1
|
de Moraes JFC, Rechenchoski DZ, Dyna AL, Cunha AP, Ricardo NMPS, de Farias SS, de Morais SM, Yamauchi LM, Faccin-Galhardi LC. Characterization and Promising in vitro Antiherpetic Effect of Galactomannan from Delonix regia Seeds. Curr Microbiol 2024; 81:375. [PMID: 39317904 DOI: 10.1007/s00284-024-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Herpes simplex virus (HSV) infections can occur throughout life, thereby allowing transmission to new hosts, with an impact on public health. Acyclovir remains the treatment of choice for these infections; however, an increase in resistant strains in recent years has been observed. In this study, the activity of a native Delonix regia galactomannan (NDr) against HSV-1 was investigated in vitro. NDr was characterized using infrared spectroscopy and NMR. Evaluation of cytotoxicity and the antiviral effect was determined, respectively, by MTT and plaque reduction assays. The NDr concentrations that inhibited cell viability (CC50) and viral infection (IC50) by 50% were above 2000 and 64 μg/mL, respectively. Thus, the polysaccharide showed a high selectivity index (> 31.25). When NDr was added at different stages of HSV-1 replication, a strong inhibitory effect was found by direct interaction with the virus (71-67%, virucidal effect) or previously with the cell, 6 h before infection (99.8-68.4%, prophylactic effect) at concentrations from 200 to 50 μg/mL. NDr showed similar effects in prophylactic 1 h (52%) and adsorption inhibition (55%) assays at 200 μg/mL. A reduction in the antiherpetic effect was observed after infection. These results suggest that NDr is effective in the early stages of HSV-1 infection and is a promising agent for controlling herpetic infections.
Collapse
Affiliation(s)
| | | | - André Luiz Dyna
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica E Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | | | - Silvana Silveira de Farias
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Selene Maia de Morais
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | | |
Collapse
|
2
|
Duan X, Xu M, Wang Y, Liu N, Wang X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. Effect of miR-17 on Polygonum Cillinerve polysaccharide against transmissible gastroenteritis virus. Front Vet Sci 2024; 11:1360102. [PMID: 38444776 PMCID: PMC10912159 DOI: 10.3389/fvets.2024.1360102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) could cause diarrhea, vomiting, dehydration and even death in piglets, miRNA played an important role in the interaction between virus and cell. The study aimed to investigate the impact of miR-17 on the polysaccharide of Polygonum Cillinerve (PCP) in combating TGEV. miR-17 was screened and transfection validation was performed by Real-time PCR. The function of miR-17 on PK15 cells infected with TGEV and treated with PCP was investigated by DCFH-DA loading probe, JC-1 staining and Hoechst fluorescence staining. Furthermore, the effect of miR-17 on PCP inhibiting TGEV replication and apoptosis signaling pathways during PCP against TGEV infection was measured through Real-time PCR and Western blot. The results showed that miR-17 mimic and inhibitor could be transferred into PK15 cells and the expression of miR-17 significantly increased and decreased respectively compared with miR-17 mimic and inhibitor (P < 0.05). A total 250 μg/mL of PCP could inhibit cells apoptosis after transfection with miR-17. PCP (250 μg/mL and 125 μg/mL) significantly inhibited the decrease in mitochondrial membrane potential induced by TGEV after transfection with miR-17 (P < 0.05). After transfection of miR-17 mimic, PCP at concentrations of 250 μg/mL and 125 μg/mL significantly promoted the mRNA expression of P53, cyt C and caspase 9 (P < 0.05). Compared with the control group, the replication of TGEV gRNA and gene N was significantly inhibited by PCP at concentrations of 250 μg/mL and 125 μg/mL after transfection of both miR-17 mimic and inhibitor (P < 0.05). PCP at 62.5 μg/mL significantly inhibited the replication of gene S following transfection with miR-17 inhibitor (P < 0.05). These results suggested that PCP could inhibit the replication of TGEV and apoptosis induced by TGEV by regulating miR-17.
Collapse
Affiliation(s)
- Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Tulsawani R, Verma K, Kohli E, Sharma P, Meena YS, Amitabh, Ponmariappan S, Kumar P, Maithani R. Anti-microbial efficacy of a scientifically developed and standardized herbal-alcohol sanitizer. Arch Microbiol 2024; 206:77. [PMID: 38270599 DOI: 10.1007/s00203-023-03805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Hands are the primary mode of transmission of microbe-based infections, as they harbor normal microbiota and pathogenic microbes. SARS-CoV-2 has endangered lives worldwide, and WHO has recommended good hygiene practices, especially hand hygiene. In addition, other infectious diseases like diphtheria, measles, tuberculosis, HIV, malaria, etc. are spreading in the shadow of the COVID-19 pandemic. The anti-microbial efficiency of two in-house developed herbal-alcohol based hand sanitizers containing Azadirachta indica, Citrus limon, Zingiber officinale, and Aloe vera (HS1) and Zingiber officinale replaced with Ocimum sanctum (HS2) was evaluated. HS1, with Zingiber officinale, and HS2, with Ocimum sanctum, herbal sanitizers showcased in-vitro anti-viral activity on MDCK cells using the reference strain of influenza A virus, A/PR/8/34 (H1N1), and reduced 99.99% of microbial load within 30 s of contact time, estimated by the Antimicrobial Susceptibility Testing Method. On volunteers, HS1 and HS2 were more effective than alcohol-based WHO sanitizers. Moreover, HS2 sanitizer is more effective against viruses and has better efficiency and hedonic qualities in volunteers than HS1. These sanitizers don't irritate or dry up the skin and have a longer shelf life. Overall, findings reveal that herbal-alcohol-based sanitizers are promising hand hygiene products with the capability of reducing microbial load.
