolled 1298 CHB patients treated with nucleotide/nucleoside analogues and analysed the incidence and risk factors for HCC. Daily estimates of air pollutants were estimated since the previous year from the enrolment date. RESULTS The annual incidence of HCC was 2.1/100 person-years after a follow-up period of over 4840.5 person-years. Factors with the strongest association with HCC development were liver cirrhosis (hazard ratio [HR]/95% confidence interval [CI]: 3.00/1.55-5.81; p = 0.001), male sex (2.98/1.51-5.90; p = 0.02), body mass index (1.11/1.04-1.18; p = 0.002) and age (1.06/1.04-1.09; p < 0.001). Among patients with cirrhosis, the factors associated with HCC development were male sex (HR/95% CI: 2.10/1.00-4.25; p = 0.04) and NO2 (per one-unit increment, parts per billion; 1.07/1.01-1.13; p = 0.01). Moreover, patients with the highest quartile of annual NO2 exposure had more than a three-fold risk of HCC than those with the lowest quartile of annual exposure (HR/95% CI: 3.26/1.34-7.93; p = 0.01). Among patients without cirrhosis, the strongest factors associated with HCC development were male sex (HR/95% CI: 5.86/1.79-19.23; p = 0.004), age (1.12/1.07-1.17; p < 0.001) and platelet count (0.99/0.98-1.00; p = 0.04). CONCLUSIONS Air pollution influences HCC development in CHB patients who receive nucleotide/nucleoside analogue therapy. Long-term NO2 exposure might accelerate HCC development in CHB patients with cirrhosis receiving nucleotide/nucleoside analogue treatment.
Collapse
Affiliation(s)
- Tyng-Yuan Jang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Ping-Tung, Taiwan
| | - Yu-Ting Zeng
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Tainan, Taiwan
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yao Hsu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Fu Yang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Yun Cheng
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine, Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pau-Chung Chen
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Yang Y, Jiao L, Huang Y, Shang H, Li E, Chang H, Cui H, Wan Y. Evaluation of FXR Activity in Pollutants Identified in Sewage Sludge and Subsequent in Vitro and in Vivo Characterization of Metabolic Effects of Triphenyl Phosphate. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47005. [PMID: 40048564 PMCID: PMC12010937 DOI: 10.1289/ehp15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common liver disease worldwide, and increasing evidence suggests that exposure to environmental pollutants is associated with the increased incidence of MASLD. The farnesoid X receptor (FXR) plays an important role in the development of MASLD by regulating bile acids (BAs) and lipid metabolism. However, whether FXR-active pollutants are the environmental drivers of MASLD remains unclear. OBJECTIVES This study aimed to determine whether FXR-active pollutants exist in the environment and evaluate their ability to trigger MASLD development in mice. METHODS An FXR protein affinity pull-down assay and nontargeted mass spectrometry (MS) analysis were used to identify environmental FXR ligands in sewage sludge. A homogeneous time-resolved fluorescence coactivator recruitment assay and cell-based dual-luciferase reporter assay were used to determine the FXR activities of the identified pollutants. Targeted analysis of BAs, MS imaging, lipidomic analysis, 16S rRNA sequencing, and quantitative polymerase chain reaction were conducted to assess the ability of FXR-active pollutants to induce metabolic disorders of BAs and lipids and to contribute to MASLD development in C57BL/6N mice. RESULTS We identified 19 compounds in the sewage sludge that had FXR-antagonistic activity, and triphenyl phosphate (TPHP) was the FXR antagonist with the highest efficacy. Mice exposed to either 10 or 50 mg / kg TPHP for 30 d had higher levels of conjugated primary BAs in enterohepatic circulation, and the BA pool showed FXR antagonistic activities. The exposed mice also had greater lipogenesis (more Oil Red O staining and high triglyceride levels) in liver. CONCLUSIONS Nineteen FXR-antagonistic pollutants were identified in sewage sludge. FXR inhibition by the strongest antagonist TPHP may have a role in promoting MASLD development in mice by inducing a positive feedback loop between the FXR and BAs. https://doi.org/10.1289/EHP15435.
Collapse
Affiliation(s)
- Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Hailin Shang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Enrui Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hong Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Zou H, Chen X, Zhang J, Wu X, Wu S, Lin C, Zhu Y, Wu L. Breaking barriers: novel reference equations for the six-minute walk distance and work in obese Chinese adults. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:91. [PMID: 40155996 PMCID: PMC11954308 DOI: 10.1186/s41043-025-00832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The six-minute walk test (6MWT) is a key tool for assessing fitness in obese individuals, but existing reference equations for the six-minute walk distance (6MWD) are limited and overlook the six-minute walk work (6MWW), in turn limiting the clinical applicability of the test. This study aims to establish new 6MWD and 6MWW equations to improve our understanding of functional capacity in obese Chinese adults. METHODS A cross-sectional study was conducted at Wenzhou People's Hospital from July 2021 to June 2023. Obese Chinese adults (BMI > 30 kg/m²), aged 18-69 years, completed the 6MWT following the ATS/ERS guidelines. Stepwise multiple regression was used to create sex-specific reference equations for the 6MWD and 6MWW. RESULTS A total of 309 obese Chinese adults participated in this study, achieving a mean 6MWD of 550.7 ± 45.85 m and a mean 6MWW of 46149.9 ± 6403.58 kg·m. Sex-specific equations for the 6MWD and 6MWW explained a significant portion of the variance in the values (34-61%). CONCLUSION The proposed reference equations for the 6MWD and 6MWW increase the accuracy and applicability of functional capacity assessment tests, outperforming existing reference equations. The inclusion of the 6MWW provides a relatively novel metric that integrates metabolic workload and mechanical efficiency, offering unique insights into the functional performance of obese individuals and allowing tailored health interventions.
Collapse
Affiliation(s)
- He Zou
- Department of Cardiology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Xiaoshu Chen
- Department of Cardiology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Jia Zhang
- Department of Medical Inspection, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Xinlei Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Senxiang Wu
- Department of Neurology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Cong Lin
- Department of Cardiology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Yuan Zhu
- Department of Nephrology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
20
|
Beier JI, Luo J, Vanderpuye CM, Brizendine P, Muddasani P, Bolatimi O, Heinig SA, Ekuban FA, Siddiqui H, Ekuban A, Gripshover TC, Wahlang B, Watson WH, Cave MC. Environmental Pollutants, Occupational Exposures, and Liver Disease. Semin Liver Dis 2025. [PMID: 40118102 DOI: 10.1055/a-2540-2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental pollutants significantly impact liver disease development, progression, and outcomes. This review examines the complex relationship between environmental exposures and liver pathology, from malignant conditions like hepatocellular carcinoma to steatotic and cholestatic liver diseases. Key environmental factors include air pollutants, volatile organic compounds, persistent organic pollutants, heavy metals, and per- and polyfluoroalkyl substances. These compounds can act through multiple mechanisms, including endocrine disruption, metabolic perturbation, oxidative stress, and direct hepatotoxicity. The impact of these exposures is often modified by factors such as sex, diet, and genetic predisposition. Recent research has revealed that even low-level exposures to certain chemicals can significantly affect liver health, particularly when combined with other risk factors. The emergence of exposomics as a research tool promises to enhance our understanding of how environmental factors influence liver disease. Importantly, exposure effects can vary by demographic and socioeconomic factors, highlighting environmental justice concerns. Implementation of this knowledge in clinical practice requires new diagnostic approaches, healthcare system adaptations, and increased awareness among medical professionals. In conclusion, this review provides a comprehensive examination of current evidence linking environmental exposures to liver disease and discusses implications for clinical practice and public health policy.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianzhu Luo
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Paxton Brizendine
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Pooja Muddasani
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oluwanifemiesther Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shannon A Heinig
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frederick A Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Hamda Siddiqui
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abigail Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tyler C Gripshover
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Banrida Wahlang
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Walter H Watson
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matthew C Cave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
21
|
Hu J, Sun J, Zhong Q, Chen S, Yin W, Wei X, Li L, Li K, Ali M, Sun W, Rajput SA, Abdullah M, Si H, Wu Y. Edgeworthia gardneri (Wall.) Meisn Mitigates CCL4-induced liver injury in mice by modulating gut microbiota, boosting antioxidant defense, and reducing inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118042. [PMID: 40086032 DOI: 10.1016/j.ecoenv.2025.118042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Herbal medicine has become an area of growing global scientific interest. The prime objective of this study was to investigate the protective role of Edgeworthia gardneri (Wall.) Meisn (EGM polysaccharide) against carbon tetrachloride (CCl4)-induced liver injury in mice. Forty-five ICR mice were randomly divided into three groups (n = 15): IC, IM, and IT. The IT group received EGM polysaccharide solution (50 mg/kg) daily, while the IC and IM groups were administered an equivalent volume of normal saline. The IT and IM groups were intraperitoneally injected with a mixture of CCl4 and olive oil at 1:1 (v/v) (2 mL/kg) every 3 days. Our results showed that EGM polysaccharide significantly (p < 0.05) reduced pathological hepatic alterations and an increased liver index caused by CCl4. Moreover, EGM polysaccharide therapy significantly (p < 0.001) increased levels of antioxidant enzymes, such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) and reduced malondialdehyde (MDA) content in a dose-dependent manner. Notably, EGM polysaccharide alleviated the inflammatory cascades as evidenced by decreased serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor- α (TNF-α) under CCl4 administration. Furthermore, 16 s rRNA gene sequencing results exhibited that EGM polysaccharide increased the abundance of probiotics bacteria, such as Unclassified_Lachnospiraceae, and decreased the abundance of pathogenic bacterial texas like Brevundimonas and Candidatus_Nitrocosmicu. Conclusively, EGM polysaccharide protects against CCl4-induced oxidative stress and inflammation in the liver and alleviates hepatic injury through beneficial gut microbiota modulations. The current study suggests that EGM polysaccharide is an effective agent in counteracting CCl4-induced hepatic damage.
