1
|
Hu X, Wang R, Kille P, Maret W, Hogstrand C. Zinc amino acid chelate and the Aryl Hydrocarbon Receptor (AHR) cooperate in improving the barrier function of a Caco-2 cell intestinal epithelium. J Nutr Biochem 2025; 141:109909. [PMID: 40154643 DOI: 10.1016/j.jnutbio.2025.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Zinc and several physiologically relevant ligands of the aryl hydrocarbon receptor (AHR) are nutrients that promote intestinal barrier function. We have identified that AHR activation upregulates the expression of zinc importers in the intestinal epithelium to increase intracellular zinc concentrations, which leads to improved epithelial barrier function. Here, we investigated if an amino acid chelate of zinc, in cooperation with AHR activation, can improve the barrier function of a differentiated Caco-2 cell epithelium. Functional assays of the Caco-2 cell epithelium demonstrate that both ZnSO4 and a lysine and glutamic acid chelate of Zn, in combination with the physiological AHR agonist 6-formylindolo[3,2-b]carbazole (FICZ), increase expression of tight junction proteins at the mRNA and protein levels. FICZ increases uptake of zinc into the epithelium in the presence of ZnSO4 or the amino acid Zn chelate in the medium to equal extents. We conclude that the lysine and glutamic acid chelate of Zn is as efficacious as ZnSO4 in reducing permeability of the Caco-2 cell epithelium in the presence of FICZ. The results suggest that dietary supplementation with bioavailable forms of zinc together with nutritional AHR agonists may be beneficial in improving gut barrier function and help prevent inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xiuchuan Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Rui Wang
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
| | - Christer Hogstrand
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
2
|
Sartor RB. Beyond Random Fecal Microbial Transplants: Next Generation Personalized Approaches to Normalize Dysbiotic Microbiota for Treating IBD. Gastroenterol Clin North Am 2025; 54:333-350. [PMID: 40348491 DOI: 10.1016/j.gtc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
This review and commentary outline the strong rationale for normalizing the abnormal microbiota of patients with ulcerative colitis, Crohn's disease, and pouchitis and focus on strategies to improve current variable outcomes of fecal microbial transplant (FMT) in ulcerative colitis. Applying lessons from successful FMT therapy of recurrent Clostridioides difficile and insights from basic scientific understanding of host/microbial interactions provide strategies to enhance clinical outcomes in IBD. We outline promising approaches to develop novel-defined consortia of live biotherapeutic products and combination treatments to improve current results and to optimize and personalize treatment approaches in individual patients and disease subsets.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA; Department of Microbiology & Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina - Chapel Hill, Chapel Hill, NC 27517, USA.
| |
Collapse
|
3
|
Chen J, Liu J, Liu S, Li Z, Gao C, Wang Z, Huang S, Jiang Z, Yang H. Multiomics reveals the synergistic response of gut microbiota and spider A. ventricosus to lead and cadmium toxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:77. [PMID: 40348945 DOI: 10.1007/s00128-025-04057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The potential crosstalk between the host and gut microbiota (GM) under heavy metal compound pollution remains unexplored. Herein, using comprehensive analysis of metagenomics, metabolomics, behavioral analysis, and cell morphology to investigate the causal relationship between GM and host responses to cadmium (Cd) and lead (Pb) toxicities. Results indicate that Pb and Cd pollution, alone or together, hinder spider predatory behavior and change the composition and function of GM. Combined exposure reduces protein and exogenous compound metabolism, while single exposure affects energy and lipid metabolism. Gut microbiota helps spider antioxidant activity by increasing glutathione, lipoic acid, and L-cysteine. Oxidative damage, increased Enterobacteriaceae (Salmonella), and lipopolysaccharide (LPS) may harm the midgut barrier. Upregulation of choline and acetylcholine, and downregulation of spermidine, may initiate neurotoxicity. Inhibiting actinomycetes might boost sodium gallate for detoxifying single contaminants. Combined pollution detoxification may involve downregulation of indole synthesis metabolic bacteria, tryptophan, indole metabolites, cytochrome P450 (CYP450), and an increase in Desulfobulbia could remove heavy metals and reduce oxidative stress. Combined pollution has a synergistic effect, making the toxicity of multiple pollutants greater than their individual effects, impacting metal resistance genes (MRGs), and antibiotic resistance ontology (AROs) which used for classifying and describing antibiotic resistance, midgut barrier integrity, oxidative stress, and detoxification. The results help to elucidate the interplay of GM and host's reactions, and aid in monitoring and bioremediation of heavy metal pollution.
Collapse
Affiliation(s)
- Jinkun Chen
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Jing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shize Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Zhongyuan Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Cuimei Gao
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Zhuoman Wang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Siqi Huang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Zijian Jiang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China
| | - Huilin Yang
- College of Environment & Ecology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Team of High Value Utilization of Crop Ecology, Yuelushan Laboratory, Changsha, 410128, Hunan, China.
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, Hunan, China.
| |
Collapse
|
4
|
Hu W, Garrison C, Prasad R, Boulton M, Grant M. Indole metabolism and its role in diabetic macrovascular and microvascular complications. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100532. [PMID: 40230659 PMCID: PMC11995707 DOI: 10.1016/j.ahjo.2025.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Tryptophan (Trp), an essential amino acid obtained through dietary sources, plays a crucial role in various physiological processes. The metabolism of Trp branches into three principal pathways: the serotonin pathway, the kynurenine pathway, and the indole pathway. The kynurenine and serotonin pathways are host pathways while the indole pathway is solely the result of bacterial metabolism. Trp metabolites extend their influence beyond protein biosynthesis to affect a spectrum of pathophysiological mechanisms including, but not limited to, neuronal function, immune modulation, inflammatory responses, oxidative stress regulation, and maintenance of intestinal health. This review focuses on indole derivatives and their impact on vascular health. Trp-containing dipeptides are highlighted as a targeted nutraceutical approach to modulate Trp metabolism, enhance beneficial metabolite production, and mitigate risk factors for vascular diseases. The importance of optimizing Trp intake and dietary strategies to harness the benefits of Trp-derived metabolites for vascular health is underscored, bringing to light the need for further research to refine these therapeutic approaches.
Collapse
Affiliation(s)
- W. Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - C. Garrison
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Tsai M, Sun J, Alexandre C, Shapiro M, Franchet A, Li Y, Gould AP, Vincent JP, Stockinger B, Diny NL. Drosophila AHR limits tumor growth and stem cell proliferation in the intestine. Wellcome Open Res 2025; 10:38. [PMID: 40212817 PMCID: PMC11982807 DOI: 10.12688/wellcomeopenres.23515.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) plays important roles in intestinal homeostasis, limiting tumour growth and promoting differentiation in the intestinal epithelium. Spineless, the Drosophila homolog of AHR, has only been studied in the context of development but not in the adult intestine. Methods The role of Spineless in the Drosophila midgut was studied by overexpression or inactivation of Spineless in infection and tumour models and RNA sequencing of sorted midgut progenitor cells. Results We show that spineless is upregulated in the adult intestinal epithelium after infection with Pseudomonas entomophila ( P. e.). Spineless inactivation increased stem cell proliferation following infection-induced injury. Spineless overexpression limited intestinal stem cell proliferation and reduced survival after infection. In two tumour models, using either Notch RNAi or constitutively active Yorkie, Spineless suppressed tumour growth and doubled the lifespan of tumour-bearing flies. At the transcriptional level it reversed the gene expression changes induced in Yorkie tumours, counteracting cell proliferation and altered metabolism. Conclusions These findings demonstrate a new role for Spineless in the adult Drosophila midgut and highlight the evolutionarily conserved functions of AHR/Spineless in the control of proliferation and differentiation of the intestinal epithelium.
Collapse
Affiliation(s)
- Minghua Tsai
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Jiawei Sun
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | | | - Ying Li
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Alex P. Gould
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | - Nicola Laura Diny
- The Francis Crick Institute, London, England, NW1 1AT, UK
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, North Rhine-Westphalia, 53127, Germany
| |
Collapse
|
6
|
Perez-Castro L, Alabi B, Nawas A, Lafita-Navarro M, Shay J, Conacci-Sorrell M. Aryl Hydrocarbon Receptor (AHR) is required for repopulation of decellularized intestinal colon scaffolds. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001529. [PMID: 40353141 PMCID: PMC12062895 DOI: 10.17912/micropub.biology.001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
This study investigates the role of the ligand-activated transcription factor AHR in repopulating the intestinal lining. Using organoid-derived cells and decellularized mouse intestinal scaffolds to investigate the importance of AHR in regulating intestinal regeneration, we found that silencing AHR expression hinders the capacity of colonic cells to repopulate decellularized colons. We therefore propose that AHR may play an important role in regulating intestinal regeneration. The ligand-dependent nature of AHR activity may provide an opportunity to interfere with disorders such as cancer and inflammatory bowel diseases which are caused by dysregulation in intestinal tissue renewal.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Busola Alabi
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Afshan Nawas
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Jerry Shay
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | |
Collapse
|
7
|
Sun Z, Wang Y, Liu S, Li H, He D, Xu H. Intestinal-region-specific functions of AHR in intrinsic enteric neurons during infections. Cell Rep 2025; 44:115524. [PMID: 40178975 DOI: 10.1016/j.celrep.2025.115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Intrinsic enteric neurons (iENs) form a crucial neuronal network within the myenteric and submucosal plexus of the gastrointestinal tract, primarily responsible for regulating gut peristalsis. The mechanisms by which iENs sense and integrate dietary and microbial signals to regulate intestinal homeostasis and inflammation remain unclear. Here, we showed that environmental sensor aryl hydrocarbon receptor (AHR) was expressed in different iEN subsets in the ileum and colon and that AHR ligands differentially modulated iEN activity in these regions. Genetic perturbation of Ahr in neurons increased iEN activation in the ileum but, conversely, decreased it in the colon in response to different intestinal pathogens. Furthermore, neuronal AHR deficiency enhanced the clearance of bacterial pathogens, which was associated with increased proliferation and abundance of group 3 innate lymphoid cells in the ileum. Together, our findings demonstrate the region-specific functions of AHR in neurons in response to infections.
