1
|
Li C, Lu W, Zhang H. BTB domain and CNC homolog 2: A master regulator that controls immune response and cancer progression. Biochim Biophys Acta Rev Cancer 2025; 1880:189325. [PMID: 40252853 DOI: 10.1016/j.bbcan.2025.189325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
BTB domain and CNC homolog 2 (BACH2) is a transcription repressor from the basic region leucine zipper (bZIP) family. Although BACH2 is predominantly expressed in lymphoid cells, it plays pivotal roles throughout hematological development and differentiation, ranging from the regulation of hematopoietic stem and progenitor cell (HSPC) lineage commitment to the development of both innate and adaptive immune cells. Given its extensive regulation of immunity, it is not surprising that BACH2 has been implicated in cancer, particularly in hematological malignancies. While multiple findings indicate that BACH2 acts primarily as a tumor suppressor, other findings suggest that BACH2, whether within tumor cells or their surrounding microenvironment, may contribute to tumorigenesis and progression, highlighting the complexity of its roles and the diverse networks involved in different contexts. In this review, we provide a comprehensive overview of the evolving roles of BACH2 across various stages of hematopoiesis, with a particular focus on its associations with cancer and its therapeutic potential in a wide range of cancer types.
Collapse
Affiliation(s)
- Chenyang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Wei Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; Kunming Medical University, Kunming, Yunnan 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China.
| |
Collapse
|
2
|
Yao Z, Feng Z, Zhang H, Zhang B. ScRNA-Seq reveals T cell immunity in COVID-19 patients and implications for immunotherapy. Int Immunopharmacol 2025; 155:114663. [PMID: 40233451 DOI: 10.1016/j.intimp.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
SARS-CoV-2, the virus causing COVID-19, poses significant health threats due to its high transmissibility and potential for severe respiratory complications. T cells, central to adaptive immunity, also interact with innate immunity, playing a pivotal role in coordinating defenses and eliminating infected cells. Single-cell RNA sequencing (scRNA-seq) has provided more subtle heterogeneity, rare subpopulations, or new subpopulations that are at the district differentiation stage or with specific function. Thus, elucidating how T cell heterogeneity impacts COVID-19 disease severity remains a critical question requiring comprehensive analysis. This review revealed the heterogeneity of the host T cells, including conventional T cells (CD8+, CD4+ T cells) and unconventional T cells, including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells in COVID-19 patients with different clinical manifestations. Severe COVID-19 had marked lymphopenia, excessive activation, elevated exhaustion and reduced functional diversity of T cells. Pathogenic contributions arise from dysregulated cytotoxic T cells, Treg cells and unconventional T cells collectively driving systemic hyperinflammation and tissue injury. Current therapeutic strategies targeting T cells-such as enhancing virus-specific T cell responses, reverting T-cell exhaustion and alleviating inflammation-exhibit inconsistent efficacy, underscoring the need for combinatorial approaches. This review highlights how scRNA-seq deciphers T cell heterogeneity and dysfunction in COVID-19. By targeting T cell exhaustion, inflammation, and subset-specific deficits, these insights pave the way for therapies and vaccines.
Collapse
Affiliation(s)
- Zhihong Yao
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong 723002, China; Affiliated Hospital, Hanzhong Vocational and Technical College, Hanzhong 723012, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Surico PL, Barone V, Singh RB, Coassin M, Blanco T, Dohlman TH, Basu S, Chauhan SK, Dana R, Di Zazzo A. Potential applications of mesenchymal stem cells in ocular surface immune-mediated disorders. Surv Ophthalmol 2025; 70:467-479. [PMID: 39097173 DOI: 10.1016/j.survophthal.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We explore the interaction between corneal immunity and mesenchymal stem/stromal cells (MSCs) and their potential in treating corneal and ocular surface disorders. We outline the cornea's immune privilege mechanisms and the immunomodulatory substances involved. In this realm, MSCs are characterized by their immunomodulatory properties and regenerative potential, making them promising for therapeutic application. Therefore, we focus on the role of MSCs in immune-mediated corneal diseases such as dry eye disease, corneal transplantation rejection, limbal stem cell deficiency, and ocular graft-versus-host disease. Preclinical and clinical studies demonstrate MSCs' efficacy in promoting corneal healing and reducing inflammation in these conditions. Overall, we emphasize the potential of MSCs as innovative therapies in ophthalmology, offering promising solutions for managing various ocular surface pathologies.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy.