Collapse
Affiliation(s)
- Rajkumar Tulsawani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India.
| | - Kalyani Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Ekta Kohli
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Purva Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Yogesh Singh Meena
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | - Amitabh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| | | | - Prashant Kumar
- Amity Institute of Virology and Immunology (AIVI), Amity University, Sector-125, Noida, India
| | - Rekha Maithani
- Defence Institute of Physiology and Allied Sciences (DIPAS), Lucknow Road, Timarpur, New Delhi, India
| |
Collapse
|
4
|
de Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF. In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 2023; 13:4677. [PMID: 36949145 PMCID: PMC10031174 DOI: 10.1038/s41598-023-31455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.
Collapse
Affiliation(s)
- Ana Lidia Madeira de Sousa
- Laboratory of Virology (LABOVIR), State University of Ceará (UECE), Fortaleza, CE, Brazil.
- Faculdade Educar da Ibiapaba, Ípu, CE, Brazil.
| | | | | | - Renato Mesquita Peixoto
- Vale do Salgado University Center (UNIVS), Icó, CE, Brazil
- Terra Nordeste College (FATENE), Caucaia, CE, Brazil
| | | | - Ana Milena Cesar Lima
- Scholarship for Regional Scientific Development of the National Council for Scientific and Technological Development (DCR-CNPq/FUNCAP), Level C, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Kirley Marques Canuto
- Multiuser Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | | | | | | | - Sara Lucena de Amorim
- Department of Veterinary Medicine, Federal University of Rondônia, Rolim de Moura, RO, Brazil
| | | | - Viviane de Souza
- Laboratory of Microbiology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | - Selene Maia de Morais
- Laboratory of Chemistry and Natural Products (LQPN), Ceará State University, Fortaleza, CE, Brazil
| | - Alice Andrioli
- Laboratory of Virology, Embrapa Goats and Sheep, Sobral, CE, Brazil
| | | |
Collapse
|
5
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Antiviral Activity of Crude Polysaccharide Derived from Seaweed against IHNV and IPNV In Vitro. Viruses 2022; 14:v14092080. [PMID: 36146887 PMCID: PMC9501831 DOI: 10.3390/v14092080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Both infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are the causative agents of acute and highly contagious diseases of juvenile salmonids, resulting in severe economic losses to these cold-water fish globally. There is an urgent need to explore antiviral agents against IHNV and IPNV due to the lack of commercially available vaccines and antiviral drugs. More importantly, the co-infection of IHNV and IPNV is prevalent in nature, which not only aggravates extensive damage to the salmonids but also poses challenges to its prevention and control. The antiviral effects of a crude polysaccharide derived from seaweed (CSP) on IHNV and IPNV were evaluated in this study separately. Furthermore, the underlying antiviral mechanisms of CSP to IHNV and IPNV were analyzed, respectively. The results showed that CSP possessed excellent safety and good ability to inhibit IHNV, IPNV, and their co-infection. CSP preferred to act at the early stage of viral infection. The antiviral mechanism of CSP on IHNV is possibly involved in preventing viral attachment and release, while in IPNV, it is involved in suppressing viral attachment, entry, and release. Taken together, the results of this study shed new light on developing novel agents against viral infection in salmonid fish.
Collapse
|
7
|
Antiviral perspectives of economically important Indian medicinal plants and spices. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9422945 DOI: 10.1007/s43538-022-00099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human respiratory diseases caused by viral infections leads to morbidity. Among infectious diseases, viral infections associated with the respiratory tract remain the primary reason for global deaths due to their transmissibility. Since immemorial, traditional Indian medicinal plants, their extracts, and several phytochemicals can treat various diseases. Sources for this review paper are data derived from a peer-reviewed journal that emphasizes the economic importance of medicinal plants. Several plant-based medicines have been reported to be effective against multiple viral infections, including the Human Adenovirus, Enterovirus, Influenza virus, Hepatitis virus, etc. This review emphasizes use of the Indian medicinal plants like as Withania somnifera (Ashwagandha, Winter Cherry), Moringa oleifera (Drumstick), Ocimum tenuiflorum (Tulsi), Azadirachta indica (Neem), Curcuma longa (Turmeric), Terminalia chebula (Chebulic Myrobalan), Punica granatum (Pomegranate) and the Indian household spices (ginger, garlic and black pepper). It further describes their secondary phytoconstituents extraction procedure, mode of action and the potential application to improve clinical outcomes of neutraceuticals against various viral infections.