Collapse
Affiliation(s)
- Zijia Sun
- Fudan University, Shanghai 200433, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yingsheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
8
|
Seo MS, Baek J, Jeon MS. Role of the Aryl Hydrocarbon Receptor in the Self-Renewal, Differentiation, and Immunomodulation of Adult Stem Cells. Immune Netw 2025; 25:e1. [PMID: 40342843 PMCID: PMC12056294 DOI: 10.4110/in.2025.25.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 05/11/2025] Open
Abstract
Adult stem cells are a rare population of undifferentiated cells present in almost all body tissues. Depending on their location, stem cells can differentiate into various tissue types, primarily contributing to maintenance, repair, and immune system regulation. Stem cell therapies have significant potential in regenerative medicine and treatment of inflammatory diseases. However, many factors must be considered for successful clinical commercialization, including enhancing therapeutic potential, ensuring product differentiation, and optimizing the manufacturing process for large-scale production. The development of sophisticated regulatory mechanisms may enhance therapeutic applications. The aryl hydrocarbon receptor (AhR) is expressed in all adult stem cells, and its activation and function are tightly regulated. Understanding the role and regulation of AhR is crucial for developing effective stem cell therapies. This review examines the role of the AhR in regulating the fundamental characteristics of adult stem cells, which may contribute to advancing adult stem cell therapies.
Collapse
Affiliation(s)
- Myeong-Seong Seo
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Jiyeon Baek
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon 22332, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- SCM Lifescience, Incheon 21999, Korea
| |
Collapse
|
9
|
Wei ZX, Jiang SH, Qi XY, Cheng YM, Liu Q, Hou XY, He J. scRNA-seq of the intestine reveals the key role of mast cells in early gut dysfunction associated with acute pancreatitis. World J Gastroenterol 2025; 31:103094. [PMID: 40182603 PMCID: PMC11962851 DOI: 10.3748/wjg.v31.i12.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Intestinal barrier dysfunction is a prevalent and varied manifestation of acute pancreatitis (AP). Molecular mechanisms underlying the early intestinal barrier in AP remain poorly understood. AIM To explore the biological processes and mechanisms of intestinal injury associated with AP, and to find potential targets for early prevention or treatment of intestinal barrier injury. METHODS This study utilized single-cell RNA sequencing of the small intestine, alongside in vitro and in vivo experiments, to examine intestinal barrier function homeostasis during the early stages of AP and explore involved biological processes and potential mechanisms. RESULTS Seventeen major cell types and 33232 cells were identified across all samples, including normal, AP1 (4x caerulein injections, animals sacrificed 2 h after the last injection), and AP2 (8x caerulein injections, animals sacrificed 4 h after the last injection). An average of 980 genes per cell was found in the normal intestine, compared to 927 in the AP1 intestine and 1382 in the AP2 intestine. B cells, dendritic cells, mast cells (MCs), and monocytes in AP1 and AP2 showed reduced numbers compared to the normal intestine. Enterocytes, brush cells, enteroendocrine cells, and goblet cells maintained numbers similar to the normal intestine, while cytotoxic T cells and natural killer (NK) cells increased. Enterocytes in early AP exhibited elevated programmed cell death and intestinal barrier dysfunction but retained absorption capabilities. Cytotoxic T cells and NK cells showed enhanced pathogen-fighting abilities. Activated MCs, secreted chemokine (C-C motif) ligand 5 (CCL5), promoted neutrophil and macrophage infiltration and contributed to barrier dysfunction. CONCLUSION These findings enrich our understanding of biological processes and mechanisms in AP-associated intestinal injury, suggesting that CCL5 from MCs is a potential target for addressing dysfunction.
Collapse
Affiliation(s)
- Zu-Xing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xiao-Yan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yi-Miao Cheng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Xu-Yang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
10
|
Molina PA, Edell CJ, Dunaway LS, Kellum CE, Muir RQ, Jennings MS, Colson JC, De Miguel C, Rhoads MK, Buzzelli AA, Harrington LE, Meza-Perez S, Randall TD, Botta D, Müller DN, Pollock DM, Maynard CL, Pollock JS. Aryl Hydrocarbon Receptor Activation Promotes Effector CD4+ T Cell Homeostasis and Restrains Salt-Sensitive Hypertension. FUNCTION 2025; 6:zqaf001. [PMID: 39779302 PMCID: PMC11931625 DOI: 10.1093/function/zqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Excess dietary salt and salt-sensitivity contribute to cardiovascular disease. Distinct T cell phenotypic responses to high salt and hypertension, as well as influences from environmental cues, are not well understood. The aryl hydrocarbon receptor (AhR) is activated by dietary ligands, promoting T cell and systemic homeostasis. We hypothesized that activating AhR supports CD4+ homeostatic functions, such as cytokine production and mobilization, in response to high salt intake while mitigating salt-sensitive hypertension. In the intestinal mucosa, we demonstrate that a high-salt diet (HSD) is a key driving factor, independent of hypertension, in diminishing interleukin 17A (IL-17A) production by CD4+ T (Th17) cells without disrupting circulating cytokines associated with Th17 function. Previous studies suggest that hypertensive patients and individuals on a HSD are deficient in AhR ligands or agonistic metabolites. We found that activating AhR augments Th17 cells during experimental salt-sensitive hypertension. Further, we demonstrate that activating AhR in vitro contributes to sustaining Th17 cells in the setting of excess salt. Using photoconvertible Kikume Green-Red mice, we also revealed that HSD drives CD4+ T cell mobilization. Next, we found that excess salt augments T cell mobilization markers, validating HSD-driven T cell migration. Also, we found that activating AhR mitigates HSD-induced T cell migration markers. Using telemetry in a model of experimental salt-sensitivity, we found that activating AhR prevents the development of salt-sensitive hypertension. Collectively, stimulating AhR through dietary ligands facilitates immunologic and systemic functions amid excess salt intake and restrains the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patrick A Molina
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Claudia J Edell
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Luke S Dunaway
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Cailin E Kellum
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Rachel Q Muir
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Melissa S Jennings
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jackson C Colson
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Megan K Rhoads
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Ashlyn A Buzzelli
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Laurie E Harrington
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Selene Meza-Perez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Lindenberger Weg 80, Berlin 13092, Germany
| | - David M Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine Section, Division of Nephrology,
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35223, USA
| |
Collapse
|
11
|
Yuan Q, Liu J, Wang X, Du C, Zhang Y, Lin L, Wang C, Hong Z. Deciphering the impact of dietary habits and behavioral patterns on colorectal cancer. Int J Surg 2025; 111:2603-2612. [PMID: 39869376 DOI: 10.1097/js9.0000000000002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is a malignant tumor that originates from the epithelial cells of the colon and rectum. Global epidemiological data shows that in 2020, the incidence and mortality rate of CRC ranked third and second, respectively, posing a serious threat to people's health and lives. The factors influencing CRC are numerous and can be broadly categorized as modifiable and non-modifiable based on whether they can be managed or intervened upon. Non-modifiable factors include age, gender, family history, among others. Among the modifiable factors, dietary habits and behavioral practices are the main intervention measures that people can take to prevent CRC. Numerous studies indicate that a high intake of red and processed meats, fats, as well as habits such as smoking, alcohol consumption, and prolonged sitting, increase the risk of developing CRC. Conversely, consuming ample vegetables, fruits, high dietary fiber, and engaging in moderate regular exercise may reduce the risk of CRC. This article primarily discusses the impact of dietary habits and behavioral practices on the occurrence and development of CRC, along with possible mechanisms, laying the foundation and providing direction for the prevention and control of CRC occurrence and development.
