1
|
Yao ZW, Zhu H. Pharmacological mechanisms and drug delivery systems of Ginsenoside Rg3: a comprehensive review. Pharmacol Res 2025; 216:107799. [PMID: 40414584 DOI: 10.1016/j.phrs.2025.107799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Ginsenoside Rg3, as one of the major active components of Panax ginseng, exhibits significant anti-tumor, anti-inflammatory, antioxidant, antidiabetic, hepatoprotective, wound healing and immunomodulatory pharmacological effects and has been developed as an adjuvant therapy in clinical practice. However, its poor water solubility and low permeability result in limited bioavailability, restricting its clinical application. This review systematically summarizes the pharmacological mechanisms of ginsenoside Rg3, including its anti-tumor effects through multiple signaling pathways that inhibit cancer cell proliferation, induce apoptosis, and suppress tumor angiogenesis; anti-inflammatory properties via the inhibition of NF-κB and related factors; antioxidant effects by increasing antioxidant enzyme levels and regulating the Nrf2 pathway; antidiabetic effects via the promotion of insulin secretion by inhibiting the MAPK pathway; hepatoprotective effects via the attenuation of hepatic inflammation through suppressing NF-κB phosphorylation; wound-healing-promoting effects via modulating the TGF-β/SMAD signaling pathway, and immunomodulatory activities through immune cell regulation and inhibition of PD-L1 glycosylation. Additionally, this review discusses the pharmacokinetic properties of Rg3, such as rapid oral absorption but low plasma concentration and bioavailability. Furthermore, this review highlights various drug delivery systems, including liposomes, solid dispersions, cyclodextrin inclusion complexes, microspheres, electrospun nanofiber membranes, hydrogels, nanoparticles, micelles, and microneedles, which have been developed to improve its physicochemical properties and enhance its therapeutic efficacy. By systematically summarizing the pharmacological mechanisms and formulation optimization strategies of Rg3, this review provides theoretical insights and technical support for future research and clinical translation.
Collapse
Affiliation(s)
- Zhong-Wei Yao
- Drug Clinical Trial Center, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - He Zhu
- Drug Clinical Trial Center, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Phase I Clinical Research Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
2
|
Han HH, Ge PX, Li WJ, Hu XL, He XP. Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO -). SENSORS (BASEL, SWITZERLAND) 2025; 25:3018. [PMID: 40431815 DOI: 10.3390/s25103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Peroxynitrite (ONOO-) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO- dynamics in live cells and a variety of animal models of human diseases. However, the clinical applications of those probes remain much less explored. This review delves into the biological roles of ONOO- and summarizes the design strategies, sensing mechanisms, and bioimaging applications of near-infrared (NIR), long-wavelength, two-photon, and ratiometric fluorescent probes modified with a diverse range of functional groups responsive to ONOO-. Furthermore, we will discuss the remaining problems that prevent the currently developed ONOO- probes from translating into clinical practice.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Pan-Xin Ge
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wen-Jia Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
3
|
Hofer BS, Simbrunner B, Königshofer P, Brusilovskaya K, Petrenko O, Taru V, Sorz‐Nechay T, Zinober K, Regnat K, Semmler G, Lackner C, Trauner M, Mandorfer M, Schwabl P, Reiberger T. Inflammation remains a dynamic component of portal hypertension in regressive alcohol-related cirrhosis. United European Gastroenterol J 2025; 13:317-329. [PMID: 39708052 PMCID: PMC11999040 DOI: 10.1002/ueg2.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 06/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Portal hypertension (PH) resulting from static and dynamic intrahepatic changes drives liver-related complications even after removing the underlying aetiological factor. OBJECTIVE We investigated the impact of inflammation on the dynamic component of PH during disease regression in animal models of toxin-induced cirrhosis and patients with alcohol-related cirrhosis. METHODS In mice, cirrhosis was induced via toxin application for 12 weeks followed by toxin-withdrawal allowing for one or 2 weeks of regression. Furthermore, 128 patients with alcohol-related cirrhosis and alcohol abstinence undergoing same-day hepatic venous pressure gradient (HVPG) and liver stiffness measurement (LSM) were included. The influence of inflammation on the dynamic PH component was assessed using linear models. Specifically, we explored proinflammatory changes in mice/patients in whom the measured portal pressure (PP)/HVPG was significantly higher than the PP/HVPG expected from the static PH component (histological collagen proportionate area [CPA; %] in mice, LSM in patients). RESULTS In mice, toxin discontinuation induced a significant decrease in PP, CPA, histological hepatic inflammation and hepatic expression of proinflammatory genes (Tnfa, Il6, Cxcl1, Mcp1; all p < 0.05 for one/2 week regression vs. peak disease). Similarly, prolonged abstinence in alcohol-related cirrhosis was linked to lower HVPG/LSM and longer abstinence was correlated to lower C-reactive protein (CRP), IL-6, immunoglobulin A (IgA) and IgG levels (all p < 0.05). Nevertheless, the persistence of a low-grade proinflammatory state during regression was linked to a higher PP/HVPG than expected from static PH components. In regressive mice, higher hepatic proinflammatory gene expression (Tnfa, Il6, Il1b; all p < 0.05) was linked to higher-than-expected PP. Similarly, higher CRP, IL-6, IgA and IgG and lower complement factor C3c (all p < 0.05) were associated with higher-than-expected HVPG in abstinent patients with alcohol-related cirrhosis. CONCLUSIONS Although removing the underlying aetiological factor resulted in significant improvements, a persistent hepatic proinflammatory environment remained a key driver of the dynamic PH component in regressive liver disease. CLINICAL TRIAL NUMBER NCT03267615.
Collapse
Affiliation(s)
- Benedikt Silvester Hofer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Benedikt Simbrunner
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
| | - Philipp Königshofer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Oleksandr Petrenko
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
| | - Vlad Taru
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
| | - Thomas Sorz‐Nechay
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
| | - Kerstin Zinober
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Regnat
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | | | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Mattias Mandorfer
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Philipp Schwabl
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Vienna Hepatic Haemodynamic LabDivision of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Christian Doppler Lab for Portal Hypertension and Liver FibrosisMedical University of ViennaViennaAustria
- Center for Molecular Medicine (CeMM) of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
4
|
de Oliveira THC, Gonçalves GKN. Liver ischemia reperfusion injury: Mechanisms, cellular pathways, and therapeutic approaches. Int Immunopharmacol 2025; 150:114299. [PMID: 39961215 DOI: 10.1016/j.intimp.2025.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 03/03/2025]
Abstract
Liver ischemia-reperfusion injury (LIRI) is a critical challenge in liver transplantation, resection, and trauma surgeries, leading to significant hepatic damage due to oxidative stress, inflammation, and mitochondrial dysfunction. This review explores the cellular and molecular mechanisms underlying LIRI, focusing on ATP depletion, mitochondrial dysfunction, and the involvement of reactive oxygen species (ROS). Inflammatory pathways, including the activation of nuclear factor-kappa B (NF-κB) and the NLRP3 inflammasome, as well as pro-inflammatory cytokines such as TNF-α and IL-1β, play a crucial role in exacerbating tissue damage. Various types of cell death, including necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis and cuproptosis are also discussed. Therapeutic interventions targeting these mechanisms, such as antioxidants, anti-inflammatories, mitochondrial protectors, and signaling modulators, have shown promise in pre-clinical studies. However, translating these findings into clinical practice faces challenges due to the limitations of animal models and the complexity of human responses. Emerging therapies, such as RNA-based treatments, genetic editing, and stem cell therapies, offer potential breakthroughs in LIRI management. This review highlights the need for further research and the development of innovative therapeutic approaches to improve clinical outcomes.
Collapse
|
5
|
Lin B, Wu T, Nasb M, Li Z, Chen N. Regular exercise alleviates metabolic dysfunction-associated steatohepatitis through rescuing mitochondrial oxidative stress and dysfunction in liver. Free Radic Biol Med 2025; 230:163-176. [PMID: 39954868 DOI: 10.1016/j.freeradbiomed.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe mitochondrial dysfunction, associated with the production of mitochondrial reactive oxygen species (mROS). The substantial generation of mROS in the MASH liver, resulting from lipid surplus and electron transport chain (ETC) overload, impairs mitochondrial structure and functionality, thereby contributing to the development of severe hepatic steatosis and inflammation. Regular exercise represents an effective strategy for the treatment of MASH. Understanding the effects of exercise on oxidative stress and mitochondrial function is essential for effective treatment of MASH. This article reviews the pathological alterations in mitochondrial β-oxidation, ETC efficiency and mROS production within MASH liver. Additionally, it discusses how exercise influences the redox state and mitochondrial quality control mechanisms-such as biogenesis, mitophagy, fusion, and fission-within the MASH liver. The article emphasizes the importance of in-depth studies on exercise-induced MASH mitigation through the enhancement of mitochondrial redox balance, quality control, and function. Exploring the relationship between exercise and hepatic mitochondria could provide valuable insights into identifying potential therapeutic targets for MASH.