Collapse
|
8
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
9
|
Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, Singh D, Usman UJ, Ukwuani-Kwaja AN, Muhammad A, Ahmed SJ, Folami SO, Falana MB, Nurudeen QO. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med 2022; 49:102094. [PMID: 36573184 PMCID: PMC9760313 DOI: 10.1016/j.eujim.2021.102094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/09/2023]
Abstract
Introduction For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria,Corresponding author
| | - Sulaiman Sani Kankara
- Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, PMB 2218 Katsina State, Nigeria
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Jamilu Bala Danjuma
- Department of Biochemistry, Faculty of Science, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | - Hafsat Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Dharmendra Singh
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Umar Jaji Usman
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Angela Nnenna Ukwuani-Kwaja
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Sanusi Jega Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Sulaimon Olayiwola Folami
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | | | | |
Collapse
|
10
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Antiviral Potential of Selected Medicinal Herbs and Their Isolated Natural Products. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7872406. [PMID: 34926691 PMCID: PMC8674041 DOI: 10.1155/2021/7872406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Viruses are responsible for a variety of human pathogenesis. Owing to the enhancement of the world population, global travel, and rapid urbanization, and infectious outbreaks, a critical threat has been generated to public health, as preventive vaccines and antiviral therapy are not available. Herbal medicines and refined natural products have resources for the development of novel antiviral drugs. These natural agents have shed light on preventive vaccine development and antiviral therapies. This review intends to discuss the antiviral activities of plant extracts and some isolated plant natural products based on mainly preclinical (in vitro and in vivo) studies. Twenty medicinal herbs were selected for the discussion, and those are commonly recognized antiviral medicinal plants in Ayurveda (Zingiber officinale, Caesalpinia bonducella, Allium sativum, Glycyrrhiza glabra, Ferula assafoetida, Gymnema sylvestre, Gossypium herbaceum, Phyllanthus niruri, Trachyspermum ammi, Withania somnifera, Andrographis paniculata, Centella asiatica, Curcuma longa, Woodfordia fruticose, Phyllanthus emblica, Terminalia chebula, Tamarindus indica, Terminalia arjuna, Azadirachta indica, and Ficus religiosa). However, many viruses remain without successful immunization and only a few antiviral drugs have been approved for clinical use. Hence, the development of novel antiviral drugs is much significant and natural products are excellent sources for such drug developments. In this review, we summarize the antiviral actions of selected plant extracts and some isolated natural products of the medicinal herbs.
Collapse
|
12
|
Chen Y, Zhang Y, Luo Q, Zhu Y, Du H, Liao S, Yang Y, Chen H. Inhibition of porcine epidemic diarrhea virus by Alpiniae oxyphyllae fructus polysaccharide 3. Res Vet Sci 2021; 141:146-155. [PMID: 34749099 DOI: 10.1016/j.rvsc.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a deadly pathogen that still plagues suckling piglets. However, there is still no anti-PEDV drug available in clinics. To develop potential anti-PEDV drugs, the antiviral activity of Alpiniae oxyphyllae fructus polysaccharide 3 (AOFP3) against PEDV infection in IPEC-J2 cells were assessed in our present study. The structural characterization of AOFP3 was studied by using HPAEC, GC-MS, FT-IR and NMR techniques. At the same time, the anti-PEDV activity of AOFP3 was investigated by performing RT-qPCR, Western blot and immunofluorescence assays. The results showed that AOFP3 (44.4 kDa) was composed of glucose and galacturonic acid at a molar ratio of 77.54:22.46 and consisted of →4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, T-α-D-Glcp-(1→ and →4)-α-D-GalAp-(1→. AOFP3 significantly decreased PEDV titer in IPEC-J2 cells and prevented cellular damage of IPEC-J2 cells caused by PEDV infection. Furthermore, AOFP3 showed an antioxidative activity in inhibiting PEDV reproduction. Therefore, AOFP3 was expected to be a material of anti-PEDV drug.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| | - Yu Zhang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Qiyuan Luo
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yongjian Zhu
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Huijun Du
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Suya Liao
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yuhui Yang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Huricha Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| |
Collapse
|
13
|
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S. Perspective on the Therapeutic Applications of Algal Polysaccharides. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:785-809. [PMID: 34305487 PMCID: PMC8294233 DOI: 10.1007/s10924-021-02231-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 05/04/2023]
Abstract
Abstract Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare. Graphic Abstract
Collapse
Affiliation(s)
- Sonal Nigam
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201 313 Uttar Pradesh India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| | - Sheetal Kaushik Bhardwaj
- Vant Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rokkayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944 Saudi Arabia
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str, 7017 Ruse, Bulgaria
| | - Murthy Chavali
- Nano Technology Research Centre (NTRC), MCETRC, and Aarshanano Composite Technologies Pvt. Ltd, Guntur, Andhra Pradesh 522 201 India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| |
Collapse
|
14
|
Sellaoui L, Badawi M, Monari A, Tatarchuk T, Jemli S, Luiz Dotto G, Bonilla-Petriciolet A, Chen Z. Make it clean, make it safe: A review on virus elimination via adsorption. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 412:128682. [PMID: 33776550 PMCID: PMC7983426 DOI: 10.1016/j.cej.2021.128682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.
Collapse
Affiliation(s)
- Lotfi Sellaoui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques LPCT UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Tetiana Tatarchuk
- Educational and Scientific Center of Materials Science and Nanotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, Tunisia
- Faculty of Sciences of Sfax, Biology Department, University of Sfax, Tunisia
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | | | - Zhuqi Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
15
|
Structural characterization of Alpiniae oxyphyllae fructus polysaccharide 2 and its activation effects on RAW264.7 macrophages. Int Immunopharmacol 2021; 97:107708. [PMID: 33915496 DOI: 10.1016/j.intimp.2021.107708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Polysaccharides are important components of Alpiniae oxyphyllae fructus that have been shown to exhibit significant immunomodulatory activity in our previous study. However, whether and how A. oxyphyllae fructus polysaccharides (AOFP) affect macrophages has not been determined. To further study the immunomodulatory activity of AOFP, the effect of AOFP on RAW264.7 cell activation was investigated in the present work. The results showed that AOFP2 significantly increased the phagocytic activity of RAW264.7 macrophages. AOFP2 promoted the secretion of TNF-α, IL-6, IL-10, TGF-β, NO and iNOS and enhanced the Th2-type immune response via its activation effect on macrophages. Additionally, the structure of AOFP2 was characterized in the present study, as the structural features of polysaccharides determine their biological activities. AOFP2 was only composed of glucose, exhibiting an average molecular weight of 44.3 kDa. Furthermore, the infrared spectroscopy, methylation and nuclear magnetic resonance results indicated that AOFP2 consisted of → 4)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1 → and T-α-Glcp.