Collapse
Affiliation(s)
- Qihang Yuan
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Jiahua Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Xinyu Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Chunchun Du
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yao Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lin Lin
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chengfang Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhijun Hong
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
12
|
Pani G. Bacteria, stem cells and cancer. Cancer Gene Ther 2025; 32:269-272. [PMID: 39915606 DOI: 10.1038/s41417-025-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/28/2025]
Affiliation(s)
- Giovambattista Pani
- Department of Translational Medicine and Surgery, Faculty of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
13
|
Lu Z, Zhang C, Zhang J, Su W, Wang G, Wang Z. The Kynurenine Pathway and Indole Pathway in Tryptophan Metabolism Influence Tumor Progression. Cancer Med 2025; 14:e70703. [PMID: 40103267 PMCID: PMC11919716 DOI: 10.1002/cam4.70703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 03/20/2025] Open
Abstract
Tryptophan (Trp), an essential amino acid, is solely acquired through dietary intake. It is vital for protein biosynthesis and acts as a precursor for numerous key bioactive compounds. The Kynurenine Pathway and the Indole Pathway are the main metabolic routes and are extensively involved in the occurrence and progression of diseases in the digestive, nervous, and urinary systems. In the Kynurenine Pathway, enzymes crucial to tryptophan metabolism, indoleamine-2,3-dioxygenase 1 (IDO1), IDO2, and Trp-2,3-dioxygenase (TDO), trigger tumor immune resistance within the tumor microenvironment and nearby lymph nodes by depleting Trp or by activating the Aromatic Hydrocarbon Receptor (AhR) through its metabolites. Furthermore, IDO1 can influence immune responses via non-enzymatic pathways. The Kynurenine Pathway exerts its effects on tumor growth through various mechanisms, including NAD+ regulation, angiogenesis promotion, tumor metastasis enhancement, and the inhibition of tumor ferroptosis. In the Indole Pathway, indole and its related metabolites are involved in gastrointestinal homeostasis, tumor immunity, and drug resistance. The gut microbiota related to indole metabolism plays a critical role in determining the effectiveness of tumor treatment strategies and can influence the efficacy of immunochemotherapy. It is worth noting that there are conflicting effects of the Kynurenine Pathway and the Indole Pathway on the same tumor phenotype. For example, different tryptophan metabolites affect the cell cycle differently, and indole metabolism has inconsistent protective effects on tumors in different regions. These differences may hold potential for enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Zhanhui Lu
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chengcheng Zhang
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai University of Traditional Chinese MedicineShanghaiChina
- Cancer Institute, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia Zhang
- Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Wan Su
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guoying Wang
- Department of Critical Care MedicineThe Second People's Hospital of DongyingDongyingShandongChina
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
14
|
Dong F, Annalora AJ, Murray IA, Chakraborty D, Coslo DM, Marcus C, Patterson AD, Perdew GH. Phytochemical-Mediated Ah Receptor Activity Is Dependent on Dietary Context. Nutrients 2025; 17:876. [PMID: 40077746 PMCID: PMC11901531 DOI: 10.3390/nu17050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objective: The aryl hydrocarbon receptor (AHR) is an important mediator of intestinal homeostasis. The AHR senses certain classes of phytochemicals, including many flavonoids and tryptophan metabolites generated in the intestinal tract. Several in vitro studies demonstrate the presence of AHR ligands in numerous plants commonly consumed by humans. However, it has not been established that these foods can activate the AHR in vivo. The aim of this study was to evaluate how phytochemicals in foods can lead to AHR activation in vivo through modulating CYP1A1 activity. Methods: Freeze-dried spinach, corn, red potatoes, kidney beans, parsley, onion, carrots, bell peppers, and broccoli were fed to C57BL6/J female mice at 15% w/w in a semi-purified diet to evaluate the AHR activation potential. In vitro CYP1A1 microsomal assays were utilized to establish specific phytochemicals as CYP1A1 substrates. Results: Broccoli, onion, and carrots increased expression of the AHR target gene Cyp1a1 in the duodenum. Broccoli consumption led to the formation of the potent AHR ligand indolo[3,2-b]carbazole (ICZ), which is also a CYP1A1 substrate. Relative to the other vegetables, parsley contained a high concentration of apiin, a diglycoside of the flavone apigenin. Mice were fed a diet with either 10% parsley, 10% broccoli, or both vegetables. Parsley consumption increased broccoli-mediated Cyp1a1 induction in the duodenum, liver, and lung. Apigenin is a CYP1A1 substrate that can attenuate ICZ metabolism in vitro and increase broccoli-mediated Cyp1a1 expression in the lung. Conclusions: These results suggest that phytochemical competition for intestinal AHR binding and CYP1A1 metabolism modulates systemic AHR activity.
Collapse
Affiliation(s)
- Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (A.J.A.); (C.M.)
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| | - Debopriya Chakraborty
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| | - Denise M. Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| | - Craig Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (A.J.A.); (C.M.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA; (F.D.)
| |
Collapse
|
15
|
Xu T, Qu X, Song Y, Luo M, Jia Y, Li J, Li Q. Myricetin protects mice against colitis by activating aryl hydrocarbon receptor signaling pathway. Food Nutr Res 2025; 69:10677. [PMID: 39974840 PMCID: PMC11836776 DOI: 10.29219/fnr.v69.10677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/29/2024] [Accepted: 11/11/2024] [Indexed: 02/21/2025] Open
Abstract
Objective Myricetin is a bioactive compound in many edible plants. We have previously demonstrated that myricetin could significantly protect mice against colitis by regulating Treg/Th17 balance, while underlying mechanism remains unclear. The current study aimed to unravel the potential regulating mechanism of myricetin. Methods The concentrations of 22 amino acids in colon were determined using HPLC-MS/MS and principal component analysis (PCA) was performed on the data. MetaboAnalyst was used to detect potential biological pathway influenced by myricetin. The results were further verified using qPCR, molecular docking method, and AhR inhibitor. Results Studies had found that the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; and histidine metabolism were the most important pathways related to myricetin. Therefore, the aryl hydrocarbon receptor (AhR), which is closely related to the metabolism of tryptophan, phenylalanine, and tyrosine, was postulated to be the underlying signaling pathways. Furthermore, administration of myricet in significantly increased the relative expressions of CYP1A1 and CYP1B1, whereas AhR inhibitor abolished the amelioration of myricetin on DSS-induced colitis. Moreover, AhR inhibitor weakened the regulatory effect of myricetin on Treg/Th17 balance. Furthermore, the results obtained by the molecular docking method speculated that myricetin could bind to AhR as a ligand and activate AhR. Conclusion The results suggested that myricetin could exert its protection against dextran sulfate sodium (DSS)-induced colitis by activating AhR signaling pathway.
Collapse
Affiliation(s)
- Tao Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Traditional Chinese Medicine, Taishan District People’s Hospital, Taian, China
| | - Xinyan Qu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yue Song
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mengxiong Luo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhan Jia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Abdelhalim WA, Rabee AR, Soliman SM, Hagar M, Moneer EA, Bakr BA, Barakat A, Haukka M, Rasheed HA. New formyl indole derivatives based on thiobarbituric acid and their nano-formulations; synthesis, characterization, parasitology and histopathology investigations. Sci Rep 2025; 15:299. [PMID: 39747136 PMCID: PMC11696224 DOI: 10.1038/s41598-024-81683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
New formyl indole derivatives based on thiobarbituric acid were designed for targeting parasitological applications. The new compounds (5-((1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3a), and 5-((1-benzyl-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (3b) were synthesized as thioxodihydropyrimidine derivatives via aldol condensation reaction. The structures of the synthesized compounds were confirmed based on their spectral data via FT-IR, 1H and 13C NMR spectral characterization. In addition, the structure of 3a is confirmed using X-ray crystallography. The synthesized compounds were prepared in nm scale via chitosan as a matrix, and their size was measured via scanning electronic microscope. Interestingly, the newly synthesized nano formulations show higher positive zeta potential (mV) values + 29.6 and + 26.1 for compounds NP-3a, and NP-3b; respectively. These compounds were tested for their parasitological activity. The results revealed that 3b had a great activity against cryptosporidium infection. Moreover, the nano formulation of compound 3b showed a significant reduction percent of oocyst count of cryptosporidium infected mice representing 66%. Furthermore, these compounds were screened by in-vitro hemolytic activity assay (IC50) values (cytotoxicity on RBCs) to assess their cytotoxic potentials and safety profiles.