Collapse
Affiliation(s)
- Jiashu Hu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266000, PR China
| | - Jitao Sun
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Wei
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, PR China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjing Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yi Wu
- College of Veterinary Medicine, Yunan Agricultural University, Kunming 650201, PR China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
22
|
Li C, Ge YZ, Hao YH, Xu JJ, Zhang SW, Chen SY, Kan HD, Meng X, Huang HF, Wu YT. Associations between fine particulate matter and its constituents and intrahepatic cholestasis of pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118010. [PMID: 40073785 DOI: 10.1016/j.ecoenv.2025.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Few studies have reported an association between intrahepatic cholestasis of pregnancy (ICP) and preconception exposure to PM2.5 and sunlight duration, but there has been no in-depth analysis of the correlation between ICP and different constituents of PM2.5. Thus, we performed this retrospective analysis among 160,544 pregnant women who delivered between 2014 and 2020, to further estimate the impact of different constituents of PM2.5, as well as the duration of sunlight, on ICP via generalized linear models. During the three months prior to conception, the adjusted odds ratios (aORs) for ICP were 1.176 (95 % CI: 1.066, 1.298) for a 10 μg/m3 increase in PM2.5, 1.080 (95 % CI: 1.026, 1.138) for a 1 μg/m3 increase in sulfate (SO42-), 1.069 (95 % CI: 1.025, 1.115) for a 1 μg/m3 increase in organic matter (OM), 1.274 (95 % CI: 1.049, 1.546) for a 1 μg/m3 increase in black carbon (BC), and 1.213 (95 % CI: 1.088, 1.353) for a 1-hour decrease in sunlight duration. In addition, during the preconception period, increased exposure to PM2.5 constituents (including SO42-, OM, and BC) and decreased sunlight duration interactively associated with ICP. Moreover, exposure to OM during the first trimester (aOR=1.043, 95 % CI: 1.004, 1.083) and to BC during both the first trimester (aOR=1.201, 95 % CI: 1.000, 1.442) and the second trimester (aOR=1.278, 95 % CI: 1.048, 1.558) were found to elevate the risk of ICP. In the future, women preparing to conceive should increase sunlight exposure and avoid exposure to air pollution, and the constituents related to anthropogenic emissions should be controlled to prevent these associations.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Ying-Zhou Ge
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan-Hui Hao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Si-Wei Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Si-Yue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hai-Dong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China.
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China.
| |
Collapse
|
23
|
Castillo F, Taboun O, Farag Alla J, Yankova K, Hanneman K. Imaging Climate-Related Environmental Exposures: Impact and Opportunity. Can Assoc Radiol J 2025:8465371251322762. [PMID: 40019143 DOI: 10.1177/08465371251322762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Climate change is the most important challenge of this century. Global surface temperature is continuously rising to new record highs, adversely affecting the health of the planet and humans. The purpose of this article is to review the impact of climate related environmental exposures on human health, healthcare delivery, and medical imaging and explore the potential to leverage medical imaging as a non-invasive tool to advance our understanding of climate related health effects. Radiology departments and healthcare systems must focus on building resilience to the effects of climate change while ensuring that the delivery of care is environmentally sustainable. Further research is needed to refine our understanding of the effects of climate change on human health and to forecast the expected changes in the demand for healthcare and radiology services.
Collapse
Affiliation(s)
- Felipe Castillo
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| | - Omar Taboun
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - John Farag Alla
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| |
Collapse
|
24
|
Cui F, Wang H, Guo M, Sun Y, Xin Y, Gao W, Fang X, Chen L, Niu P, Ma J. Methyl tert-Butyl Ether May Be a Potential Environmental Pathogenic Factor for Nonalcoholic Fatty Liver Disease: Results from NHANES 2017-2020. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:190-198. [PMID: 40012874 PMCID: PMC11851211 DOI: 10.1021/envhealth.4c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 02/28/2025]
Abstract
Previous studies have shown that methyl tert-butyl ether (MTBE) could interfere with lipid metabolism. However, there is still a lack of epidemiological reports on the association between MTBE exposure and the risk of nonalcoholic fatty liver disease (NAFLD). In this study, a cross-sectional study was performed with data from the 2017-2020 cycles of the National Health and Nutrition Examination Survey (NHANES). The target population consisted of adults with reliable vibration controlled Transient elastography (VCTE) and blood MTBE concentration results. The hepatic steatosis and fibrosis were assessed by the values of the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), respectively. Generalized linear mixed model analysis was performed to evaluate the association between MTBE exposure and both steatosis and early liver fibrosis after adjustment for potential confounders. A total of 1303 subjects were enrolled and divided into NAFLD groups (CAP ≥ 248) and non-NAFLD groups (CAP < 248) based on the values of CAP in this study. Generalized linear mixed analysis suggested that blood MTBE concentration was positively associated with NAFLD risk in whole populations (OR: 2.153, 95% confidence interval [CI], 1.176-3.940) and female populations (OR: 11.019, 95% CI: 2.069-58.676). Blood MTBE concentration still showed an obvious positive correlation with the NAFLD risk after excluding factors such as diet and exercise in whole populations. Similarly, a positive correlation between blood MTBE concentration and liver fibrosis was also observed, although the results did not show significant statistical differences. In conclusion, our results indicate that MTBE exposure might be a potential important environmental pathogenic factor for NAFLD.
Collapse
Affiliation(s)
- Fengtao Cui
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
- Occupational
Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Hanyun Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Mingxiao Guo
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yucheng Sun
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ye Xin
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- Occupational
Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Xingqiang Fang
- Occupational
Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd, Huaibei, Anhui Province 235000, China
| | - Li Chen
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
25
|
Shen D, Cai X, Hu J, Song S, Zhu Q, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Inflammatory Indices and MAFLD Prevalence in Hypertensive Patients: A Large-Scale Cross-Sectional Analysis from China. J Inflamm Res 2025; 18:1623-1638. [PMID: 39925928 PMCID: PMC11806676 DOI: 10.2147/jir.s503648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
Objective Hypertension development and progression are largely influenced by inflammation, which plays a critical role by activating the immune system and causing damage to the vascular endothelium. Metabolic dysfunction-associated fatty liver disease (MAFLD) is also associated with chronic low-grade inflammation, which drives disease progression via metabolic imbalances and adipose tissue dysfunction. This study investigates the relationship between inflammatory indices and MAFLD in hypertensive patients and assesses the predictive accuracy of these indices for MAFLD. Methods We performed a cross-sectional analysis involving 34,303 hypertensive patients from a Chinese hospital-based registry. The diagnosis of MAFLD was established using metabolic dysfunction criteria alongside evidence of hepatic steatosis confirmed through imaging. Complete blood counts were used to calculate inflammatory indices, including the monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic inflammatory response index (SIRI), systemic immune-inflammation index (SII), and aggregate index of systemic inflammation (AISI). To assess the relationship between inflammatory indices and MAFLD, multivariable logistic regression was performed with adjustments for potential confounders. The diagnostic performance of these indices was analyzed using receiver operating characteristic (ROC) curves and area under the curve (AUC) calculations. Results Patients with MAFLD exhibited significantly elevated levels of all inflammatory indices compared to those without. After multivariable adjustment, each standard deviation increase in AISI, SIRI, and SII was associated with a 74%, 62%, and 58% increased odds of MAFLD, respectively. The AUC for AISI was 0.659, indicating moderate diagnostic accuracy. The AUCs for SIRI and SII were 0.626 and 0.619, respectively, while NLR, PLR, and MLR had lower AUCs of 0.593, 0.558, and 0.589, respectively. Conclusion In hypertensive patients, inflammatory indices, especially AISI, show a strong association with MAFLD, indicating their potential utility in risk stratification within clinical settings. Further research is needed to evaluate the effectiveness of these markers in the management of MAFLD.