Collapse
Affiliation(s)
- Baoxuan Lin
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Zeyun Li
- Department of Rehabilitation Medicine, Xiangtan Central Hospital, Xiangtan, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China.
| |
Collapse
|
6
|
Wan T, Chen Z, Li J, Yuan X, Zheng M, Qin L, Zhang L, Hou T, Liu C, Li R. AMPK agonist AICAR ameliorates maternal hepatic lipid metabolism disorder, inflammation, and fibrosis caused by PM 2.5 exposure during pregnancy. Sci Rep 2025; 15:8689. [PMID: 40082541 PMCID: PMC11906884 DOI: 10.1038/s41598-025-93395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Liver is an important target organ of ambient fine particulate matter (PM2.5). Numerous studies have shown that PM2.5 exposure can cause liver lipid metabolism disorders and other liver damage in mammals. However, the impact of PM2.5 on liver health during pregnancy, a sensitive life stage, remains understudied, and the underlying mechanisms are also unknown. Given the critical role of adenosine 5'-monophosphate activated protein kinase (AMPK) in regulating lipid metabolism and inflammation, we hypothesize that AMPK activation may mitigate maternal hepatic lipid metabolism disorders, reduce inflammation, and attenuate fibrosis induced by PM2.5 exposure during pregnancy. To test this hypothesis, pregnant C57BL/6 mice were randomly assigned to 4 groups: filtered air (FA) + NS (normal saline), PM2.5+NS, FA + AICAR (acadesine, an AMPK activator), and PM2.5+AICAR. PM2.5+NS and PM2.5+AICAR groups were continuously exposed to PM2.5 with a whole-body PM2.5 exposure chamber, while the other two groups were exposed to filtered air in the FA chamber. Simultaneously, the FA + AICAR and PM2.5+AICAR groups received intraperitoneal injections of the AMPK agonist AICAR (200 mg/kg∙bw per day) from gestational day 13 (GD13) to GD17, while mice in the FA + NS and PM2.5+NS groups were administered normal saline injection. We found that gestational PM2.5 exposure induced dyslipidemia in pregnant mice, which was alleviated by AICAR treatment. Histopathological analysis showed that the exposure to PM2.5 during pregnancy induced hepatic lipid deposition and fibrosis in pregnant mice, and biochemical assays revealed that hepatic triglyceride and cholesterol levels were also significantly increased in pregnant mice after exposure to PM2.5, whereas the AICAR treatment ameliorated hepatic lipid deposition and fibrosis induced by the exposure to PM2.5 during pregnancy. Furthermore, PM2.5 exposure during pregnancy disrupted the expression of key genes and proteins associated with hepatic lipid synthesis, cholesterol synthesis, inflammation, and fibrosis, while treatment with AICAR mitigated these effects. These findings demonstrated that AMPK activation ameliorates hepatic lipid metabolism disorders, reduces inflammation, and attenuates fibrosis caused by PM2.5 exposure in mice during pregnancy. AMPK may be a target of action for maternal liver injury induced by PM2.5 exposure during pregnancy.
Collapse
Affiliation(s)
- Teng Wan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuan Chen
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyi Yuan
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingmeng Zheng
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Qin
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tong Hou
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ran Li
- School of Public Health, Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Mincheva G, Moreno-Manzano V, Felipo V, Llansola M. Extracellular vesicles from mesenchymal stem cells improve liver injury in rats with mild liver damage. Underlying mechanisms and role of TGFβ. Life Sci 2025; 364:123429. [PMID: 39884339 DOI: 10.1016/j.lfs.2025.123429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Preventing the progression of liver damage to fibrosis would be beneficial for patients with steatotic liver disease (SLD). Mesenchymal stem cells (MSC) are a promising therapy for SLD and derived extracellular vesicles (EVs) could even improve the treatment's efficacy and safety. However, the mechanisms of MSC-EVs beneficial effects are not well known. It has been suggested that modifying the EVs cargo could improve their beneficial effects. The aims of this study were to assess if MSC-EVs reduce liver damage in a rat model of mild liver damage; to analyze the underlying mechanisms and to assess if silencing TGFβ enhances the beneficial effects of MSC-EVs. CCl4 was injected three times per week during four weeks to induce mild liver damage. EVs from human adipocyte MSC and from TGFβ-depleted MSC (siTGFβ-MSC-EVs) were injected in the tail vein. Steatosis, fibrosis, liver inflammation, macrophage infiltration and liver content of fibrotic markers, DAMPs, cytokines and bile acids were analyzed. Normal MSC-EVs reduce the CCL2 increase in liver, macrophage infiltration and the increases in the fibrosis markers collagen I and α-SMA. Treatment with siTGFβ-MSC-EVs, in addition, reduces liver steatosis, the increase of bile acids (mainly TCA), and DAMP HMGB1 levels, inducing a larger reduction of collagen I in liver of CCl4 rats. Treatment with MSCs-EVs effectively reduces early liver damage. Silencing of TGFβ in MSCs enhances the beneficial effects by additional mechanisms. Early treatment with MSC-EVs, especially after silencing TGFβ, could improve liver damage in SLD patients.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Laboratory of Neuronal and Tissue Regeneration, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
8
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
9
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
10
|
Sun Y, Wang J, Zhu Y, Han T, Liu Y, Wang HY. Nanoprobes based on optical imaging techniques for detecting biomarkers in liver injury diseases. Coord Chem Rev 2025; 524:216303. [DOI: 10.1016/j.ccr.2024.216303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2025; 21:69-81. [PMID: 39320433 PMCID: PMC11958897 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
12
|
Wu SC, Cheng CC, Yeh HC, Cheng HT, Wang YC, Tzeng CW, Hsu CH, Muo CH. High Volume Plasma Exchange Improves Survival Rates in Surgical Critically Ill Patients With Medical Jaundice and Hepatic Failure: A Comparative Study. World J Surg 2025; 49:364-373. [PMID: 39794861 DOI: 10.1002/wjs.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVES Acute liver failure poses a significant challenge in surgical critically ill patients. Treatments typically focus on physiological support and alleviation of hepatic insult. This study aims to evaluate the role of high-volume plasma exchange (HVPE) in surgical critically ill patients with medical jaundice and hepatic failure. METHOD A retrospective review was conducted on surgical critically ill patients with hepatic failure unresponsive to conventional therapy, excluding those with obstructive jaundice. HVPE was considered for patients with persistent hyperbilirubinemia (> 10 mg/dL) and coexisting conditions such as coagulopathy, hyperammonemia, more than Grade II hepato-encephalopathy, or exacerbated sepsis/septic shock status or multiple organ failure. Patients were categorized into standard medical treatment (SMT) and SMT + HVPE groups. Demographics and laboratory data were collected for analysis. RESULT A total of 117 patients were enrolled, with 79 in the SMT group and 38 in the SMT + HVPE group. There were no significant differences in laboratory data and MELD score upon admission. Before treatment, patients in the SMT + HVPE group exhibited higher levels of T-bil., D-bil., and sugar than the SMT group. After treatment, the SMT + HVPE group showed lower serum D-bil. and AST levels but higher levels of albumin and platelets compared to the SMT group. The SMT + HVPE group demonstrated significantly lower delta T-bil., delta D-bil., and higher delta platelet levels. The survival rate was 31.6% (12/38) in the SMT + HVPE group and 1.3% (1/79) in the SMT group. The in-hospital mortality rate in the SMT + HVPE group was lower than that in the SMT group, with a hazard ratio of 0.42 in the crude model and 0.34 (95% CI = 0.20-0.60 and p = 0.0002) in the adjusted model. CONCLUSION Our findings suggest that HVPE improves survival rates in surgical critically ill patients with medical jaundice and hepatic failure. However, due to its retrospective nature, further studies were warranted.
Collapse
Affiliation(s)
- Shih-Chi Wu
- School of Medicine, China Medical University, Taichung, Taiwan
- Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Chung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hung-Chieh Yeh
- Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Han-Tsung Cheng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chun Wang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wei Tzeng
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hao Hsu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
13
|
Zhang H, Gao M, Wang H, Zhang J, Wang L, Dong G, Ma Q, Li C, Dai J, Li Z, Yan F, Xiong H. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization. Sci Rep 2025; 15:4015. [PMID: 39893238 PMCID: PMC11787394 DOI: 10.1038/s41598-025-86977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome with a substantial risk of mortality. A murine model of lipopolysaccharide (LPS)- and D-galactosamine (D-GalN)-induced ALF is widely used to investigate the underlying mechanisms and potential therapeutic drugs for human liver failure. Atractylenolide I (ATR-I) is an active component of the Atractylodes macrocephala rhizome and possesses various pharmacological activities, including anti-tumor, anti-inflammatory, and anti-oxidant properties. Given the key role of oxidative stress and inflammation in ALF pathogenesis, this study investigates the protective effects of ATR-I on LPS/D-GalN-induced ALF in mice. The results suggest that ATR-I pretreatment significantly ameliorates ALF, as evidenced by decreased serum aminotransferase levels and prolonged mice survival. Additionally, ATR-I pretreatment inhibits oxidative stress. Furthermore, the ATR-I pretreatment markedly suppresses M1 macrophage activation in hepatic mononuclear cells. In vitro experiments with bone marrow-derived macrophages indicate that ATR-I regulates macrophage polarization through the mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling pathways. Collectively, ATR-I pretreatment protects mice from LPS/D-GalN-induced ALF partially by regulating M1 macrophage polarization.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
14
|
Sung I, Lee S, Bang D, Yi J, Lee S, Kim S. MDTR: a knowledge-guided interpretable representation for quantifying liver toxicity at transcriptomic level. Front Pharmacol 2025; 15:1398370. [PMID: 39926256 PMCID: PMC11802568 DOI: 10.3389/fphar.2024.1398370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Drug-induced liver injury (DILI) has been investigated at the patient level. Analysis of gene perturbation at the cellular level can help better characterize biological mechanisms of hepatotoxicity. Despite accumulating drug-induced transcriptome data such as LINCS, analyzing such transcriptome data upon drug treatment is a challenging task because the perturbation of expression is dose and time dependent. In addition, the mechanisms of drug toxicity are known only as literature information, not in a computable form. Methods To address these challenges, we propose a Multi-Dimensional Transcriptomic Ruler (MDTR) that quantifies the degree of DILI at the transcriptome level. To translate transcriptome data to toxicity-related mechanisms, MDTR incorporates KEGG pathways as representatives of mechanisms, mapping transcriptome data to biological pathways and subsequently aggregating them for each of the five hepatotoxicity mechanisms. Given that a single mechanism involves multiple pathways, MDTR measures pathway-level perturbation by constructing a radial basis kernel-based toxicity space and measuring the Mahalanobis distance in the transcriptomic kernel space. Representing each mechanism as a dimension, MDTR is visualized in a radar chart, enabling an effective visual presentation of hepatotoxicity at transcriptomic level. Results and Discussion In experiments with the LINCS dataset, we show that MDTR outperforms existing methods for measuring the distance of transcriptome data when describing for dose-dependent drug perturbations. In addition, MDTR shows interpretability at the level of DILI mechanisms in terms of the distance, i.e., in a metric space. Furthermore, we provided a user-friendly and freely accessible website (http://biohealth.snu.ac.kr/software/MDTR), enabling users to easily measure DILI in drug-induced transcriptome data.