Collapse
Affiliation(s)
- Walaa Ali Abdelhalim
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Ahmed R Rabee
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Saied M Soliman
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Esraa A Moneer
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland
| | - Hanaa A Rasheed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| |
Collapse
|
17
|
Zhang T, Yu Z, Xu Y, Zhao L, Zhu F, Zhou Y, Gu L, Gong J. Tryptophan Metabolites Improve Intestinal Mucosal Barrier via the Aryl Hydrocarbon Receptor-Interleukin-22 Pathway in Murine Dextran Sulfate Sodium-Induced Pouchitis. Dis Colon Rectum 2025; 68:77-90. [PMID: 39440869 DOI: 10.1097/dcr.0000000000003549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pouchitis is the most common complication after IPAA for ulcerative colitis. The protective effect of tryptophan metabolites on the mucosal barrier may be effective for treating pouchitis. The role of tryptophan metabolites on pouchitis remained unclear. OBJECTIVE We aimed to establish a murine model of dextran sulfate sodium-induced pouchitis to examine the roles of tryptophan metabolites in its pathogenesis. DESIGN This is a study that combines clinical patient data and animal research. A total of 22 patients were enrolled: 5 patients with familial adenomatous polyposis after IPAA, 8 patients with ulcerative colitis after IPAA with pouchitis, and 9 patients with ulcerative colitis after IPAA with normal pouch. The demographic data and fecal samples of patients were collected. Male C57BL/6 mice were purchased from a licensed breeder and underwent IPAA to establish a murine model of the pouch. The blood, feces, and tissues of mice were collected. SETTINGS This study was performed in an academic medical center in China. INTERVENTIONS The demographic data of patients were observationally collected. The mice that underwent IPAA were divided into a control group that received a chow diet and 5 study groups: 1) dextran sulfate sodium, 2) 6-formylindolo[3,2-b] carbazole + dextran sulfate sodium, 3) high tryptophan diet + dextran sulfate sodium, 4) CH-223191 + dextran sulfate sodium, and 5) indole-3-carboxaldehyde + dextran sulfate sodium. Animals were euthanized after receiving dextran sulfate sodium for 7 days. MAIN OUTCOME MEASURES Fecal tryptophan metabolite level and microbiome composition, the severity of pouchitis, intestinal mucosal barrier function, and activation of the aryl hydrocarbon receptor-interleukin 22 pathway were assessed. RESULTS Patients with pouchitis had lower fecal microbial diversity and indole-3-acetic acid levels. In the murine pouchitis model, high tryptophan diet increased fecal levels of 3-indoleglyoxylic acid, indole-3-aldehyde, and indole. A high tryptophan diet and intraperitoneal aryl hydrocarbon receptor ligand 6-formylindolo[3,2-b] carbazole injection alleviated pouchitis. Tryptophan metabolites improved pouch mucosal barriers. Aryl hydrocarbon receptor inhibitors exacerbated experimental pouchitis and disrupted the mucosal barrier; however, the aryl hydrocarbon receptor ligand indole-3-carboxaldehyde reversed this effect. LIMITATIONS This study was limited by a small human sample size and lacked an aryl hydrocarbon receptor knockout mouse model. CONCLUSIONS A high tryptophan diet and aryl hydrocarbon receptor ligand alleviated dextran sulfate sodium-induced pouchitis in a murine IPAA model, which might be achieved through regulating epithelial tight junctions and promoting goblet cell differentiation, as well as maintaining the integrity and function of the mucosal barrier. This study provides a rationale for the clinical application of aryl hydrocarbon receptor ligands in the treatment of pouchitis. See Video Abstract . LOS METABOLITOS DEL TRIPTFANO MEJORAN LA BARRERA DE LA MUCOSA INTESTINAL A TRAVS DE LA VA DEL RECEPTOR DE HIDROCARBUROS ARILOINTERLEUCINA EN LA RESERVORITIS INDUCIDA POR SULFATO DE SODIO Y DEXTRANO EN MODELO MURINO ANTECEDENTES:La reservoritis es la complicación más frecuente después de la anastomosis del reservorio ileal con el ano en la colitis ulcerosa. El efecto protector de los metabolitos del triptófano sobre la barrera mucosa puede ser un método eficaz para tratar la reservoritis. El papel de los metabolitos del triptófano en la reservoritis sigue sin estar claro.OBJETIVO:Nuestro objetivo era establecer un modelo murino de reservoritis inducida por sulfato de dextrano sódico para examinar el papel de los metabolitos del triptófano en su patogenia.DISEÑO:Este es un estudio que combina datos clínicos de pacientes e investigación animal. Se inscribieron un total de 22 pacientes: 5 con poliposis adenomatosa familiar después de un reservorio ileal, ocho pacientes con colitis ulcerosa después de un reservorio ileal que desarrollaron reservoritis y 9 pacientes con colitis ulcerosa después de un reservorio ileal que no presentaron reservoritis. Se recogieron los datos demográficos y las muestras fecales de los pacientes. Se adquirieron ratones macho C57BL/6 de un criador autorizado y se les realizó un reservorio ileal para establecer un modelo murino del reservorio. Se recogieron sangre, heces y tejidos de los ratones.CONFIGURACIÓN:Este estudio se realizó en un centro médico académico en China.INTERVENCIONES:Los datos demográficos de los pacientes se recogieron de forma observacional. Los ratones sometidos a un reservorio ileal se dividieron en seis grupos: grupo de control con dieta normal, sulfato de dextrano sódico, 6-formilindolo[3,2-b] carbazol + sulfato de dextrano sódico, dieta rica en triptófano + sulfato de dextrano sódico, CH-223191 + sulfato de dextrano sódico, indol-3-carboxaldehído + sulfato de dextrano sódico. Los animales fueron sacrificados después de la administración de sulfato de dextrano sódico durante 7 días.PRINCIPALES MEDIDAS DE RESULTADOS:Se evaluaron los niveles de metabolitos de triptófano y la composición del microbioma fecal, la gravedad de la reservoritis, la función de barrera de la mucosa intestinal y la activación de la vía del receptor de hidrocarburos de arilo-interleucina 22.RESULTADOS:Los pacientes con reservoritis tenían una menor diversidad microbiana fecal y niveles de ácido indol-3-acético. En el modelo de reservoritis murino, la dieta rica en triptófano aumentó los niveles fecales de ácido 3-indolglioxílico, indol-3-aldehído e indol. Una dieta rica en triptófano y una inyección intraperitoneal del ligando del receptor de hidrocarburos de arilo 6-formilindolo[3,2-b] carbazol aliviaron la reservoritis. Los metabolitos de triptófano mejoraron las barreras de la mucosa de la reservoritis. Los inhibidores del receptor de hidrocarburos de arilo exacerbaron la reservoritis experimental y alteraron la barrera mucosa; sin embargo, el ligando del receptor de hidrocarburos de arilo indol-3-carboxaldehído revirtió este efecto.LIMITACIONES:Este estudio estuvo limitado por el pequeño tamaño de la muestra humana y la falta de un modelo de ratón con deficiencia del receptor de hidrocarburos arílicos.CONCLUSIONES:Una dieta rica en triptófano y un ligando del receptor de hidrocarburos arílicos aliviaron la reservoritis inducida por sulfato de dextrano sódico en un modelo murino de anastomosis de reservorio ileo-anal, lo que podría deberse a la regulación de las uniones estrechas epiteliales y la promoción de la diferenciación de las células caliciformes, así como al mantenimiento de la integridad y la función de la barrera mucosa. Este estudio proporciona una justificación para la aplicación clínica de los ligandos del receptor de hidrocarburos arílicos en el tratamiento de la reservoritis. (Traducción-Dr. Felipe Bellolio ).