Collapse
Affiliation(s)
- Di Shen
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xintian Cai
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Junli Hu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Shuaiwei Song
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qing Zhu
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Huimin Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Yingying Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Rui Ma
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Pan Zhou
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Wenbo Yang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Jing Hong
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Delian Zhang
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
26
|
Zhang J, Ran S, Wei S, Tian F, Chen L, Yang Z, Chen G, Lin H. Associations of MAFLD subtypes and air pollutants with multi-system morbidity and all-cause mortality: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117893. [PMID: 39955868 PMCID: PMC11860302 DOI: 10.1016/j.ecoenv.2025.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) and air pollution are both significant health concerns. However, their combined effects on multi-system morbidity and all-cause mortality remain poorly understood. METHODS We analyzed data from 434,417 UK Biobank participants, categorizing them into four groups: non-MAFLD, MAFLD-diabetes, MAFLD-lean, and MAFLD-overweight/obesity. To evaluate the long-term effects of air pollution exposure, we used time-varying Cox proportional hazard models to assess four air pollutants: particulate matter with an aerodynamic diameter < 2.5 μm (PM2.5), PM10, nitrogen dioxide (NO2), and nitrogen oxides (NOx). We examined the associations between these air pollutants, MAFLD subtypes, and their joint impact on multi-system morbidity and all-cause mortality. Furthermore, we explored the additive and multiplicative interactions between air pollutants and MAFLD subtypes. RESULTS At baseline, 15,325 participants were classified as MAFLD-diabetes, 3341 as MAFLD-lean, and 140,934 as MAFLD-overweight/obesity. Among these groups, MAFLD-diabetes was most strongly associated with adverse outcomes compared to other subtypes. Air pollution exposure had a synergistic effect on cirrhosis risk across all MAFLD subtypes, with the most pronounced effects observed for PM2.5 [relative excess risk due to interaction (RERI): 2.10 (0.94, 3.26)] and NO2 [RERI:1.85 (0.67, 3.04)] in MAFLD-lean group. Positive additive and multiplicative interactions between air pollutants and MAFLD subtypes were also observed for coronary artery disease (CAD), with the exception of nitrogen oxide in the MAFLD-lean group. Additionally, only the MAFLD-diabetes demonstrated significant positive additive interactions with all four air pollutants in relation to chronic kidney disease (CKD). CONCLUSIONS This study highlights the distinct impacts of MAFLD subtypes on multi-system morbidity and all-cause mortality, underscoring the critical need for targeted prevention and treatment strategies, particularly for individuals with MAFLD-diabetes. Our findings reveal significant additive and synergistic effects of air pollution exposure on the risks of cirrhosis, CAD, and CKD among MAFLD patients.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zijun Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
27
|
Zhao H, Zheng X, Lin G, Wang X, Lu H, Xie P, Jia S, Shang Y, Wang Y, Bai P, Zhang X, Tang N, Qi X. Effects of air pollution on the development and progression of digestive diseases: an umbrella review of systematic reviews and meta-analyses. BMC Public Health 2025; 25:183. [PMID: 39819486 PMCID: PMC11740668 DOI: 10.1186/s12889-024-21257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Air pollution, especially particulate matter (PM), is one of the most common risk factors for global burden of disease. However, its effect on the risk of digestive diseases is unclear. Herein, we attempt to explore this issue by reviewing the existing evidence from published meta-analyses. We conducted a systematic literature search to identify all relevant meta-analyses regarding the association of air pollution with digestive diseases, and summarize their major findings. We assessed the methodological quality and evidence quality of the included meta-analyses using the AMSTAR-2 and GRADE tools, respectively, and the overlap of primary studies was assessed by the GROOVE tool. Nine meta-analyses were included in our analysis, containing 43 primary studies with high overlap. In the included meta-analyses, the methodological quality was from critically low to moderate, and the evidence quality was from very low to moderate. The exposure was primarily PM2.5. Seven, four, and one meta-analysis investigated the effect of air pollution on liver diseases, gastrointestinal diseases, and pancreatic diseases, respectively. PM2.5 exposure was significantly associated with liver dysfunction, chronic liver diseases, liver cancer, and colorectal cancer, but not oesophagus cancer, gastric cancer, or pancreatic cancer. Based on very low to moderate quality evidence from meta-analyses, PM2.5 exposure may contribute to the development of some digestive diseases, especially liver diseases.
Collapse
Affiliation(s)
- Haonan Zhao
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Zheng
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Guo Lin
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaomin Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Huiyuan Lu
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengpeng Xie
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Siqi Jia
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiyang Shang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xuan Zhang
- National Institute of Occupational Safety and Health, Kanagawa, 214-8585, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan.
- College of Energy and Power, Shenyang Institute of Engineering, Shenyang, 110136, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China.
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
28
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
29
|
He X, Zhang S, Bai Q, Pan M, Jiang Y, Liu W, Li W, Gong Y, Li X. Air pollution exposure and prevalence of non-alcoholic fatty liver disease and related cirrhosis: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117469. [PMID: 39657383 DOI: 10.1016/j.ecoenv.2024.117469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND AND OBJECTIVE A systematic review and meta-analysis were used to investigate the relationship between air pollution exposure and the prevalence of non-alcoholic fatty liver disease (NAFLD) and its related cirrhosis. Through this study, we hope to clarify the potential public health risks of air pollution as an environmental exposure factor. METHODS Through a comprehensive and systematic search of the EMBASE, PubMed, Web of Science, and Cochrane library databases, studies published up to March 30, 2024, that met the eligibility criteria were identified. The meta-analysis aimed to determine the association between air pollution exposure and NAFLD risk. Subgroup analyses were conducted based on regional economic development after adjusting for confounding factors. The combined odds ratio (OR) was calculated, publication bias was assessed using funnel plots, and consideration was given to heterogeneity among study-specific relative risks. RESULTS This review included 14 observational studies (including 7 cohort studies and 7 cross-sectional studies) involving 43,475,41 participants. The pooled analysis showed that PM2.5, NOx, PM10, PM2.5-10, passive smoking, PM1, and air pollution from solid fuels were positively associated with the incidence and prevalence of NAFLD and its related cirrhosis. The risk ratios for PM2.5, NOx, PM10, PM2.5-10, passive smoking, and air pollution from solid fuels for NAFLD and its related cirrhosis were 1.33 (95 % CI: 1.25, 1.42), 1.19 (95 % CI: 1.14, 1.23), 1.27 (95 % CI: 1.05, 1.55), 1.05 (95 % CI: 1.00, 1.11), 1.53 (95 % CI: 1.12, 2.09), 1.50 (95 % CI: 0.86, 2.63), and 1.18 (95 % CI: 0.85, 1.63), respectively. In contrast, the risk ratio for O3 was 0.75 (95 % CI: 0.69, 0.83), suggesting that O3 may lower the incidence and prevalence of NAFLD and its related cirrhosis. We also conducted subgroup analyses based on the level of national development to examine the impact of PM2.5 on NAFLD and its related cirrhosis. The results showed that the risk of NAFLD and its related cirrhosis associated with PM2.5 in developing countries was 1.41 (95 % CI: 1.29, 1.53), which was higher than 1.20 (95 % CI: 1.12, 1.29) in developed countries. CONCLUSION The study findings show that PM2.5, NOx, PM10, PM2.5-10, passive smoking, PM1, and air pollution from solid fuels can increase an individual's risk of developing NAFLD and its related cirrhosis; while O3 can reduce the risk. In developing countries, the risk level of NAFLD and its related cirrhosis due to PM2.5 is higher than that in developed countries.
Collapse
Affiliation(s)
- Xingyi He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Shipeng Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Qinglin Bai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Moshen Pan
- School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, PR China
| | - Yanjie Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, No.157 Daming Road, Nanjing 210022, PR China
| | - Weiwei Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Li
- Department of Intensive Care Medicine, Sichuan Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu 610041, PR China
| | - Yuanyuan Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
30
|
Aimuzi R, Xie Z, Qu Y, Luo K, Jiang Y. Proteomic signatures of ambient air pollution and risk of non-alcoholic fatty liver disease: A prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177529. [PMID: 39547383 DOI: 10.1016/j.scitotenv.2024.177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Air pollution has been linked with non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms characterized by perturbations in the circulating proteome profile are largely unknown. Therefore, we included 51,357 participants from the UK Biobank with 2941 plasma proteins measured in blood samples collected between 2006 and 2010, measurements of annual fine particular matter <2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2), and follow-up data on NAFLD (743 incident cases occurred over a median follow-up of 13.6 years). Multiple linear regression was used to identify proteins associated with PM2.5 and NO2. Cox proportional hazards models were applied to assess associations of PM2.5 and NO2 and identified proteins with incident NAFLD. Mediation analyses were conducted to explore the mediation role of proteins in the associations between air pollution and incident NAFLD. After adjusting for selected covariates, PM2.5 (hazard ratio [HR] = 2.57, 95%CI:1.27, 5.21, per ln increase) and NO2 (HR = 1.43, 95%CI: 1.10, 1.84, per ln increase) were positively associated with incident NAFLD. We identified 138 proteins associated with PM2.5 (92 positively, 46 inversely, FDR <0.05) and 143 with NO2 (100 positively, 43 inversely). Of the proteins that were significantly associated with both PM2.5 and NO2, 93 (79 positively, 14 inversely) and 79 (69 positively, 10 inversely) were significantly associated with incident NAFLD. Furthermore, 84 PM2.5-associated proteins and 66 NO2-associated proteins significantly mediated the corresponding association between air pollutants and incident NAFLD, with the proportion of mediation effects ranging from 3.2 % to 27.3 % for PM2.5 and 2.6 % to 20.8 % for NO2, respectively. Of note, the majority of significant mediating proteins were enriched in pathways of cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor. Our findings suggested that long-term exposure to PM2.5 and NO2 was associated with an increased risk of NAFLD partially by perturbating circulating proteins involved in pathways of inflammation and immunity responses.