| |
Collapse
|
4
|
Maeda E, Okimura H, Tanaka Y, Fujii M, Tarumi Y, Kataoka H, Koshiba A, Hamaguchi M, Fukui M, Mori T, Kitawaki J. Adoptive transfer of regulatory T cells inhibits the progression of endometriosis-like lesions in regulatory T-cell-depleted mice. Hum Reprod 2025; 40:926-937. [PMID: 40180333 DOI: 10.1093/humrep/deaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
STUDY QUESTION Does the restoration of regulatory T cells (Tregs) suppress the progression of endometriosis? SUMMARY ANSWER Adoptive transfer of Tregs suppresses the progression of endometriosis and reduces the levels of helper T (Th)-cell-related and proinflammatory cytokines in mice. WHAT IS KNOWN ALREADY Endometriosis is a chronic inflammatory gynecological disease, which involves multiple immune components. Activated Treg counts decrease in the endometrioma and endometrium of patients with endometriosis, and depletion of Tregs exacerbates endometriosis in mice. STUDY DESIGN, SIZE, DURATION We evaluated the effects of adoptive transfer of Tregs on the progression of endometriosis in mice. We used Foxp3tm3Ayr/J (Foxp3DTR) mice with temporarily ablated Tregs by injecting diphtheria toxin to develop an endometriosis model, which was generated by ovariectomy, estradiol administration and transplantation of uterine fragments from donor mice. Foxp3DTR mice were randomly divided into Treg adoptive transfer (n = 12) and control (n = 11) groups. Tregs were isolated from lymph nodes and spleens of wild-type (WT) mice and were adoptively transferred into mice that were temporarily Treg-depleted. Control mice were injected with vehicle. Treg adoptive transfer was performed on the day of uterine implantation, and a second adoptive transfer was performed after 14 days. Mice were euthanized 28 days after uterine implantation, and blood, peritoneal fluid, spleen, and endometriosis-like lesion samples were collected. PARTICIPANTS/MATERIALS, SETTING, METHODS Foxp3DTR mice were intravenously injected with Tregs isolated from WT mice. The number, total weight, and total volume of the endometriosis-like lesions were evaluated on Day 28 following implantation of uterine fragments. The proportion of Tregs in endometriosis-like lesions, ascites, and peripheral blood was analyzed by flow cytometry. Inflammation in lesions and serum was examined using real-time PCR and ELISA. MAIN RESULTS AND THE ROLE OF CHANCE Injection of Tregs increased their total count and decreased the number (P < 0.0001), weight (P = 0.0021), and volume (P = 0.0010) of endometriosis-like lesions in Foxp3DTR Treg-depleted mice. Furthermore, injection of Tregs decreased the mRNA expression of Th 1-, 2-, and 17-related cytokines, including interferon gamma (P = 0.0101), interleukin (IL)-4 (P = 0.0051), and IL-17 (P = 0.0177), as well as the levels of the proinflammatory cytokine IL-6 (P = 0.0002), in endometriosis-like lesions of Foxp3DTR Treg-depleted mice. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Treg-related immune mechanisms in mice may not precisely reflect those in humans. WIDER IMPLICATIONS OF THE FINDINGS Restoration of Tregs may be a useful therapeutic strategy for inhibiting the progression of endometriosis in cases where the decrease in the Treg population is an exacerbating factor. STUDY FUNDING/COMPETING INTEREST(S) This study was partially supported by the Grants-in-Aid for Scientific Research (grant numbers 18K16808 and 20K22983) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. The sponsor had no role in the study design, collection, analysis and interpretation of data, writing of the report, and decision to submit the article for publication. The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Eiko Maeda
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Okimura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Tanaka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maya Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akemi Koshiba
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Sun N, Wang C, Edwards W, Wang Y, Lu XL, Gu C, McLennan S, Shangaris P, Qi P, Mastronicola D, Scottà C, Lombardi G, Chiappini C. Nanoneedle-Based Electroporation for Efficient Manufacturing of Human Primary Chimeric Antigen Receptor Regulatory T-Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416066. [PMID: 40231643 DOI: 10.1002/advs.202416066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Regulatory T cells (Tregs) play a crucial role in moderating immune responses offering promising therapeutic options for autoimmune diseases and allograft rejection. Genetically engineering Tregs with chimeric antigen receptors (CARs) enhances their targeting specificity and efficacy. With non-viral transfection methods suffering from low efficiency and reduced cell viability, viral transduction is currently the only viable approach for GMP-compliant CAR-Treg production. However, viral transduction raises concerns over immunogenicity, insertional mutagenesis risk, and high costs, which limit clinical scalability. This study introduces a scalable nanoneedle electroporation (nN-EP) platform for GMP-compatible transfection of HLA-A2-specific CAR plasmids into primary human Tregs. The nN-EP system achieves 43% transfection efficiency, outperforming viral transduction at multiplicity of infection 1 by twofold. Importantly, nN-EP preserves Treg viability, phenotype and proliferative capacity. HLA-A2-specific CAR-Tregs generated using nN-EP show specific activation and superior suppressive function compared to polyclonal or virally transduced Tregs in the presence of HLA-A2 expressing antigen presenting cells. These findings underscore the potential of nN-EP as a GMP-suitable method for CAR-Treg production, enabling broader clinical application in immune therapies.
Collapse
Affiliation(s)
- Ningjia Sun
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Cong Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
- Wenzhou Eye Valley Innovation Center, Eye Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - William Edwards
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Yikai Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Xiangrong L Lu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Chenlei Gu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Samuel McLennan
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| | - Panicos Shangaris
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- School of Life Course & Population Sciences, 10th Floor North Wing, St Thomas' Hospital, King's College London, London, SE1 7EH, UK
- Harris Birthright Research Centre for Fetal Medicine, King's College London, London, SE1 7EH, UK
| | - Peng Qi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Daniela Mastronicola
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Cristiano Scottà
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
- Department of Biosciences, Centre for Inflammation Research and Translational Medicine, Brunel University London, London, UB8 3PH, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, SE1 7EH, UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- London Centre for Nanotechnology, King's College London, London, WC2R 2LS, UK
| |
Collapse
|
6
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
7
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Prasongtanakij S, Soontrapa K, Thumkeo D. The role of prostanoids in regulatory T cells and their implications in inflammatory diseases and cancers. Eur J Cell Biol 2025; 104:151482. [PMID: 40184828 DOI: 10.1016/j.ejcb.2025.151482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
Regulatory T cells (Tregs) play an important role in the immune system through the regulation of immunological self-tolerance and homeostasis. Furthermore, increasing evidence suggests the potential contribution of Tregs beyond immunity in the process of repairing various injured tissues. Tregs are generally characterised by the constitutive expression of forkhead box protein 3 (FOXP3) transcription factor in the nucleus and high expression levels of CD25 and CTLA-4 on the cell surface. To date, a large number of molecules have been identified as key regulators of Treg differentiation and function. Among these molecules are prostanoids, which are multifaceted lipid mediators. Prostanoids are produced from arachidonic acid through the catalytic activity of the enzyme cyclooxygenase and exert their functions through the 9 cognate receptors, DP1-2, EP1-EP4, FP, IP and TP. We briefly review previous studies on the regulatory mechanism of Tregs and then discuss recent works on the modulatory role of prostanoids.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Dean Thumkeo
- Laboratory of Immunopharmacology, Kyoto University Graduate School of Medicine, Japan; Center for Medical Education and Internationalization, Kyoto University Faculty of Medicine, Japan.
| |
Collapse
|
9
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-Specific CAR Tregs for the Treatment of Crohn's Disease. J Crohns Colitis 2025; 19:jjae135. [PMID: 39252592 PMCID: PMC11945296 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signaling and a strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
10
|
Merenstein A, Obeidat L, Zaravinos A, Bonavida B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers (Basel) 2024; 17:19. [PMID: 39796650 PMCID: PMC11718991 DOI: 10.3390/cancers17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities.