Collapse
|
16
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
17
|
Molecular docking and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates as potential anti-viral drugs for Covid-19. Virusdisease 2021; 32:85-97. [PMID: 33869672 PMCID: PMC8036013 DOI: 10.1007/s13337-021-00682-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/06/2021] [Indexed: 01/12/2023] Open
Abstract
Plants are repository of important constituents with proven efficacy against many human diseases including viral diseases. The antiviral activity of many plants including Azadirachta indica, Xylopia aethiopica and Allium cepa has been reported. The novel coronavirus disease is no exception among viral diseases in which plant compounds could serve as potent antagonist. Therefore, our study investigated the inhibitory potentials of Azadirachta indica and Xylopia aethiopica isolates against SARS-CoV-2 viral accessory proteins and the host serine protease. The protein data (SARS-CoV-2 Papain like protease (PLpro) (PDB: 6wx4), Chymotrypsin-like main protease (3CLpro) (PDB:6YB7), SARS-CoV nsp 12 (PDB: 6nus), Host cell protease (TMPRSS1) (PDB:5ce1) were obtained from the protein data bank (PDB), while the SDS format of each Ligands were obtained from Pubchem database. Molecular docking analysis was performed with Auto Dock Vina 1.5.6 and visualization of the interaction between the ligands and protein was done with discovery studio 2019. The ADMET prediction of pharmacokinetics and toxicity properties of the ligands was obtained using vNN Web Server. Our result showed that all the plant isolates demonstrated negative Gibb’s free energy, indicating good binding affinity for both the viral and host protein. Overall, twenty-three of the forty-seven isolates showed good binding affinity comparable with dexamethasone that was used as reference drug. Although many of the compounds have good binding affinity for the viral and host proteins, based on the ADMET prediction, only Azadironic acid, Nimbionone, Nimbionol and Nimocinol all from A. indica could serve as potential drug candidate with good pharmacokinetics and toxicity profile. This study provides an insight into potential inhibitors and novel drug candidates for SARS-CoV-2. Further studies will look forward into the wet laboratory validation of Azadironic acid, Nimbionone, Nimbionol and Nimocinol against corona virus disease.
Collapse
|
18
|
A review on antiviral and immunomodulatory polysaccharides from Indian medicinal plants, which may be beneficial to COVID-19 infected patients. Int J Biol Macromol 2021; 181:462-470. [PMID: 33794238 PMCID: PMC8006514 DOI: 10.1016/j.ijbiomac.2021.03.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
The emergence of the novel coronavirus, SARS-CoV-2 has pushed forward the world to experience the first pandemic of this century. Any specific drug against this RNA virus is yet to be discovered and presently, the COVID-19 infected patients are being treated symptomatically. During the last few decades, a number of polysaccharides with potential biological activities have been invented from Indian medicinal plants. Many polysaccharides, such as sulfated xylomannan, xylan, pectins, fucoidans, glucans, glucoarabinan, and arabinoxylan from Indian medicinal plants, have been shown to exhibit antiviral and immunomodulating activities. Plant polysaccharides exhibit antiviral activities through interference with the viral life cycle and inhibition of attachment of virus to host cell. Intake of certain immune stimulating plant polysaccharides may also protect from the virus to a certain extent. In process of continuous search for most potent drug, Indian plant polysaccharides may emerge as significant biomaterial to combat COVID-19. This review explores a number of polysaccharides from Indian medicinal plants which showed antiviral and immunomodulating activities. It is aimed to provide an overview about the composition, molecular mass, branching configuration and related bioactivities of polysaccharides which is crucial for their classification as possible drug to induce immune response in viral diseases.
Collapse
|
19
|
Ahmad S, Zahiruddin S, Parveen B, Basist P, Parveen A, Gaurav, Parveen R, Ahmad M. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19-Preclinical and Clinical Research. Front Pharmacol 2021; 11:578970. [PMID: 33737875 PMCID: PMC7962606 DOI: 10.3389/fphar.2020.578970] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The cases of COVID-19 are still increasing day-by-day worldwide, even after a year of its first occurrence in Wuhan city of China. The spreading of SARS-CoV-2 infection is very fast and different from other SARS-CoV infections possibly due to structural differences in S proteins. The patients with severe diseases may die due to acute respiratory distress syndrome (ARDS) caused by systemic inflammatory reactions due to the excessive release of pro-inflammatory cytokines and chemokines by the immune effector cells. In India too, it is spreading very rapidly, although the case fatality rate is below 1.50% (https://www.statista.com), which is markedly less than in other countries, despite the dense population and minimal health infrastructure in rural areas. This may be due to the routine use of many immunomodulator medicinal plants and traditional AYUSH formulations by the Indian people. This communication reviews the AYUSH recommended formulations and their ingredients, routinely used medicinal plants and formulations by Indian population as well as other promising Indian medicinal plants, which can be tested against COVID-19. Special emphasis is placed on Indian medicinal plants reported for antiviral, immunomodulatory and anti-allergic/anti-inflammatory activities and they are categorized for prioritization in research on the basis of earlier reports. The traditional AYUSH medicines currently under clinical trials against COVID-19 are also discussed as well as furtherance of pre-clinical and clinical testing of the potential traditional medicines against COVID-19 and SARS-CoV-2. The results of the clinical studies on AYUSH drugs will guide the policymakers from the AYUSH systems of medicines to maneuver their policies for public health, provide information to the global scientific community and could form a platform for collaborative studies at national and global levels. It is thereby suggested that promising AYUSH formulations and Indian medicinal plants must be investigated on a priority basis to solve the current crisis.
