1
|
Walls KM, Joh JY, Martinez MM, Hong KU, Hein DW. Metabolic effects of heterocyclic amines on insulin‑induced AKT phosphorylation and gluconeogenic gene expression are modified by N -acetyltransferase 2 genetic polymorphism. Pharmacogenet Genomics 2025; 35:119-126. [PMID: 39878101 PMCID: PMC12043411 DOI: 10.1097/fpc.0000000000000559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
OBJECTIVE Heterocyclic amines (HCAs) are mutagens and carcinogens primarily generated when cooking meat at high temperatures or until well-done, and their major metabolic pathway includes hepatic N -hydroxylation via CYP1A2 followed by O -acetylation via N -acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans resulting in rapid and slow acetylators. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. METHODS We assessed the effect of some of the most common HCAs found in cooked meat, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, on insulin signaling and gluconeogenic gene expression in cryopreserved human hepatocytes characterized by their NAT2 genotype and phenotype to investigate the role of NAT2 genetic polymorphism in HCA-induced metabolic dysregulation. RESULTS HCA treatment significantly reduced insulin-induced protein kinase B phosphorylation and significantly increased expression of genes involved in gluconeogenesis ( G6PC , PCK1 , FOXO1 , and PPARA ) in cryopreserved human hepatocytes from rapid but not from slow acetylators. CONCLUSION The findings suggest that NAT2 genetic polymorphism modifies HCA-induced insulin resistance and gluconeogenic gene expression, implying that individuals with rapid acetylator phenotype may be at greater risk of dysregulated glucose homeostasis following exposure to HCAs.
Collapse
Affiliation(s)
- Kennedy M Walls
- Department of Pharmacology & Toxicology and Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | |
Collapse
|
2
|
Essaouiba A, Jellali R, Poulain S, Kim SH, Danoy M, Legallais C, Sakai Y, Leclerc E. Transcriptomic characterization of the synergy between human induced pluripotent stem cells-derived liver- and pancreas-on-chip coculture. Mol Cell Endocrinol 2025; 606:112582. [PMID: 40409528 DOI: 10.1016/j.mce.2025.112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/25/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Interactions between the liver and pancreas are key features of the carbohydrate and lipid homeostasis in healthy and pathological patients. To investigate the crosstalk between the two organs, we have developed an organ-on-chip coculture model derived from human induced pluripotent stem cells. The presence of pancreatic-derived tissue in the culture environment contributed to increase the CYP3A4 activity, the glycogen storage, and the expression of genes related to lipids, bile acids and sterol metabolism in the liver derived tissue. Concomitantly, the presence of liver cells led to increase the C-peptide secretion in pancreas. The coculture with liver modulated the pancreatic differentiation by increasing the activity of important transcription factors (REST, MAFB, PBX1) and by downregulating several hormone encoding genes (INS, GCG, TTR). The liver also stimulated the expression of genes involved in the response to inflammation in pancreas (via TGFβ/SMAD pathway). In parallel we observed a pancreatic cell reorganization coupled with the activation of the cell proliferation related transcription factor (SCRT1) and the upregulation of cellular remodeling genes (FLNA, FLNB, FN1, COL4A5). Finally, the pancreatic lipid genes were also upregulated in presence of the liver tissue. Overall, our results reflect a complex synergy between both tissues. We believe that those results are an encouraging step toward the development of relevant human model using advanced organ-on-chip technology and stem cells sources.
Collapse
Affiliation(s)
- Amal Essaouiba
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Mathieu Danoy
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Eric Leclerc
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
3
|
Lin S, Deng Y, Huang J, Li M, Sooranna SR, Qin M, Tan B. Efficacy and safety of GLP-1 receptor agonists on weight management and metabolic parameters in PCOS women: a meta-analysis of randomized controlled trials. Sci Rep 2025; 15:16512. [PMID: 40360648 PMCID: PMC12075827 DOI: 10.1038/s41598-025-99622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
This meta-analysis aimed to evaluate the efficacy and safety of glucagon-like peptide-1 receptor agonists (GLP-1RAs) when compared to metformin and placebo in the management of body weight, glucose homeostasis and hormone levels in women polycystic ovary syndrome (PCOS). A systematic search of "PubMed", "EMBASE", "Cochrane Library", "Web of Science" and "Google Scholar" was conducted up to October 2024 for randomized controlled trials involving adult women with PCOS treated with GLP-1RAs compared to metformin or placebo. The primary outcomes were changes in body mass index (BMI), body weight, waist circumference (WC), waist-to-hip ratio (WHR) and abdominal girth (AG). Secondary outcomes included glucose homeostasis (fasting glucose, fasting insulin, OGTT results and HOMA-IR), hormone levels (DHEAS, SHBG, total and free testosterone and FAI), lipid profiles (total cholesterol, HDL, LDL and triglycerides) and safety. GLP-1RAs significantly reduced BMI, body weight, WC, WHR and AG (P < 0.0001 in all cases). For glucose homeostasis, GLP-1RAs significantly reduced fasting insulin, glucose level at 2 h after OGTT, and HOMA-IR. There was also a reduction in HDL. All the other parameters measured were unchanged. In addition, GLP-1RAs increased nausea (P = 0.02), vomiting (0.04) and dizziness (0.03). GLP-1RAs effectively reduced body weight, BMI and insulin resistance in patients with PCOS, although they were accompanied by nausea, vomiting and dizziness. Further studies are needed to explore their long-term effects on glucose homeostasis and lipid profiles.
Collapse
Affiliation(s)
- Shike Lin
- Office of Science and Technology, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- National Immunological Laboratory of Traditional Chinese Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yan Deng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jing Huang
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18#, Zhongshan 2nd Road, Baise, 533000, Guangxi, China
| | - Meiyan Li
- National Immunological Laboratory of Traditional Chinese Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London, SW10 9NH, UK
| | - Minzhen Qin
- Department of Gastroenterology, Baise People's Hospital, Baise, 533000, Guangxi, China.
- Department of Gastroenterology, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, No.8#, Chengxiang Road, Baise, 533000, Guangxi, China.
| | - Bing Tan
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18#, Zhongshan 2nd Road, Baise, 533000, Guangxi, China.
- National Immunological Laboratory of Traditional Chinese Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
4
|
Brown GE, Bodke VV, Ware BR, Khetani SR. Liver portal fibroblasts induce the functions of primary human hepatocytes in vitro. Commun Biol 2025; 8:721. [PMID: 40346200 PMCID: PMC12064700 DOI: 10.1038/s42003-025-08135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
In vitro human liver models are critical to mitigate species-specific differences observed for toxicology, disease modeling, and regenerative medicine. Interactions with mesenchyme (i.e., fibroblasts) can promote phenotypic functions of primary human hepatocytes (PHHs) in culture; however, using liver-derived fibroblasts remains elusive. Portal fibroblasts (PFs) around the portal triad influence bile duct formation during development, but their role in regulating homeostatic hepatic functions remains unknown. Here, we show that human liver PFs induce long-term phenotypic functions in PHHs at higher levels than activated hepatic stellate cells across 2-dimensional and 3-dimensional culture formats. While PF-conditioned media induces some hepatic functions, partly via insulin-like growth factor binding protein-5 signaling, direct contact is necessary to induce optimal functional levels. Inhibiting Notch signaling reduces progenitor-like characteristics of PHHs and further enhances functionality. Overall, this work demonstrates a unique role for PFs in modulating hepatic functions and provides all-human and all-liver coculture strategies for downstream applications.
Collapse
Affiliation(s)
- Grace E Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Vedant V Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Brenton R Ware
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Wang Z, Ma T, Bai G, Fang Q, Ou B, Chen M, Xu P, Tian M, Xu A, Ma Y. Adipose Tissue-Derived Extracellular Vesicles Loaded with miR-141-3p Regulate Obesity-Induced Insulin Resistance by Targeting Glycogen Synthesis and Gluconeogenesis. Int J Nanomedicine 2025; 20:5709-5726. [PMID: 40343195 PMCID: PMC12059219 DOI: 10.2147/ijn.s511842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Purpose Insulin resistance, a hallmark feature of type 2 diabetes and cardiovascular diseases, is critically influenced by liver-adipose tissue crosstalk, offering a novel therapeutic strategy for its management. Emerging evidence indicates that extracellular vesicles (EVs) secreted from adipose tissue serve as essential carriers of miRNA-mediated interorgan communication. This study aimed to investigate the regulatory effects of adipose tissue-derived EVs on obesity-induced hepatic insulin resistance and to elucidate the underlying molecular mechanisms by which EV-mediated signaling contributes to metabolic dysfunction. Methods EVs with miR-141-3p knockout or overexpression were constructed and administered to both in vitro cell models and in vivo mouse models to investigate the regulatory role and underlying mechanisms of miR-141-3p-mediated adipose tissue-derived EVs in obesity-induced hepatic insulin resistance. Results miR-141-3p is significantly upregulated in adipose tissue-derived EVs from high-fat diet (HFD)-fed mice, as well as in other obesity-related conditions. Furthermore, the knockdown of miR-141-3p in EVs from chow diet (CD-EVs) counteracted the effect in improving obesity-induced hepatic insulin resistance, whereas the overexpression of miR-141-3p in HFD-EVs improved hepatic insulin resistance. Mechanistically, EVs-derived miR-141-3p directly targets PTEN to promote PI3K/AKT signaling, thereby mediating hepatic glucose homeostasis through the regulation of hepatic gluconeogenesis and glycogen synthesis. Conclusion In summary, our results highlight the emerging role of miR-141-3p in mediating adipose tissue-derived EVs to alleviate obesity-induced hepatic insulin resistance, providing potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Zixian Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Tianyu Ma
- School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Ge Bai
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Qianchen Fang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Biqian Ou
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Pei Xu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Meng Tian
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Anding Xu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
| | - Yi Ma
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, People’s Republic of China
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
6
|
Okada J, Landgraf A, Xiaoli AM, Liu L, Horton M, Schuster VL, Yang F, Sidoli S, Qiu Y, Kurland IJ, Eliscovich C, Shinoda K, Pessin JE. Spatial hepatocyte plasticity of gluconeogenesis during the metabolic transitions between fed, fasted and starvation states. Nat Metab 2025; 7:1073-1091. [PMID: 40281362 DOI: 10.1038/s42255-025-01269-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/08/2025] [Indexed: 04/29/2025]
Abstract
Hepatocytes are organized along a spatial axis between the portal triad and the central vein to form functionally repetitive units known as lobules. The hepatocytes perform distinct metabolic functions depending on their location within the lobule. Single-cell analysis of hepatocytes across the liver lobule demonstrates that gluconeogenic gene expression is relatively low in the fed state and gradually increases in the periportal hepatocytes during the initial fasting period. As fasting progresses, pericentral hepatocyte gluconeogenic gene expression and gluconeogenic activity also increase and, following entry into a starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression and activity to the periportal hepatocytes. In parallel, starvation suppresses canonical β-catenin signalling and modulates the expression of pericentral and periportal glutamine synthetase and glutaminase, respectively, resulting in enhanced incorporation of glutamine into glucose. Thus, hepatocyte gluconeogenic gene expression and glucose production are spatially and temporally plastic across the liver lobule, underscoring the complexity of defining hepatic insulin resistance and glucose production on a whole-organ level, as well as for a particular fasted or fed condition.