Collapse
Affiliation(s)
- Inyoung Sung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Jungseob Yi
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
| | - Sunho Lee
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Zerrad C, Lkhider M, Bouqdayr M, Belkouchi A, Badre W, Tahiri M, Pineau P, Benjelloun S, Ezzikouri S. NOD1 and NOD2 genetic variants: Impact on hepatocellular carcinoma susceptibility and progression in Moroccan population. Gene 2024; 931:148847. [PMID: 39147112 DOI: 10.1016/j.gene.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 are involved in carcinogenic processes by recognizing bacterial cell wall components and triggering inflammation. This study explored the association between genetic variations in NOD1 and NOD2 and susceptibility to hepatocellular carcinoma (HCC) and its progression in a Moroccan population. METHODS Genotyping of NOD1 rs2075820 (C>T) and NOD2 rs718226 (A>G) was performed using the TaqMan allelic discrimination assay in 467 Moroccan individuals. The cohort included 156 patients with hepatocellular carcinoma (HCC), 155 patients with liver cirrhosis (LC) diagnosed with HBV, HCV, or MASLD, and 156 controls. RESULTS The NOD1 rs2075820 variant showed no association with HCC susceptibility or progression, which is consistent with in silico predictions. However, the NOD2 rs718226 G allele and GG genotype were more common in the HCC group compared to the cirrhosis and control groups. Individuals with the homozygous G variant had a 2-fold higher risk for HCC (ORad = 2.12; CI=1.01-4.44; Pad = 0.04). Those with the GG genotype also had an increased risk of HCC (GG vs. AG+AA ORad = 2.28; CI=1.15-4.54; Pad = 0.016). Furthermore, GG genotype carriers had a significantly higher risk of HCC progression (ORad = 2.58; CI=1.26-5.31; Pad = 0.031). Individuals with the rs718226 minor allele had a significantly elevated risk of progressing from LC to HCC (ORad = 1.50; CI=1.07-2.09; Pad = 0.016). Stratification analysis indicated that men had a higher risk of HCC progression compared to women (ORad = 4.63; CI=1.53-14.00 vs. ORad = 2.73; CI=1.05-7.09). CONCLUSION The NOD1 rs2075820 polymorphism does not appear to be a genetic risk factor for susceptibility to HCC. In contrast, the non-coding NOD2 rs718226 variant significantly increases HCC susceptibility and promotes liver cancer progression in the Moroccan population. Further studies involving larger cohorts are warranted to definitively confirm or refute the effects of NOD1 and NOD2 genetic variants on liver cancer susceptibility and progression.
Collapse
Affiliation(s)
- Chaimaa Zerrad
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Mustapha Lkhider
- Laboratoire de Virologie, Oncologie, Biosciences, Environnement et Énergies Nouvelles, Hassan II, Casablanca Faculté des Sciences et Techniques, Mohammedia, Morocco
| | - Meryem Bouqdayr
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Wafaa Badre
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Service d'Hépato-Gastro-Entérologie, CHU Ibn Rochd, Casablanca, Morocco; Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| |
Collapse
|
16
|
Wang M, Wu B, Tang K, Wang X, Liu X, Duan Y, Wang J, Wang X, Wang Y, Li J, Cao C, Ren F, Chang Z. Cell-Cycle-Related and Expression Elevated Protein in Tumor Upregulates the Antioxidant Genes via Activation of NF-κB/Nrf2 in Acute Liver Injury. TOXICS 2024; 12:893. [PMID: 39771108 PMCID: PMC11728809 DOI: 10.3390/toxics12120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Cell-cycle-related and expression elevated protein in tumor (CREPT, also named RPRD1B) is highly expressed in tumors and functions to promote tumorigenesis. However, the role of CREPT in the pathophysiology of acute liver injury is limited. Here, we demonstrate that CREPT plays an essential role during acute liver injury. APPROACH AND RESULTS Hepatocyte-specific CREPT knockout (CREPThep-/-) and CREPTflox/flox mice were generated and subjected to the CCl4 challenge for the acute (24 h) liver injury. The acute CCl4 challenge triggered increased inflammation as well as liver injury, associated with stronger apoptotic and necroptotic cell death in CREPThep-/- mice. CREPT knockout down-regulated the expression of different genes involved in cell survival, inflammation and fibrosis under acute CCl4 challenge conditions. Antioxidant enzymes such as superoxide dismutase 2 (Sod2) and ferritin heavy chain 1 (Fth1) are dramatically induced at 24 h post-CCl4 treatment, but this induction is blocked by transcriptional inactivation of NF-κB/Nrf2, indicating that CREPT might promote hepatocyte survival in acute liver injury by participating in the transactivation of antioxidant genes. CONCLUSIONS These results elucidate the role of CREPT in acute liver injury and provide hints for future research on how CREPT might function in hepatocyte renewal.
Collapse
Affiliation(s)
- Minghan Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Kaiyang Tang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Xuexin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinyan Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yinan Duan
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Jiayu Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Jun Li
- Jinfeng Laboratory, No. 313 Jinyue Road, High-Tech Zone, Chongqing 401329, China
| | - Chenxi Cao
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 397, Huangcheng North Road, Jiaxing 314000, China; (B.W.)
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China; (M.W.); (Z.C.)
| |
Collapse
|
17
|
Patra S, McMillan CJ, Snead ER, Warren AL, Cosford K, Chelikani PK. Feline Diabetes Is Associated with Deficits in Markers of Insulin Signaling in Peripheral Tissues. Int J Mol Sci 2024; 25:13195. [PMID: 39684905 DOI: 10.3390/ijms252313195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Like humans, cats have a strong relationship between decreasing insulin sensitivity and the development of diabetes with obesity. However, the underlying molecular mechanisms of impaired insulin secretion and signaling in cats remain largely unknown. A total of 54 client-owned nondiabetic lean (n = 15), overweight (n = 15), and diabetic (n = 24) cats were included in the study. The pancreas, liver, and skeletal muscle were quantified for mRNA and protein abundances of insulin and incretin signaling markers. Diabetic cats showed increased liver and muscle adiposity. The pancreas of diabetic cats had decreased transcript abundances of insulin, insulin receptor, insulin-receptor substrate (IRS)-1, glucose transporters (GLUT), and protein abundance of mitogen-activated protein kinase. In treated diabetics, protein abundance of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide receptors, total and phosphorylated Akt, and GLUT-1 were increased in the pancreas, whereas untreated diabetics had downregulation of markers of insulin and incretin signaling. In the muscle and liver, diabetic cats had reduced mRNA abundances of insulin receptor, IRS-1/2, and phosphatidylinositol-3-kinase, and reduced protein abundances of GLUT-4 and phosphatidylinositol-3-kinase-p85α in muscle. We demonstrate that feline diabetes is associated with ectopic lipid deposition in the liver and skeletal muscle, deficits in insulin synthesis and incretin signaling in the pancreas, and impaired insulin signaling in the muscle and liver. These findings have implications for understanding the pathophysiological mechanisms of obesity and diabetes in humans and pets.
Collapse
Affiliation(s)
- Souvik Patra
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX 79106, USA
| | - Chantal J McMillan
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| | - Elisabeth R Snead
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Amy L Warren
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| | - Kevin Cosford
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX 79106, USA
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
18
|
Gao G, Zhang Z, Wang Q, Xie Z, Liu B, Huang H. A peptide alleviated oxidative damages in the L02 cells and mice liver. Biochem Biophys Res Commun 2024; 734:150643. [PMID: 39241619 DOI: 10.1016/j.bbrc.2024.150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The liver is vitally metabolic for a multitude of biochemical reactions. Consequently, it generates many free radicals and reactive oxygen species, rendering it more susceptible to oxidative stress-induced damage. Oxidative stress represents a pivotal factor in the pathogenesis of liver diseases. We screened some antioxidant peptides previously. Here we investigated whether the peptides could attenuate oxidative damage with APPH in L02 cells. The results showed that one of the peptides, sequence FETLMPLWGNK, could decrease the excessive reactive oxygen species, increase antioxidant enzyme activity and protect mitochondrial function, reduce the ratio of apoptosis and S phase cycle arrest, and improve the survival rate of L02 cells damaged by APPH compared to cells of the control group. Then the peptide was evaluated in mice that CCl4 injured. We found that CCl4-injured mice had significantly increased serum inflammatory factors and liver injury markers, a large number of inflammatory cell infiltration, and local necrosis in the liver. The peptide could reduce inflammation, and improve liver pathological changes. This phenomenon may be associated with the activation of the Nrf2 signaling pathway. Concurrently, the peptide protects the liver by regulating the expression of proteins related to the mitochondrial apoptosis pathway (p53, Bax, Bcl-2, and Caspase3) and mitophagy-related proteins (PINK1, Parkin, and AMPKα). Therefore, the results indicated that the peptide is an active substance with antioxidant activity and anti-inflammatory effects.
Collapse
Affiliation(s)
- Gan Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhiyang Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiheng Wang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihui Xie
- Xie Zhihui Biomedical Research Institute Guangzhou Co. Ltd., Guangzhou, 510006, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hongliang Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Wijerathna HMSM, Shanaka KASN, Raguvaran SS, Jayamali BPMV, Kim SH, Kim MJ, Jung S, Lee J. CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening. Int J Mol Sci 2024; 25:10819. [PMID: 39409147 PMCID: PMC11476521 DOI: 10.3390/ijms251910819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech-/- larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech-/- zebrafish larvae represent a promising model for screening drugs against EPP1.