Collapse
Affiliation(s)
- Tenghui Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Huang FC. Therapeutic Potential of Nutritional Aryl Hydrocarbon Receptor Ligands in Gut-Related Inflammation and Diseases. Biomedicines 2024; 12:2912. [PMID: 39767818 PMCID: PMC11673835 DOI: 10.3390/biomedicines12122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
A solid scientific foundation is required to build the concept of personalized nutrition developed to promote health and a vision of disease prevention. Growing evidence indicates that nutrition can modulate the immune system through metabolites, which are either generated via microbiota metabolism or host digestion. The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating immune responses, particularly in the gut, and has emerged as a key modulator of gut-mediated inflammation and related diseases. AhR is a ligand-activated transcription factor that responds to environmental, dietary, and microbial-derived signals, influencing immune balance and maintaining intestinal homeostasis. Nutritional AhR ligands play a significant role in modulating intestinal immunity and the function of mucosal immune cells, thereby exerting clinical effects on colitis and innate immunity. Additionally, they have the capacity to orchestrate autophagy, phagocytic cell function, and intestinal epithelial tight junctions. Therapeutic strategies aimed at enhancing AhR activity, restoring gut integrity, and optimizing immune responses hold promise as avenues for future research and potential treatments for critically ill patients.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| |
Collapse
|
19
|
Tao L, Zhang Q, Liu L, Wang K, Wang J, Liu X, Zhao P, Li J. Inhibition of AhR disrupts intestinal epithelial barrier and induces intestinal injury by activating NF-κB in COPD. FASEB J 2024; 38:e70256. [PMID: 39679871 DOI: 10.1096/fj.202402320r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with intestinal comorbidities. Damage to the intestinal barrier plays a crucial role in these disorders, leading to increased intestinal and systemic inflammation, and thereby promoting the progression of COPD. This study aims to investigate the mechanism of intestinal epithelial barrier damage, focusing on the roles of the Aryl hydrocarbon Receptor (AhR) and NF-κB in COPD-related intestinal damage. A COPD rat model was induced by cigarette smoke and bacterial infection, while Caco-2/HT29 intestinal epithelial cells were treated with TNF-α or IL-1β to assess intestinal disorder and the underlying mechanisms of barrier damage. COPD rats exhibited significant lung function decline, pathological damage, and inflammatory response in lung tissues. Additionally, significant intestinal injury was observed, accompanied by pronounced colonic pathological damage, an enhanced inflammatory response, and intestinal barrier disruption. This was evidenced by decreased expression of apical junction proteins and elevated serum diamine oxidase levels. Pro-inflammatory cytokines TNF-α or IL-1β significantly downregulated the expression of apical junction proteins in Caco-2/HT29 cells, reduced transepithelial electrical resistance of Caco-2 cells, and increased FD-4 permeability. Moreover, TNF-α or IL-1β induction activated NF-κB in Caco-2/HT29 cells, with a similar activation observed in the colonic tissues of COPD rats. The NF-κB inhibitor PDTC suppressed this activation and protected against intestinal epithelial barrier damage. Furthermore, AhR inhibition was observed both in vitro and in vivo. The AhR activator FICZ inhibited NF-κB activation and mitigated intestinal epithelial barrier damage, whereas the AhR inhibitor CH223191 inhibited AhR and exacerbated intestinal epithelial barrier damage by facilitating NF-κB activation. However, the NF-κB inhibitor PDTC did not significantly affect AhR. Additionally, TNF-α/IL-1β inhibited the binding of AhR and p-NF-κB. Consequently, AhR inhibition can downregulate the expression of apical junction proteins, probably through activation of NF-κB signaling leading to intestinal epithelial barrier damage. This study confirmed the presence of lesions in the lungs and intestines of COPD rats, as well as the associated damage to the intestinal epithelial barrier. The inhibition of AhR followed by the activation of NF-κB has been identified as a critical mechanism underlying the injury to the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Liuying Tao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qin Zhang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lan Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kun Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Juanhui Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P.R. China, Zhengzhou, Henan, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Song Y, Li M, Liu J, Wang J, Zhou A, Cao Y, Duan S, Wang Q. Screening study of hydroxytyrosol metabolites from in vitro fecal fermentation and their interaction with intestinal barrier repair receptor AhR. J Food Sci 2024; 89:10134-10151. [PMID: 39686652 DOI: 10.1111/1750-3841.17609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Olive oil polyphenol hydroxytyrosol (HT) significantly repairs intestinal barrier function, but its absorption in the stomach and small intestine is limited. The metabolites of unabsorbed HT that reach the colon are crucial, yet their effects on colonic microbiota and intestinal barrier repair remain unclear. This study utilized in vitro simulated digestion and colonic fecal fermentation to investigate HT's digestion and fermentation. Results indicated that 79.25% of HT potentially reached the colon intact. Further 16S rDNA, targeted, and untargeted metabolomics analyses showed that HT can be decomposed by colonic microbiota, producing aromatic hydrocarbon metabolites and regulating gut microbiota structure. It promotes the growth of gut microbiota, such as Bacteroides, Faecalibacterium, Klebsiella, and Lachnospira, which degrade HT. Additionally, HT's intervention conversely affected the production of tryptophan-derived metabolites and short-chain fatty acids (SCFAs). Subsequently, computer-simulated molecular docking technology was used to simulate the binding affinity between HT metabolites and derived metabolites and the intestinal barrier repair-related receptor aryl hydrocarbon receptor (AhR). Indole-3-acetic acid, indole-3-acetaldehyde, skatole, kynurenine, and homovanillic acid could tightly bind to the amino acid residues of the AhR receptor, with binding energies all ˂-6.0 kcal/mol, suggesting that these metabolites may enhance the intestinal barrier function through the AhR signaling pathway.
Collapse
Affiliation(s)
- Yuqing Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Mengting Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingle Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Wei J, Liu C, Qin D, Ren F, Duan J, Chen T, Wu A. Targeting inflammation and gut microbiota with antibacterial therapy: Implications for central nervous system health. Ageing Res Rev 2024; 102:102544. [PMID: 39419400 DOI: 10.1016/j.arr.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The complex symbiotic relationship between inflammation, the gut microbiota, and the central nervous system (CNS) has become a pivotal focus of contemporary biomedical research. Inflammation, as a physiological defense mechanism, plays a dual role as both a protective and pathological factor, and is intricately associated with gut microbiota homeostasis, often termed the "second brain." The gutbrain axis (GBA) exemplifies this multifaceted interaction, where gut health exerts significantly regulatory effects on CNS functions. Antibacterial therapies represent both promising and challenging strategies for modulating inflammation and gut microbiota composition to confer CNS benefits. However, while such therapies may exert positive modulatory effects on the gut microbiota, they also carry the potential to disrupt microbial equilibrium, potentially exacerbating neurological dysfunction. Recent advances have provided critical insights into the therapeutic implications of antibacterial interventions; nevertheless, the application of these therapies in the context of CNS health warrants a judicious and evidence-based approach. As research progresses, deeper investigation into the microbial-neural interface is essential to fully realize the potential of therapies targeting inflammation and the gut microbiota for CNS health. Future efforts should focus on refining antibacterial interventions to modulate the gut microbiota while minimizing disruption to microbial balance, thereby reducing risks and enhancing efficacy in CNS-related conditions. In conclusion, despite challenges, a more comprehensive understanding of the GBA, along with precise modulation through targeted antibacterial therapies, offers significant promise for advancing CNS disorder treatment. Continued research in this area will lead to innovative interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Jing Wei
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China; School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Chunmeng Liu
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China.
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, China.
| | - Ting Chen
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua 418000, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Okumura R, Takeda K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation. Semin Immunopathol 2024; 47:2. [PMID: 39589551 PMCID: PMC11599372 DOI: 10.1007/s00281-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/29/2024] [Indexed: 11/27/2024]
Abstract
In the intestinal tract, where numerous intestinal bacteria reside, intestinal epithelial cells produce and release various antimicrobial molecules that form a complex barrier on the mucosal surface. These barrier molecules can be classified into two groups based on their functions: those that exhibit bactericidal activity through chemical reactions, such as antimicrobial peptides, and those that physically hinder bacterial invasion, like mucins, which lack bactericidal properties. In the small intestine, where Paneth cells specialize in producing antimicrobial peptides, the chemical barrier molecules primarily inhibit bacterial growth. In contrast, in the large intestine, where Paneth cells are absent, allowing bacterial growth, the primary defense mechanism is the physical barrier, mainly composed of mucus, which controls bacterial movement and prevents their invasion of intestinal tissues. The expression of these barrier molecules is regulated by metabolites produced by bacteria in the intestinal lumen and cytokines produced by immune cells in the lamina propria. This regulation establishes a defense mechanism that adapts to changes in the intestinal environment, such as alterations in gut microbial composition and the presence of pathogenic bacterial infections. Consequently, when the integrity of the gut mucosal barrier is compromised, commensal bacteria and pathogenic microorganisms from outside the body can invade intestinal tissues, leading to conditions such as intestinal inflammation, as observed in cases of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
23
|
Vrzalová A, Vrzal R, Nádvorník P, Šebela M, Dvořák Z. Modulation of aryl hydrocarbon receptor activity by halogenated indoles. Bioorg Med Chem 2024; 114:117964. [PMID: 39454560 DOI: 10.1016/j.bmc.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
24
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
25
|
Stockinger B, Diaz OE, Wincent E. The influence of AHR on immune and tissue biology. EMBO Mol Med 2024; 16:2290-2298. [PMID: 39242971 PMCID: PMC11473696 DOI: 10.1038/s44321-024-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
The aryl hydrocarbon receptor is a ligand dependent transcription factor which functions as an environmental sensor. Originally discovered as the sensor for man made pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) it has recently gained prominence as an important mediator for environmental triggers via the diet or microbiota which influences many physiological functions in different cell types and tissues across the body. Notably AHR activity contributes to prevent excessive inflammation following tissue damage in barrier organs such as skin, lung or gut which has received wide attention in the past decade. In this review we will focus on emerging common AHR functions across cell types and tissues and discuss ongoing issues that confound the understanding of AHR physiology. Furthermore, we will discuss the need for deeper molecular understanding of the functional activity of AHR in different contexts with respect to development of potential therapeutic applications.