Collapse
Affiliation(s)
- Junichi Okada
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA.
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA.
| | - Austin Landgraf
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, The Albert Einstein College of Medicine, New York, NY, USA
| | - Alus M Xiaoli
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Developmental and Molecular Biology, The Albert Einstein College of Medicine, New York, NY, USA
| | - Li Liu
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
| | - Maxwell Horton
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Biochemistry, The Albert Einstein College of Medicine, New York, NY, USA
| | - Victor L Schuster
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine (Division of Nephrology), The Albert Einstein College of Medicine, New York, NY, USA
| | - Fajun Yang
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Developmental and Molecular Biology, The Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Biochemistry, The Albert Einstein College of Medicine, New York, NY, USA
| | - Yunping Qiu
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
| | - Irwin J Kurland
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
| | - Carolina Eliscovich
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Developmental and Molecular Biology, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine (Division of Hepatology), The Albert Einstein College of Medicine, New York, NY, USA
| | - Kosaku Shinoda
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, The Albert Einstein College of Medicine, New York, NY, USA
| | - Jeffrey E Pessin
- Department of Medicine (Division of Endocrinology), The Albert Einstein College of Medicine, New York, NY, USA
- Fleischer Institute for Diabetes and Metabolism, The Albert Einstein College of Medicine, New York, NY, USA
- Department of Molecular Pharmacology, The Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
8
|
Li H, Yao W, Yang C, Zhang W, Wang Y, Lin Y, Du Z, Zhang C, Huang L, Zhang M, Fan H, Zhu J, Xiang H. SIRT5 Regulates Lipid Deposition in Goat Preadipocytes via PI3K-Akt and MAPK Signaling Pathways. Animals (Basel) 2025; 15:1072. [PMID: 40218465 PMCID: PMC11988186 DOI: 10.3390/ani15071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Silent Information Regulator 5 (SIRT5) has been established as a crucial regulator of cellular alanylation modification. Furthermore, accumulating evidence suggests that SIRT5 plays a significant regulatory role in key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid oxidation, all of which are closely associated with cellular lipid metabolism. Despite these advancements, the specific role of SIRT5 in regulating intramuscular fat (IMF) deposition in goats, as well as the underlying molecular mechanisms, remains largely unexplored. In this study, we cloned the complete coding sequence of the goat SIRT5 gene and, through amino acid sequence alignment, demonstrated its closest phylogenetic relationship with sheep. Additionally, we characterized the higher expression of SIRT5 during the differentiation of goat intramuscular precursor adipocytes. The silencing of SIRT5 by siRNA-mediated knockdown significantly upregulated the expression of lipogenesis-related genes and enhanced lipid deposition in goat intramuscular preadipocytes. Concurrently, SIRT5 deficiency led to the inhibition of cell proliferation and a marked reduction in apoptosis. Interestingly, although overexpression of SIRT5 promoted cell proliferation, it did not significantly alter lipid deposition in goat intramuscular precursor adipocytes. RNA sequencing (RNA-seq) analysis identified a total of 106 differentially expressed genes (DEGs) following SIRT5 silencing in goat preadipocytes, predominantly involved in the Focal adhesion, HIF-1, PI3K-Akt, and MAPK signaling pathways by KEGG pathway enrichment analysis. Notably, we successfully reversed the phenotypic effects observed in SIRT5 knockdown goat precursor adipocytes by inhibiting the PI3K-Akt and MAPK signaling pathways using the AKT inhibitor LY294002 and the p38 MAPK pathway inhibitor PD169316, respectively. In conclusion, our findings demonstrated that SIRT5 may modulate intramuscular fat deposition in goats through PI3k-Akt and MAPK signaling pathways. These results expand the gene regulatory network associated with IMF formation and provide a theoretical foundation for improving meat quality by targeting IMF deposition.
Collapse
Affiliation(s)
- Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenli Yao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Ming Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| | - Huaigong Fan
- Sichuan Guonong Tianfu Agricultural Development Co., Ltd., Chengdu 611441, China;
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China; (H.L.); (W.Y.); (C.Y.); (W.Z.); (Y.W.); (Y.L.); (Z.D.); (C.Z.); (L.H.); (M.Z.); (J.Z.)
| |
Collapse
|
9
|
Asimakidou E, Saipuljumri EN, Lo CH, Zeng J. Role of metabolic dysfunction and inflammation along the liver-brain axis in animal models with obesity-induced neurodegeneration. Neural Regen Res 2025; 20:1069-1076. [PMID: 38989938 PMCID: PMC11438328 DOI: 10.4103/nrr.nrr-d-23-01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
The interaction between metabolic dysfunction and inflammation is central to the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Obesity-related conditions like type 2 diabetes and non-alcoholic fatty liver disease exacerbate this relationship. Peripheral lipid accumulation, particularly in the liver, initiates a cascade of inflammatory processes that extend to the brain, influencing critical metabolic regulatory regions. Ceramide and palmitate, key lipid components, along with lipid transporters lipocalin-2 and apolipoprotein E, contribute to neuroinflammation by disrupting blood-brain barrier integrity and promoting gliosis. Peripheral insulin resistance further exacerbates brain insulin resistance and neuroinflammation. Preclinical interventions targeting peripheral lipid metabolism and insulin signaling pathways have shown promise in reducing neuroinflammation in animal models. However, translating these findings to clinical practice requires further investigation into human subjects. In conclusion, metabolic dysfunction, peripheral inflammation, and insulin resistance are integral to neuroinflammation and neurodegeneration. Understanding these complex mechanisms holds potential for identifying novel therapeutic targets and improving outcomes for neurodegenerative diseases.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eka Norfaishanty Saipuljumri
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Chen Z, Zhou Z, Wang L, Zhang Y, Huang C, Wang C, Huang Y, Wang S, Yan D, Feng K. Polyethylene glycol loxenatide modulates lipid metabolism and insulin resistance through lncRNA steroid receptor RNA activator/cellular nucleic acid binding protein/Rho-associated coiled-coil kinase 2 axis in type 2 diabetes mellitus. J Diabetes Investig 2025; 16:715-727. [PMID: 39651712 PMCID: PMC11970291 DOI: 10.1111/jdi.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Polyethylene glycol loxenatide (PEG-Loxe) is applied in treating type 2 diabetes mellitus. Nevertheless, the effect and mechanism of PEG-Loxe on lipid metabolism disorder and insulin resistance in type 2 diabetes mellitus are not fully understood. METHODS Type 2 diabetes mellitus rats developed by high-fat diet/streptozotocin injection were treated with PEG-Loxe (0.3 or 1 mg/kg). Insulin resistance was evaluated by fasting blood glucose (FBG), oral glucose tolerance test, fasting insulin, homeostasis model of assessment for insulin resistance and for insulin sensitivity. Immunohistochemistry, hematoxylin and eosin staining, and biochemistry measurements were performed to assess lipid metabolism. Inflammatory response and oxidative stress were assessed by inflammatory cytokines and reactive oxygen species. Genes' expressions were tested using RT-qPCR, western blot, and in situ hybridization. Relationships of molecules were validated by pull-down assay and RNA immunoprecipitation. mRNA stability was examined by actinomycin D assay. RESULTS High-PEG-Loxe decreased FBG and ameliorated glucose tolerance, hyperinsulinemia, and insulin resistance. Low-PEG-Loxe partly while high-PEG-Loxe apparently relieved hepatocyte injury, reduced lipase I, triglyceride, total cholesterol and leptin, and increased adiponectin in type 2 diabetes mellitus rats. PEG-Loxe mitigated inflammatory response and oxidative stress. High-PEG-Loxe reduced RhoA and Rho-associated coiled-coil kinase 2 (ROCK2) in liver tissues of type 2 diabetes mellitus rats, while both doses of PEG-Loxe decreased steroid receptor RNA activator (SRA). SRA overexpression reversed the protective functions of high-PEG-Loxe. SRA cooperated with cellular nucleic acid binding protein (CNBP) to enhance ROCK2 mRNA stability. CONCLUSION High-PEG-Loxe relieves insulin resistance and lipid metabolism disorder in type 2 diabetes mellitus through SRA/CNBP/ROCK2 axis. This research provides a molecular mechanism of PEG-Loxe for treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Zhuangsen Chen
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Zhongyu Zhou
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Lin Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Yanrong Zhang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Caiyan Huang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Cong Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Ying Huang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Shanshan Wang
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen Center for Diabetes Control and Prevention, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityHealth Science Center of Shenzhen UniversityShenzhenGuangdong ProvinceChina
| | - Kun Feng
- Department of EndocrinologyPingshan District People's Hospital of ShenzhenShenzhenGuangdong ProvinceChina
- Department of EndocrinologyPingshan Hospital of Southern Medical UniversityShenzhenGuangdong ProvinceChina
| |
Collapse
|
11
|
Ma C, Yang X, Zhang L, Zhang J, Zhang Y, Hu X. BRCA1 regulates glucose and lipid metabolism in diabetes mellitus with metabolic dysfunction-associated steatotic liver disease via the PI3K/Akt signaling pathway. PLoS One 2025; 20:e0318696. [PMID: 40138287 PMCID: PMC11940781 DOI: 10.1371/journal.pone.0318696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/20/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE This study mimics the metabolic environment of metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetic mellitus (DM) to investigate the function of BRCA1 in regulating glucose and lipid metabolism in hepatocytes under high glucose (HG) settings. METHODS MASLD and DM-related datasets (GSE89632, GSE95849) were screened for overlapping genes, Protein-Protein Interaction (PPI) network and enrichment analyses were performed. Then, quantitative real-time polymerase chain reaction (qRT-PCR), Western Blotting (WB), and enzymatic colorimetric assays to examine the expression changes of BRCA1 in mouse primary hepatocytes under HG conditions and the impact of the combined PI3K/Akt signaling pathway on key metabolic markers of gluconeogenesis and lipid metabolism. RESULTS Our study identified seven key overlapping genes (AURKA, BRCA1, ISG15, NUSAP1, OAS1, RSAD2, TLR7) between MASLD and DM. Experiments found that when BRCA1 was overexpressed in mouse primary hepatocytes, intracellular triglyceride content and lipid metabolism-related biomarkers (such as PEPCK, SREBP-1c, G6Pase, and FAS) were significantly increased in HG circumstances. However, the knockdown of BRCA1 reduced the expression of these indicators. Besides, we also observed that under HG conditions, the expression of proteins linked to the PI3K/Akt signaling pathway was negatively regulated by BRCA1 expression. Moreover, TG content and expression of lipid metabolism markers are also regulated by BRCA1 and PI3K/Akt pathway inhibitor Ly294002. CONCLUSION As a key regulator of hepatocyte metabolism under HG conditions, BRCA1 can participate in regulating glucose and lipid metabolism in mouse primary hepatocytes through the PI3K/AKT signaling pathway, which be able to become a possible remedy strategy for DM with MASLD.