Collapse
Affiliation(s)
- Hitihami M. S. M. Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Department of Aquaculture and Seafood Technology, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Colombo 01500, Sri Lanka
| | - Kateepe A. S. N. Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Sarithaa S. Raguvaran
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Bulumulle P. M. V. Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
| | - Seok-Hyung Kim
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| |
Collapse
|
20
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Mu M, Lu Y, Tu K, Tu L, Guo C, Li Z, Zhang X, Chen Y, Liu X, Xu Q, Huang D, Li X. FAM188B promotes the growth, metastasis, and invasion of hepatocellular carcinoma by targeting the hnRNPA1/PKM2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119773. [PMID: 38844182 DOI: 10.1016/j.bbamcr.2024.119773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular carcinoma (HCC), the leading cause of cancer-related deaths worldwide, is characterised by rapid growth and marked invasiveness. Accumulating evidence suggests that deubiquitinases play a pivotal role in HCC growth and metastasis. However, the expression of the deubiquitinase FAM188B and its biological functions in HCC remain unknown. The aim of our study was to investigate the potential role of FAM188B in HCC. The expression of FAM188B was significantly upregulated in liver cancer cells compared to normal liver cells, both at the transcriptional and translational levels. Similarly, FAM188B expression was higher in liver cancer tissues than in normal liver tissues. Bioinformatic analysis revealed that high FAM188B expression was associated with poor prognosis in patients with HCC. We further demonstrated that FAM188B knockdown inhibited cell proliferation, epithelial-mesenchymal transition, migration and invasion both in vitro and in vivo. Mechanistically, FAM188B knockdown significantly inhibited the hnRNPA1/PKM2 pathway in HCC cells. FAM188B may inhibit ubiquitin-mediated degradation of hnRNPA1 through deubiquitination. Notably, we observed that the inhibitory effects of FAM188B knockdown on HCC cell proliferation, migration and invasion were reversed when hnRNPA1 expression was restored. In conclusion, FAM188B promotes HCC progression by enhancing the deubiquitination of hnRNPA1 and subsequently activating the hnRNPA1/PKM2 pathway. Therefore, targeting FAM188B is a potential strategy for HCC therapy.
Collapse
Affiliation(s)
- Mingshan Mu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Yisong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou 310053, Zhejiang, China
| | - Chaoqin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Zilin Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Xu Zhang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Yihong Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China
| | - Xin Liu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Qiuran Xu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China; Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Dongsheng Huang
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Xiaoyan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou 310053, Zhejiang, China; Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
22
|
Wilson RB, Chen YJ, Zhang R, Maini S, Andrews TS, Wang R, Borradaile NM. Elongation factor 1A1 inhibition elicits changes in lipid droplet size, the bulk transcriptome, and cell type-associated gene expression in MASLD mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 327:G608-G622. [PMID: 39136056 PMCID: PMC11482270 DOI: 10.1152/ajpgi.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Eukaryotic elongation factor 1A1 (EEF1A1), originally identified for its role in protein synthesis, has additional functions in diverse cellular processes. Of note, we previously discovered a role for EEF1A1 in hepatocyte lipotoxicity. We also demonstrated that a 2-wk intervention with the EEF1A1 inhibitor didemnin B (DB) (50 µg/kg) decreased liver steatosis in a mouse model of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) [129S6/SvEvTac mice fed Western diet (42% fat) for 26 wk]. Here, we further characterized the hepatic changes occurring in these mice by assessing lipid droplet (LD) size, bulk differential expression, and cell type-associated alterations in gene expression. Consistent with the previously demonstrated decrease in hepatic steatosis, we observed decreased median LD size in response to DB. Bulk RNA sequencing (RNA-Seq) followed by gene set enrichment analysis revealed alterations in pathways related to energy metabolism and proteostasis in DB-treated mouse livers. Deconvolution of bulk data identified decreased cell type association scores for cholangiocytes, mononuclear phagocytes, and mesenchymal cells in response to DB. Overrepresentation analyses of bulk data using cell type marker gene sets further identified hepatocytes and cholangiocytes as the primary contributors to bulk differential expression in response to DB. Thus, we show that chemical inhibition of EEF1A1 decreases hepatic LD size and decreases gene expression signatures associated with several liver cell types implicated in MASLD progression. Furthermore, changes in hepatic gene expression were primarily attributable to hepatocytes and cholangiocytes. This work demonstrates that EEF1A1 inhibition may be a viable strategy to target aspects of liver biology implicated in MASLD progression.NEW & NOTEWORTHY Chemical inhibition of EEF1A1 decreases hepatic lipid droplet size and decreases gene expression signatures associated with liver cell types that contribute to MASLD progression. Furthermore, changes in hepatic gene expression are primarily attributable to hepatocytes and cholangiocytes. This work highlights the therapeutic potential of targeting EEF1A1 in the setting of MASLD, and the utility of RNA-Seq deconvolution to reveal valuable information about tissue cell type composition and cell type-associated gene expression from bulk RNA-Seq data.
Collapse
Affiliation(s)
- Rachel B Wilson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Yun Jin Chen
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Siddhant Maini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Tallulah S Andrews
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Nica M Borradaile
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Jong KXJ, Mohamed EHM, Syafruddin SE, Faruqu FN, Vellasamy KM, Ibrahim K, Ibrahim ZA. IL-8 and PI3K pathway influence the susceptibility of TRAIL-sensitive colorectal cancer cells to TRAIL-induced cell death. Mol Biol Rep 2024; 51:978. [PMID: 39269555 DOI: 10.1007/s11033-024-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an apoptosis inducer that exhibits an ideal therapeutic safety profile with less adverse effects than conventional chemotherapy. However, the occurrence of TRAIL resistance has been reported in various cancers including colorectal cancer (CRC). Substantial efforts have been channelled towards managing TRAIL resistance including identifying molecular targets. Interleukins (ILs) have been recently shown to play critical roles in modulating TRAIL sensitivity in cancer cells. METHODS AND RESULTS This study investigated the roles of two ILs, IL-8 and IL⍺, in TRAIL resistance in CRC. TRAIL-resistant HT-29 and TRAIL-sensitive HCT 116 cells, were treated with human recombinant IL-8 and IL-1⍺. The results indicated that treatment with IL-8 (2.5 ng/mL) significantly protected TRAIL-sensitive HCT 116 cells from TRAIL-induced cell death (p < 0.05). However, IL-1⍺ did not play a role in modulating CRC cells' responses to TRAIL. Data from RT-qPCR and Western blotting revealed the molecular regulations of IL-8 on TRAIL decoy receptor genes (OPG) and autophagy-related genes (BECN1 and LC3B) expression. The activation of the phosphoinositide 3-kinase (PI3K) pathway was shown to counteract TRAIL-induced cell death. By inhibiting its activation with wortmannin, the protective role of IL-8 against TRAIL treatment was reversed, suggesting the involvement of the PI3K pathway. CONCLUSION Collectively, findings from this study identified the role of IL-8 and PI3K in modulating CRC cells' sensitivity to TRAIL. Further validation of these two potential molecular targets is warranted to overcome TRAIL resistance in CRC.
Collapse
Affiliation(s)
- Kelly Xue Jing Jong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
24
|
Overstreet AMC, Burge M, Bellar A, McMullen M, Czarnecki D, Huang E, Pathak V, Finney C, Vij R, Dasarathy S, Dasarathy J, Streem D, Welch N, Rotroff D, Schmitt AM, Nagy LE, Messer JS. Evidence that extracellular HSPB1 contributes to inflammation in alcohol-associated hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313193. [PMID: 39281760 PMCID: PMC11398598 DOI: 10.1101/2024.09.06.24313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and aims Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. GRAPHICAL ABSTRACT HIGHLIGHTS HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.
Collapse
|
25
|
Rungratanawanich W, LeFort KR, Cho YE, Li X, Song BJ. Melatonin Prevents Thioacetamide-Induced Gut Leakiness and Liver Fibrosis Through the Gut-Liver Axis via Modulating Sirt1-Related Deacetylation of Gut Junctional Complex and Hepatic Proteins. J Pineal Res 2024; 76:e13007. [PMID: 39269018 PMCID: PMC11480967 DOI: 10.1111/jpi.13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Karli Rae LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, Republic of Korea
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, BG 101, Research Triangle Park, NC 27709, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Zhang Q, Chen Z, Li J, Huang K, Ding Z, Chen B, Ren T, Xu P, Wang G, Zhang H, Zhang XD, Zhang J, Wang H. The deubiquitinase OTUD1 stabilizes NRF2 to alleviate hepatic ischemia/reperfusion injury. Redox Biol 2024; 75:103287. [PMID: 39079388 PMCID: PMC11340619 DOI: 10.1016/j.redox.2024.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an important cause of liver function impairment following liver surgery. The ubiquitin-proteasome system (UPS) plays a crucial role in protein quality control and has substantial impact on the hepatic I/R process. Although OTU deubiquitinase 1 (OTUD1) is involved in diverse biological processes, its specific functional implications in hepatic I/R are not yet fully understood. This study demonstrates that OTUD1 alleviates oxidative stress, apoptosis, and inflammation induced by hepatic I/R injury. Mechanistically, OTUD1 deubiquitinates and activates nuclear factor erythroid 2-related factor 2 (NRF2) through its catalytic site cysteine 320 residue and ETGE motif, thereby attenuating hepatic I/R injury. Additionally, administration of a short peptide containing the ETGE motif significantly mitigates hepatic I/R injury in mice. Overall, our study elucidates the mechanism and role of OTUD1 in ameliorating hepatic I/R injury, providing a theoretical basis for potential treatment using ETGE-peptide.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Zihan Chen
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinglei Li
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kunpeng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhihao Ding
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Biao Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianxing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Xu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA, 22903, USA
| | - Xiao-Dong Zhang
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jinxiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
27
|
Zhang Y, Jia K, Li Y, Ma Z, Fan G, Luo R, Li Y, Yang Y, Li F, Liu R, Liu J, Li X. Rehmanniae Radix Praeparata aqueous extract improves hepatic ischemia/reperfusion injury by restoring intracellular iron homeostasis. Chin J Nat Med 2024; 22:769-784. [PMID: 39326972 DOI: 10.1016/s1875-5364(24)60719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 09/28/2024]
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a common pathophysiological condition occurring during or after liver resection and transplantation, leading to hepatic viability impairment and functional deterioration. Recently, ferroptosis, a newly recognized form of programmed cell death, has been implicated in IRI. Rehmanniae Radix Praeparata (RRP), extensively used in Chinese herbal medicine for its hepatoprotective, anti-inflammatory, and antioxidant properties, presents a potential therapeutic approach. However, the mechanisms by which RRP mitigates HIRI, particularly through the regulation of ferroptosis, remain unclear. In this study, we developed a HIRI mouse model and monocrotaline (MCT)- and erastin-induced in vitro hepatocyte injury models. We conducted whole-genome transcriptome analysis to elucidate the protective effects and mechanisms of RRP on HIRI. The RRP aqueous extract was characterized by the presence of acteoside, rehmannioside D, and 5-hydroxymethylfurfural. Our results demonstrate that the RRP aqueous extract ameliorated oxidative stress, reduced intracellular iron accumulation, and attenuated HIRI-induced liver damage. Additionally, RRP significantly inhibited hepatocyte death by restoring intracellular iron homeostasis both in vivo and in vitro. Mechanistically, the RRP aqueous extract reduced intrahepatocellular iron accumulation by inhibiting ZIP14-mediated iron uptake, promoting hepcidin- and ferroportin-mediated iron efflux, and ameliorating mitochondrial iron aggregation through upregulation of Cisd1 expression. Moreover, siRNA-mediated inhibition of hamp synergistically enhanced the RRP aqueous extract's inhibitory effect on ferroptosis. In conclusion, our study elucidates the mechanisms by which RRP aqueous extracts alleviate HIRI, highlighting the restoration of iron metabolic balance. These findings position RRP as a promising candidate for clinical intervention in HIRI treatment.