Collapse
Affiliation(s)
- Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Parakh Basist
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Abida Parveen
- Centre for Translational and Clinical Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Gaurav
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| | - Rabea Parveen
- Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Minhaj Ahmad
- Department of Surgery, School of Unani Medical Education and Research, Jamia Hamdard (Deemed University), New Delhi, India
| |
Collapse
|
20
|
Batra N, De Souza C, Batra J, Raetz AG, Yu AM. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Mol Sci 2020; 21:E6412. [PMID: 32899231 PMCID: PMC7503392 DOI: 10.3390/ijms21176412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global pandemic with increasing incidence and mortality rates. Recent evidence based on the cytokine profiles of severe COVID-19 cases suggests an overstimulation of macrophages and monocytes associated with reduced T-cell abundance (lymphopenia) in patients infected with SARS-CoV-2. The SARS-CoV-2 open reading frame 3 a (ORF3a) protein was found to bind to the human HMOX1 protein at a high confidence through high-throughput screening experiments. The HMOX1 pathway can inhibit platelet aggregation, and can have anti-thrombotic and anti-inflammatory properties, amongst others, all of which are critical medical conditions observed in COVID-19 patients. Here, we review the potential of modulating the HMOX1-ORF3a nexus to regulate the innate immune response for therapeutic benefits in COVID-19 patients. We also review other potential treatment strategies and suggest novel synthetic and natural compounds that may have the potential for future development in clinic.
Collapse
Affiliation(s)
- Neelu Batra
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
- Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Jyoti Batra
- Gladstone Institute, San Francisco, CA 94158, USA;
| | - Alan G. Raetz
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; (N.B.); (C.D.S.); (A.G.R.)
| |
Collapse
|
21
|
Kost B, Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020; 25:E3404. [PMID: 32731371 PMCID: PMC7435941 DOI: 10.3390/molecules25153404] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.
Collapse
Affiliation(s)
- Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.S.); (M.B.); (T.B.)
| | | | | | | |
Collapse
|
22
|
Yang X, Yang Y, Chen H, Xu T, Li C, Zhou R, Gao L, Han M, He X, Chen Y. Extraction, isolation, immunoregulatory activity, and characterization of Alpiniae oxyphyllae fructus polysaccharides. Int J Biol Macromol 2020; 155:927-937. [DOI: 10.1016/j.ijbiomac.2019.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
|
23
|
He X, Fang J, Guo Q, Wang M, Li Y, Meng Y, Huang L. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr Polym 2020; 229:115548. [DOI: 10.1016/j.carbpol.2019.115548] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022]
|
24
|
de Godoi AM, Faccin-Galhardi LC, Rechenchoski DZ, Arruda TBMG, Cunha AP, de Almeida RR, Rodrigues FEA, Ricardo NMPS, Nozawa C, Linhares REC. Structural characterization and antiviral activity of pectin isolated from Inga spp. Int J Biol Macromol 2019; 139:925-931. [DOI: 10.1016/j.ijbiomac.2019.07.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
25
|
Assessment of antiherpetic activity of nonsulfated and sulfated polysaccharides from Azadirachta indica. Int J Biol Macromol 2019; 137:54-61. [DOI: 10.1016/j.ijbiomac.2019.06.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
|
26
|
Rechenchoski DZ, Samensari NL, Faccin-Galhardi LC, de Almeida RR, Cunha AP, Ricardo NMPS, Nozawa C, Linhares REC. The Combination of Dimorphandra gardneriana Galactomannan and Mangiferin Inhibits Herpes Simplex and Poliovirus. Curr Pharm Biotechnol 2019; 20:215-221. [PMID: 30848197 DOI: 10.2174/1389201020666190307130431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Herpes simplex virus (HSV) and poliovirus (PV) are both agents of major concern in the public health system. It has been shown that Dimorphandra gardneriana galactomannans can be used as solubilizer vehicles in the manufacturing of medicine. Mangiferin is the major constituent of Mangifera indica and presents multiple medicinal and biological activities. OBJECTIVE This study assayed the effect of D. gardneriana galactomannan combined with mangiferin (DgGmM) against HSV-1 and PV-1. METHODS The DgGmM cytotoxicity was evaluated by the colorimetric MTT method and the antiviral activity by plaque reduction assay, immunofluorescence and polymerase chain reaction (PCR), in HEp-2 cells. RESULTS The DgGmM showed a 50% cytotoxic concentration (CC50) > 2000 µg/mL. The 50% inhibitory concentrations (IC50) for HSV-1 and PV-1 were, respectively, 287.5 µg/mL and 206.2 µg/mL, with selectivity indexes (SI) > 6.95 for the former and > 9.69 for the latter. The DgGmM time-ofaddition protocol for HSV-1 showed a maximum inhibition at 500 µg/mL, when added concomitantly to infection and at the time 1 h post-infection (pi). While for PV-1, for the same protocol, the greatest inhibition, was also observed concomitantly to infection at 500 μg/mL and at the times 4 h and 8 h pi. The inhibition was also demonstrated by the decrease of fluorescent cells and/or the inhibition of specific viral genome. CONCLUSION These results suggested that the DgGmM inhibited HSV-1 and PV-1 replication, with low cytotoxicity and high selectivity and, therefore, represents a potential candidate for further studies on the control of herpes and polio infections.