Collapse
Affiliation(s)
- Cui Ma
- Department of Endocrinology, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Xiaodi Yang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Liyin Zhang
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Jie Zhang
- Department of pharmacy, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Youyou Zhang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University Shanghai, China, Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Xiaofeng Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Paskaleva IN, Kaleva NN, Dimcheva TD, Markova PP, Ivanov IS. Low-Carbohydrate (Ketogenic) Diet in Children with Obesity: Part 1-Diet Impact on Anthropometric Indicators and Indicators of Metabolic Syndrome and Insulin Resistance. Diseases 2025; 13:94. [PMID: 40277805 PMCID: PMC12026416 DOI: 10.3390/diseases13040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The ketogenic diet has been successfully used in the last 100 years in the treatment of epilepsy and other neurological disorders. In recent decades, it gained wider application in the treatment of obesity, metabolic syndrome, and type 2 diabetes. However, there have been only a few studies on its use in children with obesity and associated metabolic disorders. OBJECTIVES To determine the clinical and metabolic effects of a well-formulated low-carbohydrate (ketogenic) diet in children with obesity. METHODS One hundred children with obesity and metabolic disorders underwent initial anthropometric, laboratory, and ultrasound examinations. They were placed on a well-formulated ketogenic diet and monitored for 4 months. The 58 patients who completed the study underwent follow-up examinations to assess the effects of the diet on anthropometric, clinical, and laboratory markers of metabolic syndrome and insulin resistance, cardiovascular risk factors, and certain hormone levels. Compliance with the diet, common difficulties in adhering to it, side effects, and positive changes in the patients' health were analyzed. RESULTS At the end of the study, the average weight loss for the entire group was 6.45 kg, with a reduction in BMI of 3.12 kg/m2. Significant improvements were also observed in insulin resistance indicators, including fasting insulin levels, HOMA-IR index, QUICKI (p < 0.0001), and adiponectin (p = 0.04). The cases of hepatosteatosis decreased twofold, the number of patients with arterial hypertension was significantly reduced, as well as the number of children receiving antihypertensive therapy. Additionally, the number of patients meeting the criteria for metabolic syndrome decreased threefold. CONCLUSIONS A well-formulated short-term ketogenic diet is effective in treating obesity, metabolic syndrome, and related comorbidities, and can be part of a comprehensive approach for these patients.
Collapse
Affiliation(s)
- Ivanka N. Paskaleva
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Nartsis N. Kaleva
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Teodora D. Dimcheva
- Department of Medical Informatics, Biostatistics and e-Learning, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petya P. Markova
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Ivan S. Ivanov
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| |
Collapse
|
13
|
Tesarik J. Lifestyle and Environmental Factors Affecting Male Fertility, Individual Predisposition, Prevention, and Intervention. Int J Mol Sci 2025; 26:2797. [PMID: 40141439 PMCID: PMC11943017 DOI: 10.3390/ijms26062797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Current lifestyles bring about an increasing prevalence of unhealthy habits that can negatively affect male fertility. Cigarette smoking, alcohol intake, stress, inadequate physical activity, an unequilibrated diet leading to obesity, and use of mobile telephones and portable electronic devices can affect the male reproductive system through multiple mechanisms. Moreover, the modern man is often exposed to environmental factors independent of his will, such as air pollution, exposure to heat or toxicants in his workplace, or the presence of harmful chemicals in food, beverages, agricultural and industrial products, etc. The susceptibility to these factors depends on genetic and epigenetic predisposition, potentially present systemic disease and medication, and local affections of the genitourinary system. The multifaceted nature of both the causative factors and the susceptibility background makes the resulting fertility disturbance highly individual and variable among different men exposed to the same conditions. This paper critically reviews the current knowledge of different causative and susceptibility factors with a special attention to the molecular mechanisms of their action. Finally, strategies for the prevention of abnormalities due to lifestyle and environmental factors and available treatment modalities for already-present abnormalities are exposed.
Collapse
Affiliation(s)
- Jan Tesarik
- MARGen (Molecular Assisted Reproduction and Genetics) Clinic, Calle Gracia 36, 18002 Granada, Spain
| |
Collapse
|
14
|
Mir MM, Jeelani M, Alharthi MH, Rizvi SF, Sohail SK, Wani JI, Sabah ZU, BinAfif WF, Nandi P, Alshahrani AM, Alfaifi J, Jehangir A, Mir R. Unraveling the Mystery of Insulin Resistance: From Principle Mechanistic Insights and Consequences to Therapeutic Interventions. Int J Mol Sci 2025; 26:2770. [PMID: 40141412 PMCID: PMC11942988 DOI: 10.3390/ijms26062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin resistance (IR) is a significant factor in the development and progression of metabolic-related diseases like dyslipidemia, T2DM, hypertension, nonalcoholic fatty liver disease, cardiovascular and cerebrovascular disorders, and cancer. The pathogenesis of IR depends on multiple factors, including age, genetic predisposition, obesity, oxidative stress, among others. Abnormalities in the insulin-signaling cascade lead to IR in the host, including insulin receptor abnormalities, internal environment disturbances, and metabolic alterations in the muscle, liver, and cellular organelles. The complex and multifaceted characteristics of insulin signaling and insulin resistance envisage their thorough and comprehensive understanding at the cellular and molecular level. Therapeutic strategies for IR include exercise, dietary interventions, and pharmacotherapy. However, there are still gaps to be addressed, and more precise biomarkers for associated chronic diseases and lifestyle interventions are needed. Understanding these pathways is essential for developing effective treatments for IR, reducing healthcare costs, and improving quality of patient life.
Collapse
Affiliation(s)
- Mohammad Muzaffar Mir
- Department of Clinical Biochemistry, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed Jeelani
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Syeda Fatima Rizvi
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Shahzada Khalid Sohail
- Department of Pathology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (S.F.R.); (S.K.S.)
| | - Javed Iqbal Wani
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Zia Ul Sabah
- Department of Internal Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; (J.I.W.); (Z.U.S.)
| | - Waad Fuad BinAfif
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Partha Nandi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Abdullah M. Alshahrani
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia; (M.H.A.); (P.N.)
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Adnan Jehangir
- Biomedical Sciences Department, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
15
|
Zhang Z, Cui M, Wang H, Yuan W, Liu Z, Gao H, Guan X, Chen X, Xie L, Chen S, He Y, Wang Q. Co-exposure to F-53B and nanoplastics induced hepatic glucolipid metabolism disorders by the PI3K-AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125771. [PMID: 39894156 DOI: 10.1016/j.envpol.2025.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Recent investigations suggest that the chemical compound F-53B (6:2 chlorinated polyfluorinated ether sulfonate) may pose risks of liver toxicity. Within environmental settings, F-53B attaches to microplastics and nanoplastics, which are capable of being consumed by diverse species. To investigate the synergistic effects on hepatotoxicity, adult male mice were subjected to F-53B at daily doses of 1, 10, and 100 μg/kg, NPs at 100 mg/kg per day, or a combination of both treatments for a duration of 2 months. The results indicated that NPs moderately increased the buildup of F-53B within both the liver and plasma. Co-exposure to F-53B (100 μg/kg/day) and NPs induced hepatocellular edema and elevated plasma ALT levels, which were rarely observed in groups exposed to F-53B or NPs alone. Additionally, we found that co-exposure decreased the concentrations of total cholesterol (TC) and triglycerides (TG) in both plasma and liver tissues, while increasing fasting plasma glucose and insulin levels. Transcriptomic analysis revealed that the PI3K-AKT signaling pathway is potentially involved in mediating hepatic metabolic disorders. Further experiments demonstrated that the combined treatment significantly suppressed the expression of FGF21, an upstream regulator of the PI3K-AKT pathway. This alteration resulted in the suppression of PI3K-regulated gene expression associated with glucose and lipid metabolism. The findings suggest that F-53B impairs hepatic glucolipid metabolism in mice by suppressing of the PI3K-AKT signaling cascade, with NPs amplifying its toxicity.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenke Yuan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shilin Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujie He
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Liu Y, Xue H, Liu Y, Li H, Liang Q, Ma L, Zhao M, Liu J. Serum Insulin-Like Growth Factor 1 and the Prognosis of Patients With Advanced Liver Diseases: A Meta-Analysis. Clin Transl Gastroenterol 2025:01720094-990000000-00374. [PMID: 39981963 DOI: 10.14309/ctg.0000000000000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025] Open
Abstract
INTRODUCTION Serum insulin-like growth factor 1 (IGF-1), a hepatocyte-derived cytokine, has been suggested to reflect hepatic function reserve. The aim of this systematic review and meta-analysis was to investigate the association between serum IGF-1 levels on the admission and prognosis of patients with advanced liver diseases. METHODS A thorough examination of the literature was conducted across various databases, namely PubMed, Embase, Web of Science, Wanfang, and CNKI, with the aim of identifying relevant cohort studies. The data were synthesized using the random-effects model, taking into account the potential impact of heterogeneity. RESULTS A total of 9 cohorts were included. Patients with a low serum level of IGF-1, as compared with those with a high IGF-1 at baseline, exhibited a significantly poorer transplant-free survival (risk ratio: 3.03, 95% confidence interval: 2.17 to 4.22, P < 0.001), with no significant heterogeneity observed ( P for Cochrane Q test = 0.92, I2 = 0%). A sensitivity analysis, which was conducted by excluding 1 study at a time, yielded consistent results (risk ratio: 2.94-3.24, P all < 0.05). In addition, consistent results were observed in further subgroup analyses based on various factors, including cutoffs of IGF-1, country of the study, patient diagnosis, methods for measuring serum IGF-1, follow-up duration, analytic model, and quality scores ( P for subgroup difference all > 0.05). DISCUSSION A diminished serum IGF-1 level on admission could potentially serve as an indicator for an unfavorable prognosis among patients afflicted with advanced liver disease, such as severe hepatitis and cirrhosis.