Collapse
Affiliation(s)
- Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
28
|
Li L, Xiao S, Dai X, Tang Z, Wang Y, Ali M, Ataya FS, Sahar I, Iqbal M, Wu Y, Li K. Multi-omics analysis and the remedial effects of Swertiamarin on hepatic injuries caused by CCl 4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116734. [PMID: 39024951 DOI: 10.1016/j.ecoenv.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hepatic diseases pose a significant threat to community health, impacting the quality of life and longevity of millions worldwide. Despite revolutionary advancements in treatment, liver diseases remain a pressing issue, necessitating the development of more effective therapeutic approaches. Here, we conducted a comprehensive multi-omics analysis to investigate the underlying mechanism of Swertiamarin in alleviating hepatic injuries induced by CCl4 in mice. We divided 100 Kunming mice into five groups: RC (control), RM (CCl4), RD (15 mg/Kg Swertiamarin), RZ (30 mg/Kg Swertiamarin), and RG (60 mg/Kg Swertiamarin). Animals in groups RD, RZ, and RG received daily Swertiamarin via gavage, while those in groups RM, RD, RZ, and RG were treated with CCl4 solution intraperitoneally every four days, nine times in total. Our findings revealed that mice in the RM group exhibited slightly lower average weights compared to other groups, along with significantly higher liver weight (p<0.0001) and liver index (p<0.0001). Pathological analysis indicated liver damage characterized by cell degeneration, inflammatory cell infiltration, and hepatic fibrosis in the CCl4-induced group. In contrast, Swertiamarin supplementation mitigated these effects, reducing denatured cells, inflammatory cells, and collagenous fibers in the liver. Serum analysis showed elevated levels of TNF-α (p<0.001), IL-6 (p<0.05), ALT (p<0.001), AST (p<0.0001), MDA (p<0.001), and Hyp (p<0.001) in CCl4-induced animals, along with lower levels of T-AOC (p<0.001), GSH-px (p<0.0001), SOD (p<0.001), and CAT (p<0.01). Microbiome analysis revealed significant differences among groups, with pathogenic taxa such as Arthrinium and Aureobasidium, and probiotic Saccharomyces showing notable variations. Metabolomics analysis identified numerous differentially abundant metabolites, with Swertiamarin-treated animals exhibiting distinct profiles. Our findings highlight the potential of Swertiamarin ameliorating CCl4-induced liver toxicity through modulation of antioxidant capacity, inflammatory response, gut microbiota, and metabolites. These insights may inform the development of novel therapies for liver injury.
Collapse
Affiliation(s)
- Linzhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Shengjia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Xiangjie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Zhiyi Tang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Yutong Wang
- School of Pharmacy, Guizhou Medical University, Guiyang 561113, China; Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| | - Munwar Ali
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Irna Sahar
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; College of Veterinary Medicine, Yunnan Agricultural University, No. 452, Feng Yuan Road, Panlong District, Kunming, Yunnan Province 650201, China.
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
29
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
30
|
Ge X, Han H, Desert R, Das S, Song Z, Komakula SSB, Chen W, Athavale D, Lantvit D, Nieto N. A Protein Complex of Liver Origin Activates a Pro-inflammatory Program That Drives Hepatic and Intestinal Injury in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101362. [PMID: 38788899 PMCID: PMC11296289 DOI: 10.1016/j.jcmgh.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | | | - Wei Chen
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
31
|
Xu W, Mo W, Han D, Dai W, Xu X, Li J, Xu X. Hepatocyte-derived exosomes deliver the lncRNA CYTOR to hepatic stellate cells and promote liver fibrosis. J Cell Mol Med 2024; 28:e18234. [PMID: 38520214 PMCID: PMC10960169 DOI: 10.1111/jcmm.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.
Collapse
Affiliation(s)
- Wenqiang Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Wenhui Mo
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Dengyu Han
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Weiqi Dai
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xiaorong Xu
- Department of GastroenterologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jingjing Li
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| | - Xuanfu Xu
- Department of GastroenterologyShidong Hospital of Shanghai, School of Health Science and Engineering, University of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
32
|
Zhou L, Qiu X, Meng Z, Liu T, Chen Z, Zhang P, Kuang H, Pan T, Lu Y, Qi L, Olson DP, Xu XZS, Chen YE, Li S, Lin JD. Hepatic danger signaling triggers TREM2 + macrophage induction and drives steatohepatitis via MS4A7-dependent inflammasome activation. Sci Transl Med 2024; 16:eadk1866. [PMID: 38478630 DOI: 10.1126/scitranslmed.adk1866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/16/2024] [Indexed: 05/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (NASH), is an advanced stage of metabolic fatty liver disease. The pathogenic mechanisms of MASH center on hepatocyte injury and the ensuing immune response within the liver microenvironment. Recent work has implicated TREM2+ macrophages in various disease conditions, and substantial induction of TREM2+ NASH-associated macrophages (NAMs) serves as a hallmark of metabolic liver disease. Despite this, the mechanisms through which NAMs contribute to MASH pathogenesis remain poorly understood. Here, we identify membrane-spanning 4-domains a7 (MS4A7) as a NAM-specific pathogenic factor that exacerbates MASH progression in mice. Hepatic MS4A7 expression was strongly induced in mouse and human MASH and associated with the severity of liver injury. Whole-body and myeloid-specific ablation of Ms4a7 alleviated diet-induced MASH pathologies in male mice. We demonstrate that exposure to lipid droplets (LDs), released upon injury of steatotic hepatocytes, triggered NAM induction and exacerbated MASH-associated liver injury in an MS4A7-dependent manner. Mechanistically, MS4A7 drove NLRP3 inflammasome activation via direct physical interaction and shaped disease-associated cell states within the liver microenvironment. This work reveals the LD-MS4A7-NLRP3 inflammasome axis as a pathogenic driver of MASH progression and provides insights into the role of TREM2+ macrophages in disease pathogenesis.
Collapse
Affiliation(s)
- Linkang Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Xiaoxue Qiu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tongyu Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Zhimin Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Peng Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Henry Kuang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tong Pan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - You Lu
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Division of Endocrinology, Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siming Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Meszaros AT, Weissenbacher A, Schartner M, Egelseer-Bruendl T, Hermann M, Unterweger J, Mittelberger C, Reyer BA, Hofmann J, Zelger BG, Hautz T, Resch T, Margreiter C, Maglione M, Komlódi T, Ulmer H, Cardini B, Troppmair J, Öfner D, Gnaiger E, Schneeberger S, Oberhuber R. The Predictive Value of Graft Viability and Bioenergetics Testing Towards the Outcome in Liver Transplantation. Transpl Int 2024; 37:12380. [PMID: 38463463 PMCID: PMC10920229 DOI: 10.3389/ti.2024.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Donor organ biomarkers with sufficient predictive value in liver transplantation (LT) are lacking. We herein evaluate liver viability and mitochondrial bioenergetics for their predictive capacity towards the outcome in LT. We enrolled 43 consecutive patients undergoing LT. Liver biopsy samples taken upon arrival after static cold storage were assessed by histology, real-time confocal imaging analysis (RTCA), and high-resolution respirometry (HRR) for mitochondrial respiration of tissue homogenates. Early allograft dysfunction (EAD) served as primary endpoint. HRR data were analysed with a focus on the efficacy of ATP production or P-L control efficiency, calculated as 1-L/P from the capacity of oxidative phosphorylation P and non-phosphorylating respiration L. Twenty-two recipients experienced EAD. Pre-transplant histology was not predictive of EAD. The mean RTCA score was significantly lower in the EAD cohort (-0.75 ± 2.27) compared to the IF cohort (0.70 ± 2.08; p = 0.01), indicating decreased cell viability. P-L control efficiency was predictive of EAD (0.76 ± 0.06 in IF vs. 0.70 ± 0.08 in EAD-livers; p = 0.02) and correlated with the RTCA score. Both RTCA and P-L control efficiency in biopsy samples taken during cold storage have predictive capacity towards the outcome in LT. Therefore, RTCA and HRR should be considered for risk stratification, viability assessment, and bioenergetic testing in liver transplantation.