Collapse
Affiliation(s)
- Ruxianguli Aimuzi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
31
|
Lobato S, Salomón-Soto VM, Espinosa-Méndez CM, Herrera-Moreno MN, García-Solano B, Pérez-González E, Comba-Marcó-del-Pont F, Montesano-Villamil M, Mora-Ramírez MA, Mancilla-Simbro C, Álvarez-Valenzuela R. Molecular Pathways Linking High-Fat Diet and PM 2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules 2024; 14:1607. [PMID: 39766314 PMCID: PMC11674716 DOI: 10.3390/biom14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity, influenced by environmental pollutants, can lead to complex metabolic disruptions. This systematic review and meta-analysis examined the molecular mechanisms underlying metabolically abnormal obesity caused by exposure to a high-fat diet (HFD) and fine particulate matter (PM2.5). Following the PRISMA guidelines, articles from 2019 to 2024 were gathered from Scopus, Web of Science, and PubMed, and a random-effects meta-analysis was performed, along with subgroup analyses and pathway enrichment analyses. This study was registered in the Open Science Framework. Thirty-three articles, mainly case-control studies and murine models, were reviewed, and they revealed that combined exposure to HFD and PM2.5 resulted in the greatest weight gain (82.835 g, p = 0.048), alongside increases in high-density lipoproteins, insulin, and the superoxide dismutase. HFD enriched pathways linked to adipocytokine signaling in brown adipose tissue, while PM2.5 impacted genes associated with fat formation. Both exposures downregulated protein metabolism pathways in white adipose tissue and activated stress-response pathways in cardiac tissue. Peroxisome proliferator-activated receptor and AMP-activated protein kinase signaling pathways in the liver were enriched, influencing non-alcoholic fatty liver disease. These findings highlight that combined exposure to HFD and PM2.5 amplifies body weight gain, oxidative stress, and metabolic dysfunction, suggesting a synergistic interaction with significant implications for metabolic health.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
- Clínica de Medicina Familiar con Especialidades y Quirófano ISSSTE, 27 North Street 603, Santa Maria la Rivera Colony, Puebla 72045, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Víctor Manuel Salomón-Soto
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| | - Claudia Magaly Espinosa-Méndez
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - María Nancy Herrera-Moreno
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Beatriz García-Solano
- Facultad de Enfermería, Benemérita Universidad Autónoma de Puebla, 25th Avenue West 1304, Los Volcanes Colony, Puebla 74167, Mexico
| | - Ernestina Pérez-González
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- Departamento de Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa, Instituto Politécnico Nacional, Juan de Dios Bátiz Boulevard 250, San Joachin Colony, Guasave 81049, Mexico
| | - Facundo Comba-Marcó-del-Pont
- Facultad de Cultura Física, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue and 22nd South Boulevard, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Mireya Montesano-Villamil
- Subsecretaría de Servicios de Salud Zona B, Servicios de Salud del Estado de Puebla, 603 North 6th Street, Centro Colony, Puebla 72000, Mexico;
| | - Marco Antonio Mora-Ramírez
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Claudio Avenue 1814, Ciudad Universitaria Colony, Puebla 72560, Mexico;
| | - Claudia Mancilla-Simbro
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
- HybridLab, Fisiología y Biología Molecular de Células Excitables, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Prolongation of 14th South Street 6301, Ciudad Universitaria Colony, Puebla 72560, Mexico
| | - Ramiro Álvarez-Valenzuela
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato 80600, Mexico; (V.M.S.-S.); (M.N.H.-M.); (C.M.-S.); (R.Á.-V.)
| |
Collapse
|
32
|
Tian F, Wang Y, Huang Z, Qian AM, Wang C, Tan L, McMillin SE, Abresch C, Zhang Z, Lin H. Metabolomic profiling identifies signatures and biomarkers linking air pollution to dementia risk: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136498. [PMID: 39547039 DOI: 10.1016/j.jhazmat.2024.136498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Exposure to air pollution has been associated with increased dementia. However, it remains unknown what specific metabolic mechanisms play a role in this relationship. We included 192,300 dementia-free participants from the UK Biobank cohort study. Annual concentrations of air pollution were assessed based on the residential address. Elastic net regression was performed to identify air pollution-related metabolites, and metabolic score was constructed. Cox regression models and covariate balancing generalized propensity scores (CBGPS) regression models were conducted to explore the longitudinal associations between air pollution/metabolic signatures and dementia risk. The underlying mechanisms between air pollution and dementia driven by metabolic signature or specific metabolites were also investigated. A total of 2592 incident dementia cases were documented. We identified the metabolite profiles in response to air pollution exposure, including 87 metabolites for PM2.5, 65 metabolites for PM10, 76 metabolites for NO2, and 71 metabolites for NOx. The air pollution-related metabolic signatures were associated with increased risk of dementia, with hazard ratios (HR) of 1.17 (95 % CI: 1.12, 1.22), 1.06 (95 % CI: 1.02, 1.11), 1.16 (95 % CI: 1.10, 1.21), and 1.17 (95 % CI: 1.12, 1.22) for PM2.5, PM10, NO2 and NOx, respectively. The associations persisted using causal models. Metabolic signatures mediated the associations between air pollution exposure and dementia risk, with mediation proportions ranging from 6.57 % to 12.71 %. Additionally, we observed that a metabolite known as free cholesterol in medium VLDL (M-VLDL-FC) played a crucial mediating role. Our study provides novel insights into the metabolic mechanisms linking air pollution exposure to dementia risk.
Collapse
Affiliation(s)
- Fei Tian
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuhua Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenhe Huang
- Department of Geriatric Medicine, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen, China
| | - Aaron M Qian
- Department of Psychology, College of Arts and Sciences, Saint Louis University, 3700 Lindell Boulevard, Saint Louis, MO 63108, United States
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | | | - Chad Abresch
- Department of Health Promotion, College of Public Health, University of Nebraska Medical Center, 986075 Nebraska Medical Center, Omaha, NE 68198, United States
| | - Zilong Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hualiang Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Zhang K, Tian L, Sun Q, Lv J, Ding R, Yu Y, Li Y, Duan J. Constructing an adverse outcome pathway framework for the impact of maternal exposure to PM 2.5 on liver development and injury in offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104585. [PMID: 39489199 DOI: 10.1016/j.etap.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a significant contributor to air pollution. PM2.5 exposure poses a substantial hazard to public health. In recent years, the adverse effects of maternal PM2.5 exposure on fetal health have gradually gained public attention. As the largest organ in the body, the liver has many metabolic and secretory functions. Liver development, as well as factors that interfere with its growth and function, are of concern. This review utilized the adverse outcome pathway (AOP) framework as the analytical approach to demonstrate the link between maternal PM2.5 exposure and potential neonatal liver injury from the molecular to the population level. The excessive generation of reactive oxygen species (ROS), subsequent endoplasmic reticulum (ER) stress, and oxidative stress were regarded as the essential components in this framework, as they could trigger adverse developmental outcomes in the offspring through DNA damage, autophagy dysfunction, mitochondrial injury, and other pathways. To the best of our knowledge, this is the first article based on an AOP framework that elaborates on the influence of maternal exposure to PM2.5 on liver injury occurrence and adverse effects on liver development in offspring. Therefore, this review offered mechanistic insights into the developmental toxicity of PM2.5 in the liver, which provided a valuable basis for future studies and prevention strategies.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Jianong Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
34
|
Ratziu V. Cirrhose métabolique : une entité en plein essor. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2024. [DOI: 10.1016/j.banm.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Suoh M, Esmaili S, Eslam M, George J. Metabolic (dysfunction)-associated fatty liver disease metrics and contributions to liver research. Hepatol Int 2024; 18:1740-1755. [PMID: 39412611 PMCID: PMC11632019 DOI: 10.1007/s12072-024-10731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 12/11/2024]
Abstract
BACKGROUND The international consensus to revise non-alcoholic fatty liver disease to metabolic (dysfunction)-associated fatty liver disease (MAFLD) in 2020 attracted significant attention. The impact of the MAFLD definition on the research community has not been objectively assessed. We conducted an analysis of systematically collected literature on MAFLD to understand its research impact. METHODS From PubMed, Web of Science, and Scopus, the literature adopting MAFLD, written in English, and published from 2020 to 10 October 2023 was collected. The publication metrics, including publication counts, publishing journals, author countries, author keywords, and citation information, were analyzed to evaluate the research impact and key topics on MAFLD. RESULTS 1469 MAFLD-related papers were published in 434 journals with a steady increase in the number. The intense publishing and citations activity on MAFLD indicates the large impact of the redefinition. Topic assessment with keyword and citation analysis revealed a transition from the proposal and discussion of the redefinition to clinical characterization of MAFLD with a focus on metabolic dysfunction. Moreover, the diagnostic criteria for MAFLD showed better performance in predicting hepatic and extrahepatic outcomes compared to NAFLD. The publications were from 99 countries with evidence of strong regional and global collaboration. Multiple international societies and stakeholders have endorsed MAFLD for its utility in clinical practice, improving patient management and promoting multidisciplinary care, while alleviating stigma. CONCLUSION This survey provides a quantitative measure of the considerable international impact and contributions of the MAFLD definition towards liver research and as part of the spectrum of cardiometabolic disorders.