Collapse
Affiliation(s)
- Adam Merenstein
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| | - Loiy Obeidat
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
11
|
Pinto C, Carrasco-Loncharic T, González-Mienert E, de Solminihac J, Gálvez-Jirón F, Cifuentes F, Pino-Lagos K. IL-33 Induces a Switch in Intestinal Metabolites Revealing the Tryptophan Pathway as a Target for Inducing Allograft Survival. Nutrients 2024; 16:3655. [PMID: 39519488 PMCID: PMC11547499 DOI: 10.3390/nu16213655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND IL-33, a pleiotropic cytokine, has been associated with a plethora of immune-related processes, both inflammatory and anti-inflammatory. T regulatory (Treg) cells, the main leukocyte population involved in immune tolerance, can be induced by the administration of IL-33, the local microbiota, and its metabolites. Here, we demonstrate that IL-33 drastically induces the production of intestinal metabolites involved on tryptophan (Trp) metabolism. METHODS naïve mice were treated with IL-33 for 4 days and leukocyte populations were analyzed by flow cytometry, and feces were processed for microbiota and intestinal metabolites studies. Using a murine skin transplantation model, the effect of Kynurenic acid (KA) on allograft survival was tested. RESULTS Under homeostatic conditions, animals treated with IL-33 showed an increment in Treg cell frequencies. Intestinal bacterial abundance analysis indicates that IL-33 provokes dysbiosis, demonstrated by a reduction in Enterobacteria and an increment in Lactobacillus genera. Furthermore, metabolomics analysis showed a dramatic IL-33 effect on the abundance of intestinal metabolites related to amino acid synthesis pathways, highlighting molecules linked to Trp metabolism, such as kynurenic acid (KA), 5-Hydroxyindoleacetic acid (5-HIAA), and 6-Hydroxynicotinic acid (6-HNA), which was supported by an enhanced expression of Ido and Kat mRNA in MLN cells, which are two enzymes involved on KA synthesis. Interestingly, animals receiving KA in drinking water and subjected to skin transplantation showed allograft acceptance, which is associated with an increment in Treg cell frequencies. CONCLUSIONS Our study reveals a new property for IL-33 as a modulator of the intestinal microbiota and metabolites, especially those involved with Trp metabolism. In addition, we demonstrate that KA favors Tregs in vivo, positively affecting skin transplantation survival.
Collapse
Affiliation(s)
- Camila Pinto
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| | - Tomás Carrasco-Loncharic
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| | - Eduardo González-Mienert
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| | - Javiera de Solminihac
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| | - Felipe Gálvez-Jirón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| | - Federico Cifuentes
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Karina Pino-Lagos
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 755000, Chile
| |
Collapse
|
12
|
Rubino V, Carriero F, Palatucci AT, Giovazzino A, Salemi F, Carrano R, Sabbatini M, Ruggiero G, Terrazzano G. T R3-56 and Treg Regulatory T Cell Subsets as Potential Indicators of Graft Tolerance Control in Kidney Transplant Recipients. Int J Mol Sci 2024; 25:10610. [PMID: 39408939 PMCID: PMC11477056 DOI: 10.3390/ijms251910610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Identification of early signatures of immune rejection represents a key challenge in the clinical management of kidney transplant. To address such an issue, we enrolled 53 kidney transplant recipients without signs of graft rejection, no infectious episodes and no change in the immunosuppressive regimen in the last 6 months. An extensive immune profile revealed increased activation of the T cells, a decreased amount and growth ability of the Treg and a higher level of the TR3-56 regulatory T cell subset, described by us as involved in the preferential control of cytotoxic T lymphocytes. In renal transplant recipients, the high level of the TR3-56 cells associates with a reduction in both the amount and the growth ability of the Treg. Moreover, when the transplanted subjects were categorised according to their stable or unstable disease status, as defined by changes in serum creatinine ≥0.2 mg/dL in two consecutive detections, a higher TR3-56 level and defective Treg growth ability were observed to characterise patients with unstable graft control. Further studies are required to substantiate the hypothesis that immune profiling, including TR3-56 evaluation, might represent a valuable diagnostic tool to identify patients at risk of developing significant anti-donor allo-immune responses.
Collapse
Affiliation(s)
- Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Flavia Carriero
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Anna Teresa Palatucci
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Fabrizio Salemi
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Rosa Carrano
- Percorso Clinico Assistenziale in Nefrologia e Trapianto Renale, Azienda Ospedaliera Universitaria “Federico II”, 80131 Napoli, Italy; (F.S.); (R.C.)
| | - Massimo Sabbatini
- Dipartimento di Sanità Pubblica, Sezione di Nefrologia, Università di Napoli “Federico II”, 80131 Napoli, Italy;
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli “Federico II”, 80131 Napoli, Italy; (V.R.); (A.G.)
| | - Giuseppe Terrazzano
- Dipartimento di Scienze Della Salute, Università Della Basilicata, 85100 Potenza, Italy; (F.C.); (A.T.P.); (G.T.)