Collapse
Affiliation(s)
- Andras T. Meszaros
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Schartner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Tim Egelseer-Bruendl
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jasmin Unterweger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christa Mittelberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Beatrix A. Reyer
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina G. Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Resch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jakob Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Hu Z, Xu D, Meng H, Liu W, Zheng Q, Wang J. 4-octyl itaconate protects against oxidative stress-induced liver injury by activating the Nrf2/Sirt3 pathway through AKT and ERK1/2 phosphorylation. Biochem Pharmacol 2024; 220:115992. [PMID: 38128618 DOI: 10.1016/j.bcp.2023.115992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
4-octyl itaconate (4-OI) is a cell-permeable itaconate derivative with anti-inflammatory and antioxidant properties. However, its therapeutic potential for oxidative stress-induced liver injury remains unknown. This study investigated the hepatoprotective effects and mechanisms of 4-OI against oxidative damage in in vitro and in vivo models. 4-OI attenuated H2O2-induced cytotoxicity, oxidative stress, and mitochondrial dysfunction in L02 and HepG2 cells. Untargeted metabolomics profiling and pathway analysis identified the PI3K/AKT/mTOR and MAPK pathways as key regulators of 4-OI's protective effects. Specifically, 4-OI induced phosphorylation of AKT and ERK1/2, leading to activation of the Nrf2 signaling pathway. Nrf2 upregulated expression of the mitochondrial deacetylase Sirt3, which subsequently alleviated H2O2-induced cell injury. In mice, 4-OI reduced acetaminophen (APAP)-induced liver injury as evidenced by attenuated hepatocellular necrosis and decreased serum liver enzymes. It also elevated hepatic expression of Nrf2, Sirt3, p-AKT and p-ERK1/2. Inhibition of AKT, ERK1/2 or Nrf2 blocked the protective effects of 4-OI in vitro, suggesting its antioxidant activity is mediated by activating the Nrf2/Sirt3 pathway via AKT and ERK1/2 phosphorylation. In summary, 4-OI exerted antioxidant and hepatoprotective effects by activating the Nrf2/Sirt3 signaling pathway through AKT and ERK1/2 phosphorylation, which were elucidated using in vitro and in vivo oxidative stress models. This provides novel insights into the mechanisms of 4-OI against oxidative stress-related liver diseases.
Collapse
Affiliation(s)
- Ziyun Hu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Huihui Meng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Wenya Liu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Qi Zheng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
35
|
Li L, Lan Y, Wang F, Gao T. Linarin Protects Against CCl 4-Induced Acute Liver Injury via Activating Autophagy and Inhibiting the Inflammatory Response: Involving the TLR4/MAPK/Nrf2 Pathway. Drug Des Devel Ther 2023; 17:3589-3604. [PMID: 38076631 PMCID: PMC10700044 DOI: 10.2147/dddt.s433591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Background Linarin has been implicated in the inhibition of inflammatory responses and hepatoprotective effects. However, the precise mechanism by which Linarin integrates injury-induced signaling from inflammatory responses and oxidative stress remains unclear. Methods We evaluated the role of Linarin in a mouse model of carbon tetrachloride (CCl4)-induced acute liver injury. Mice were orally pretreated with Linarin or vehicle for seven consecutive days, followed by intraperitoneal injection with 0.2% (v/v) CCl4. To investigate the mechanism of action on oxidative stress, CCl4-stimulated HepG2 cells were utilized. Results Our results revealed Linarin remarkably attenuated the loss of hepatic architecture, inflammatory cell infiltration, serum transaminases, and pro-inflammatory cytokines induced by CCl4. Linarin attenuated CCl4-induced oxidative stress by increasing the expression of cytosolic Nrf2 (nuclear factor erythroid 2-related factor 2), inducing nuclear localization of Nrf2, and increasing stress-induced protein heme oxygenase-1 (HO-1). Additionally, Linarin decreased the expression of toll-like receptors (TLR)-4, and its downstream proteins, MyD88, IRAK1, and TRAF6. Furthermore, Linarin reversed CCl4-induced phosphorylation of ERK, p38, and JNK. Importantly, Linarin increased the expression of both LC3II and Beclin 1, which are hallmarks of autophagic flux. Autophagy-mediated hepatoprotective effects in Linarin-treated HepG2 cells were mitigated by the autophagy inhibitor 3-MA. However, combined treatment of Linarin with 3-MA failed to significantly reverse cell apoptosis and the production of transaminases and pro-inflammatory cytokines. Conclusion Linarin prevents acute liver injury, possibly by alleviating ROS-induced oxidative stress, inhibiting TLR4/MyD88 and JNK/p38/ERK-mediated inflammatory responses, and promoting Beclin 1/LC3II-mediated autophagic flux.
Collapse
Affiliation(s)
- Lulu Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
- Department of Pharmacy, Wuhan NO.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Yan Lan
- Department of Pharmacy, Huangshi Central Hospital, Huangshi, Hubei, People’s Republic of China
| | - Fuqian Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
- Department of Pharmacy, Wuhan NO.1 Hospital, Wuhan, Hubei, People’s Republic of China
| | - Tiexiang Gao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
36
|
Che Z, Zhou Z, Li SQ, Gao L, Xiao J, Wong NK. ROS/RNS as molecular signatures of chronic liver diseases. Trends Mol Med 2023; 29:951-967. [PMID: 37704494 DOI: 10.1016/j.molmed.2023.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The liver can succumb to oxidant damage during the development of chronic liver diseases. Despite their physiological relevance to hepatic homeostasis, excessive reactive oxygen/nitrogen species (ROS/RNS) production under pathological conditions is detrimental to all liver constituents. Chronic oxidative stress coupled to unresolved inflammation sets in motion the activation of profibrogenic hepatic stellate cells (HSCs) and later pathogenesis of liver fibrosis, cirrhosis, and liver cancer. The liver antioxidant and repair systems, along with autophagic and ferroptotic machineries, are implicated in the onset and trajectory of disease development. In this review, we discuss the ROS/RNS-related mechanisms underlying liver fibrosis of distinct etiologies and highlight preclinical and clinical trials of antifibrotic therapies premised on remediating oxidative/nitrosative stress in hepatocytes or targeting HSC activation.
Collapse
Affiliation(s)
- Zhaodi Che
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Si-Qi Li
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Jia Xiao
- Clinical Research Institute, Institute of Obesity and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510000, China; Shandong Provincial Key Laboratory for Clinical Research of Liver Diseases, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266001, China.
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
37
|
Hou FQ, Wu XY, Gong MX, Wei JJ, Yi Y, Wei Y, He ZX, Gong QH, Gao JM. Trilobatin rescues fulminant hepatic failure by targeting COX2: Involvement of ROS/TLR4/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155059. [PMID: 37672856 DOI: 10.1016/j.phymed.2023.155059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Fulminant hepatic failure (FHF) lacks efficient therapies notwithstanding increased comprehending of the inflammatory response and oxidative stress play crucial roles in the pathogenesis of this type of hepatic damage. Trilobatin (TLB), a naturally occurring food additive, is endowed with anti-inflammation and antioxidant properties. PURPOSE In current study, we evaluated the effect of TLB on FHF with a mouse model with d-galactosamine/lipopolysaccharide (GalN/LPS)-induced FHF and LPS-stimulated Kupffer cells (KCs) injury. METHODS Mice were randomly divided into seven groups: control group, TLB 40 mg/kg + control group, GalN/LPS group, TLB 10 mg/kg + GalN/LPS group, TLB 20 mg/kg + GalN/LPS group, TLB 40 mg/kg + GalN/LPS group, bifendate 150 mg/kg + GalN/LPS group. The mice were administered intragastrically TLB (10, 20 and 40 mg/kg) for 7 days (twice a day) prior to injection of GalN (700 mg/kg)/LPS (100 µg/kg). The KCs were pretreated with TLB (2.5, 5, 10 μM) for 2 h or its analogue (10 μM) or COX2 inhibitor (10 μM), and thereafter challenged by LPS (1 μg/ml) for 24 h. RESULTS TLB effectively rescued GalN/LPS-induced FHF. Furthermore, TLB inhibited TLR 4/NLRP3/pyroptosis pathway, and caspase 3-dependent apoptosis pathway, along with reducing excessive cellular and mitochondrial ROS generation and enhancing mitochondrial biogenesis. Intriguingly, TLB directly bound to COX2 as reflected by transcriptomics, molecular docking technique and surface plasmon resonance assay. Furthermore, TLB failed to attenuate LPS-induced inflammation and oxidative stress in KCs in the absence of COX2. CONCLUSION Our findings discover a novel pharmacological effect of TLB: protecting against FHF-induced pyroptosis and apoptosis through mediating ROS/TLR4/NLRP3 signaling pathway and reducing inflammation and oxidative stress. TLB may be a promising agent with outstanding safety profile to treat FHF.