Collapse
Affiliation(s)
- Maito Suoh
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Saeed Esmaili
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Mohammed Eslam
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, Westmead Hospital and The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| |
Collapse
|
36
|
Song Q, Pan J, Pan M, Zheng C, Fan W, Zhen J, Pi D, Liang Z, Shen H, Li Y, Yang Q, Zhang Y. Exploring the relationship between air pollution, non-alcoholic fatty liver disease, and liver function indicators: a two-sample Mendelian randomization analysis study. Front Endocrinol (Lausanne) 2024; 15:1396032. [PMID: 39678198 PMCID: PMC11637881 DOI: 10.3389/fendo.2024.1396032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder worldwide, with an increasing incidence in recent years. While previous studies have suggested an association between the air pollutant PM2.5 and NAFLD, there is still considerable debate regarding the existence of a clear causal relationship between air pollution and NAFLD. This study aims to employ Mendelian randomization methods to evaluate the causal relationship between major air pollutants and NAFLD. Method We conducted Mendelian randomization analyses on a large-scale publicly available genome-wide association study (GWAS) dataset of European populations to dissect the association between air pollutants, NAFLD, and liver function indicators. We used five different analysis methods, including Inverse-variance weighted (IVW), Weighted median, MR-Egger, Simple mode, and Weighted mode, to analyze the data. We also tested for pleiotropy, heterogeneity, and sensitivity of the results. Results This study utilized four common exposures related to air pollution and four outcomes related to NAFLD. The results regarding the association between air pollutants and NAFLD (PM2.5: P=0.808, 95% CI=0.37-3.56; PM10: P=0.238, 95% CI=0.33-1.31; nitrogen dioxide: P=0.629, 95% CI=0.40-4.61; nitrogen oxides: P=0.123, 95% CI=0.13-1.28) indicated no statistically significant correlation between them. However, notably, there was a causal relationship between PM10 and serum albumin (ALB) levels (P=0.019, 95% CI=1.02-1.27). Conclusion This MR study found no evidence of a causal relationship between air pollution and NAFLD in European populations. However, a statistically significant association was observed between PM10 and ALB levels, suggesting that the air pollutant PM10 may impact the liver's ability to synthesize proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Lian CY, Li HJ, Xia WH, Li Y, Zhou XL, Yang DB, Wan XM, Wang L. Insufficient FUNDC1-dependent mitophagy due to early environmental cadmium exposure triggers mitochondrial redox imbalance to aggravate diet-induced lipotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124724. [PMID: 39142430 DOI: 10.1016/j.envpol.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd) is a toxic contaminant widely spread in natural and industrial environments. Adolescent exposure to Cd increases risk for obesity-related morbidity in young adults including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite this recognition, the direct impact of adolescent Cd exposure on the progression of MASLD later in life, and the mechanisms underlying these effects, remain unclear. Here, adolescent rats received control diet or diets containing 2 mg Cd2+/kg feed for 4 weeks, and then HFD containing 15% lard or control diet in young adult rats was selected for 6 weeks to clarify this issue. Data firstly showed that HFD-fed rats in young adulthood due to adolescent Cd exposure exhibited more severe MASLD, evidenced by increased liver damage, disordered serum and hepatic lipid levels, and activated NLRP3 inflammasome. Hepatic transcriptome analysis revealed the potential effects of mitochondrial dysfunction in aggravated MASLD due to Cd exposure. Verification data further confirmed that mitochondrial structure and function were targeted and disrupted during this process, shown by broken mitochondrial ridges, decreased mitochondrial membrane potential, imbalanced mitochondrial dynamic, insufficient ATP concentration, and enhanced mitochondrial ROS generation. However, mitophagy is inactively involved in clearance of damaged mitochondria induced by early Cd in HFD condition due to inhibited mitophagy receptor FUNDC1. In contrast, FUNDC1-dependent mitophagy activation prevents lipotoxicity aggravated by early Cd via suppressing mitochondrial ROS generation. Collectively, our data show that insufficient FUNDC1-dependent mitophagy can drive the transition from HFD-induced MASLD to MASH, and accordingly, these findings will provide a better understanding of potential mechanism of diet-induced metabolic diseases in the context of early environmental Cd exposure.
Collapse
Affiliation(s)
- Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Hui-Jia Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Wei-Hao Xia
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Du-Bao Yang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, China
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province, 271017, China.
| |
Collapse
|
38
|
Mottahedin P, Chahkandi B, Moezzi R, Fathollahi-Fard AM, Ghandali M, Gheibi M. Air quality prediction and control systems using machine learning and adaptive neuro-fuzzy inference system. Heliyon 2024; 10:e39783. [PMID: 39583805 PMCID: PMC11584944 DOI: 10.1016/j.heliyon.2024.e39783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Accurately predicting air quality concentrations is a challenging task due to the complex interactions of pollutants and their reliance on nonlinear processes. This study introduces an innovative approach in environmental engineering, employing artificial intelligence techniques to forecast air quality in Semnan, Iran. Comprehensive data on seven different pollutants was initially collected and analyzed. Then, several machine learning (ML) models were rigorously evaluated for their performance, and a detailed analysis was conducted. By incorporating these advanced technologies, the study aims to create a reliable framework for air quality prediction, with a particular focus on the case study in Iran. The results indicated that the adaptive neuro-fuzzy inference system (ANFIS) was the most effective method for predicting air quality across different seasons, showing high reliability across all datasets.
Collapse
Affiliation(s)
- Pouya Mottahedin
- Department of Chemical Engineering, Faculty of Engineering, University of Garmsar, Garmsar, Iran
| | - Benyamin Chahkandi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233, Gdansk, Poland
| | - Reza Moezzi
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, 461 17, Liberec, Czech Republic
- Association of Talent under Liberty in Technology (TULTECH), Sopruse Pst, 10615, Tallinn, Estonia
| | - Amir M. Fathollahi-Fard
- Département d′Analytique, Opérations et Technologies de l′Information, Université du Québec à Montréal, B.P. 8888, Succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Mojtaba Ghandali
- Environment Research Center, Department of Environment, Semnan University, Semnan, Iran
| | - Mohammad Gheibi
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 461 17, Liberec, Czech Republic
| |
Collapse
|
39
|
Peleman J, Ruan M, Dey T, Chiang S, Dilger A, Mitchell MB, Jung YS, Ramanathan M, Mady L, Yu S, Cramer J, Lee SE. Air pollution exposure and head and neck cancer incidence. Sci Rep 2024; 14:26998. [PMID: 39532908 PMCID: PMC11557966 DOI: 10.1038/s41598-024-73756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
To investigate air pollution's effect in the form of PM2.5 (particulate matter measuring less than 2.5 microns) on head and neck aerodigestive cancer incidence, an epidemiological cohort analysis was performed using data from the Surveillance Epidemiology and End Results national cancer database from the years 2002-2012. The relationship between US county mean PM2.5 levels and head and neck cancer (HNC) incidence rates were examined using a linear mixed model. Lagged effect of the pollutant's effect on HNC incidence was analyzed. Our results showed a significant association between the incidence of HNC and certain subtypes with PM2.5 exposure after controlling for demographic characteristics, smoking and alcohol use. We observed the highest association at a 5-year lag period (β = 0.24, p value < 0.001). We observed significant associations at no lag (β = 0.16, p value = 0.02) and up to a 20-year lag period (β = 0.15, p value < 0.001). PM2.5 exposure is associated with an increased incidence of HNC, with the strongest association at a 5-year lag period. To better understand the relationships between exposure and cancer pathogenesis, further subgroup analysis is needed.