Collapse
Affiliation(s)
| | - Oscar E Diaz
- The Francis Crick Institute, London, United Kingdom
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Yokoyama S, Koo I, Aibara D, Tian Y, Murray IA, Collins SL, Coslo DM, Kono M, Peters JM, Proia RL, Gonzalez FJ, Perdew GH, Patterson AD. Sphingosine Kinase 2 Regulates Aryl Hydrocarbon Receptor Nuclear Translocation and Target Gene Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400794. [PMID: 39207053 PMCID: PMC11516111 DOI: 10.1002/advs.202400794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipids play vital roles in metabolism and regulation. Previously, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, was reported to directly regulate ceramide synthesis genes by binding to their promoters. Herein, sphingosine kinase 2 (SPHK2), responsible for producing sphingosine-1-phosphate (S1P), was found to interact with AHR through LXXLL motifs, influencing AHR nuclear localization. Through mutagenesis and co-transfection studies, AHR activation and subsequent nuclear translocation was hindered by SPHK2 LXXLL mutants or SPHK2 lacking a nuclear localization signal (NLS). Similarly, an NLS-deficient AHR mutant impaired SPHK2 nuclear translocation. Silencing SPHK2 reduced AHR expression and its target gene CYP1A1, while SPHK2 overexpression enhanced AHR activity. SPHK2 was found enriched on the CYP1A1 promoter, underscoring its role in AHR target gene activation. Additionally, S1P rapidly increased AHR expression at both the mRNA and protein levels and promoted AHR recruitment to the CYP1A1 promoter. Using mouse models, AHR deficiency compromised SPHK2 nuclear translocation, illustrating a critical interaction where SPHK2 facilitates AHR nuclear localization and supports a positive feedback loop between AHR and sphingolipid enzyme activity in the nucleus. These findings highlight a novel function of SPHK2 in regulating AHR activity and gene expression.
Collapse
Affiliation(s)
- Shigetoshi Yokoyama
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Daisuke Aibara
- Cancer Innovation LaboratoryCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Yuan Tian
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Stephanie L. Collins
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Denise M. Coslo
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mari Kono
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Jeffrey M. Peters
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMD20892USA
| | - Frank J. Gonzalez
- Cancer Innovation LaboratoryCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20892USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical SciencesPennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
27
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and beneficial metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:367-409. [PMID: 39396841 DOI: 10.1016/bs.adgen.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. In recent years, the impact of the gut microbiota on the development of CRC has become clear. The gut microbiota is the community of microorganisms living in the gut symbiotic relationship with the host. These microorganisms contribute to the development of CRC through various mechanisms that are not yet fully understood. Increasing scientific evidence suggests that metabolites produced by the gut microbiota may influence CRC development by exerting protective and deleterious effects. This article reviews the metabolites produced by the gut microbiota, which are derived from the intake of complex carbohydrates, proteins, dairy products, and phytochemicals from plant foods and are associated with a reduced risk of CRC. These metabolites include short-chain fatty acids (SCFAs), indole and its derivatives, conjugated linoleic acid (CLA) and polyphenols. Each metabolite, its association with CRC risk, the possible mechanisms by which they exert anti-tumour functions and their relationship with the gut microbiota are described. In addition, other gut microbiota-derived metabolites that are gaining importance for their role as CRC suppressors are included.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
28
|
Wu X, Cao Y, Liu Y, Zheng J. A New Strategy for Dietary Nutrition to Improve Intestinal Homeostasis in Diarrheal Irritable Bowel Syndrome: A Perspective on Intestinal Flora and Intestinal Epithelial Interaction. Nutrients 2024; 16:3192. [PMID: 39339792 PMCID: PMC11435304 DOI: 10.3390/nu16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Although a reasonable diet is essential for promoting human health, precise nutritional regulation presents a challenge for different physiological conditions. Irritable Bowel Syndrome (IBS) is characterized by recurrent abdominal pain and abnormal bowel habits, and diarrheal IBS (IBS-D) is the most common, seriously affecting patients' quality of life. Therefore, the implementation of precise nutritional interventions for IBS-D has become an urgent challenge in the fields of nutrition and food science. IBS-D intestinal homeostatic imbalance involves intestinal flora disorganization and impaired intestinal epithelial barrier function. A familiar interaction is evident between intestinal flora and intestinal epithelial cells (IECs), which together maintain intestinal homeostasis and health. Dietary patterns, such as the Mediterranean diet, have been shown to regulate gut flora, which in turn improves the body's health by influencing the immune system, the hormonal system, and other metabolic pathways. METHODS This review summarized the relationship between intestinal flora, IECs, and IBS-D. It analyzed the mechanism behind IBS-D intestinal homeostatic imbalance by examining the interactions between intestinal flora and IECs, and proposed a precise dietary nutrient intervention strategy. RESULTS AND CONCLUSION This increases the understanding of the IBS-D-targeted regulation pathways and provides guidance for designing related nutritional intervention strategies.
Collapse
Affiliation(s)
- Xinyu Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yilong Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (Y.C.)
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Garcia-Villatoro EL, Bomstein ZS, Allred KF, Callaway ES, Safe S, Chapkin RS, Jayaraman A, Allred CD. Involvement of Intestinal Epithelium Aryl Hydrocarbon Receptor Expression and 3, 3'-Diindolylmethane in Colonic Tertiary Lymphoid Tissue Formation. Int J Mol Sci 2024; 25:10153. [PMID: 39337636 PMCID: PMC11432480 DOI: 10.3390/ijms251810153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Tertiary lymphoid tissues (TLTs) are adaptive immune structures that develop during chronic inflammation and may worsen or lessen disease outcomes in a context-specific manner. Immune cell activity governing TLT formation in the intestines is dependent on immune cell aryl hydrocarbon receptor (AhR) activation. Homeostatic immune cell activity in the intestines is further dependent on ligand activation of AhR in intestinal epithelial cells (IECs), yet whether AhR activation and signaling in IECs influences the formation of TLTs in the presence of dietary AhR ligands is not known. To this end, we used IEC-specific AhR deletion coupled with a mouse model of dextran sodium sulfate (DSS)-induced colitis to understand how dietary AhR ligand 3, 3'-diindolylmethane (DIM) influenced TLT formation. DIM consumption increased the size of TLTs and decreased T-cell aggregation to TLT sites in an IEC-specific manner. In DSS-exposed female mice, DIM consumption increased the expression of genes implicated in TLT formation (Interleukin-22, Il-22; CXC motif chemokine ligand 13, CXCL13) in an IEC AhR-specific manner. Conversely, in female mice without DSS exposure, DIM significantly reduced the expression of Il-22 or CXCL13 in iAhRKO mice, but this effect was not observed in WT animals. Our findings suggest that DIM affects the immunological landscape of TLT formation during DSS-induced colitis in a manner contingent on AhR expression in IECs and biological sex. Further investigations into specific immune cell activity, IEC-specific AhR signaling pathways, and dietary AhR ligand-mediated effects on TLT formation are warranted.
Collapse
Affiliation(s)
| | - Zachary S. Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Kimberly F. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Evelyn S. Callaway
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77840, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | - Arul Jayaraman
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3127, USA
| | - Clinton D. Allred
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
30
|
Chen F, Pu S, Tian L, Zhang H, Zhou H, Yan Y, Hu X, Wu Q, Chen X, Cheng SH, Xu S. Radix Rehmanniae Praeparata promoted zebrafish fin regeneration through aryl hydrocarbon receptor-dependent autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118272. [PMID: 38710459 DOI: 10.1016/j.jep.2024.118272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Rehmanniae Radix Praeparata (RRP), a staple in traditional Chinese medicine, is derived from Rehmannia glutinosa Libosch and is renowned for its wound-healing properties. Despite its clinical prevalence, the molecular mechanisms underlying RRP's wound-healing effects have not been fully elucidated. AIM OF THE STUDY This research endeavored to delineate the molecular and cellular mechanisms underlying the beneficial effects of RRP on wound healing, utilizing a zebrafish model. MATERIALS AND METHODS Zebrafish larvae at 3 days post-fertilization were amputated at the fin and subsequently treated with RRP. The pro-wound healing and regenerative effects of RRP were evaluated through morphological analysis, assessment of cell proliferation and apoptosis, Additionally, mechanistic insights were gained through a comprehensive approach encompassing network pharmacology analysis, cell tracing, RNA-sequencing, CRISPR/Cas9 gene editing, and pharmacological inhibition. RESULTS Our findings demonstrate that RRP significantly accelerates caudal fin regeneration in zebrafish following injury by suppressing cell apoptosis, promoting cell proliferation, and upregulating the expression of regenerative-related genes. Furthermore, RRP triggers autophagy signals during the regenerative process, which is attenuated by the autophagy inhibitor chloroquine (CQ). Notably, the administration of RRP enhances the expression of ahr1 and ahr2 in the regenerating fin. Genetic knockout of ahr1a, ahr1b, or ahr2 using CRISPR/Cas9, or pharmacological blockade of AHR signals with the antagonist CH-223191, diminishes the regenerative potential of RRP. Remarkably, zebrafish lacking ahr2 completely lose their fin regeneration ability. Additionally, inhibition of AHR signaling suppresses autophagy signaling during fin regeneration. CONCLUSIONS This study uncovers that RRP stimulates fin regeneration in zebrafish by inducing AHR signals and, at least partially, activating the autophagy process. These findings provide novel insights into the molecular mechanisms underlying the wound-healing effects of RRP and may pave the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Fengyan Chen
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Shiming Pu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Li Tian
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huixian Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yijing Yan
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaolin Hu
- School of Economics and Management, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xueping Chen
- Vitargent (International) Biotechnology Limited, Unit 516, 5/F. Biotech Centre 2, No. 11 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China
| | - Shisan Xu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; Research Center for Biomedical Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China; College of Life Sciences, Guangxi Normal University, Guangxi Zhuang Autonomous Region, Guilin, China.