Collapse
Affiliation(s)
- Yihan Liu
- Zhoukou Central Hospital Affiliated to Xinxiang Medical University, Zhoukou, Henan, China
| | - Haojie Xue
- Zhoukou Central Hospital Affiliated to Xinxiang Medical University, Zhoukou, Henan, China
| | - Yang Liu
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Han Li
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Qian Liang
- Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Longhui Ma
- Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Ming Zhao
- Ward 1, Department of Gastroenterology, Zhoukou Central Hospital, Zhoukou, Henan, China
| | - Junying Liu
- Zhoukou Central Hospital, Zhoukou, Henan, China
| |
Collapse
|
17
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
18
|
Shah A, Bush CO, Perry RJ. Genetic underpinnnings of type 2 diabetes. ADVANCES IN GENETICS 2025; 113:54-75. [PMID: 40409800 DOI: 10.1016/bs.adgen.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Genetics is a significant risk factor for developing type 2 diabetes, with a family history conferring a 1.5-3-fold increased risk. Intriguingly, this heritable risk is higher when the affected parent is the mother, suggesting a potential role of mitochondrial genetics -maternally inherited DNA - in diabetes pathogenesis, a hypothesis this chapter will explore. While obesity mediates some of the genetic risk of type 2 diabetes, the chapter and will focus on genetic influences on diabetes independent of obesity. Mechanistically, genetic variants directly or indirectly contribute to insulin resistance across key tissues, including liver, muscle and adipose tissue. This insulin resistance prevents the liver from efficiently suppressing glucose production in response to insulin and impairs glucose uptake in muscle during postprandial states. Insulin resistance is driven by complex interactions between the genome and environmental, which can, in turn, influence gene expression and contribute to worsening of metabolic dysfunction. This chapter examines how tissue-specific genetic changes drive insulin resistance in individual organs and how these localized dysfunctions contribute to the broader, multi-organ metabolic dysfunction that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Aditya Shah
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Woodbridge Academy Magnet School, Middlesex County, NJ, United States
| | - Clancy O Bush
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States; Brain Cognition and Brain Diseases Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Internal Medicine (Endocrinology), Yale University, New Haven, CT, United States.
| |
Collapse
|
19
|
Lee WH, Kipp ZA, Pauss SN, Martinez GJ, Bates EA, Badmus OO, Stec DE, Hinds TD. Heme oxygenase, biliverdin reductase, and bilirubin pathways regulate oxidative stress and insulin resistance: a focus on diabetes and therapeutics. Clin Sci (Lond) 2025; 139:CS20242825. [PMID: 39873298 DOI: 10.1042/cs20242825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.6%. Shockingly, the global T2DM population is anticipated to double by 2050 compared with 2021. Prior studies indicate that oxidative stress and inflammation are instrumental in causing insulin resistance and instigating metabolic diseases. Numerous methods and drugs have been designed to combat insulin resistance, including metformin, thiazolidinediones (TZDs), sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA), and dipeptidyl peptidase 4 inhibitors (DPP4i). Bilirubin is an antioxidant with fat-burning actions by binding to the PPARα nuclear receptor transcription factor, improving insulin sensitivity, reducing inflammation, and reversing metabolic dysfunction. Potential treatment with antioxidants like bilirubin and increasing the enzyme that produces it, heme oxygenase (HMOX), has also gained attention. This review discusses the relationships between bilirubin, HMOX, and insulin sensitivity, how T2DM medications affect HMOX levels and activity, and potentially using bilirubin nanoparticles to treat insulin resistance. We explore the sex differences between these treatments in the HMOX system and how bilirubin levels are affected. We discuss the emerging concept that bilirubin bioconversion to urobilin may have a role in metabolic diseases. This comprehensive review summarizes our understanding of bilirubin functioning as a hormone, discusses the HMOX isoforms and their beneficial mechanisms, analyzes the sex differences that might cause a dichotomy in responses, and examines the potential use of HMOX and bilirubin nanoparticle therapies in treating metabolic diseases.
Collapse
Affiliation(s)
- Wang-Hsin Lee
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sally N Pauss
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Genesee J Martinez
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Olufunto O Badmus
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, USA
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
20
|
Xu Y, Zhang Y, Sun W, Tang Q, Feng W, Xiao H, Wang J, Yuan X, Xiang M, Gao Y, Zhang H, Lu J. Characteristics of different lipid droplet-mitochondrial contacts patterns during lipid droplet metabolism in T2DM-induced MASLD. Sci Rep 2025; 15:3399. [PMID: 39870911 PMCID: PMC11772659 DOI: 10.1038/s41598-025-87871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025] Open
Abstract
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice. It was found that insulin resistance increased both the number and size of lipid droplets in the liver by enhancing the accumulation of free fatty acids, which is accompanied by an increase in contacts with mitochondria. We described the different patterns of tight contacts between small lipid droplets and mitochondria in purified CM and PDM by examining their oxidation states and morphological characteristics. In CM, enhanced fatty acid oxidation resulted in elongated mitochondria that surrounded single small lipid droplets and were responsible for lipid droplet consumption, while in PDM, increased substrates for lipid synthesis promoted lipid droplet expansion with the assistance of the endoplasmic reticulum. These data show the different ways in which mitochondrial contact with lipid droplets could provide new insights for future research on liver lipid metabolism.
Collapse
Affiliation(s)
- Ye Xu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, China.
| | - Wen Sun
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, China
| | - Wanyu Feng
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- Sport Science Research Institute, Nanjing Sport Institute, Nanjing, China
| | - Hongjian Xiao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jingjie Wang
- Department of General Surgery, Nanjing Maternity and Child Health Care Hospital, Womens Hospital of Nanjing Medical University, Nanjing, China
| | - Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Hanyu Zhang
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, China.
| |
Collapse
|
21
|
Buttari B, Tramutola A, Rojo AI, Chondrogianni N, Saha S, Berry A, Giona L, Miranda JP, Profumo E, Davinelli S, Daiber A, Cuadrado A, Di Domenico F. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025; 15:113. [PMID: 39858508 PMCID: PMC11764413 DOI: 10.3390/biom15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis. As we age, the efficiency of the NRF2 pathway declines due to several factors including increased activity of its repressors, impaired NRF2-mediated antioxidant and cytoprotective gene expression, and potential epigenetic changes, though the precise mechanisms remain unclear. This leads to diminished antioxidant defenses, increased oxidative damage, and exacerbated metabolic dysregulation and inflammation-key contributors to age-related diseases. Given NRF2's role in mitigating proteotoxic stress, the pharmacological modulation of NRF2 has emerged as a promising therapeutic strategy, even in aged preclinical models. By inducing NRF2, it is possible to mitigate the damaging effects of oxidative stress, metabolic dysfunction, and inflammation, thus reducing protein misfolding. The review highlights NRF2's therapeutic implications for neurodegenerative diseases and cardiovascular conditions, emphasizing its role in improving proteostasis and redox homeostasis Additionally, it summarizes current research into NRF2 as a therapeutic target, offering hope for innovative treatments to counteract the effects of aging and associated diseases.
Collapse
Affiliation(s)
- Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Ana I. Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece;
| | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India;
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
| | - Letizia Giona
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.B.); (L.G.)
- PhD Program in Science of Nutrition, Metabolism, Aging and Gender-Related Diseases, Faculty of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), National Institute of Health Carlos III (ISCIII), Instituto de Investigación Sanitaria La Paz (IdiPaz), 28049 Madrid, Spain; (A.I.R.); (A.C.)
| | - Fabio Di Domenico
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
22
|
Yang Y, Chen Y, Liu C, Wang S, Zhao Y, Cao W, Wang K. Analysis of Exosomal miRNA and Hepatic mRNA Expression in the Dysregulation of Insulin Action in Perimenopausal Mice. J Diabetes Res 2025; 2025:6251747. [PMID: 39823117 PMCID: PMC11737908 DOI: 10.1155/jdr/6251747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Introduction: The aim of present study was to evaluate the impact of perimenopause on insulin resistance. Specifically, insulin sensitivity was assessed in a perimenopausal mouse model treated with 4-vinylcyclohexene diepoxide (VCD), together with the changes in exosomal miRNA and hepatic mRNA expression profiles. Methods: Homeostasis model assessment of insulin resistance (HOMA-IR) was utilized to assess the status of insulin resistance, and insulin action was evaluated during menopausal transition. RNA sequencing (RNA-seq) analysis was used to identify altered expression profiles of exosomal miRNAs and hepatic mRNAs. Differentially expressed miRNA (DEM)-differentially expressed gene (DEG) network analyses were also conducted. Furthermore, altered expression levels of these exosomal miRNAs and genes were validated in plasma exosomes and liver tissue of perimenopausal mice. Results: HOMA-IR in VCD-treated mice was significantly increased, and hepatic glycogen was significantly decreased. Key exosomal miRNAs (miR-17-3p, miR-134-5p, miR-700-5p, and miR-6899-3p) and hepatic genes (G6pdx, Ptpn2, Lepr, Kras, and Braf) may be associated with impaired insulin signaling during perimenopause. Conclusion: The perimenopausal period acts as a potential factor in introducing insulin resistance as evidenced by impaired insulin action and altered expression profiles of exosomal miRNAs and hepatic genes. The present study contributes to the understanding that abnormal cargos carried by plasma exosomes, such as miRNAs, may be related to altered expression of the corresponding genes in the liver and abnormal insulin response.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yu Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Changju Liu
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Su Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yijing Zhao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wen Cao
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kun Wang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Bajaj G, Choudhary D, Singh V, Priyadarshi N, Garg P, Mantri SS, Rishi V, Singhal NK. MicroRNAs Dependent G-ELNs Based Intervention Improves Glucose and Fatty Acid Metabolism While Protecting Pancreatic β-Cells in Type 2 Diabetic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409501. [PMID: 39648555 DOI: 10.1002/smll.202409501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Metabolic disorders such as Type 2 diabetes mellitus (T2DM) imposes a significant global health burden. Plant-derived exosome like nanoparticles (P-ELNs) have emerged as a promising therapeutic alternate for various diseases. Present data demonstrates that treatment with Ginger-derived exosome like nanoparticles (G-ELNs) enhance insulin dependent glucose uptake, downregulate gluconeogenesis and oxidative stress in insulin resistant HepG2 cells. Furthermore, oral administration of G-ELNs in T2DM mice decreases fasting blood glucose levels and improves glucose tolerance as effectively as metformin. These improvements are attributed to the enhanced phosphorylation of Protein kinase B (Akt-2), the phosphatidylinositol 3-kinase at serine 474 which consequently leads to increase in hepatic insulin sensitivity, improvement in glucose homeostasis and decrease in ectopic fat deposition. Oral administration of G-ELNs also exerts protective effect on Streptozotocin (STZ)-induced pancreatic β-cells damage, contributing to systemic amelioration of T2DM. Further, as per computational tools, miRNAs present in G-ELNs modulate the phosphatidylinositol 3-kinase (PI3K)/Akt-2 pathway and exhibit strong interactions with various target mRNAs responsible for hepatic gluconeogenesis, ectopic fat deposition and oxidative stress. Furthermore, synthetic mimic of G-ELNs miRNA effectively downregulates its target mRNA in insulin resistant HepG2 cells. Overall, the results indicate that the miRNAs present in G-ELNs target hepatic metabolism thus, exerting therapeutic effects in T2DM.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Diksha Choudhary
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur, 342005, India
| | - Nitesh Priyadarshi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Priyanka Garg
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Shrikant Subhash Mantri
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
24
|
Verma A, Rishabh M, Mathiyazhagan N, Ahirwar SS, Mukherjee S, Kotnis A. Metabolic Derangement in Non-Alcoholic Fatty Liver Disease: Opportunities for Early Diagnostic and Prognostic Markers. Curr Mol Med 2025; 25:269-277. [PMID: 38409703 DOI: 10.2174/0115665240269082240213115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 02/28/2024]
Abstract
Non-alcoholic fatty liver disease is a globally prevalent disorder that can rapidly progress if not detected early. Currently, no accepted markers exist for early diagnosis and prognosis of NAFLD. This review describes derangement in major metabolic pathways of lipid, carbohydrate, and amino acids in NAFLD. It suggests that measuring levels of thrombospondin, TyG index, asymmetric dimethylarginine, LAL-A, GLP-1, FGF-21, and GSG index are potential markers for early diagnosis of NAFLD. A single marker may not indicate early NAFLD, and further large-scale studies on correlating levels of Thrombospondin-2, triglyceride-glucose index, and FGF-21 with NAFLD are warranted.