Collapse
Affiliation(s)
- John Peleman
- Department of Otolaryngology, Head and Neck Surgery at Wayne State University, Detroit, USA.
| | - Mengyuan Ruan
- Center for Surgery and Public Health, Department of Surgery at Brigham and Women's Hospital, Boston, USA
| | - Tanujit Dey
- Center for Surgery and Public Health, Department of Surgery at Brigham and Women's Hospital, Boston, USA
| | - Simon Chiang
- Division of Otolaryngology, Head & Neck Surgery at Brigham and Women's Hospital, Boston, USA
| | - Amanda Dilger
- Center for Surgery and Public Health, Department of Surgery at Brigham and Women's Hospital, Boston, USA
- Harvard Medical School, Massachusetts Eye and Ear Boston, Boston, USA
| | | | - Youn Soo Jung
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Murrugapan Ramanathan
- Department of Otolaryngology, Head and Neck Surgery at The Johns Hopkins Hospital, Baltimore, USA
| | - Leila Mady
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Sophie Yu
- Division of Otolaryngology, Head & Neck Surgery at Brigham and Women's Hospital, Boston, USA
| | - John Cramer
- Department of Otolaryngology, Head and Neck Surgery at Wayne State University, Detroit, USA
| | - Stella E Lee
- Center for Surgery and Public Health, Department of Surgery at Brigham and Women's Hospital, Boston, USA.
- Division of Otolaryngology, Head & Neck Surgery at Brigham and Women's Hospital, Boston, USA.
| |
Collapse
|
40
|
Duijvestein M, Sidhu R, Zimmermann K, Carrington EV, Hann A, Sousa P, Touw HRW, van Hooft JE, Müller M. The United European Gastroenterology green paper-climate change and gastroenterology. United European Gastroenterol J 2024; 12:1292-1305. [PMID: 39452615 PMCID: PMC11578853 DOI: 10.1002/ueg2.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Climate change, described by the World Health Organization (WHO) in 2021 as 'the single biggest health threat facing humanity', causes extreme weather, disrupts food supplies, and increases the prevalence of diseases, thereby affecting human health, medical practice, and healthcare stability. Greener Gastroenterology is an important movement that has the potential to make a real difference in reducing the impact of the delivery of healthcare, on the environment. The WHO defines an environmentally sustainable health system as one which would improve, maintain or restore health while minimizing negative environmental impacts. Gastroenterologists encounter the impacts of climate change in daily patient care. Alterations in the gut microbiome and dietary habits, air pollution, heat waves, and the distribution of infectious diseases result in changed disease patterns affecting gastrointestinal and hepatic health, with particularly severe impacts on vulnerable groups such as children, adolescents, and the elderly. Additionally, women are disproportionally affected, since climate change can exacerbate gender inequalities. Paradoxically, while healthcare aims to improve health, the sector is responsible for 4.4% of global carbon emissions. Endoscopy is a significant waste producer in healthcare, being the third highest generator with 3.09 kg of waste per day per bed, contributing to the carbon footprint of the GI sector. Solutions to the climate crisis can offer significant health co-benefits. Steps to reduce our carbon footprint include fostering a Planetary Health Diet and implementing measures for greener healthcare, such as telemedicine, digitalization, education, and research on sustainable healthcare practices. Adhering to the principles of 'reduce, reuse, recycle' is crucial. Reducing unnecessary procedures, which constitute a significant portion of endoscopies, can significantly decrease the carbon footprint and enhance sustainability. This position paper by the United European Gastroenterology aims to raise awareness and outline key principles that the GI workforce can adopt to tackle the climate crisis together.
Collapse
Affiliation(s)
- Marjolijn Duijvestein
- Department of Gastroenterology and HepatologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Reena Sidhu
- Academic Department of GastroenterologyRoyal Hallamshire HospitalSheffieldUK
- Division of Clinical MedicineSchool of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Katharina Zimmermann
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious DiseasesUniversity Hospital RegensburgRegensburgGermany
| | | | - Alexander Hann
- Department of Internal Medicine IIInterventional and Experimental Endoscopy (InExEn)University Hospital WürzburgWurzburgGermany
| | - Paula Sousa
- Department of GastroenterologyULS Viseu Dão‐LafõesViseuPortugal
| | - Hugo R. W. Touw
- Department of Intensive CareRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeanin E. van Hooft
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious DiseasesUniversity Hospital RegensburgRegensburgGermany
| |
Collapse
|
41
|
Cheng B, Wei W, Pan C, Liu L, Cheng S, Yang X, Meng P, Zhao B, Xia J, Liu H, Jia Y, Wen Y, Zhang F. Air pollutants and the risk of incident hepatobiliary diseases: A large prospective cohort study in the UK Biobank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175047. [PMID: 39074751 DOI: 10.1016/j.scitotenv.2024.175047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
The association between air pollutants and hepatobiliary pancreatic diseases remains inconclusive. This study analyzed up to 247,091 participants of White European ancestry (aged 37 to 73 years at recruitment) from the UK Biobank, a large-scale prospective cohort with open access. An air pollution score was utilized to assess the combined effect of PM2.5, PM2.5-10, PM10, NO2, and NOX on total hepatobiliary pancreatic diseases, liver diseases, cholecyst diseases, and pancreatic diseases. Cox proportional hazard models were employed to evaluate the relationships between air pollutants and the incidence of these diseases. Restricted cubic spline regressions were used to examine the dose-response association between air pollutants and the risk of hepatobiliary pancreatic diseases. We identified 4865 cases of total hepatobiliary pancreatic diseases, over a median follow-up of 10.86 years. The air pollution scores were moderately associated with increased liver disease risk (HR = 1.009, 95 % CI: 1.004, 1.014), but not with cholecyst and pancreatic diseases. Among the individual air pollutants, PM2.5 (HR = 1.069, 95 % CI: 1.025, 1.115) and PM10 (HR = 1.036, 95 % CI: 1.011, 1.061) significantly increased liver disease risk. Males showed a higher risk of liver diseases with PM2.5 (HR = 1.075, 95 % CI: 1.015, 1.139). Additionally, individuals with overweight (HR = 1.125, 95 % CI: 1.052, 1.203), age ≥ 60 and ≤73 (HR = 1.098, 95 % CI: 1.028, 1.172), and alcohol intake ≥ 14 unit/week (HR = 1.078, 95 % CI: 1.006, 1.155) had a higher risk of developing liver diseases at high expose to PM2.5. This study suggests that prolonged exposure to ambient air pollutants may elevate the risk of liver diseases.
Collapse
Affiliation(s)
- Bolun Cheng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Wenming Wei
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chuyu Pan
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Li Liu
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Shiqiang Cheng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xuena Yang
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peilin Meng
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Boyue Zhao
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Jinyu Xia
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Huan Liu
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yumeng Jia
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yan Wen
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Feng Zhang
- NHC Key Laboratory of Environment and Endemic Diseases (Xi'an Jiaotong University), Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
42
|
Schenker RB, Machle CJ, Allayee H, Lurmann F, Patterson WB, Kohli R, Goran MI, Alderete TL. Ambient air pollution exposure is associated with liver fat and stiffness in Latino youth with a more pronounced effect in those with PNPLA3 genotype and more advanced liver disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117234. [PMID: 39454357 PMCID: PMC11578286 DOI: 10.1016/j.ecoenv.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Exposure to ambient air pollutants has emerged as a risk for metabolic-dysfunction associated steatotic liver disease (MASLD). OBJECTIVES We sought to examine associations between short-term (prior month) and long-term (prior year) ambient air pollution exposure with hepatic fat fraction (HFF) and liver stiffness in Latino youth with obesity. A secondary aim was to investigate effect modification by patatin-like phospholipase domain-containing protein 3 (PNPLA3) genotype and liver disease severity. METHODS Data was analyzed from 113 Latino youth (age 11-19) with obesity in Southern California. Individual exposure to particulate matter with aerodynamic diameter ≤ 2.5μm (PM2.5), ≤ 10μm (PM10), nitrogen dioxide (NO2), 8-hour maximum ozone (8hrMax-O3), 24-hr O3, and redox-weighted oxidative capacity (Oxwt) were estimated using residential address histories and United States Environmental Protection Agency air quality observations. HFF and liver stiffness were measured using magnetic resonance imaging. Linear models were used to determine associations between short-term and long-term exposure to air pollutants with HFF and liver stiffness. Modification by PNPLA3 and liver disease severity was then examined. RESULTS Short-term exposure to 8hrMax-O3 was positively associated with HFF. Relationships between air pollution exposure and HFF were not impacted by PNPLA3 genotype or liver disease severity. Long-term exposure to 8hrMax-O3 and Oxwt were positively associated with liver stiffness. Associations between air pollution exposure and liver stiffness depended on PNPLA3 genotype, such that individuals with GG genotypes exhibited stronger, more positive relationships between short-term exposure to PM10, 8hrMax-O3, 24-hr O3, and Oxwt and liver stiffness than individuals with CC/CG genotypes. In addition, relationships between short-term exposure to NO2 and liver stiffness were stronger in those with severe liver disease. DISCUSSION Air pollution exposure may be a risk factor for liver disease among Latino youth with obesity, particularly in those with other preexisting risks for liver damage.