| |
Collapse
|
31
|
Cao J, Bao Q, Hao H. Indole-3-Carboxaldehyde Alleviates LPS-Induced Intestinal Inflammation by Inhibiting ROS Production and NLRP3 Inflammasome Activation. Antioxidants (Basel) 2024; 13:1107. [PMID: 39334766 PMCID: PMC11429283 DOI: 10.3390/antiox13091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Indole-3-carboxaldehyde (IAld) is a tryptophan (Trp) metabolite derived from gut microbiota, which has a potential protective effect on intestinal inflammatory diseases. Abnormal activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important cause of intestinal inflammation. However, the effect and mechanism of IAld on NLRP3 inflammasome activation remain unclear. Here, we found that IAld inhibited the activation of the NLRP3 inflammasome in intestinal epithelial cells, and effectively prevented intestinal epithelial barrier injury caused by lipopolysaccharide (LPS) stimulation. Mechanistically, we demonstrated that IAld activated the aryl hydrocarbon receptor (AhR), subsequently prevented reactive oxygen species (ROS) production, maintained mitochondrial membrane potential, and blocked the NF-κB/NLRP3 inflammatory pathway in intestinal epithelial cells. Also, the AhR-specific inhibitor CH-223191 effectively blocked the IAld-induced NLRP3 inhibition and intestinal epithelial barrier repairment. In addition, in vivo results showed that IAld prevented pro-inflammatory mediator production and intestinal inflammatory damage in LPS-induced mice, which is related to AhR activation and NLRP3 inflammasome inhibition. Collectively, our study unveiled that IAld is an effective endogenous antioxidant and suggested the AhR as a potential treatment target for NLRP3-induced intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ji Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Bao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
32
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
33
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
34
|
Urbauer E, Aguanno D, Mindermann N, Omer H, Metwaly A, Krammel T, Faro T, Remke M, Reitmeier S, Bärthel S, Kersting J, Huang Z, Xian F, Schmidt M, Saur D, Huber S, Stecher B, List M, Gómez-Varela D, Steiger K, Allez M, Rath E, Haller D. Mitochondrial perturbation in the intestine causes microbiota-dependent injury and gene signatures discriminative of inflammatory disease. Cell Host Microbe 2024; 32:1347-1364.e10. [PMID: 39013472 DOI: 10.1016/j.chom.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBDs). To understand how microbial-metabolic circuits contribute to intestinal injury, we disrupt mitochondrial function in the epithelium by deleting the mitochondrial chaperone, heat shock protein 60 (Hsp60Δ/ΔIEC). This metabolic perturbation causes self-resolving tissue injury. Regeneration is disrupted in the absence of the aryl hydrocarbon receptor (Hsp60Δ/ΔIEC;AhR-/-) involved in intestinal homeostasis or inflammatory regulator interleukin (IL)-10 (Hsp60Δ/ΔIEC;Il10-/-), causing IBD-like pathology. Injury is absent in the distal colon of germ-free (GF) Hsp60Δ/ΔIEC mice, highlighting bacterial control of metabolic injury. Colonizing GF Hsp60Δ/ΔIEC mice with the synthetic community OMM12 reveals expansion of metabolically flexible Bacteroides, and B. caecimuris mono-colonization recapitulates the injury. Transcriptional profiling of the metabolically impaired epithelium reveals gene signatures involved in oxidative stress (Ido1, Nos2, Duox2). These signatures are observed in samples from Crohn's disease patients, distinguishing active from inactive inflammation. Thus, mitochondrial perturbation of the epithelium causes microbiota-dependent injury with discriminative inflammatory gene profiles relevant for IBD.
Collapse
Affiliation(s)
- Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Doriane Aguanno
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Nora Mindermann
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Hélène Omer
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Tina Krammel
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Tim Faro
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Marianne Remke
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Sandra Reitmeier
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Johannes Kersting
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Zihua Huang
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany
| | - Feng Xian
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Manuela Schmidt
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilians University of Munich, 80336 Munich, Germany; German Center for Infection Research, Partner site LMU Munich, 80336 Munich, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 3, 85354 Freising, Germany; Munich Data Science Institute (MDSI), Technical University of Munich, 85748 Garching, Germany
| | - David Gómez-Varela
- Systems Biology of Pain, Division of Pharmacology & Toxicology, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, APHP, INSERM UMRS 1160, Paris Diderot, Sorbonne Paris-Cité University, 75010 Paris, France
| | - Eva Rath
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
35
|
Garcia-Villatoro EL, Ufondu A, Callaway ES, Allred KF, Safe SH, Chapkin RS, Jayaraman A, Allred CD. Aryl hydrocarbon receptor activity in intestinal epithelial cells in the formation of colonic tertiary lymphoid tissues. Am J Physiol Gastrointest Liver Physiol 2024; 327:G154-G174. [PMID: 38563893 PMCID: PMC11427098 DOI: 10.1152/ajpgi.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the aryl hydrocarbon receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes or immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio were observed. These findings may represent an unfavorable prognosis when exposed to dextran sodium sulfate (DSS)-induced epithelial damage compared with females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.NEW & NOTEWORTHY This is the first research of its kind to demonstrate a clear connection between biological sex and the development of tertiary lymphoid tissues (TLT) in the colon. In addition, the research finds that in a preclinical model of inflammatory bowel disease, the expression of the aryl hydrocarbon receptor (AhR) influences the development of these structures in a sex-specific manner.
Collapse
Affiliation(s)
| | - A. Ufondu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - E. S. Callaway
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - K. F. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| | - S. H. Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States
| | - R. S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, United States
| | - A. Jayaraman
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States
| | - C. D. Allred
- Department of Nutrition, Texas A&M University, College Station, Texas, United States
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, North Carolina, United States
| |
Collapse
|
36
|
Weighardt H, Shapiro M, Mayer M, Förster I, Stockinger B, Diny NL. The AHR repressor limits expression of antimicrobial genes but not AHR-dependent genes in intestinal eosinophils. J Leukoc Biol 2024; 116:369-378. [PMID: 38701199 PMCID: PMC11271977 DOI: 10.1093/jleuko/qiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal eosinophils express the aryl hydrocarbon receptor (AHR), an environmental sensor and ligand-activated transcription factor that responds to dietary or environmental ligands. AHR regulates tissue adaptation, survival, adhesion, and immune functions in intestinal eosinophils. The AHR repressor (AHRR) is itself induced by AHR and believed to limit AHR activity in a negative feedback loop. We analyzed gene expression in intestinal eosinophils from wild-type and AHRR knockout mice and found that AHRR did not suppress most AHR-dependent genes. Instead, AHRR limited the expression of a distinct small set of genes involved in the innate immune response. These included S100 proteins, antimicrobial proteins, and alpha-defensins. Using bone marrow-derived eosinophils, we found that AHRR knockout eosinophils released more reactive oxygen species upon stimulation. This work shows that the paradigm of AHRR as a repressor of AHR transcriptional activity does not apply to intestinal eosinophils. Rather, AHRR limits the expression of innate immune response and antimicrobial genes, possibly to maintain an anti-inflammatory phenotype in eosinophils when exposed to microbial signals in the intestinal environment.
Collapse
Affiliation(s)
- Heike Weighardt
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Michael Shapiro
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Michelle Mayer
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Brigitta Stockinger
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Nicola Laura Diny
- AhR Immunity Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
37
|
Li M, Yan Q, Chen C, Hu T, Yin H, Zhao L, Shi F, Ye G, Yin L, Liang X, Li Y, Tang H. Epigallocatechin-3-gallate mitigates cadmium-induced intestinal damage through modulation of the microbiota-tryptophan-aryl hydrocarbon receptor pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116520. [PMID: 38833985 DOI: 10.1016/j.ecoenv.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 μg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.