Collapse
Affiliation(s)
- Daniele Z Rechenchoski
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Nayara L Samensari
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Ligia C Faccin-Galhardi
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Raimundo R de Almeida
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Arcelina P Cunha
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Nágila M P S Ricardo
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Carlos Nozawa
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Rosa E C Linhares
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| |
Collapse
|
27
|
Hochheim S, Guedes A, Faccin-Galhardi L, Rechenchoski DZ, Nozawa C, Linhares RE, Filho HHDS, Rau M, Siebert DA, Micke G, Cordova CMMD. Determination of phenolic profile by HPLC–ESI-MS/MS, antioxidant activity, in vitro cytotoxicity and anti-herpetic activity of propolis from the Brazilian native bee Melipona quadrifasciata. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Kumar A, Agarwal DK, Kumar S, Reddy YM, Chintagunta AD, Saritha K, Pal G, Kumar SJ. Nutraceuticals derived from seed storage proteins: Implications for health wellness. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
29
|
Song L, Wang J, Gao Q, Ma X, Wang Y, Zhang Y, Xun H, Yao X, Tang F. Simultaneous determination of five azadirachtins in the seed and leaf extracts of Azadirachta indica by automated online solid-phase extraction coupled with LC-Q-TOF-MS. Chem Cent J 2018; 12:85. [PMID: 30027362 PMCID: PMC6053346 DOI: 10.1186/s13065-018-0453-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/16/2018] [Indexed: 11/10/2022] Open
Abstract
Neem (Azadirachta indica) extract is well-known as a natural pesticide for the control of agricultural pests. Azadirachtin A and its structural analogues are considered as active compounds. However, the amounts of azadirachtins varies in neem extracts, providing a variety of insecticidal activities. In this study, a novel method of automated online solid-phase extraction coupled with liquid chromatography/quadrupole-time-of-flight mass spectrometry (SPE-LC–Q-TOF–MS) was developed and validated for simultaneous quantification of five azadirachtins (azadirachtins A, B, D, H and I) in seed and leaf extracts of A. indica. Different experimental parameters (such as SPE cartridge, injection volume and washing step) were optimized. The optimized SPE-LC–Q-TOF–MS method showed good recovery (82.0–102.8%), linearity (r2 ≥ 0.9991) and precision (0.83–4.83%). The limit of detections (LODs) for the five analytes ranged from 0.34 to 0.76 ng mL−1. The validated method was successfully applied for determination of the analytes in the neem leaves and seeds from different locations and a neem formulation. The online SPE-LC–Q-TOF–MS method was found to be a simple, precise and accurate and can be used as a powerful tool for quality control of neem extracts or its formulations.
Collapse
Affiliation(s)
- Li Song
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Jin Wang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China.
| | - Quan Gao
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Xiaojiang Ma
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Yuwei Wang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Yaoyao Zhang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Hang Xun
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Xi Yao
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China
| | - Feng Tang
- SFA Key Laboratory of Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Chaoyang District, Beijing, 100102, China.
| |
Collapse
|
30
|
Yu Y, Shen M, Song Q, Xie J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr Polym 2017; 183:91-101. [PMID: 29352896 DOI: 10.1016/j.carbpol.2017.12.009] [Citation(s) in RCA: 802] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy. As biological macromolecules, polysaccharide together with protein and polynucleotide, are extremely important biomacromoleules which play important roles in the growth and development of living organism. Polysaccharide is important component of higher plants, membrane of the animal cell and the cell wall of microbes. It is also closely related to the physiological functions. Recently, increasing attention has been paid on polysaccharides as an important class of bioactive natural products. Numerous researches have demonstrated the bioactivities of natural polysaccharides, which lead to the application of polysaccharides in the treatment of disease. In this paper, the various aspects of the investigation results of the bioactivities of polysaccharides were summarized, including its diversity pharmacological applications, such as immunoregulatory, anti-tumor, anti-virus, antioxidation, and hypoglycemic activity, and their application of polysaccharides in the treatment of disease are also discussed. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of polysaccharides.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qianqian Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
Lee JW, Ryu HW, Park SY, Park HA, Kwon OK, Yuk HJ, Shrestha KK, Park M, Kim JH, Lee S, Oh SR, Ahn KS. Protective effects of neem (Azadirachta indica A. Juss.) leaf extract against cigarette smoke- and lipopolysaccharide-induced pulmonary inflammation. Int J Mol Med 2017; 40:1932-1940. [PMID: 29039495 DOI: 10.3892/ijmm.2017.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/25/2017] [Indexed: 11/05/2022] Open
Abstract
Neem (Azadirachta indica A. Juss.) leaf has been reported to exert anti-inflammatory, antibacterial and antioxidant effects. The purpose of this study was to investigate the protective effects of neem leaf extract (NLE) against cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with NLE significantly attenuated the infiltration of inflammatory cells, such as neutrophils and macrophages in bronchoalveolar lavage fluid (BALF). NLE also reduced the production of reactive oxygen species and the activity of neutrophil elastase in BALF. Moreover, NLE attenuated the release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in BALF. NLE inhibited the recruitment of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lungs of mice with CS- and LPS-induced pulmonary inflammation. NLE also decreased the expression of inducible nitric oxide synthase (iNOS) in the lungs of the mice CS- and LPS-induced pulmonary inflammation. Furthermore, treatment with NLE significantly attenuated the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in the lungs mice exposed to CS and LPS. NLE also inhibited the phosphorylation of nuclear factor (NF)-κB and inhibitor of NF-κB (IκB) in the lungs of mice expose to CS and LPS. These findings thus suggest that NLE has potential for use in the treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Krishna K Shrestha
- Ethnobotanical Society of Nepal (ESON), Central Department of Botany, Tribhuvan University, Kathmandu 44618, Nepal
| | - Minwoo Park