Collapse
Affiliation(s)
- Fang-Qin Hou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Yu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Miao-Xian Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhi-Xu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
38
|
Chen L, Chu H, Hu L, Li Z, Yang L, Hou X. The role of NADPH oxidase 1 in alcohol-induced oxidative stress injury of intestinal epithelial cells. Cell Biol Toxicol 2023; 39:2345-2364. [PMID: 35639301 PMCID: PMC10547661 DOI: 10.1007/s10565-022-09725-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 12/17/2022]
Abstract
Alcohol-mediated reactive oxygen species (ROS) play a vital role in intestinal barrier injury. However, the mechanism of ROS accumulation in enterocytes needs to be explored further. In our study, we found that chronic-binge ethanol-fed mice had increased levels of gut oxidative stress and high intestinal permeability. The transcription profiles of the colonic epithelial cells showed that the level of NADPH oxidase 1 (NOX1) was significantly elevated in alcohol-exposed mice compared with isocaloric-exposed mice. In vitro, NOX1 silencing alleviated ROS accumulation and the apoptosis of human colonic epithelial cells (NCM460), while NOX1 overexpression accelerated oxidative stress injury of NCM460 cells. Propionic acid was reduced in the gut of chronic-binge ethanol-fed mice, compared with isocaloric-fed mice, as observed through untargeted metabolomic analysis. Supplementation with propionate relieved ethanol-induced liver and intestinal barrier injuries and reduced the level of ROS accumulation and apoptosis of ethanol-induced colonic epithelial cells. Propionate alleviating NOX1 induced ROS injury of colonic epithelial cells, independent of G protein-coupled receptors. Propionate significantly inhibited histone deacetylase 2 (HDAC2) expressions both in ethanol-exposed colonic epithelial cells and TNF-α-treated NCM460. Chromatin immunoprecipitation (ChIP) assays showed that propionate suppressed the NOX1 expression by regulating histone acetylation in the gene promoter region. In conclusion, NOX1 induces oxidative stress injury of colonic epithelial cells in alcohol-related liver disease. Propionate, which can act as an endogenous HDAC2 inhibitor, can decrease levels of apoptosis of intestinal epithelial cells caused by oxidative stress.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhonglin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
39
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
40
|
Dong J, Yang Y, Fan X, Zhu HL, Li Z. Accurate imaging in the processes of formation and inhibition of drug-induced liver injury by an activable fluorescent probe for ONOO . Mater Today Bio 2023;21:100689. [PMID: 37448665 PMCID: PMC10336156 DOI: 10.1016/j.mtbio.2023.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Herein, an activable fluorescent probe for peroxynitrite (ONOO-), named NOP, was constructed for the accurate imaging in the processes of formation and inhibition of drug-induced liver injury induced by Acetaminophen (APAP). During the in-solution tests on the general optical properties, the probe showed advantages including good stability, wide pH adaption, high specificity and sensitivity in the monitoring of ONOO-. Subsequently, the probe was further applied in the model mice which used APAP to induce the injury and used inhibiting agents (GSH, Glu, NAC) to treat the induced injury. The construction of the liver injury model was confirmed by the pathological staining and the serum indexes including ALT, AST, ALP, TBIL as well as LDH. During the formation of the drug-induced liver injury, the fluorescence in the red channel enhanced in both time-dependent and dose-dependent manners. In inhibition tests, the inhibition of the liver injury exhibited the reduction of the fluorescence intensity. Therefore, NOP could achieve the accurate imaging in the processes of formation and inhibition of drug-induced liver injury. The information here might be helpful for the early diagnosis and the screening of potent treating candidates in liver injury cases.
Collapse
Affiliation(s)
- Junming Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| | - Yushun Yang
- Jinhua Advanced Research Institute, Jinhua, 321019, China
| | - Xiangjun Fan
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, 226001, Nantong, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
41
|
Ke MY, Fang Y, Cai H, Lu JW, Yang L, Wang Y, Wu RQ, Zhang XF, Lv Y, Dong J. The m 6A reader YTHDF1 attenuates fulminant hepatitis via MFG-E8 translation in an m 6A dependent manner. Int J Biol Sci 2023; 19:3987-4003. [PMID: 37564203 PMCID: PMC10411475 DOI: 10.7150/ijbs.84768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023] Open
Abstract
Background and Aims: N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes, which has been demonstrated to play important roles in various biological processes. However, its roles in fulminant hepatitis remain largely unknown. In the current study, YTHDF1 expression was found to be significantly downregulated in the livers among patients, as well as murine models with fulminant hepatitis versus normal controls. Thus, we hypothesized that YTHDF1 protects against fulminant hepatitis and investigated the underlying molecular mechanisms. Methods: Fulminant hepatitis was induced by D-GalN/LPS in conventional YTHDF1 knockout (YTHDF1-/-) mice, hepatocyte-specific YTHDF1 overexpression (AAV8- YTHDF1) mice, and corresponding control mice. Primary hepatocytes were cultured and subjected to LPS insult in vitro. Hepatic histology, cell death, oxidative stress and mitochondrial function were examined to assess liver damage. The molecular mechanisms of YTHDF1 function were explored using multi-omics analysis. Results: Ablation of YTHDF1 exacerbated hepatic apoptosis and reactive oxygen species (ROS) production and increased the number of aberrant mitochondria, while YTHDF1 overexpression resulted in the opposite effects. Multiomics analysis identified MFG-E8 as the direct target of YTHDF1. YTHDF1 augmented the translation of MFG-E8 in an m6A-dependent manner without effect on its mRNA expression, thereby restoring mitochondrial function. Additionally, administration of MFG-E8 almost completely reversed the YTHDF1 deficiency-mediated exacerbation of liver injury. Conclusions: The current study suggested that the m6A reader YTHDF1 alleviates cell death, enhances antioxidant capacity and restores mitochondrial function in fulminant hepatitis by promoting MFG-E8 protein translation in an m6A-dependent manner.
Collapse
Affiliation(s)
- Meng-Yun Ke
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Yi Fang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Jian-Wen Lu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Lin Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Xu-Feng Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, Shaanxi Province, China
| | - Jian Dong
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
42
|
Wu X, Dayanand KK, Thylur Puttalingaiah R, Punnath K, Norbury CC, Gowda DC. Different TLR signaling pathways drive pathology in experimental cerebral malaria vs. malaria-driven liver and lung pathology. J Leukoc Biol 2023; 113:471-488. [PMID: 36977632 DOI: 10.1093/jleuko/qiad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/30/2023] Open
Abstract
Malaria infection causes multiple organ-specific lethal pathologies, including cerebral malaria, and severe liver and lung pathologies by inducing strong inflammatory responses. Gene polymorphism studies suggest that TLR4 and TLR2 contribute to severe malaria, but the roles of these signaling molecules in malaria pathogenesis remain incompletely understood. We hypothesize that danger-associated molecular patterns produced in response to malaria activate TLR2 and TLR4 signaling and contribute to liver and lung pathologies. By using a mouse model of Plasmodium berghei NK65 infection, we show that the combined TLR2 and TLR4 signaling contributes to malaria liver and lung pathologies and mortality. Macrophages, neutrophils, natural killer cells, and T cells infiltrate to the livers and lungs of infected wild-type mice more than TLR2,4-/- mice. Additionally, endothelial barrier disruption, tissue necrosis, and hemorrhage were higher in the livers and lungs of infected wild-type mice than in those of TLR2,4-/- mice. Consistent with these results, the levels of chemokine production, chemokine receptor expression, and liver and lung pathologic markers were higher in infected wild-type mice than in TLR2,4-/- mice. In addition, the levels of HMGB1, a potent TLR2- and TLR4-activating danger-associated molecular pattern, were higher in livers and lungs of wild-type mice than TLR2,4-/- mice. Treatment with glycyrrhizin, an immunomodulatory agent known to inhibit HMGB1 activity, markedly reduced mortality in wild-type mice. These results suggest that TLR2 and TLR4 activation by HMGB1 and possibly other endogenously produced danger-associated molecular patterns contribute to malaria liver and lung injury via signaling mechanisms distinct from those involved in cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Xianzhu Wu
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kiran K Dayanand
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Ramesh Thylur Puttalingaiah
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Kishore Punnath
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Christopher C Norbury
- Departments of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - D Channe Gowda
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
43
|
Shao M, Wang Y, Dong H, Wang L, Zhang X, Han X, Sang X, Bao Y, Peng M, Cao G. From liver fibrosis to hepatocarcinogenesis: Role of excessive liver H2O2 and targeting nanotherapeutics. Bioact Mater 2023; 23:187-205. [PMID: 36406254 PMCID: PMC9663332 DOI: 10.1016/j.bioactmat.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis and hepatocellular carcinoma (HCC) have been worldwide threats nowadays. Liver fibrosis is reversible in early stages but will develop precancerosis of HCC in cirrhotic stage. In pathological liver, excessive H2O2 is generated and accumulated, which impacts the functionality of hepatocytes, Kupffer cells (KCs) and hepatic stellate cells (HSCs), leading to genesis of fibrosis and HCC. H2O2 accumulation is associated with overproduction of superoxide anion (O2•−) and abolished antioxidant enzyme systems. Plenty of therapeutics focused on H2O2 have shown satisfactory effects against liver fibrosis or HCC in different ways. This review summarized the reasons of liver H2O2 accumulation, and the role of H2O2 in genesis of liver fibrosis and HCC. Additionally, nanotherapeutics targeting H2O2 were summarized for further consideration of antifibrotic or antitumor therapy.
Liver fibrosis and HCC are closely related because ROS induced liver damage and inflammation, especially over-cumulated H2O2. Excess H2O2 diffusion in pathological liver was due to increased metabolic rate and diminished cellular antioxidant systems. Freely diffused H2O2 damaged liver-specific cells, thereby leading to fibrogenesis and hepatocarcinogenesis. Nanotherapeutics targeting H2O2 are summarized for treatment of liver fibrosis and HCC, and also challenges are proposed.
Collapse
|
44
|
Ivan L, Uyy E, Suica VI, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Hepatic Alarmins and Mitochondrial Dysfunction under Residual Hyperlipidemic Stress Lead to Irreversible NAFLD. J Clin Transl Hepatol 2023; 11:284-294. [PMID: 36643050 PMCID: PMC9817060 DOI: 10.14218/jcth.2022.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) includes a range of progressive disorders generated by excess lipid accumulation in the liver leading to hepatic steatosis and eventually fibrosis. We aimed to identify by high performance mass spectrometry-based proteomics the main signaling pathways and liver proteome changes induced by hypercholesterolemia in a rabbit atherosclerotic model that induced high accumulation of lipids in the liver. METHODS The effect of combined lipid-lowering drugs (statins and anti-PCSK9 monoclonal antibody) were used after the interruption of the hypercholesterolemic diet to identify also the potential mediators, such as alarmins, responsible for the irreversible NAFLD build up under the hyperlipidemic sustained stress. RESULTS Proteomic analysis revealed a number of proteins whose abundance was altered. They were components of metabolic pathways including fatty-acid degradation, glycolysis/gluconeogenesis, and nonalcoholic fatty liver disease. Mitochondrial dysfunction indicated alteration at the mitochondrial respiratory chain level and down-regulation of NADH: ubiquinone oxidoreductase. The expression of a majority of cytochromes (P4502E1, b5, and c) were up-regulated by lipid-lowering treatment. Long-term hyperlipidemic stress, even with a low-fat diet and lipid-lowering treatment, was accompanied by alarmin release (annexins, galectins, HSPs, HMGB1, S100 proteins, calreticulin, and fibronectin) that generated local inflammation and induced liver steatosis and aggressive fibrosis (by high abundance of galectin 3, fibronectin, and calreticulin). CONCLUSIONS The novel findings of this study were related to the residual effects of hyperlipidemic stress with consistent, combined lipid-lowering treatment with statin and inhibitor of PCSK9.