Collapse
Affiliation(s)
- Meiqing Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaohua Yan
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Chen
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Hu
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Yin
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China; School of Animal Science, Xichang University, Xichang, Sichuan Province 615000, China
| | - Ling Zhao
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shi
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Ye
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizi Yin
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxia Liang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinglun Li
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaqiao Tang
- Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China.
| |
Collapse
|
38
|
Gao Y, Liu KY, Xiao W, Xie X, Liang Q, Tu Z, Yang L, Yu H, Guo H, Huang S, Han X, Fu J, Zhou Y. Aryl hydrocarbon receptor confers protection against macrophage pyroptosis and intestinal inflammation through regulating polyamine biosynthesis. Theranostics 2024; 14:4218-4239. [PMID: 39113799 PMCID: PMC11303072 DOI: 10.7150/thno.95749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Rationale: The aryl hydrocarbon receptor (AhR) functions in the regulation of intestinal inflammation, but knowledge of the underlying mechanisms in innate immune cells is limited. Here, we investigated the role of AhR in modulating the functions of macrophages in inflammatory bowel disease pathogenesis. Methods: The cellular composition of intestinal lamina propria CD45+ leukocytes in a dextran sulfate sodium (DSS)-induced mouse colitis model was determined by single-cell RNA sequencing. Macrophage pyroptosis was quantified by analysis of lactate dehydrogenase release, propidium iodide staining, enzyme-linked immunosorbent assay, western blot, and flow cytometry. Differentially expressed genes were confirmed by RNA-seq, RT-qPCR, luciferase assay, chromatin immunoprecipitation, and immunofluorescence staining. Results: AhR deficiency mediated dynamic remodeling of the cellular composition of intestinal lamina propria (LP) CD45+ immune cells in a colitis model, with a significant increase in monocyte-macrophage lineage. Mice with AhR deficiency in myeloid cells developed more severe dextran sulfate sodium induced colitis, with concomitant increased macrophage pyroptosis. Dietary supplementation with an AhR pre-ligand, indole-3-carbinol, conferred protection against colitis while protection failed in mice lacking AhR in myeloid cells. Mechanistically, AhR signaling inhibited macrophage pyroptosis by promoting ornithine decarboxylase 1 (Odc1) transcription, to enhance polyamine biosynthesis. The increased polyamine, particularly spermine, inhibited NLRP3 inflammasome assembly and subsequent pyroptosis by suppressing K+ efflux. AHR expression was positively correlated with ODC1 in intestinal mucosal biopsies from patients with ulcerative colitis. Conclusions: These findings suggest a functional role for the AhR/ODC1/polyamine axis in maintaining intestinal homeostasis, providing potential targets for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajing Gao
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Kwei-Yan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan
| | - Wenfeng Xiao
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xueru Xie
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Qiuyan Liang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Zikun Tu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Lan Yang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Hongmiao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Haiyan Guo
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Saihua Huang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xiao Han
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Jinrong Fu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yufeng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Wang J, Jia B, Miao J, Li D, Wang Y, Han L, Yuan Y, Zhang Y, Wang Y, Guo L, Jia J, Zheng F, Lai S, Niu K, Li W, Bian Y, Wang Y. An novel effective and safe model for the diagnosis of nonalcoholic fatty liver disease in China: gene excavations, clinical validations, and mechanism elucidation. J Transl Med 2024; 22:624. [PMID: 38965537 PMCID: PMC11225259 DOI: 10.1186/s12967-024-05315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).
Collapse
Affiliation(s)
- Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Miao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liying Guo
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sizhen Lai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Kaijun Niu
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yaogang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
40
|
Silverberg JI, Boguniewicz M, Quintana FJ, Clark RA, Gross L, Hirano I, Tallman AM, Brown PM, Fredericks D, Rubenstein DS, McHale KA. Tapinarof validates the aryl hydrocarbon receptor as a therapeutic target: A clinical review. J Allergy Clin Immunol 2024; 154:1-10. [PMID: 38154665 DOI: 10.1016/j.jaci.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that has wide-ranging roles, including regulation of inflammation and homeostasis. AhR is not a cell surface receptor; rather, it exists in a cytoplasmic complex that responds to a wide variety of structurally dissimilar endogenous, microbial, and environmental ligands. The ubiquitous expression of AhR, its ability to be activated by a wide range of ligands, and its capacity to act as a master regulator for gene expression and homeostasis make it a promising new therapeutic target. Clinical trials of tapinarof cream have now validated AhR agonism as a therapeutic approach that can deliver significant efficacy for treating inflammatory skin diseases, including psoriasis and atopic dermatitis. Tapinarof 1% cream is a first-in-class, nonsteroidal, topical, AhR agonist with a pharmacokinetic profile that results in localized exposure at sites of disease, avoiding systemic safety concerns, drug interactions, or off-target effects. Psoriasis and atopic dermatitis both involve epidermal inflammation, cellular immune responses, dysregulation of skin barrier protein expression, and oxidative stress. On the basis of the clinical effectiveness of tapinarof cream for treating inflammatory skin diseases, we review how targeting AhR may offer a significant opportunity in other conditions that share key aspects of pathogenesis, including asthma, inflammatory bowel disease, eosinophilic esophagitis, ophthalmic, and nervous system diseases.
Collapse
Affiliation(s)
| | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | | | - Lara Gross
- Dallas Allergy and Asthma Center, and the Allergy and Immunology Division, Baylor University Medical Center, Dallas, Tex
| | - Ikuo Hirano
- Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | | | | | | | | |
Collapse
|
41
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
43
|
Heine S, Alessandrini F, Grosch J, Graß C, Heldner A, Schnautz B, Grosch J, Buters J, Slusarenko BO, Krappmann D, Fallarino F, Ohnmacht C, Schmidt-Weber CB, Blank S. Activation of the aryl hydrocarbon receptor improves allergen-specific immunotherapy of murine allergic airway inflammation: a novel adjuvant option? Front Immunol 2024; 15:1397072. [PMID: 38915403 PMCID: PMC11194380 DOI: 10.3389/fimmu.2024.1397072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carina Graß
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Alexander Heldner
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johanna Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Jeroen Buters
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin O. Slusarenko
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| |
Collapse
|
44
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
45
|
Marafini I, Monteleone I, Laudisi F, Monteleone G. Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. Int J Mol Sci 2024; 25:4527. [PMID: 38674118 PMCID: PMC11050475 DOI: 10.3390/ijms25084527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR), a transcription factor activated by many natural and synthetic ligands, represents an important mediator of the interplay between the environment and the host's immune responses. In a healthy gut, AHR activation promotes tolerogenic signals, which help maintain mucosal homeostasis. AHR expression is defective in the inflamed gut of patients with inflammatory bowel diseases (IBD), where decreased AHR signaling is supposed to contribute to amplifying the gut tissue's destructive immune-inflammatory responses. We here review the evidence supporting the role of AHR in controlling the "physiological" intestinal inflammation and summarize the data about the therapeutic effects of AHR activators, both in preclinical mouse models of colitis and in patients with IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Giovanni Monteleone
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
46
|
Suntornsaratoon P, Antonio JM, Flores J, Upadhyay R, Veltri J, Bandyopadhyay S, Dadala R, Kim M, Liu Y, Balasubramanian I, Turner JR, Su X, Li WV, Gao N, Ferraris RP. Lactobacillus rhamnosus GG Stimulates Dietary Tryptophan-Dependent Production of Barrier-Protecting Methylnicotinamide. Cell Mol Gastroenterol Hepatol 2024; 18:101346. [PMID: 38641207 PMCID: PMC11193042 DOI: 10.1016/j.jcmgh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND & AIMS Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear. METHODS Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations using a newly developed algorithm discovered novel metabolites tightly linked to tight junction and cell differentiation genes whose abundances were regulated by LGG and dietary trp. Barrier-modulation by these metabolites were functionally tested in Caco2 cells, mouse enteroids, and dextran sulfate sodium experimental colitis. The contribution of these metabolites to barrier protection is delineated at specific tight junction proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS LGG, strictly with dietary trp, promotes the enterocyte program and expression of tight junction genes, particularly Ocln. Functional evaluations of fecal and serum metabolites synergistically stimulated by LGG and trp revealed a novel vitamin B3 metabolism pathway, with methylnicotinamide (MNA) unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in patients with inflammatory bowel disease. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in dextran sulfate sodium colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt. Blocking trp or vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects the gut barrier against colitis.
Collapse
Affiliation(s)
- Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - John Veltri
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | - Rhema Dadala
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Michael Kim
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, California
| | - Nan Gao
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; Department of Biological Sciences, Rutgers University, Newark, New Jersey.
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey.
| |
Collapse
|
47
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
48
|
Wu H, Ma W, Wang Y, Wang Y, Sun X, Zheng Q. Gut microbiome-metabolites axis: A friend or foe to colorectal cancer progression. Biomed Pharmacother 2024; 173:116410. [PMID: 38460373 DOI: 10.1016/j.biopha.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
An expanding corpus of research robustly substantiates the complex interrelation between gut microbiota and the onset, progression, and metastasis of colorectal cancer. Investigations in both animal models and human subjects have consistently underscored the role of gut bacteria in a variety of metabolic activities, driven by dietary intake. These activities include amino acid metabolism, carbohydrate fermentation, and the generation and regulation of bile acids. These metabolic derivatives, in turn, have been identified as significant contributors to the progression of colorectal cancer. This thorough review meticulously explores the dynamic interaction between gut bacteria and metabolites derived from the breakdown of amino acids, fatty acid metabolism, and bile acid synthesis. Notably, bile acids have been recognized for their potential carcinogenic properties, which may expedite tumor development. Extensive research has revealed a reciprocal influence of gut microbiota on the intricate spectrum of colorectal cancer pathologies. Furthermore, strategies to modulate gut microbiota, such as dietary modifications or probiotic supplementation, may offer promising avenues for both the prevention and adjunctive treatment of colorectal cancer. Nevertheless, additional research is imperative to corroborate these findings and enhance our comprehension of the underlying mechanisms in colorectal cancer development.
Collapse
Affiliation(s)
- Hao Wu
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Wenmeng Ma
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yiyao Wang
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yuanyuan Wang
- Department of anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xun Sun
- Department of Immunology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medicine College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
49
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|