| |
Collapse
|
13
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
14
|
Lepore MT, Bruzzaniti S, La Rocca C, Fusco C, Carbone F, Mottola M, Zuccarelli B, Lanzillo R, Brescia Morra V, Maniscalco GT, De Simone S, Procaccini C, Porcellini A, De Rosa V, Galgani M, Cassano S, Matarese G. Deciphering the role of protein kinase A in the control of FoxP3 expression in regulatory T cells in health and autoimmunity. Sci Rep 2024; 14:17571. [PMID: 39080325 PMCID: PMC11289137 DOI: 10.1038/s41598-024-68098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
The molecular mechanisms that govern differential T cell development from CD4+CD25-conventional T (Tconv) into CD4+CD25+ forkhead-box-P3+ (FoxP3+) inducible regulatory T (iTreg) cells remain unclear. Herein, we investigated the relative contribution of protein kinase A (PKA) in this process. Mechanistically, we found that PKA controlled the efficiency of human iTreg cell generation through the expression of different FoxP3 splicing variants containing or not the exon 2. We found that transient PKA inhibition reduced the recruitment of cAMP-responsive element-binding protein (CREB) on regulatory regions of the FoxP3 gene, a condition that is associated with an impaired acquisition of their suppressive capacity in vitro. To corroborate our findings in a human model of autoimmunity, we measured CREB phosphorylation and FoxP3 levels in iTreg cells from treatment-naïve relapsing-remitting (RR)-multiple sclerosis (MS) subjects. Interestingly, both phospho-CREB and FoxP3 induction directly correlated and were significantly reduced in RR-MS patients, suggesting a previously unknown mechanism involved in the induction and function of human iTreg cells.
Collapse
Affiliation(s)
- Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Clorinda Fusco
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Mottola
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Bruno Zuccarelli
- UOC di Medicina Trasfusionale, AORN Ospedale dei Colli, Ospedale Monaldi, Naples, Italy
| | - Roberta Lanzillo
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Vincenzo Brescia Morra
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giorgia Teresa Maniscalco
- Dipartimento di Neurologia, Centro Regionale Sclerosi Multipla, Azienda Ospedaliera "A. Cardarelli", Naples, Italy
| | - Salvatore De Simone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Silvana Cassano
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy.
| |
Collapse
|
15
|
Li S, Mao D, Hao Q, You L, Li X, Wu Y, Wei L, Du H. Causal relationship between circulating immune cells and inflammatory bowel disease: A Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e39056. [PMID: 39058862 PMCID: PMC11272237 DOI: 10.1097/md.0000000000039056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated inflammation of the gastrointestinal tract that includes Crohn disease and ulcerative colitis (UC). Although IBD is associated with elevated levels of innate and adaptive immunity, the relationship between circulating immune cells and IBD remains largely unknown. Therefore, we conducted a bidirectional 2-sample Mendelian randomization (MR) study to determine their causal relationship. Genome-wide association study summary statistics were extracted from publicly available databases regarding immune cell phenotypes and IBD traits (including IBD, Crohn disease, and UC). MR analysis was conducted using 5 MR methods, with inverse-variance-weighted (IVW) as the primary analysis method. False discovery rate correction (FDR) was used to reduce the likelihood of type 1 errors. We also conducted MR-Egger-intercept tests to evaluate horizontal pleiotropy. After FDR adjustment of the P values for the IVW method, the results indicated no causal relationship between immune cell phenotypes and IBD or UC, but 4 immune characteristics were causally associated with Crohn disease. The percentage of human leukocyte antigen DR+ CD4+ T cells in lymphocytes was positively associated with the development of Crohn disease (odd ratio [OR], 1.13; 95% confidence interval [CI], 1.07-1.21; P < .001; PFDR = 0.019), whereas the percentage of IgD- CD27- B cells in lymphocytes (OR, 0.85; 95% CI, 0.79-0.92; P < .001; PFDR = 0.014), CD28 on CD39+ secreting CD4 regulatory T cells (OR, 0.92; 95% CI, 0.89-0.96; P < .001; PFDR = 0.019), and the percentage of naïve CD4+ T cells in all CD4+ T cells (OR, 0.90; 95% CI, 0.85-0.95; P < .001; PFDR = 0.027) were negatively related to the risk of Crohn disease. MR analysis of the above 4 immune cell phenotypes revealed no horizontal pleiotropy. In the reverse MR analysis, Crohn disease was not causally associated with any of these immune cell phenotypes. The findings provide insight into the relationship between immune cells and IBD pathogenesis, and may serve as a basis for developing novel immunotherapies.
Collapse
Affiliation(s)
- Shan Li
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Dujuan Mao
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Quanshui Hao
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Lijuan You
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Xiufang Li
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| | - Lai Wei
- Anesthesiology Center, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Heng Du
- Department of Gastrointestinal Surgery, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei, China
| |
Collapse
|
16
|
Zheng X, Lu R, Pan D, Peng L, He R, Hu Y, Chen J, Tang J, Rong X, Teng S, Wang Y, Liu F, Xie T, Wu C, Tang Y, Liu W, Qu X. Regulatory T and CXCR3+ Circulating Tfh Cells Concordantly Shape the Neutralizing Antibody Responses in Individuals Who Have Recovered from Mild COVID-19. J Infect Dis 2024; 230:28-37. [PMID: 39052730 DOI: 10.1093/infdis/jiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
Regulatory T (Treg) cells are involved in the antiviral immune response in patients with coronavirus disease 2019 (COVID-19); however, whether Treg cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of Treg cells and lower frequencies of CXCR3+ circulating T follicular helper (cTfh) cells than healthy controls. Furthermore, the frequencies of Treg and CXCR3+ cTfh cells were negatively and positively correlated with the nAb responses, respectively, and Treg cells was inversely associated with CXCR3+ cTfh cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, Treg cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTfh cells, especially CXCR3+ cTfh cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits concerted nAb responses, which are shaped by both Treg and Tfh cells.
Collapse
Affiliation(s)
- Xingyu Zheng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rui Lu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Dong Pan
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Liting Peng
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rongzhang He
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jun Chen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jinyong Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xiaohan Rong
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - You Wang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Fen Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Tianyi Xie
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Chanfeng Wu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yinggen Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
- School of Public Health, University of South China, Hengyang, China
| | - Wenpei Liu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaowang Qu
- College of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
17
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
18
|
Stucchi A, Maspes F, Montee-Rodrigues E, Fousteri G. Engineered Treg cells: The heir to the throne of immunotherapy. J Autoimmun 2024; 144:102986. [PMID: 36639301 DOI: 10.1016/j.jaut.2022.102986] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023]
Abstract
Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.