Collapse
Affiliation(s)
- Rachel B Schenker
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Psychology, University of Oregon, Eugene, OR, USA.
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA.
| | | | - William B Patterson
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA.
| | - Rohit Kohli
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
43
|
Zelber-Sagi S, Carrieri P, Pericàs JM, Ivancovsky-Wajcman D, Younossi ZM, Lazarus JV. Food inequity and insecurity and MASLD: burden, challenges, and interventions. Nat Rev Gastroenterol Hepatol 2024; 21:668-686. [PMID: 39075288 DOI: 10.1038/s41575-024-00959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
Liver disease prevalence, severity, outcomes and hepatic risk factors (for example, unhealthy diet) are heavily affected by socioeconomic status and food insecurity. Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent liver disease globally and is likely to co-occur with other liver diseases associated with food insecurity. Though weight reduction and adopting a healthy diet can reverse the course of MASLD, gaps between recommendations and practice transcend individual responsibility and preference. Broader sociocultural determinants of food choices (social nutrition) include food insecurity, community and social norms and the local environment, including commercial pressures that target people experiencing poverty, ethnic minorities and children. Food insecurity is a barrier to a healthy diet, as a low-quality diet is often less expensive than a healthy one. Consequently, food insecurity is an 'upstream' risk factor for MASLD, advanced fibrosis and greater all-cause mortality among patients with liver disease. Intervening on food insecurity at four major levels (environment, policy, community and health care) can reduce the burden of liver disease, thereby reducing social and health inequities. In this Review, we report on the current research in the field, the need for implementing proven interventions, and the role liver specialists can have.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
- The Global NASH Council, Washington, DC, USA.
| | - Patrizia Carrieri
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France
| | - Juan M Pericàs
- Liver Unit, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research, Universitat Autònoma de Barcelona, CIBERehd, Barcelona, Spain
- Johns Hopkins University-Pompeu Fabra University Public Policy Center, Barcelona, Spain
| | - Dana Ivancovsky-Wajcman
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Zobair M Younossi
- The Global NASH Council, Washington, DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | - Jeffrey V Lazarus
- The Global NASH Council, Washington, DC, USA
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA
| |
Collapse
|
44
|
Shen D, Cai X, Hu J, Song S, Zhu Q, Ma H, Zhang Y, Ma R, Zhou P, Yang W, Hong J, Zhang D, Li N. Associating plasma aldosterone concentration with the prevalence of MAFLD in hypertensive patients: insights from a large-scale cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1451383. [PMID: 39363897 PMCID: PMC11446807 DOI: 10.3389/fendo.2024.1451383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Objective To explore the link between plasma aldosterone concentration (PAC) and the prevalence of metabolic dysfunction-related fatty liver disease (MAFLD) in hypertensive patients. Methods We analyzed data from 41,131 hospitalized patients from January 1, 2014, to December 31, 2023. Multivariate logistic regression models tested associations, with threshold, subgroup, and sensitivity analyses conducted to validate findings. Results For each 5-unit increase in PAC, the risk of MAFLD rose by 1.57 times, consistent even in the fully adjusted model. The odds ratios for the Q2, Q3, and Q4 groups compared to Q1 were 1.21, 2.12, and 3.14, respectively. A threshold effect was observed at 14 ng/dL, with subgroup and sensitivity analyses supporting these results. Conclusions This study reveals a significant positive association between elevated PAC levels and the prevalence of MAFLD in hypertensive patients. These findings underscore the imperative for further large-scale, prospective studies to validate and expand upon this correlation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Nanfang Li
- Hypertension Center of People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, NHC Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Hypertension Research Laboratory, Xinjiang Clinical Medical Research Center for Hypertension (Cardio-Cerebrovascular) Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
45
|
Zhou H, Hong F, Wang L, Tang X, Guo B, Luo Y, Yu H, Mao D, Liu T, Feng Y, Baima Y, Zhang J, Zhao X. Air pollution and risk of 32 health conditions: outcome-wide analyses in a population-based prospective cohort in Southwest China. BMC Med 2024; 22:370. [PMID: 39256817 PMCID: PMC11389248 DOI: 10.1186/s12916-024-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Uncertainty remains about the long-term effects of air pollutants (AP) on multiple diseases, especially subtypes of cardiovascular disease (CVD). We aimed to assess the individual and joint associations of fine particulate matter (PM2.5), along with its chemical components, nitrogen dioxide (NO2) and ozone (O3), with risks of 32 health conditions. METHODS A total of 17,566 participants in Sichuan Province, China, were included in 2018 and followed until 2022, with an average follow-up period of 4.2 years. The concentrations of AP were measured using a machine-learning approach. The Cox proportional hazards model and quantile g-computation were applied to assess the associations between AP and CVD. RESULTS Per interquartile range (IQR) increase in PM2.5 mass, NO2, O3, nitrate, ammonium, organic matter (OM), black carbon (BC), chloride, and sulfate were significantly associated with increased risks of various conditions, with hazard ratios (HRs) ranging from 1.06 to 2.48. Exposure to multiple air pollutants was associated with total cardiovascular disease (HR 1.75, 95% confidence intervals (CIs) 1.62-1.89), hypertensive diseases (1.49, 1.38-1.62), cardiac arrests (1.52, 1.30-1.77), arrhythmia (1.76, 1.44-2.15), cerebrovascular diseases (1.86, 1.65-2.10), stroke (1.77, 1.54-2.03), ischemic stroke (1.85, 1.61-2.12), atherosclerosis (1.77, 1.57-1.99), diseases of veins, lymphatic vessels, and lymph nodes (1.32, 1.15-1.51), pneumonia (1.37, 1.16-1.61), inflammatory bowel diseases (1.34, 1.16-1.55), liver diseases (1.59, 1.43-1.77), type 2 diabetes (1.48, 1.26-1.73), lipoprotein metabolism disorders (2.20, 1.96-2.47), purine metabolism disorders (1.61, 1.38-1.88), anemia (1.29, 1.15-1.45), sleep disorders (1.54, 1.33-1.78), renal failure (1.44, 1.21-1.72), kidney stone (1.27, 1.13-1.43), osteoarthritis (2.18, 2.00-2.39), osteoporosis (1.36, 1.14-1.61). OM had max weights for joint effects of AP on many conditions. CONCLUSIONS Long-term exposure to increased levels of multiple air pollutants was associated with risks of multiple health conditions. OM accounted for substantial weight for these increased risks, suggesting it may play an important role in these associations.
Collapse
Affiliation(s)
- Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuewei Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Luo
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Hui Yu
- Health Information Center of Sichuan Province, Chengdu, Sichuan, China
| | - Deqiang Mao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Ting Liu
- Chenghua District Center for Disease Control and Prevention, Chengdu, China
| | - Yuemei Feng
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yangji Baima
- School of Medicine, Tibet University, Tibet, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Kong X, Huang R, Geng R, Wu J, Li J, Wu Y, Zhao Y, You D, Yu H, Du M, Zhong Z, Li L, Ni S, Bai J. Associations of ambient air pollution and lifestyle with the risk of NAFLD: a population-based cohort study. BMC Public Health 2024; 24:2354. [PMID: 39210312 PMCID: PMC11363520 DOI: 10.1186/s12889-024-19761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Both ambient air pollution and lifestyle factors contribute to the incidence of non-alcoholic fatty liver disease (NAFLD), but previous studies usually focused on single-factor associations. We aimed to assess the joint associations of ambient air pollution and lifestyle with the NAFLD risk and investigate whether lifestyle modifies the association of air pollution with NAFLD risk. METHODS A total of 417,025 participants from the UK Biobank were included in this study. Annual average concentrations of NO2, NOx, PM2.5, PM10, and PM2.5-10 were estimated. A composite lifestyle score was determined based on physical activity, alcohol intake, smoking status, dietary patterns, sedentary time, and sleep duration. Cox proportional hazards regression models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs), as well as the population attributable fraction (PAF). Potential additive interactions of air pollution with lifestyle were also examined by the relative excess risk due to the interaction (RERI) and the attributable proportion due to the interaction (AP). RESULTS 4752 (1.14%) incident NAFLD events were recorded. Long-term exposure to air pollutants and an unhealthy lifestyle were significantly associated with the increased risk of incident NAFLD. Lifestyle was the primary factor of incident NAFLD, with a PAF of 37.18% (95% CI: 29.67%, 44.69%). In addition, a significant additive interaction between air pollution and lifestyle for NAFLD risk was observed (RERI: 0.36, 95% CI: 0.09-0.63). CONCLUSIONS Long-term exposure to ambient air pollutants and poor lifestyle were jointly associated with a higher risk of NAFLD.