Collapse
Affiliation(s)
- Abhinav Verma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
| | - Mittal Rishabh
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
| | | | - Sonu Singh Ahirwar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, India
| |
Collapse
|
25
|
Amer AE, Ghoneim HA, Abdelaziz RR, Shehatou GSG, Suddek GM. L-carnitine attenuates autophagic flux, apoptosis, and necroptosis in rats with dexamethasone-induced non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2024; 25:102. [PMID: 39736705 DOI: 10.1186/s40360-024-00820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND UpToDate, no drugs have been approved to treat nonalcoholic steatohepatitis, the advanced stage of the most prevalent liver disease, non-alcoholic fatty liver disease. The present study was conducted to explore the potential influences of L-carnitine on the pathomechanisms of hepatic injury that mediate progression to non-alcoholic steatohepatitis in dexamethasone-toxified rats. METHODS Male Wistar rats were allocated as follows: dexamethasone group, rats received dexamethasone (8 mg/kg/day, intraperitoneally) for 6 days; DEXA-LCAR300, DEXA-LCAR500, and DEXA-MET groups, rats administered L-carnitine (300 or 500 mg/kg/day, IP) or metformin (500 mg/kg/day, orally) one week prior to dexamethasone injection (8 mg/kg/day, IP) and other six days alongside dexamethasone administration. Two groups of age-matched normal rats received either the drug vehicle (the control group) or the higher dose of L-carnitine (the drug-control group). At the end of the experiment, sets of biochemical, histological, and immunohistochemical examinations were performed. RESULTS L-carnitine (mainly at the dose of 500 mg/kg/day) markedly abolished dexamethasone-induced alterations in glucose tolerance, hepatic histological features, and serum parameters of hepatic function and lipid profile. Moreover, it significantly ameliorated dexamethasone-induced elevations of hepatic oxidative stress, SREBP-1 and p-MLKL protein levels, and nuclear FOXO1, LC3, P62, and caspase-3 immunohistochemical expression. Furthermore, it markedly diminished dexamethasone-induced suppression of hepatic Akt phosphorylation and Bcl2 immunohistochemical expression. The effects of L-carnitine (500 mg/kg/day) were comparable to those of metformin in most assessments and better than its corresponding lower dose. CONCLUSION These findings introduce L-carnitine as a potential protective drug that may mitigate the rate of disease progression in non-alcoholic fatty liver disease patients with early stages or those at the highest risks.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt.
| | - Hamdy A Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya, 35712, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
26
|
Yang L, Feng Y, Wang Y, Liu C, Gao D. Relationship between four insulin resistance surrogates and regression to normoglycemia from prediabetes among Chinese adults: A longitudinal Cohort Study. Endocrine 2024; 86:980-993. [PMID: 38965137 DOI: 10.1007/s12020-024-03947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE We aimed to investigate the association of the triglyceride glucose-body mass index(TyG-BMI), metabolic score for insulin resistance (METS-IR) with regression to normoglycaemia, and further to compare the value of the four insulin resistance(IR) related indices(TyG-BMI, METS-IR, TyG and triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio) in identifying regressions to normoglycaemia from prediabetes. METHODS A total of 15,025 patients with prediabetes from the DATA-DRYAD database were included. Cox proportional hazards regression models and restricted cubic spline functions were performed to explore the association and nonlinearity between the indices with the incidence rate of normoglycaemia. Sensitivity and subgroup analyses evaluated the robustness of our findings. RESULTS Compared with the first quintile, TyG-BMI and METS-IR was negatively linked with the probability of regression to normoglycaemia from prediabetes, the adjusted effect size of the highest quintiles of METS-IR were the most obvious (HR:0.456,95% CI:0.4-0.519), followed by TG/HDL (HR:0.792, 95% CI:0.733-0.856), TyG-BMI (HR:0.816, 95% CI:0.73-0.911) and TyG (HR:0.841, 95% CI: 0.754-0.937) (all p for trend <0.001). A 1.0 SD increase in METS-IR induced a 43% decrease in the probability of regression to normoglycaemia, with 9.8% for TyG-BMI. There were nonlinear associations between TyG-BMI and METS-IR and outcomes, with the inflection point of the TyG-BMI being 218.2 and that of the METS-IR being 37. CONCLUSIONS The METS-IR might be the most superior indicator among the four non-insulin indices in identifying regressions to normoglycaemia from prediabetes in clinical application. The inflection points of the METS-IR and TyG-BMI may be instructive therapeutic points for assessing the status of prediabetes in advance and making more appropriate management and health care decisions.
Collapse
Affiliation(s)
- Lijun Yang
- Cardiology Diseases Department, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Rd, Xian, China
| | - Yanjing Feng
- Cardiology Diseases Department, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Rd, Xian, China
| | - Yu Wang
- Cardiology Diseases Department, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Rd, Xian, China
| | - Chang Liu
- Cardiology Diseases Department, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Rd, Xian, China
| | - Dengfeng Gao
- Cardiology Diseases Department, The Second Affiliated Hospital of Xi'an Jiaotong University, NO.157 Xiwu Rd, Xian, China.
| |
Collapse
|
27
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
28
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
29
|
Pomar CA, Trepiana J, Besné-Eseverri I, Castillo P, Palou A, Palou M, Portillo MP, Picó C. Maternal Dietary Improvement or Leptin Supplementation During Suckling Mitigates the Long-Term Impact of Maternal Obesogenic Conditions on Inflammatory and Oxidative Stress Biomarkers in the Offspring of Diet-Induced Obese Rats. Int J Mol Sci 2024; 25:11876. [PMID: 39595945 PMCID: PMC11594198 DOI: 10.3390/ijms252211876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the impact of maternal nutrition during lactation on inflammation and oxidative stress in the offspring of diet-induced obese rats, along with the potential benefits of leptin supplementation during suckling. Dams were fed either a standard diet (SD), a western diet (WD) before and during gestation and lactation (WD-dams), or a WD switched to an SD during lactation (Rev-dams). Offspring were supplemented with leptin or vehicle during suckling and then fed an SD or WD until four months. Offspring of the Rev-dams exhibited improved metabolic indicators, including lower body weight, reduced plasma levels of TNF-alpha, a higher adiponectin/leptin (A/L) ratio, enhanced liver antioxidant defenses, and decreased inflammation markers in white adipose tissue (WAT) compared to WD-dams, with sex differences. Leptin supplementation further modulated these markers, reducing oxidative stress in liver and inflammation in WAT and liver (e.g., hepatic Tnfa expression decreased by 45% (males) and 41% (females) in the WD group on an SD), and improving the A/L ratio, with effects varying by maternal conditions and sex. In conclusion, this study underscores the importance of maternal nutrition and leptin intake during suckling in shaping long-term metabolic and inflammatory health in offspring, offering strategies to mitigate the adverse effects of maternal obesity on future generations.
Collapse
Affiliation(s)
- Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Jenifer Trepiana
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Irene Besné-Eseverri
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
| | - Maria P. Portillo
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122 Palma, Spain; (C.A.P.); (P.C.); (A.P.); (C.P.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.T.); (I.B.-E.); (M.P.P.)
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), 07122 Palma, Spain
| |
Collapse
|
30
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
31
|
Martínez-Sánchez FD, Medina-Julio D, Córdova-Gallardo J, Corredor-Nassar MJ, Méndez-Sánchez N. Type 2 Diabetes Subtypes and Their Role in Metabolic Liver Disease and Fibrosis Progression. Med Sci Monit 2024; 30:e946016. [PMID: 39449183 PMCID: PMC11520462 DOI: 10.12659/msm.946016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The relationship between different subgroups of type 2 diabetes (T2D) and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) and liver fibrosis has not been thoroughly studied. This study aims to determine the association between T2D subgroups and the risk of developing advanced liver fibrosis using the Fibrosis-4 (FIB-4) index, a non-invasive marker for assessing liver fibrosis risk. MATERIAL AND METHODS A total of 1205 patients with T2D were categorized into 4 distinct subgroups: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes (MARD). The FIB-4 index was calculated for each patient to estimate the degree of liver fibrosis, with the following cutoff points: <1.3 indicating no or mild fibrosis, 1.3-2.67 suggesting moderate fibrosis, and >2.67 indicating advanced fibrosis (F3-F4). Logistic regression was used to compare the odds of advanced fibrosis across these subgroups. RESULTS The SIRD subgroup exhibited significantly higher odds of advanced liver fibrosis (F3-F4), compared with the other subgroups, as indicated by elevated FIB-4 scores (P<0.05). In contrast, the SIDD and MOD subgroups had lower odds of advanced fibrosis, while the MARD subgroup showed an intermediate association. CONCLUSIONS The findings suggest that the FIB-4 index, as a noninvasive assessment tool, effectively stratifies liver fibrosis risk among different T2D subgroups. This stratification can inform more personalized management strategies for patients with MASLD, underscoring the importance of accounting for the heterogeneity within T2D in clinical assessments of liver fibrosis risk.