Collapse
Affiliation(s)
- Adriana Stucchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Maspes
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ely Montee-Rodrigues
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; Cambridge Epigenetix, Cambridge, Cambridgeshire, United Kingdom
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
19
|
Wang Q, Xiong Z, Wang B, Wang W, Zheng H. Ferroptosis and Preeclampsia: Genetic Analysis of Potential Biomarkers and Therapeutic Targets. Biochem Genet 2024; 62:853-875. [PMID: 37474873 DOI: 10.1007/s10528-023-10449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Ferroptosis is the oxidative death of cells attributed to an imbalance in intracellular lipid reactive oxygen species metabolism, a reduction in cell antioxidant capacity, and an accumulation of membrane lipid peroxides. Trophoblast cells are a group of cells susceptible to ferroptosis. The ferroptosis of trophoblast cells has a major effect on the development of preeclampsia (PE), although the impact of ferroptosis-related genes (FRGs) on PE has not been well characterized. This study obtained PE-related information from the Gene Expression Omnibus database and FRGs from the FerrDb ferroptosis database. Seventeen PE-related differentially expressed ferroptosis-related genes (DE-FRGs) that were closely associated with cellular regulation and immune response were obtained. According to the results of a subsequent functional enrichment analysis, it was found that the above marker genes may impact PE by regulating immune response, amino acid metabolism, the cell cycle, and multiple pathways correlated with PE pathogenesis. Subsequently, we used LASSO and support vector machine recursive feature elimination algorithms to help identify GOT1, CFL1, FZD7, VDR, PARP6, TMSB4X, VCP, and ENO3 as marker genes from the 17 obtained genes. According to the results of single-sample gene set enrichment analysis (ssGSEA), the immune microenvironment of PE changed, possibly due to the GOT1 and TMSB4X genes. Furthermore, 23 drugs targeting one marker gene were determined. A constructed ceRNA network revealed a complicated regulatory link based on the eight marker genes. In this study, diagnostic potency was developed, and insight into the mechanism of PE was provided. In-depth research should be conducted before clinical application to evaluate the diagnostic value of DE-FRGs in PE.
Collapse
Affiliation(s)
- Qingmin Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Zhihui Xiong
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Baimiao Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Wei Wang
- Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Huiling Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, 310005, China.
| |
Collapse
|
20
|
Kosinsky RL, Gonzalez MM, Saul D, Barros LL, Sagstetter MR, Fedyshyn Y, Nair A, Sun Z, Hamdan FH, Gibbons HR, Perez Pachon ME, Druliner BR, Johnsen SA, Faubion WA. The FOXP3 + Pro-Inflammatory T Cell: A Potential Therapeutic Target in Crohn's Disease. Gastroenterology 2024; 166:631-644.e17. [PMID: 38211712 PMCID: PMC10960691 DOI: 10.1053/j.gastro.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND & AIMS The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4+ cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4+ T cells driving chronic inflammation in CD. METHODS We performed single-cell RNA-sequencing in CD4+ T cells isolated from ileal biopsies of patients with CD compared with healthy individuals. Cells underwent clustering analysis, followed by analysis of gene signaling networks. We overlapped our differentially expressed genes with publicly available microarray data sets and performed functional in vitro studies, including an in vitro suppression assay and organoid systems, to model gene expression changes observed in CD regulatory T (Treg) cells and to test predicted therapeutics. RESULTS We identified 5 distinct FOXP3+ regulatory Treg subpopulations. Tregs isolated from healthy controls represent the origin of pseudotemporal development into inflammation-associated subtypes. These proinflammatory Tregs displayed a unique responsiveness to tumor necrosis factor-α signaling with impaired suppressive activity in vitro and an elevated cytokine response in an organoid coculture system. As predicted in silico, the histone deacetylase inhibitor vorinostat normalized gene expression patterns, rescuing the suppressive function of FOXP3+ cells in vitro. CONCLUSIONS We identified a novel, proinflammatory FOXP3+ T cell subpopulation in patients with CD and developed a pipeline to specifically target these cells using the US Food and Drug Administration-approved drug vorinostat.
Collapse
Affiliation(s)
- Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Michelle M Gonzalez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota; Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center, Tübingen, Germany
| | - Luísa Leite Barros
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mary R Sagstetter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Asha Nair
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | - Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, Minnesota
| | - Feda H Hamdan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Hunter R Gibbons
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Brooke R Druliner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - William A Faubion
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
21
|
Mensink M, Verleng LJ, Schrama E, Janssen GM, Tjokrodirijo RT, van Veelen PA, Jiang Q, Pascutti MF, van der Hoorn ML, Eikmans M, de Kivit S, Borst J. Tregs from human blood differentiate into nonlymphoid tissue-resident effector cells upon TNFR2 costimulation. JCI Insight 2024; 9:e172942. [PMID: 38341270 PMCID: PMC10972588 DOI: 10.1172/jci.insight.172942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Tregs can facilitate transplant tolerance and attenuate autoimmune and inflammatory diseases. Therefore, it is clinically relevant to stimulate Treg expansion and function in vivo and to create therapeutic Treg products in vitro. We report that TNF receptor 2 (TNFR2) is a unique costimulus for naive, thymus-derived Tregs (tTregs) from human blood that promotes their differentiation into nonlymphoid tissue-resident (NLT-resident) effector Tregs, without Th-like polarization. In contrast, CD28 costimulation maintains a lymphoid tissue-resident (LT-resident) Treg phenotype. We base this conclusion on transcriptome and proteome analysis of TNFR2- and CD28-costimulated CD4+ tTregs and conventional T cells (Tconvs), followed by bioinformatic comparison with published transcriptomic Treg signatures from NLT and LT in health and disease, including autoimmunity and cancer. These analyses illuminate that TNFR2 costimulation promoted tTreg capacity for survival, migration, immunosuppression, and tissue regeneration. Functional studies confirmed improved migratory ability of TNFR2-costimulated tTregs. Flow cytometry validated the presence of the TNFR2-driven tTreg signature in effector/memory Tregs from the human placenta, as opposed to blood. Thus, TNFR2 can be exploited as a driver of NLT-resident tTreg differentiation for adoptive cell therapy or antibody-based immunomodulation in human disease.