Collapse
Affiliation(s)
- Xinxin Kong
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ruyu Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Geng
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, 19122, USA
| | - Jiong Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaqian Wu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongfang You
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Yu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mulong Du
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Ling Li
- Department of Endocrinology, Zhong Da Hospital Southeast University, Nanjing, 210009, China.
| | - Senmiao Ni
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
47
|
Ivancovsky Wajcman D, Byrne CJ, Dillon JF, Brennan PN, Villota-Rivas M, Younossi ZM, Allen AM, Crespo J, Gerber LH, Lazarus JV. A narrative review of lifestyle management guidelines for metabolic dysfunction-associated steatotic liver disease. Hepatology 2024:01515467-990000000-00998. [PMID: 39167567 DOI: 10.1097/hep.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease management guidelines have been published worldwide; we aimed to summarize, categorize, and compare their lifestyle intervention recommendations. APPROACH AND RESULTS We searched metabolic dysfunction-associated steatotic liver disease/NAFLD management guidelines published between January 1, 2013, and June 31, 2024, through databases including PubMed/MEDLINE, Cochrane, and CINAHL. In total, 35 qualifying guidelines were included in the final analysis. Guideline recommendations were categorized into 5 domains (ie, weight reduction goals, physical activity, nutrition, alcohol, and tobacco smoking) and were ranked based on how frequently they appeared. A recommendation was defined as widely adopted if recommended in ≥24 (≥66.6%) of the guidelines. These included increasing physical activity; reducing body weight by 7%-10% to improve steatohepatitis and/or fibrosis; restricting caloric intake; undertaking 150-300 or 75-150 minutes/week of moderate or vigorous-intensity physical activity, respectively; and decreasing consumption of commercially produced fructose. The least mentioned topics, in ≤9 of the guidelines, evaluated environmental determinants of health, mental health, referring patients for psychological or cognitive behavioral therapy, using digital health interventions, and assessing patients' social determinants of health. CONCLUSIONS Most guidelines recommend weight reduction through physical activity and improving nutrition, as these have proven positive effects on health outcomes when sustained. However, gaps regarding mental health and the social and environmental determinants of metabolic dysfunction-associated steatotic liver disease were found. To optimize behavioral modifications and treatment, we recommend carrying out studies that will provide further evidence on social support, environmental factors, and mental health, as well as further exploring digital health interventions.
Collapse
Affiliation(s)
- Dana Ivancovsky Wajcman
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- The Global NASH Council, Washington, District of Columbia, USA
| | - Christopher J Byrne
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Paul N Brennan
- The Global NASH Council, Washington, District of Columbia, USA
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Marcela Villota-Rivas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Zobair M Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Javier Crespo
- Liver Unit, Digestive Disease Department, Marqués de Valdecilla University Hospital, Santander, Cantabria University, Spain
| | - Lynn H Gerber
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy (CUNY SPH), New York, New York, USA
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Yan R, Ji S, Ku T, Sang N. Cross-Omics Analyses Reveal the Effects of Ambient PM 2.5 Exposure on Hepatic Metabolism in Female Mice. TOXICS 2024; 12:587. [PMID: 39195689 PMCID: PMC11360593 DOI: 10.3390/toxics12080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Ambient particulate matter (PM2.5) is a potential risk factor for metabolic damage to the liver. Epidemiological studies suggest that elevated PM2.5 concentrations cause changes in hepatic metabolism, but there is a lack of laboratory evidence. Here, we aimed to evaluate the effects of PM2.5 exposure on liver metabolism in C57BL/6j female mice (10 months old) and to explore the mechanisms underlying metabolic alterations and differential gene expressions by combining metabolomics and transcriptomics analyses. The metabolomics results showed that PM2.5 exposure notably affected the metabolism of amino acids and organic acids and caused hepatic lipid and bile acid accumulation. The transcriptomic analyses revealed that PM2.5 exposure led to a series of metabolic pathway abnormalities, including steroid biosynthesis, steroid hormone biosynthesis, primary bile acid biosynthesis, etc. Among them, the changes in the bile acid pathway might be one of the causes of liver damage in mice. In conclusion, this study clarified the changes in liver metabolism in mice caused by PM2.5 exposure through combined transcriptomic and metabolomic analyses, revealed that abnormal bile acid metabolism is the key regulatory mechanism leading to metabolic-associated fatty liver disease (MAFLD) in mice, and provided laboratory evidence for further clarifying the effects of PM2.5 on body metabolism.
Collapse
Affiliation(s)
| | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (S.J.); (N.S.)
| | | |
Collapse
|
49
|
Zhao Y, Peng Y, Wang M, Zhao Y, He Y, Zhang L, Liu J, Zheng S. Exposure to PM 2.5 and its constituents is associated with metabolic dysfunction-associated fatty liver disease: a cohort study in Northwest of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:304. [PMID: 39002087 DOI: 10.1007/s10653-024-02071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Accumulating animal studies have demonstrated associations between ambient air pollution (AP) and metabolic dysfunction-associated fatty liver disease (MAFLD), but relevant epidemiological evidence is limited. We evaluated the association of long-term exposure to AP with the risk of incident MAFLD in Northwest China. The average AP concentration between baseline and follow-up was used to assess individual exposure levels. Cox proportional hazard models and restricted cubic spline functions (RCS) were used to estimate the association of PM2.5 and its constituents with the risk of MAFLD and the dose-response relationship. Quantile g-computation was used to assess the joint effects of mixed exposure to air pollutants on MAFLD and the weights of the various pollutants. We observed 1516 cases of new-onset MAFLD, with an incidence of 10.89%. Increased exposure to pollutants was significantly associated with increased odds of MAFLD, with hazard ratios (HRs) of 2.93 (95% CI: 1.22, 7.00), 2.86 (1.44, 5.66), 7.55 (3.39, 16.84), 4.83 (1.89, 12.38), 3.35 (1.35, 8.34), 1.89 (1.02, 1.62) for each interquartile range increase in PM2.5, SO42-, NO3-, NH4+, OM, and BC, respectively. Stratified analyses suggested that females, frequent exercisers and never-drinkers were more susceptible to MAFLD associated with ambient PM2.5 and its constituents. Mixed exposure to SO42-, NO3-, NH4+, OM and BC was associated with an increased risk of MAFLD, and the weight of BC had the strongest effect on MAFLD. Exposure to ambient PM2.5 and its constituents increased the risk of MAFLD.
Collapse
Affiliation(s)
- Yamin Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yindi Peng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Minzhen Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| | - Yanan Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yingqian He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Lulu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Zheng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
50
|
Zhu Y, Wu Y, Cheng J, Liang H, Chang Q, Lin F, Li D, Zhou X, Chen X, Pan P, Liu H, Guo Y, Zhang Y. Ambient air pollution, lifestyle, and genetic predisposition on all-cause and cause-specific mortality: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173120. [PMID: 38750765 DOI: 10.1016/j.scitotenv.2024.173120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Although it is widely acknowledged that long-term exposure to ambient air pollution is closely related to the risk of mortality, there were inconsistencies in terms of cause-specific mortality and it is still unknown whether lifestyle and genetic susceptibility could modify the association. METHODS This population-based prospective cohort study involved 461,112 participants from the UK Biobank. The land-use regression model was used to estimate the concentrations of particulate matter (PM2.5, PMcoarse, PM10), and nitrogen oxides (NO2 and NOx). The association between air pollution and mortality was evaluated using Cox proportional hazard models. Furthermore, a lifestyle score incorporated with smoking status, physical activity, alcohol consumption, and diet behaviors, and polygenic risk score using 12 genetic variants, were developed to assess the modifying effect of air pollution on mortality outcomes. RESULTS During a median follow-up of 14.0 years, 33,903 deaths were recorded, including 17,083 (2835; 14,248), 6970, 2429, and 1287 deaths due to cancer (lung cancer, non-lung cancer), cardiovascular disease (CVD), respiratory and digestive disease, respectively. Each interquartile range (IQR) increase in PM2.5, NO2 and NOx was associated with 7 %, 6 % and 5 % higher risk of all-cause mortality, respectively. Specifically, for cause-specific mortality, each IQR increase in PM2.5, NO2 and NOx was also linked to mortality due to cancer (lung cancer and non-lung cancer), CVD, respiratory and digestive disease. Furthermore, additive and multiplicative interactions were identified between high ambient air pollution and unhealthy lifestyle on mortality. In addition, associations between air pollution and mortality were modified by lifestyle behaviors. CONCLUSION Long-term exposure to air pollutants increased the risk of all-cause and cause-specific mortality, which was modified by lifestyle behaviors. In addition, we also revealed a synergistically detrimental effect between air pollution and an unhealthy lifestyle, suggesting the significance of joint air pollution management and adherence to a healthy lifestyle on public health.
Collapse
Affiliation(s)
- Yiqun Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Yao Wu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huaying Liang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Qinyu Chang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Dianwu Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China
| | - Xin Zhou
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Xiang Chen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, Hunan, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Center of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, Hunan, China.
| |
Collapse
|