- SciTech Korea, Gangbuk-gu, Seoul 142-705, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Sangwoo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju‑si, Chungbuk 363‑883, Republic of Korea
| |
Collapse
|
32
|
Green seaweed Enteromorpha compressa ( Chlorophyta , Ulvaceae ) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol 2017; 102:605-612. [DOI: 10.1016/j.ijbiomac.2017.04.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
|
33
|
Ming K, Chen Y, Shi J, Yang J, Yao F, Du H, Zhang W, Bai J, Liu J, Wang D, Hu Y, Wu Y. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury. Int J Biol Macromol 2017; 102:813-821. [DOI: 10.1016/j.ijbiomac.2017.04.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
|
34
|
Song M, Chen Y, Du H, Zhang S, Wang Y, Zeng L, Yang J, Shi J, Wu Y, Wang D, Hu Y, Liu J. RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638862 PMCID: PMC5471485 DOI: 10.21010/ajtcam.v14i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH. Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment. Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (P<0.05) appeared between any two groups, demonstrating that it can alleviate liver pathological change. RRRP could make the hepatic injury evaluation indexes similar to BC group while the levels of the VC group were higher than other two groups in general. The levels of SOD, GSH-Px, CAT of RRRP group showed significant higher than that of VC group while the levels of NOS and MDA showed the opposite tendency, thus, RRRP could release peroxidative injury. Conclusion: RRRP was the most effective against duck hepatitis A virus (DHAV). RRRP could reduce mortality, alleviate liver pathological change, down-regulate liver lesion score, release peroxidative injury and hepatic injury. The antiviral and peroxidative injury releasing activity of RRRP for DHAV provided a platform to test novel drug strategies for hepatitis A virus in human beings.
Collapse
Affiliation(s)
- Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Shuaibing Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jintong Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
35
|
Feng H, Fan J, Yang S, Zhao X, Yi X. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int J Biol Macromol 2017; 99:511-518. [DOI: 10.1016/j.ijbiomac.2017.02.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
|
36
|
Wang Y, Chen Y, Du H, Yang J, Ming K, Song M, Liu J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp Biol Med (Maywood) 2016; 242:344-353. [PMID: 27703041 DOI: 10.1177/1535370216672750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus (DHAV) (Picornaviridae) causes an infectious disease in ducks which results in severe losses in duck industry. However, the proper antiviral supportive drugs for this disease have not been discovered. Polysaccharide is the main ingredient of Astragalus that has been demonstrated to directly and indirectly inhibit RNA of viruses replication. In this study, the antiviral activities of Astragalus polysaccharide (APS) and its derivatives against DHAV were evaluated and compared. APS was modified via the sodium trimetaphosphate and sodium tripolyphosphate (STMP-STPP) method and chlorosulfonic acid-pyridine method to obtain its phosphate (pAPS) and sulfate (sAPS), respectively. The infrared structures of APS, pAPS, and sAPS were analyzed with the potassium bromide disc method. Additionally, the antiviral activities were evaluated with the MTT ((4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) method in vitro and the artificial inoculation method in vivo. The clinical therapy effects were evaluated by mortality rate, liver function-related biochemical indicators, and visual changes in pathological anatomy. The anti-DHAV proliferation effects of APS, pAPS, and sAPS on the viral multiplication process in cell and blood were observed with the reverse transcription-polymerase chain reaction method. The results revealed that pAPS inhibited DHAV proliferation more efficiently in the entire process of viral multiplication than APS and sAPS. Moreover, only pAPS significantly improved the survival rate to 33.5% and reduced the DHAV particle titer in the blood as well as liver lesions in clinical trials. The results indicated that pAPS exhibited greater anti-DHAV activity than APS and sAPS both in vitro and in vivo.
Collapse
Affiliation(s)
- Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
37
|
Quelemes PV, Perfeito MLG, Guimarães MA, dos Santos RC, Lima DF, Nascimento C, Silva MPN, Soares MJDS, Ropke CD, Eaton P, de Moraes J, Leite JRSA. Effect of neem (Azadirachta indica A. Juss) leaf extract on resistant Staphylococcus aureus biofilm formation and Schistosoma mansoni worms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:287-294. [PMID: 26408045 DOI: 10.1016/j.jep.2015.09.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/05/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are ethnopharmacological reports supporting the use of neem (Azadirachta indica A. Juss) leaf against bacterial and worm infections. However there is a lack of studies about its effect on bacterial biofilm formation and Schistosoma mansoni worms. This study reports the in vitro effects of neem leaf ethanolic extract (Neem EE) on Methicillin-resistant Staphylococcus aureus (MRSA) biofilm and planktonic aggregation formation, and against S. mansoni worms. MATERIALS AND METHODS Quantification of the Azadirachtin (AZA), thought to be one of their main compounds related to biological effects, was performed. The effect of sub-inhibitory concentrations of Neem EE on biofilm formation and planktonic aggregates of S. aureus was tested using the crystal violet dye method and atomic force microscopy (AFM) analysis, respectively. Changes in S. mansoni motor activity and death of worms were analyzed in vitro after exposition to the extract. Treated schistosomes were also examined using confocal laser scanning microscopy. RESULTS It was observed the presence of AZA in the extract (0.14 ± 0.02 mg/L). Testing Neem EE sub-inhibitory concentrations, a significant biofilm adherence inhibition from 62.5 µg/mL for a sensitive S. aureus and 125 µg/mL for two MRSA strains was observed. AFM images revealed that as the Neem EE concentration increases (from 250 to 1000 µg/mL) decreased ability of a chosen MRSA strain to form large aggregates. In relation of anti-schistosoma assay, the extract caused 100% mortality of female worms at a concentration of 50 µg/mL at 72 h of incubation, while 300 µg/mL at 24h of incubation was required to achieve 100% mortality of male worms. The extract also caused significant motor activity reduction in S. mansoni. For instance, at 96 h of incubation with 100 µg/mL, 80% of the worms presented significant motor activity reduction. By the confocal microscopy analysis, the dorsal surface of the tegument of worms exposed to 300 µg/mL (male) and 100 µg/mL (female) of the extract showed severe morphological changes after 24h of treatment. CONCLUSIONS Neem leaf ethanolic extract presented inhibitory effect on MRSA biofilm and planktonic aggregation formation, and anthelmintic activity against S. mansoni worms.