Collapse
|
22
|
Yahsi B, Palaz F, Dincer P. Applications of CRISPR Epigenome Editors in Tumor Immunology and Autoimmunity. ACS Synth Biol 2024; 13:413-427. [PMID: 38298016 DOI: 10.1021/acssynbio.3c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Over the past decade, CRISPR-Cas systems have become indispensable tools for genetic engineering and have been used in clinical trials for various diseases. Beyond genome editing, CRISPR-Cas systems can also be used for performing programmable epigenetic modifications. Recent efforts in enhancing CRISPR-based epigenome modifiers have yielded potent tools enabling targeted DNA methylation/demethylation capable of sustaining epigenetic memory through numerous cell divisions. Moreover, it has been understood that during chronic inflammatory states, including cancer, T cells encounter a state called T cell exhaustion that involves elevated inhibitory receptors (e.g., LAG-3, TIM3, PD-1, CD39) and reduced effector T cell-related protein levels (IFN-γ, granzyme B, and perforin). Importantly, epigenetic dysregulation has been identified as one of the key drivers of T cell exhaustion, and it remains one of the biggest obstacles in the field of immunotherapy and decreases the efficiency of chimeric antigen receptor T (CAR-T) cell therapy. Similarly, autoimmune diseases exhibit epigenetically dysfunctional regulatory T (Treg) cells. For instance, FOXP3 intronic regions, known as conserved noncoding sequences, display hypomethylation in healthy states but hypermethylation in pathological contexts. Therefore, the reversal of epigenetic dysregulation in cancer and autoimmune diseases using CRISPR-based epigenome modifiers has important therapeutic implications. In this review, we outline the progressive refinement of CRISPR-based epigenome modifiers and explore their potential therapeutic applications in tumor immunology and autoimmunity.
Collapse
Affiliation(s)
- Berkay Yahsi
- Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Pervin Dincer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
23
|
Gao Z, Sheng T, Zhang W, Feng H, Yu J, Gu Z, Zhang Y. Microneedle-Mediated Cell Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304124. [PMID: 37899686 PMCID: PMC10885673 DOI: 10.1002/advs.202304124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Microneedles have emerged as a promising platform for transdermal drug delivery with prominent advantages, such as enhanced permeability, mitigated pain, and improved patient adherence. While microneedles have primarily been employed for delivering small molecules, nucleic acids, peptides, and proteins, recent researches have demonstrated their prospect in combination with cell therapy. Cell therapy involving administration or transplantation of living cells (e.g. T cells, stem cells, and pancreatic cells) has gained significant attention in preclinical and clinical applications for various disease treatments. However, the effectiveness of systemic cell delivery may be restricted in localized conditions like solid tumors and skin disorders due to limited penetration and accumulation into the lesions. In this perspective, an overview of recent advances in microneedle-assisted cell delivery for immunotherapy, tissue regeneration, and hormone modulation, with respect to their mechanical property, cell loading capacity, as well as viability and bioactivity of the loaded cells is provided. Potential challenges and future perspectives with microneedle-mediated cell therapy are also discussed.
Collapse
Affiliation(s)
- Ziqi Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Wentao Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Huiheng Feng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
- Jinhua Institute of Zhejiang UniversityJinhua321299China
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
- National Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang UniversityHangzhou310058China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
- Jinhua Institute of Zhejiang UniversityJinhua321299China
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
- National Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang UniversityHangzhou310058China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- National Key Laboratory of Advanced Drug Delivery and Release SystemsZhejiang UniversityHangzhou310058China
- Department of Burns and Wound Care CenterSecond Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| |
Collapse
|
24
|
Jiang T, Xiang X, Wang X, Han Z, Cheng C, Zhu Y, Yang Z, Liang Y. Role of regulatory T cells in pathogenesis and therapeutics of primary biliary cholangitis and primary sclerosing cholangitis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:433-452. [DOI: 10.1016/b978-0-443-13947-5.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
26
|
Elsaghir A, El-Sabaa EMW, Zahran AM, Mandour SA, Salama EH, Aboulfotuh S, El-Morshedy RM, Tocci S, Mandour AM, Ali WE, Abdel-Wahid L, Sayed IM, El-Mokhtar MA. Elevated CD39+T-Regulatory Cells and Reduced Levels of Adenosine Indicate a Role for Tolerogenic Signals in the Progression from Moderate to Severe COVID-19. Int J Mol Sci 2023; 24:17614. [PMID: 38139439 PMCID: PMC10744088 DOI: 10.3390/ijms242417614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-β were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-β levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Reham M. El-Morshedy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ahmed Mohamed Mandour
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
27
|
Lyu H, Yuan G, Liu X, Wang X, Geng S, Xia T, Zhou X, Li Y, Hu X, Shi Y. Sustained store-operated calcium entry utilizing activated chromatin state leads to instability in iTregs. eLife 2023; 12:RP88874. [PMID: 38055613 PMCID: PMC10699804 DOI: 10.7554/elife.88874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Thymus-originated tTregs and in vitro induced iTregs are subsets of regulatory T cells. While they share the capacity of immune suppression, their stabilities are different, with iTregs losing their phenotype upon stimulation or under inflammatory milieu. Epigenetic differences, particularly methylation state of Foxp3 CNS2 region, provide an explanation for this shift. Whether additional regulations, including cellular signaling, could directly lead phenotypical instability requires further analysis. Here, we show that upon TCR (T cell receptor) triggering, SOCE (store-operated calcium entry) and NFAT (nuclear factor of activated T cells) nuclear translocation are blunted in tTregs, yet fully operational in iTregs, similar to Tconvs. On the other hand, tTregs show minimal changes in their chromatin accessibility upon activation, in contrast to iTregs that demonstrate an activated chromatin state with highly accessible T cell activation and inflammation related genes. Assisted by several cofactors, NFAT driven by strong SOCE signaling in iTregs preferentially binds to primed-opened T helper (TH) genes, resulting in their activation normally observed only in Tconv activation, ultimately leads to instability. Conversely, suppression of SOCE in iTregs can partially rescue their phenotype. Thus, our study adds two new layers, cellular signaling and chromatin accessibility, of understanding in Treg stability, and may provide a path for better clinical applications of Treg cell therapy.