Collapse
Affiliation(s)
- Froylan David Martínez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Copilco University, Mexico City, Mexico
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | - David Medina-Julio
- Faculty of Medicine, National Autonomous University of Mexico, Copilco University, Mexico City, Mexico
- Department of Internal Medicine, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | - Jacqueline Córdova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Copilco University, Mexico City, Mexico
- Department of Hepatology, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | | | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Copilco University, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
32
|
Mutlu B, Sharabi K, Sohn JH, Yuan B, Latorre-Muro P, Qin X, Yook JS, Lin H, Yu D, Camporez JPG, Kajimura S, Shulman GI, Hui S, Kamenecka TM, Griffin PR, Puigserver P. Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chem Biol 2024; 31:1772-1786.e5. [PMID: 39341205 PMCID: PMC11500315 DOI: 10.1016/j.chembiol.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Small molecules selectively inducing peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α acetylation and inhibiting glucagon-dependent gluconeogenesis causing anti-diabetic effects have been identified. However, how these small molecules selectively suppress the conversion of gluconeogenic metabolites into glucose without interfering with lipogenesis is unknown. Here, we show that a small molecule SR18292 inhibits hepatic glucose production by increasing lactate and glucose oxidation. SR18292 increases phosphoenolpyruvate carboxykinase 1 (PCK1) acetylation, which reverses its gluconeogenic reaction and favors oxaloacetate (OAA) synthesis from phosphoenolpyruvate. PCK1 reverse catalytic reaction induced by SR18292 supplies OAA to tricarboxylic acid (TCA) cycle and is required for increasing glucose and lactate oxidation and suppressing gluconeogenesis. Acetylation mimetic mutant PCK1 K91Q favors anaplerotic reaction and mimics the metabolic effects of SR18292 in hepatocytes. Liver-specific expression of PCK1 K91Q mutant ameliorates hyperglycemia in obese mice. Thus, SR18292 blocks gluconeogenesis by enhancing gluconeogenic substrate oxidation through PCK1 lysine acetylation, supporting the anti-diabetic effects of these small molecules.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Bo Yuan
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xin Qin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jin-Seon Yook
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Lin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - João Paulo G Camporez
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520-8020, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520-8020, USA; Howard Hughes Medical Institute, Chevy Chase, MD 020815, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL 33458, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Jagtap U, Quan A, Ono Y, Lee J, Shen KA, Manakov S, Szabo G, Nasser I, Slack FJ. miR-21: A therapeutic target for delaying severe liver disease and hepatocellular carcinoma in high-fat-diet-fed mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613915. [PMID: 39386656 PMCID: PMC11463666 DOI: 10.1101/2024.09.19.613915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Liver disease, including hepatocellular carcinoma (HCC), is a major global health concern, claiming approximately 2 million lives worldwide annually, yet curative treatments remain elusive. In this study, we aimed to investigate the role of microRNA-21-5p (miR-21) in metabolic dysfunction-associated steatotic liver disease (previously NAFLD), metabolic-associated steatohepatitis (previously NASH), and HCC within the context of a Western high-fat diet, without additional choline (HFD) and offering potential therapeutic insights. We found that reduced miR-21 levels correlated with liver disease progression in WT mice fed on HFD, while miR-21 knockout mice showed exacerbated metabolic dysfunction, including obesity, hepatomegaly, hyperglycemia, insulin resistance, steatosis, fibrosis, and HCC. Our study reveals that miR-21 plays a protective role in metabolic syndrome and in the progression of liver disease to cancer. MiR-21 directly targets Transforming growth factor beta-induced (Tgfbi), a gene also known to be significantly upregulated and a potential oncogene in HCC. Further, our study showed that intervention with the administration of a miR-21 mimic in WT livers effectively improves insulin sensitivity, steatosis, fibrosis, Tgfbi expression and tumor burden in HFD conditions. These findings indicate that miR-21 could serve as an effective strategy to delay or prevent liver disease in high-fat-diet environments.
Collapse
Affiliation(s)
- Urmila Jagtap
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
- HMS Initiative for RNA initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Anan Quan
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
- HMS Initiative for RNA initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Current address: Brigham and Women’s Hospital, 45 Francis Street, Boston, MA
| | - Yuho Ono
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
| | - Jonathan Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
- HMS Initiative for RNA initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Kylie A. Shen
- Eclipse BioInnovations, 5770 Oberlin Dr. San Diego, 922, CA
| | - Sergei Manakov
- Eclipse BioInnovations, 5770 Oberlin Dr. San Diego, 922, CA
- Current address: Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
- HMS Initiative for RNA initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, Massachusetts, 02115, USA
| |
Collapse
|
34
|
Ma X, Zou H, Zhan J, Gao J, Xie Y. Assessment of the clinical value of five noninvasive predictors of metabolic dysfunction-associated steatotic liver disease in Han Chinese adults. Eur J Gastroenterol Hepatol 2024; 36:1209-1219. [PMID: 38973526 DOI: 10.1097/meg.0000000000002806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Fatty Liver Index (FLI), Triglyceride-Glucose Index (TyG), Lipid Accumulation Product (LAP), Zhejiang University Index (ZJU), and Visceral Adiposity Index (VAI) are five classical predictive models for fatty liver disease. Our cross-sectional study aimed to identify the optimal predictors by comparing the predictive value of five models for metabolic dysfunction-associated steatotic liver disease (MASLD) risk. METHODS Data on 2687 participants were collected from West China Hospital of Sichuan University. Controlled attenuation parameters assessed by transient elastography were used to effectively diagnose MASLD. Logistic regression analysis was used to estimate the odd ratios and 95% confidence intervals between indices and MASLD risk. Receiver operating characteristic curves were plotted to evaluate the predictive value of indices. RESULTS This study included 1337 normal and 1350 MASLD samples. The average age of MASLD patients is 47 years old, and the prevalence was higher in males (39.3%) than in females (10.9%). Five indices were positively correlated with MASLD risk, with the strongest correlation for TyG. Overall, the area under the curve of the indicators was: ZJU 0.988, FLI 0.987, LAP 0.982, TyG 0.942, and VAI 0.941. In the gender stratification, ZJU (0.989) performed best in males. FLI (0.988) and ZJU (0.987) had similar predictive ability in females. In the age stratification, FLI performed better in predicting the middle-aged group aged 30-40 years (0.991). CONCLUSION For Chinese Han adults, ZJU is the best predictive index for initial screening of MASLD. FLI can serve as an alternative tool for ZJU to predict females.
Collapse
Affiliation(s)
- Xiaopu Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | |
Collapse
|
35
|
Guo X, Pu J, Tang Z, Jia C, Yang F, Liu T, Ding Y. LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal Model Exp Med 2024; 7:696-706. [PMID: 38567757 PMCID: PMC11528380 DOI: 10.1002/ame2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ziqi Tang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
36
|
Aroca-Esteban J, Souza-Neto FV, Aguilar-Latorre C, Tribaldo-Torralbo A, González-López P, Ruiz-Simón R, Álvarez-Villareal M, Ballesteros S, de Ceniga MV, Landete P, González-Rodríguez Á, Martín-Ventura JL, de Las Heras N, Escribano Ó, Gómez-Hernández A. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167327. [PMID: 38945455 DOI: 10.1016/j.bbadis.2024.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.
Collapse
Affiliation(s)
- Javier Aroca-Esteban
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Francisco V Souza-Neto
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Carlota Aguilar-Latorre
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alba Tribaldo-Torralbo
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Paula González-López
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rubén Ruiz-Simón
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Marta Álvarez-Villareal
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Sandra Ballesteros
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Melina Vega de Ceniga
- Department of Angiology and Vascular Surgery, Hospital of Galdakao-Usansolo, Galdakao, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Pedro Landete
- Departmento de Neumología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain; Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - José L Martín-Ventura
- IIS-Fundation Jimenez-Diaz, Autonoma University of Madrid and CIBERCV, Madrid, Spain
| | - Natalia de Las Heras
- Physiology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Óscar Escribano
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Almudena Gómez-Hernández
- Hepatic and Vascular Diseases Laboratory, Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
37
|
Xiao Y, Wang H, Han L, Lyu G, Li S. Effect of uric acid on lipid metabolism assessed via restricted cubic splines: A new insight. Heliyon 2024; 10:e37408. [PMID: 39296235 PMCID: PMC11408835 DOI: 10.1016/j.heliyon.2024.e37408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hyperuricemia can promote both blood lipids and non-alcoholic fatty liver disease (NAFLD). However, the role of the entire uric acid (UA) span, especially low concentrations below hyperuricemia, on lipid metabolism remains unclear. Methods A cross-sectional study was designed. Data on the age, sex, UA, triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) of 1977 participants, who underwent physical examination, were collected. NAFLD and non-alcoholic fatty pancreas disease (NAFPD) were diagnosed using abdominal ultrasound. Restricted cubic splines (RCS) linear regression model was used to evaluate the effect of the UA span on TG, TC, HDL, and LDL, respectively. RCS logistic regression model was employed to evaluate the effect of the UA span on NAFLD and NAFPD. Results RCS linear regression model showed that TG was negatively correlated with UA at first, then exhibiting a positive correlation. Meanwhile, HDL was positively correlated with UA at first, then negatively correlated. There was a positive linear correlation between TC and UA (P for nonlinear = 0.578) and a positive nonlinear correlation between LDL and UA (P for nonlinear = 0.021). RCS logistic regression model showed that NAFLD and NAFPD were negatively correlated with UA at first and then positively correlated with UA. Conclusion our study showed that the entire UA span has a J-shaped effect on some lipids, NAFLD, and NAFPD. Besides, TG and HDL, compared with TC or LDL, may better reflect the status of NAFLD and NAFPD.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Han Wang
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lina Han
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shilin Li
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
38
|
Alshareef NS, AlSedairy SA, Al-Harbi LN, Alshammari GM, Yahya MA. Carthamus tinctorius L. (Safflower) Flower Extract Attenuates Hepatic Injury and Steatosis in a Rat Model of Type 2 Diabetes Mellitus via Nrf2-Dependent Hypoglycemic, Antioxidant, and Hypolipidemic Effects. Antioxidants (Basel) 2024; 13:1098. [PMID: 39334757 PMCID: PMC11428842 DOI: 10.3390/antiox13091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to examine the hepatic and anti-steatotic protective effects of methanolic extract from Carthamus tinctorius (safflower) flowers (SFFE), using a rat model of type 2 diabetes mellitus (T2DM), and to examine the molecular mechanisms underlying these effects. Adult male Wistar rats were used for this study. First, T2DM was induced in some rats by feeding them a high-fat diet (HFD) for 4 weeks, followed by a single dose of streptozotocin (STZ) (35 mg/kg, i.p.). Experimental groups included the following five groups (n = 8 in each): control, control + SFFE, T2DM, T2DM + SFFE, and T2DM + SFFE + brusatol (an Nrf2 inhibitor, 2 mg/kg, i.p.). SFFE was administered at a concentration of 300 mg/kg, and all experiments concluded after 8 weeks. Treatments with SFFE significantly reduced fasting blood glucose levels, free fatty acids (FFAs), cholesterol, triglycerides, and low-density lipoprotein cholesterol in both the control and T2DM rats, but they failed to reduce fasting insulin levels in these groups. SFFE treatments also improved the liver structure and reduced hepatocyte vacuolization and hepatic levels of triglycerides and cholesterol in T2DM rats, in addition to increasing the hepatic mRNA levels of keap1 and the cytoplasmic levels and nuclear activities of Nrf2 in both the control and T2DM rats. SFFE also stimulated the expression levels of PPARα and CPT-1 but reduced the malondialdehyde (MDA), mRNA levels of SREBP1, fatty acid synthase, and acetyl CoA carboxylase in both the control and T2DM rats; meanwhile, it reduced hepatic mRNA and the nuclear activities of NF-κB and increased levels of glutathione, superoxide dismutase, and heme oxygenase-1 in the livers of both groups of treated rats. Furthermore, SFFE suppressed the levels of caspase-3, Bax, tumor necrosis factor-α, and interleukin-6 in the T2DM rats. Treatment with brusatol prevented all of these effects of SFFE. In conclusion, SFFE suppresses liver damage and hepatic steatosis in T2DM through Nrf2-dependent hypoglycemic, antioxidant, anti-inflammatory, and hypolipidemic effects.