Collapse
Affiliation(s)
- Patrick V Quelemes
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil
| | - Márcia L G Perfeito
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil
| | - Maria A Guimarães
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil
| | - Raimunda C dos Santos
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil
| | - David F Lima
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil; Federal University of Vale do São Francisco, UNIVASF, Paulo Afonso, BA, Brazil
| | - Carlos Nascimento
- Laboratory of Parasitology, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos P N Silva
- Center for Research on Neglected Diseases, University of Guarulhos, Guarulhos, SP, Brazil
| | - Maria José dos S Soares
- Department of Veterinary Morphophysiology, Federal University of Piauí, Teresina, PI 64049550, Brazil
| | - Cristina D Ropke
- Phytobios, Pesquisa, Desenvolvimento e Inovação, Barueri, SP, Brazil
| | - Peter Eaton
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil; UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Josué de Moraes
- Center for Research on Neglected Diseases, University of Guarulhos, Guarulhos, SP, Brazil
| | - José Roberto S A Leite
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, UFPI, 64202020 Parnaíba, PI, Brazil.
| |
Collapse
|
38
|
|
39
|
Shao P, Chen X, Sun P. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates. Int J Biol Macromol 2015; 74:420-7. [PMID: 25572719 DOI: 10.1016/j.ijbiomac.2014.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/28/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri.
Collapse
Affiliation(s)
- Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Xiaoxiao Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
40
|
Testino G, Leone S, Borro P. Alcohol and hepatocellular carcinoma: A review and a point of view. World J Gastroenterol 2014; 20:15943-15954. [PMID: 25473148 PMCID: PMC4239482 DOI: 10.3748/wjg.v20.i43.15943] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
It is well recognized that one cause of chronic liver disease and hepatocellular carcinoma (HCC) is alcohol consumption. Research in Italy and the United States concludes that the most common cause of HCC (responsible for 32% to 45% of HCC) is alcohol. It has recently been shown that a significant relationship between alcohol intake, metabolic changes, and hepatitis virus infection does exist. Alcohol may be a factor in the development of HCC via direct (genotoxic) and indirect mechanisms (cirrhosis). There is only one way of diagnosing HCC, which is early identification through surveillance, when curative treatments become possible. After stopping alcohol intake the risk of liver cancer decreases by 6% to 7% a year, and an estimated time period of 23 years is also needed. Therefore, surveillance is also important in former drinkers and, in our opinion, independently from the presence of compensated cirrhosis. In cases of very early stage (VES) and early stage with portal hypertension, liver transplantation is the optimal option; and in cases of associated disease, percutaneous ethanol injections, radiofrequency and microwave ablation are the ideal treatments. Despite the possibility of detecting microvascular invasion with HR, several studies and some randomized controlled trials revealed that overall survival and DSF rates in patients with VES HCC are much the same after ablation and HR. Therefore, ablation can be regarded as a first-line choice for patients with VES HCC. It is important to emphasize that the choice of treatment should be weighed carefully in the context of a multidisciplinary cancer team.
Collapse
|
41
|
Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:712634. [PMID: 25221609 PMCID: PMC4158113 DOI: 10.1155/2014/712634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 11/23/2022]
Abstract
Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon's eye, and dragon's eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp) seeds against poliovirus type 1 (PV-1) in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50) of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT). The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50) of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI) of 423. The maximum inhibition (100%) of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h), at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection.
Collapse
|
42
|
Kumar VS, Navaratnam V. Neem (Azadirachta indica): prehistory to contemporary medicinal uses to humankind. Asian Pac J Trop Biomed 2013; 3:505-14. [PMID: 23835719 DOI: 10.1016/s2221-1691(13)60105-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
The divine tree neem (Azadirachta indica) is mainly cultivated in the Indian subcontinent. Neem has been used extensively by humankind to treat various ailments before the availability of written records which recorded the beginning of history. The world health organization estimates that 80% of the population living in the developing countries relies exclusively on traditional medicine for their primary health care. More than half of the world's population still relies entirely on plants for medicines, and plants supply the active ingredients of most traditional medical products. The review shows the neem has been used by humankind to treat various ailments from prehistory to contemporary.
Collapse
|
43
|
Lopes N, Faccin-Galhardi LC, Espada SF, Pacheco AC, Ricardo NMPS, Linhares REC, Nozawa C. Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int J Biol Macromol 2013; 60:93-9. [DOI: 10.1016/j.ijbiomac.2013.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/10/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
44
|
Kumar VS, Navaratnam V, Rajasekaran A, Nair N, Matharasi DSP, Narasimhan S, Ramachandran S. Isolation and characterization of glucosamine from Azadirachta indica leaves: An evaluation of immunostimulant activity in mice. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|