Collapse
Affiliation(s)
- Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Viorel I. Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Raluca M. Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- Correspondence to: Felicia Antohe, Institute of Cellular Biology and Pathology “N. Simionescu” 8, B.P. Hasdeu Street, PO Box 35-14, Bucharest 050568, Romania. ORCID: https://orcid.org/0000-0002-3325-2867. Tel: +40-21-3194518, Fax: +40-21-3194519, E-mail:
| |
Collapse
|
45
|
Chen L, Li Z, Wei W, An B, Tian Y, Liu W, Niu S, Wang Y, Wang L, Li W, Hao J, Wu J. Human embryonic stem cell-derived immunity-and-matrix regulatory cells promote intrahepatic cell renewal to rescue acute liver failure. Biochem Biophys Res Commun 2023; 662:104-113. [PMID: 37104880 DOI: 10.1016/j.bbrc.2023.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Acute liver failure (ALF) is a clinical syndrome characterized by the accelerated development of hepatocyte necrosis and significant mortality. Given that liver transplantation is now the only curative treatment available for ALF, there is an urgent need to explore innovative therapies. Mesenchymal stem cells (MSCs) have been applied in preclinical studies for ALF. It had been demonstrated that human embryonic stem cell-derived immunity-and-matrix regulatory cells (IMRCs) met the properties of MSCs and had been employed in a wide range of conditions. In this study, we conducted a preclinical evaluation of IMRCs in the treatment of ALF and investigated the mechanism involved. ALF was induced in C57BL/6 mice via intraperitoneal administration of 50% CCl4 (6 mL/kg) mixed with corn oil, followed by intravenous injection of IMRCs (3 × 106 cells/each). IMRCs improved histopathological changes in the liver and reduced alanine transaminase (ALT) or aspartate transaminase (AST) levels in serum. IMRCs also promoted cell renewal in the liver and protected it from CCl4 damage. Furthermore, our data indicated that IMRCs protected against CCl4-induced ALF by regulating the IGFBP2-mTOR-PTEN signaling pathway, which is associated with the repopulation of intrahepatic cells. Overall, IMRCs offered protection against CCl4-induced ALF and were capable of preventing apoptosis and necrosis in hepatocytes, which provided a new perspective for treating and improving the prognosis of ALF.
Collapse
Affiliation(s)
- Ling Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongwen Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wumei Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin An
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Liu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuaishuai Niu
- National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yukai Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jie Hao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China; National Stem Cell Resource Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
46
|
Liu L, Xiao F, Sun J, Wang Q, Wang A, Zhang F, Li Z, Wang X, Fang Z, Qiao Y. Hepatocyte-derived extracellular vesicles miR-122-5p promotes hepatic ischemia reperfusion injury by regulating Kupffer cell polarization. Int Immunopharmacol 2023; 119:110060. [PMID: 37044034 DOI: 10.1016/j.intimp.2023.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Ischemia reperfusion injury remains a major barrier to liver transplantation, especially using grafts from donation after circulatory death, and it is also a pressing issue to be solved in clinical practice. Kupffer cell polarization toward a proinflammatory M1 phenotype is an early trigger of liver ischemia-reperfusion injury. However, the molecular mechanism regulating Kupffer cell polarization has not yet been fully elucidated. We induced liver ischemia reperfusion injury in mice and obtained samples from patients undergoing liver transplantation, serum and hepatocytes-derived extracellular vesicles were isolated by differential ultracentrifugation. Kupffer cell polarization was examined by flow cytometry and immunofluorescence histochemistry. RNA-seq was conducted to detect the differentially expressed miRNAs in extracellular vesicles. The role and mechanism of exosomal miR-122-5p in liver ischemia-reperfusion injury were determined both in vitro and in vivo. We identified ischemia reperfusion induced extracellular vesicles as a major cause of hepatic inflammation and tissue damage using adoptive transfer and release inhibition. The study also demonstrated that hepatocyte-derived exosomal miR-122-5p mediates liver ischemia reperfusion injury by polarizing Kupffer cell via PPARδ down-regulation and NF-κB pathway activation using profiling and functional analysis. Moreover, inhibiting miR-122-5p with antagomir suppressed Kupffer cell M1 polarization and attenuated liver ischemia reperfusion injury. Overall, our study demonstrated that hepatocyte-derived exosomal miR-122-5p played a critical role in promoting hepatic ischemia reperfusion injury through modulating PPARδ signaling and NF-κB pathway to introduce M1 polarization of Kupffer cell. Inhibition of miR-122-5p exhibited a protective effect against liver ischemia reperfusion injury, suggesting a potential therapeutic target for liver transplantation.
Collapse
Affiliation(s)
- Long Liu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, Zhejiang 317000, China
| | - Fei Xiao
- Department of Organ Transplantation, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Jie Sun
- Medical Records Department, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Qi Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Aidong Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| | - Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Zhu Li
- Department of Organ Transplantation, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Zheping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, Zhejiang 317000, China; Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| | - Yingli Qiao
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang 317000, China.
| |
Collapse
|
47
|
Bai H, Fang CW, Shi Y, Zhai S, Jiang A, Li YN, Wang L, Liu QL, Zhou GY, Cao JH, Li J, Yang XK, Qin XJ. Mitochondria-derived H2O2 triggers liver regeneration via FoxO3a signaling pathway after partial hepatectomy in mice. Cell Death Dis 2023; 14:216. [PMID: 36977674 PMCID: PMC10050396 DOI: 10.1038/s41419-023-05744-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
AbstractReactive oxygen species (ROS) can induce oxidative injury and are generally regarded as toxic byproducts, although they are increasingly recognized for their signaling functions. Increased ROS often accompanies liver regeneration (LR) after liver injuries, however, their role in LR and the underlying mechanism remains unclear. Here, by employing a mouse LR model of partial hepatectomy (PHx), we found that PHx induced rapid increases of mitochondrial hydrogen peroxide (H2O2) and intracellular H2O2 at an early stage, using a mitochondria-specific probe. Scavenging mitochondrial H2O2 in mice with liver-specific overexpression of mitochondria-targeted catalase (mCAT) decreased intracellular H2O2 and compromised LR, while NADPH oxidases (NOXs) inhibition did not affect intracellular H2O2 or LR, indicating that mitochondria-derived H2O2 played an essential role in LR after PHx. Furthermore, pharmacological activation of FoxO3a impaired the H2O2-triggered LR, while liver-specific knockdown of FoxO3a by CRISPR-Cas9 technology almost abolished the inhibition of LR by overexpression of mCAT, demonstrating that FoxO3a signaling pathway mediated mitochondria-derived H2O2 triggered LR after PHx. Our findings uncover the beneficial roles of mitochondrial H2O2 and the redox-regulated underlying mechanisms during LR, which shed light on potential therapeutic interventions for LR-related liver injury. Importantly, these findings also indicate that improper antioxidative intervention might impair LR and delay the recovery of LR-related diseases in clinics.
Collapse
|
48
|
Yahoo N, Dudek M, Knolle P, Heikenwälder M. Role of immune responses for development of NAFLD-associated liver cancer and prospects for therapeutic modulation. J Hepatol 2023:S0168-8278(23)00165-4. [PMID: 36893854 DOI: 10.1016/j.jhep.2023.02.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
The liver is the central metabolic organ of the body regulating energy and lipid metabolism and at the same time has potent immunological functions. Overwhelming the metabolic capacity of the liver by obesity and sedentary lifestyle leads to hepatic lipid accumulation, chronic necro-inflammation, enhanced mitochondrial/ER-stress and development of non-alcoholic fatty liver disease (NAFLD), with its pathologic form nonalcoholic steatohepatitis (NASH). Based on knowledge on pathophysiological mechanisms, specifically targeting metabolic diseases to prevent or slow down progression of NAFLD to liver cancer will become possible. Genetic/environmental factors contribute to development of NASH and liver cancer progression. The complex pathophysiology of NAFLD-NASH is reflected by environmental factors, particularly the gut microbiome and its metabolic products. NAFLD-associated HCC occurs in most of the cases in the context of a chronically inflamed liver and cirrhosis. Recognition of environmental alarmins or metabolites derived from the gut microbiota and the metabolically injured liver create a strong inflammatory milieu supported by innate and adaptive immunity. Several recent studies indicate that the chronic hepatic microenvironment of steatosis induces auto-aggressive CD8+CXCR6+PD1+ T cells secreting TNF and upregulating FasL to eliminate parenchymal and non-parenchymal cells in an antigen independent manner. This promotes chronic liver damage and a pro-tumorigenic environment. CD8+CXCR6+PD1+ T cells possess an exhausted, hyperactivated, resident phenotype and trigger NASH to HCC transition, and might be responsible for a less efficient treatment response to immune-check-point inhibitors - in particular atezolizumab/bevacizumab. Here, we provide an overview of NASH-related inflammation/pathogenesis focusing on new discoveries on the role of T cells in NASH-immunopathology and therapy response. This review discusses preventive measures to halt disease progression to liver cancer and therapeutic strategies to manage NASH-HCC patients.
Collapse
Affiliation(s)
- Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; The M3 Research Institute, Karl Eberhards Universitaet Tübingen, Medizinische Fakultät, Otfried-Müller-Straße 37, 72076 Tübingen.
| |
Collapse
|
49
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
50
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|