Collapse
Affiliation(s)
| | | | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.A.A.); (G.M.A.); (M.A.Y.)
| | | | | |
Collapse
|
39
|
Yutharaksanukul P, Tangpromphan P, Tunsagool P, Sae-Tan S, Nitisinprasert S, Somnuk S, Nakphaichit M, Pusuntisumpun N, Wanikorn B. Effects of Purified Vitexin and Iso-Vitexin from Mung Bean Seed Coat on Antihyperglycemic Activity and Gut Microbiota in Overweight Individuals' Modulation. Nutrients 2024; 16:3017. [PMID: 39275332 PMCID: PMC11396884 DOI: 10.3390/nu16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Exceeding a healthy weight significantly elevates the likelihood of developing type 2 diabetes (T2DM). A commercially available singular constituent, available as either purified vitexin or iso-vitexin, has been associated with a decreased risk of T2DM, but its synergistic effect has not been reported yet. Vitexin and iso-vitexin were extracted using an ethanol-based solvent from mung bean seed coat (MBCE) and subsequently purified using preparative liquid chromatography (Prep-LC). Eleven mixture ratios of vitexin and/or iso-vitexin were determined for their antioxidant and antihyperglycemic activities. The 1:1.5 ratio of vitexin to iso-vitexin from MBCE demonstrated the most synergistic effects for enzyme inhibition and glucose uptake in HepG2 cells within an insulin-resistant system, while these ratios exhibited a significantly lower antioxidant capacity than that of each individual component. In a gut model system, the ratio of 1:1.5 (vitexin and iso-vitexin) regulated the gut microbiota composition in overweight individuals by decreasing the growth of Enterobacteriaceae and Enterococcaceae, while increasing in Ruminococcaceae and Lachnospiraceae. The application of vitexin/iso-vitexin for 24 h fermentation enhanced a high variety of abundances of 21 genera resulting in five genera of Parabacteroides, Ruminococcus, Roseburia, Enterocloster, and Peptacetobacter, which belonged to the phylum Firmicutes, exhibiting high abundant changes of more than 5%. Only two genera of Proteus and Butyricicoccus belonging to Proteobacteria and Firmicutes decreased. The findings suggest that these phytochemicals interactions could have synergistic effects in regulating glycemia, through changes in antihyperglycemic activity and in the gut microbiota in overweight individuals. This optimal ratio can be utilized by industries to formulate more potent functional ingredients for functional foods and to create nutraceutical supplements aimed at reducing the risk of T2DM in overweight individuals.
Collapse
Affiliation(s)
- Pornlada Yutharaksanukul
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Preuk Tangpromphan
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Surasawadee Somnuk
- Department of Sports and Health Science, Faculty of Sports Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nut Pusuntisumpun
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Bandhita Wanikorn
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
40
|
Saeed M, Shoaib A, Tasleem M, Al-Shammary A, Kausar MA, El Asmar Z, Abdelgadir A, Sulieman AME, Ahmed EH, Zahin M, Ansari IA. Role of Alkannin in the Therapeutic Targeting of Protein-Tyrosine Phosphatase 1B and Aldose Reductase in Type 2 Diabetes: An In Silico and In Vitro Evaluation. ACS OMEGA 2024; 9:36099-36113. [PMID: 39220541 PMCID: PMC11359625 DOI: 10.1021/acsomega.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Alkannin is a plant-derived naphthoquinone that is isolated from the Boraginaceae family plants. In our previous studies, we found that shikonin, which is the R-enantiomer of alkannin, has potent antidiabetic activity by inhibiting the action of the aldose reductase (AR) enzyme and the protein-tyrosine phosphatase 1B (PTP1B). Therefore, in this study, we aim to explore the antidiabetic effect of alkannin targeting PTP1B and AR by employing in silico and in vitro techniques. For in silico, we used different parameters such as ADMET analysis, molecular docking, MD simulation, Root Mean Square Deviation (RMSD), protein-ligand mapping, and free binding energy calculation. The in vitro evaluation was done by assessing the inhibitory activity and enzyme kinetics of PTP1B and AR inhibition by alkannin. The in silico studies indicate that alkannin possesses favorable pharmacological properties and possesses strong binding affinity for diabetes target proteins. Hydrogen bonds (Val297, Ala299, Leu300, and Ser302) and hydrophobic interactions (Trp20, Val47, Tyr48, Trp79, Trp111, Phe122, Trp219, Val297, Cys298, Ala299, Leu300, and Leu301) are established by the compound, which potentially improves specificity and aids in the stabilization of the protein-ligand complex. The results from in vitro studies show a potent dose-dependent PTP1B inhibitory activity with an IC50 value of 19.47 μM, and toward AR it was estimated at 22.77 μM. Thus, from the results it is concluded that a low IC50 value of alkannin for both PTP1B and AR along with favorable pharmacological properties and optimal intra-molecular interactions indicates its utilization as a potential drug candidate for the management of diabetes and its end complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Ambreen Shoaib
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Munazzah Tasleem
- Center
for Global Health Research, Saveetha Medical
College and Hospital, Chennai 602105, India
| | - Asma Al-Shammary
- Department
of Public Health, College of Public Health and Health Informatics, University of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan Kausar
- Department
of Biochemistry, College of Medicine, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Zeina El Asmar
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdelmuhsin Abdelgadir
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Abdel Moneim E. Sulieman
- Department
of Biology, College of Sciences, University
of Ha’il, P.O. Box 2240, Ha’il 81451, Saudi Arabia
| | - Enas Haridy Ahmed
- University
of Ha’il, Faculty of Medicine
Anatomy Department, Ha’il, KSA, Ain Shams University, Faculty
of Medicine Anatomy and Embryology Department, Cairo 11566, Egypt
| | - Maryam Zahin
- James
Graham
Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, United States
| | | |
Collapse
|
41
|
Zhou Y, Su J, Dong Y, He Z, Wang Y, Chen S, Lv G. Buddleoside-rich Chrysanthemum indicum L. extract modulates macrophage-mediated inflammation to prevent metabolic syndrome induced by unhealthy diet. BMC Complement Med Ther 2024; 24:315. [PMID: 39179999 PMCID: PMC11344343 DOI: 10.1186/s12906-024-04583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a precursor to the development of many diseases (atherosclerosis, diabetes, etc.). It is marked by disruptions in glucose and lipid metabolism, along with hypertension. Numerous types of risk factors contribute to the development of the MetS, inflammation and insulin resistance are present throughout the metabolic abnormalities. Chrysanthemum indicum L. is a traditional Chinese plant used for both tea and medicine, known for its high content of total flavonoids, which are important secondary metabolites. Our research led to the extraction of a Buddleoside-Rich Chrysanthemum indicum L. extract (BUDE) which has demonstrated anti-inflammatory properties. Nonetheless, the specific role and mechanism of BUDE in preventing MetS remain unclear. METHODS The study initially evaluated the role of BUDE in preventing MetS. Subsequently, it investigated the anti-inflammatory properties of BUDE in the liver and pancreas in response to unhealthy diets. It then examined the level of insulin resistance and pancreatic β-cell function induced by inflammation. Additionally, an lipopolysaccharide (LPS)-induced macrophage inflammation model was used to further investigate the ameliorative effects of BUDE in inflammation. RESULTS BUDE has hypotensive, hypoglycemic and hypolipidemic effects. It can also resolve the imbalance between macrophage subpopulations, impede the triggering of the NF-κB signaling pathway, reduce the secretion of inflammatory mediators, ameliorate insulin resistance, and safeguard organs such as the liver and pancreas from inflammatory damage. These effects collectively contribute to preventing the development of MetS. DISCUSSION BUDE has the ability to modulate macrophage-mediated inflammation, leading to improved insulin resistance. Additionally, it delivers antihypertensive, hypoglycemic, and hypolipidemic effects, offering a potential for preventing MetS.
Collapse
Affiliation(s)
- Yiqing Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Ziwen He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Yajun Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China.
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
42
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
43
|
Zhao Y, Qiao M, Wang X, Luo X, Yang J, Hu J. Allantoin reduces glucotoxicity and lipotoxicity in a type 2 diabetes rat model by modulating the PI3K and MAPK signaling pathways. Heliyon 2024; 10:e34716. [PMID: 39144993 PMCID: PMC11320158 DOI: 10.1016/j.heliyon.2024.e34716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The current study aimed to investigate the potential therapeutic impact of allantoin on diabetes produced by a high-fat diet (HFD) and streptozotocin (STZ) in rats. Subjects and methods Male Sprague-Dawley rats were fed a high-fat diet to induce insulin resistance, followed by streptozotocin injection to induce diabetes. The effect of oral treatment of allantoin (200, 400 and 800 mg/kg/day) for 8 weeks was evaluated by calculating the alteration in metabolic parameters, biochemical indicators, the oral glucose tolerance tests (OGTT) and hyperinsulinemic-euglycemic clamp tests were performed. Histopathological studies were performed in the liver, kidney and pancreas. Next, the expressions of the MAPK and insulin signaling pathway were measured by Western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. Results The administration of allantoin resulted in a significant decrease in fasting blood glucose (FBG) levels, glycogen levels, and glycosylated hemoglobin levels in diabetic rats. Additionally, allantoin therapy led to a dose-dependent increase in body weight growth and serum insulin levels. In addition, the administration of allantoin resulted in a considerable reduction in lipid profile levels and amelioration of histological alterations in rats with diabetes. The administration of allantoin to diabetic rats resulted in a notable decrease in Malondialdehyde (MDA) levels, accompanied by an increase in the activity of antioxidant enzymes in the serum, liver, and kidney. The findings of oral glucose tolerance and hyperinsulinemic-euglycemic clamp tests demonstrated a significant rise in insulin resistance following the administration of allantoin. The upregulation of IRS-2/PI3K/p-Akt/GLUT expression by allantoin suggests a mechanistic relationship between the PI3K/Akt signaling pathway and the antihyperglycemic activity of allantoin. Furthermore, it resulted in a reduction in the levels of TGF-β1/p38MAPK/Caspase-3 expression in the aforementioned rat tissues affected by diabetes. Conclusions This study implies that allantoin treats type 2 diabetes by activating PI3K. Additionally, it reduces liver, kidney, and pancreatic apoptosis and inflammation-induced insulin resistance.re.