Collapse
Affiliation(s)
- Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
| | - Guohua Yuan
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xinyi Liu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaobo Wang
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| | - Tie Xia
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xuyu Zhou
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yinqing Li
- IDG/McGovern Institute for Brain Research and School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Yan Shi
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
28
|
Titcombe PJ, Silva Morales M, Zhang N, Mueller DL. BATF represses BIM to sustain tolerant T cells in the periphery. J Exp Med 2023; 220:e20230183. [PMID: 37862030 PMCID: PMC10588758 DOI: 10.1084/jem.20230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/13/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
T cells that encounter self-antigens after exiting the thymus avert autoimmunity through peripheral tolerance. Pathways for this include an unresponsive state known as anergy, clonal deletion, and T regulatory (Treg) cell induction. The transcription factor cues and kinetics that guide distinct peripheral tolerance outcomes remain unclear. Here, we found that anergic T cells are epigenetically primed for regulation by the non-classical AP-1 family member BATF. Tolerized BATF-deficient CD4+ T cells were resistant to anergy induction and instead underwent clonal deletion due to proapoptotic BIM (Bcl2l11) upregulation. During prolonged antigen exposure, BIM derepression resulted in fewer PD-1+ conventional T cells as well as loss of peripherally induced FOXP3+ Treg cells. Simultaneous Batf and Bcl2l11 knockdown meanwhile restored anergic T cell survival and Treg cell maintenance. The data identify the AP-1 nuclear factor BATF as a dominant driver of sustained T cell anergy and illustrate a mechanism for divergent peripheral tolerance fates.
Collapse
Affiliation(s)
- Philip J. Titcombe
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Milagros Silva Morales
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Na Zhang
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L. Mueller
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
29
|
Liang Y, Wang L, Ma P, Ju D, Zhao M, Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front Immunol 2023; 14:1308264. [PMID: 38077327 PMCID: PMC10704038 DOI: 10.3389/fimmu.2023.1308264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic mechanisms are processes that affect gene expression and cellular functions without involving changes in the DNA sequence. This abnormal or unstable expression of genes regulated by epigenetics can trigger cancer and other various diseases. The immune cells involved in anti-tumor responses and the immunogenicity of tumors may also be affected by epigenomic changes. This holds significant implications for the development and application of cancer immunotherapy, epigenetic therapy, and their combined treatments in the fight against cancer. We provide an overview of recent research literature focusing on how epigenomic changes in immune cells influence immune cell behavior and function, as well as the immunogenicity of cancer cells. And the combined utilization of epigenetic medications with immune checkpoint inhibitors that focus on immune checkpoint molecules [e.g., Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4), T cell Immunoglobulin and Mucin Domain (TIM-3), Lymphocyte Activation Gene-3 (LAG-3)] present in immune cells and stromal cells associated with tumors. We highlight the potential of small-molecule inhibitors targeting epigenetic regulators to amplify anti-tumor immune responses. Moreover, we discuss how to leverage the intricate relationship between cancer epigenetics and cancer immunology to create treatment regimens that integrate epigenetic therapies with immunotherapies.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lingling Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuhan, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yun Shi
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
30
|
Liu X, Han J, Cui R, Peng M, Song H, Li R, Chen G. The Promotion of Humoral Immune Responses in Humans via SOCS1-Mediated Th2-Bias Following SARS-CoV-2 Vaccination. Vaccines (Basel) 2023; 11:1730. [PMID: 38006062 PMCID: PMC10674672 DOI: 10.3390/vaccines11111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The effectiveness of SARS-CoV-2 vaccines varies among individuals. During the COVID-19 global pandemic, SARS-CoV-2 infection showed significant Th1 characteristics, suggesting that the immune disorder and production of SARS-CoV-2 antibodies may be related to Th1/Th2 bias. However, the molecular mechanisms underlying Th1/Th2 bias effects on host immune responses to viruses remain unclear. In this study, the top three subjects with the highest and lowest changes in anti-SARS-CoV-2 antibodies after receiving three doses of SARS-CoV-2 vaccination were selected and defined as the elevated group (E) and the control group (C), respectively. Peripheral blood was collected, single-cell sequencing was performed before and after the third dose of the SARS-CoV-2 vaccine, and the changes in T cell clusters were analyzed. Compared with the C group, the Treg pre-vaccination proportion was lower in E, while the post-vaccination proportion was higher, suggesting that Tregs may be crucial in this process. Differential analysis results of Tregs between the two groups revealed that differentially expressed genes (DEGs) were significantly enriched in the IL4 pathway. Correlation analysis between DEGs and serum antibody showed that the expression of NR4A2, SOCS1, and SOCS3 in Tregs was significantly correlated with serum antibodies, suggesting that the immune response in E group changed to Th2 bias, thereby promoting host humoral immune responses. On the other hand, antibody-related genes SOCS1 and NR4A2, as well as lnc-RNA MALAT1 and NEAT1, were highly expressed in the CD4-MALAT1 subclusters. In summary, our study revealed that Th2 bias promotes humoral immune responses in humans by increasing SOCS1 in T cells after SARS-CoV-2 vaccination. Moreover, NR4A2, SOCS1, MALAT1, and NEAT1 were identified as the potential key biomarkers or treatment targets for enhanced SARS-CoV-2 antibody production by influencing the Th1/Th2 balance in T cells. Our findings have important implications for population stratification and tailored therapeutics for more effective SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
| | - Renjie Cui
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Meifang Peng
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
- Department of Endocrinology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostic & Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China; (X.L.); (R.C.); (M.P.); (H.S.)