Collapse
Affiliation(s)
- Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Xiaomei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Xinjie Luo
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| |
Collapse
|
44
|
Zhang H, Zhang G, Fu J. Exploring the L-shaped relationship between Atherogenic Index of Plasma and depression: Results from NHANES 2005-2018. J Affect Disord 2024; 359:133-139. [PMID: 38768824 DOI: 10.1016/j.jad.2024.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND The Atherogenic Index of Plasma (AIP) is a novel metric linked to several diseases. However, there is inadequate evidence to investigate the relationship between AIP and depression. Therefore, we aim to elucidate the non-linear association between AIP and depression. METHODS 12,453 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2018 were included. The AIP was calculated as log10 (triglycerides/high-density lipoprotein cholesterol). The Patient Health Questionnaire (PHQ-9) was used to identify depression (PHQ-9 ≥ 10). Weighted multivariate logistic regression, restricted cubic splines (RCS) models, subgroup analysis, and interaction tests were employed to reveal the relationship between AIP and depression. RESULTS AIP was found to be significantly correlated with depression. In the fully adjusted model, elevated AIP levels were associated with higher odds of depression (odds ratio [OR] = 1.50; 95 % CI: 1.06-2.12). The RCS analysis indicated an L-shaped pattern in the relationship between depression and AIP, with inflection points at -0.289. Beyond this inflection point, individuals with elevated AIP levels were associated with higher odds of depression (OR = 2.25; 95 % CI: 1.49-3.39). Notably, the association was particularly pronounced among individuals with diabetes. LIMITATION This cross-sectional study is unable to establish causal relationships. CONCLUSION There was an L-shaped association between AIP and depression among US adults. AIP has the potential value as a biological marker for depression, and maintaining AIP values below a certain threshold may help in managing depression.
Collapse
Affiliation(s)
- Haokun Zhang
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, PR China
| | - Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jie Fu
- Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
45
|
Lv Z, Ren Y, Li Y, Niu F, Li Z, Li M, Li X, Li Q, Huang D, Yu Y, Xiong Y, Qian L. RNA-binding protein GIGYF2 orchestrates hepatic insulin resistance through STAU1/PTEN-mediated disruption of the PI3K/AKT signaling cascade. Mol Med 2024; 30:124. [PMID: 39138413 PMCID: PMC11323356 DOI: 10.1186/s10020-024-00889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Fanglin Niu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710018, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Man Li
- Department of Endocrinology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Xiaofang Li
- Department of Gastroenterology, The Affiliated Hospital of Northwest University, Xi' an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China
| | - Qinhua Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Deqing Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi, P.R. China.
- Xi'an Mental Health Center, Xi'an, 710100, Shaanxi, P.R. China.
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, 710018, Shaanxi, P.R. China.
| |
Collapse
|
46
|
Shan Z, Zhang H, He C, An Y, Huang Y, Fu W, Wang M, Du Y, Xie J, Yang Y, Zhao B. High-Protein Mulberry Leaves Improve Glucose and Lipid Metabolism via Activation of the PI3K/Akt/PPARα/CPT-1 Pathway. Int J Mol Sci 2024; 25:8726. [PMID: 39201413 PMCID: PMC11354309 DOI: 10.3390/ijms25168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
High-Protein Mulberry is a novel strain of mulberry. High-Protein Mulberry leaves (HPM) were the subject of this study, which aimed to investigate its efficacy and underlying mechanisms in modulating glucose and lipid metabolism. A six-week intervention using db/db mice was carried out to assess the effects of HPM on serum lipid levels, liver function, and insulin (INS) levels. qRT-PCR and Western Blotting were employed to measure key RNA and protein expressions in the PI3K/Akt and PPARα/CPT-1 pathways. UHPLC-MS and the Kjeldahl method were utilized to analyze the component content and total protein. Additionally, network pharmacology was employed to predict regulatory mechanism differences between HPM and Traditional Mulberry leaves. The results of the study revealed significant improvements in fasting blood glucose, glucose tolerance, and insulin resistance in mice treated with HPM. HPM notably reduced serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and INS, while increasing high-density lipoprotein cholesterol (HDL-C) levels. The treatment also effectively mitigated liver fatty lesions, inflammatory infiltration, and islet atrophy. HPM activation of the PI3K/Akt/PPARα/CPT-1 pathway suggested its pivotal role in the regulation of glucose and lipid metabolism. With its rich composition and pharmacodynamic material basis, HPM displayed a greater number of targets associated with glucose and lipid metabolism pathways, underscoring the need for further research into its potential therapeutic applications.
Collapse
Affiliation(s)
- Ziyi Shan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yongcheng An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanxin Fu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menglu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuhang Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiamei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
47
|
Kathirvel E, Morgan K, Malysheva OV, Caudill MA, Morgan TR. Betaine for the prevention and treatment of insulin resistance and fatty liver in a high-fat dietary model of insulin resistance in C57BL mice. Front Nutr 2024; 11:1409972. [PMID: 39119463 PMCID: PMC11307150 DOI: 10.3389/fnut.2024.1409972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Aim The aim was to investigate mechanisms by which betaine improves hepatic insulin signaling in a dietary mouse model of insulin resistance and fatty liver. Methods C57BL 6J mice were fed a standard diet (SF), a standard diet with betaine (SFB), a nutritionally complete high fat (HF) diet, or a high fat diet with betaine (HFB) for 14 weeks. In a separate experiment, mice were fed high fat diet for 18 weeks, half of whom received betaine for the final 4 weeks. Activation of insulin signaling in the liver was assessed by western blot. Insulin signaling was also assessed in insulin resistant primary human hepatocytes treated with betaine. Results As compared with SF, mice receiving HF diet were heavier, had more hepatic steatosis, and abnormal glucose tolerance test (GTT). Betaine content in liver and serum was 50% lower in HF than in SF; betaine supplementation restored serum and liver betaine content. Betaine treatment of HF reduced whole body insulin resistance as measured by GTT. Betaine treatment of HF increased tyrosine phosphorylation of insulin receptor substrate-1 and phosphorylation (activation) of Akt, and increased hepatic glycogen content. In vitro, betaine reversed insulin resistance in primary human hepatocytes by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and of Akt. Conclusion Betaine supplementation reduced whole body insulin resistance and increased activation of insulin signaling pathways in the liver in a mouse model of insulin resistance and fatty liver created by feeding a nutritionally complete high fat diet for 14 weeks. Betaine also reduced liver injury as assessed by ALT and by liver histology. In vitro, betaine reversed insulin resistance by increasing insulin-stimulated tyrosine phosphorylation of IRS1 and activation of downstream proteins in the insulin signaling cascade in insulin resistant primary human hepatocytes.
Collapse
Affiliation(s)
- Elango Kathirvel
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| | - Kengathevy Morgan
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| | - Olga V. Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Marie A. Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Timothy R. Morgan
- Research Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
- Department of Medicine, University of California, Irvine, Irvine, CA, United States
- Medical Healthcare Group, Veterans Administration Healthcare System, Long Beach, CA, United States
| |
Collapse
|
48
|
Hernández-Gómez KG, Velázquez-Villegas LA, Granados-Portillo O, Avila-Nava A, González-Salazar LE, Serralde-Zúñiga AE, Palacios-González B, Pichardo-Ontiveros E, Guizar-Heredia R, López-Barradas AM, Sánchez-Tapia M, Larios-Serrato V, Olin-Sandoval V, Díaz-Villaseñor A, Medina-Vera I, Noriega LG, Alemán-Escondrillas G, Ortiz-Ortega VM, Torres N, Tovar AR, Guevara-Cruz M. Acute Effects of Dietary Protein Consumption on the Postprandial Metabolic Response, Amino Acid Levels and Circulating MicroRNAs in Patients with Obesity and Insulin Resistance. Int J Mol Sci 2024; 25:7716. [PMID: 39062958 PMCID: PMC11276941 DOI: 10.3390/ijms25147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.
Collapse
Affiliation(s)
- Karla G. Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Omar Granados-Portillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, IMSS-Bienestar, Mérida 97130, Yucatán, Mexico
| | - Luis E. González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Aurora E. Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del INMEGEN en el Centro de Investigación Sobre el Envejecimiento, Mexico City 14330, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Rocio Guizar-Heredia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Adriana M. López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Violeta Larios-Serrato
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico
| | - Viridiana Olin-Sandoval
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Andrea Díaz-Villaseñor
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico City 04510, Mexico
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Lilia G. Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gabriela Alemán-Escondrillas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Victor M. Ortiz-Ortega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
49
|
Yu X, Tao J, Wu Y, Chen Y, Li P, Yang F, Tang M, Sammad A, Tao Y, Xu Y, Li YX. Deficiency of ASGR1 Alleviates Diet-Induced Systemic Insulin Resistance via Improved Hepatic Insulin Sensitivity. Diabetes Metab J 2024; 48:802-815. [PMID: 38310881 PMCID: PMC11307118 DOI: 10.4093/dmj.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGRUOUND Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. METHODS The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. RESULTS ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. CONCLUSION The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.
Collapse
Affiliation(s)
- Xiaorui Yu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawang Tao
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhang Wu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Chen
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Penghui Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Miaoxiu Tang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Abdul Sammad
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine Center for Nanomedicine, The Third Affiliated Hospital, Guangzhou, China
| | - Yingying Xu
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yin-Xiong Li
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| |
Collapse
|
50
|
Friedline RH, Noh HL, Suk S, Albusharif M, Dagdeviren S, Saengnipanthkul S, Kim B, Kim AM, Kim LH, Tauer LA, Baez Torres NM, Choi S, Kim BY, Rao SD, Kasina K, Sun C, Toles BJ, Zhou C, Li Z, Benoit VM, Patel PR, Zheng DXT, Inashima K, Beaverson A, Hu X, Tran DA, Muller W, Greiner DL, Mullen AC, Lee KW, Kim JK. IFNγ-IL12 axis regulates intercellular crosstalk in metabolic dysfunction-associated steatotic liver disease. Nat Commun 2024; 15:5506. [PMID: 38951527 PMCID: PMC11217362 DOI: 10.1038/s41467-024-49633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Obesity is a major cause of metabolic dysfunction-associated steatohepatitis (MASH) and is characterized by inflammation and insulin resistance. Interferon-γ (IFNγ) is a pro-inflammatory cytokine elevated in obesity and modulating macrophage functions. Here, we show that male mice with loss of IFNγ signaling in myeloid cells (Lyz-IFNγR2-/-) are protected from diet-induced insulin resistance despite fatty liver. Obesity-mediated liver inflammation is also attenuated with reduced interleukin (IL)-12, a cytokine primarily released by macrophages, and IL-12 treatment in vivo causes insulin resistance by impairing hepatic insulin signaling. Following MASH diets, Lyz-IFNγR2-/- mice are rescued from developing liver fibrosis, which is associated with reduced fibroblast growth factor (FGF) 21 levels. These results indicate critical roles for IFNγ signaling in macrophages and their release of IL-12 in modulating obesity-mediated insulin resistance and fatty liver progression to MASH. In this work, we identify the IFNγ-IL12 axis in regulating intercellular crosstalk in the liver and as potential therapeutic targets to treat MASH.
Collapse
Affiliation(s)
- Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mahaa Albusharif
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Bukyung Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Allison M Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren H Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie M Baez Torres
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stephanie Choi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bo-Yeon Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Suryateja D Rao
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kaushal Kasina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chan Zhou
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zixiu Li
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vivian M Benoit
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Payal R Patel
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Doris X T Zheng
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunikazu Inashima
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Annika Beaverson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Duy A Tran
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Werner Muller
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan C Mullen
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- XO Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|