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China;
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
31
|
Kustrimovic N, Gallo D, Piantanida E, Bartalena L, Lai A, Zerbinati N, Tanda ML, Mortara L. Regulatory T Cells in the Pathogenesis of Graves' Disease. Int J Mol Sci 2023; 24:16432. [PMID: 38003622 PMCID: PMC10671795 DOI: 10.3390/ijms242216432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Maintaining a delicate balance between the prompt immune response to pathogens and tolerance towards self-antigens and commensals is crucial for health. T regulatory (Treg) cells are pivotal in preserving self-tolerance, serving as negative regulators of inflammation through the secretion of anti-inflammatory cytokines, interleukin-2 neutralization, and direct suppression of effector T cells. Graves' disease (GD) is a thyroid-specific autoimmune disorder primarily attributed to the breakdown of tolerance to the thyroid-stimulating hormone receptor. Given the limitations of currently available GD treatments, identifying potential pathogenetic factors for pharmacological targeting is of paramount importance. Both functional impairment and frequency reduction of Tregs seem likely in GD pathogenesis. Genome-wide association studies in GD have identified polymorphisms of genes involved in Tregs' functions, such as CD25 (interleukin 2 receptor), and Forkhead box protein P3 (FOXP3). Clinical studies have reported both functional impairment and a reduction in Treg frequency or suppressive actions in GD, although their precise involvement remains a subject of debate. This review begins with an overview of Treg phenotype and functions, subsequently delves into the pathophysiology of GD and into the existing literature concerning the role of Tregs and the balance between Tregs and T helper 17 cells in GD, and finally explores the ongoing studies on target therapies for GD.
Collapse
Affiliation(s)
- Natasa Kustrimovic
- Center for Translational Research on Autoimmune and Allergic Disease—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Gallo
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Eliana Piantanida
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Luigi Bartalena
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Adriana Lai
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Nicola Zerbinati
- Dermatology Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy
| | - Maria Laura Tanda
- Endocrine Unit, Department of Medicine and Surgery, University of Insubria, ASST dei Sette Laghi, 21100 Varese, Italy (M.L.T.)
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
32
|
Volpini C, Bloise N, Dominoni M, Barra F, Vellone VG, Minzioni P, Gardella B, Ferrero S, Visai L. The nano-revolution in the diagnosis and treatment of endometriosis. NANOSCALE 2023; 15:17313-17325. [PMID: 37874212 DOI: 10.1039/d3nr03527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endometriosis is a painful gynecological disease with a high prevalence, affecting millions of women worldwide. Innovative, non-invasive treatments, and new patient follow-up strategies are needed to deal with the harmful social and economic effects. In this scenario, considering the recent, very promising results already reported in the literature, a commitment to new research in the field of nanomedicine is urgently needed. Study findings clearly show the potential of this approach in both the diagnostic and therapeutic phases of endometriosis. Here, we offer a brief review of the recent exciting and effective applications of nanomedicine in both the diagnosis and therapy of endometriosis. Special emphasis will be placed on the emerging theranostic application of nanoproducts, and the combination of phototherapy and nanotechnology as new therapeutic modalities for endometriosis. The review will also provide interested readers with a guide to the selection process and parameters to consider when designing research into this type of approach.
Collapse
Affiliation(s)
- Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| | - Mattia Dominoni
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valerio Gaetano Vellone
- Anatomia Patologica Universitaria, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), Università di Genova, Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Barbara Gardella
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy.
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- DINOGMI, University of Genova, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
- Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), University of Pavia Unit, Italy
| |
Collapse
|
33
|
Benamar M, Chen Q, Martinez-Blanco M, Chatila TA. Regulatory T cells in allergic inflammation. Semin Immunol 2023; 70:101847. [PMID: 37837939 PMCID: PMC10842049 DOI: 10.1016/j.smim.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue-protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide novel therapeutic strategies by re-establishing effective immune regulation.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Lead Contact, USA.
| |
Collapse
|
34
|
Chen Z, Zhang Y, Kwak-Kim J, Wang W. Memory regulatory T cells in pregnancy. Front Immunol 2023; 14:1209706. [PMID: 37954599 PMCID: PMC10637476 DOI: 10.3389/fimmu.2023.1209706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Pregnancy requires the process of maternal immune tolerance to semi-allogeneic embryos. In contrast, an overreactive maternal immune system to embryo-specific antigens is likely to result in the rejection of embryos while damaging the invading placenta, such that the likelihood of adverse pregnancy outcomes can be increased. Regulatory T cells (Tregs) are capable of suppressing excessive immune responses and regulating immune homeostasis. When stimulating Tregs, specific antigens will differentiate into memory Tregs with long-term survival and rapid and powerful immune regulatory ability. Immunomodulatory effects mediated by memory Tregs at the maternal-fetal interface take on critical significance in a successful pregnancy. The impaired function of memory Tregs shows a correlation with various pregnancy complications (e.g., preeclampsia, gestational diabetes mellitus, and recurrent pregnancy losses). However, the differentiation process and characteristics of memory Tregs, especially their role in pregnancy, remain unclear. In this study, a review is presented in terms of memory Tregs differentiation and activation, the characteristics of memory Tregs and their role in pregnancy, and the correlation between memory Tregs and pregnancy complications. Furthermore, several potential therapeutic methods are investigated to restore the function of memory Tregs in accordance with immunopathologies arising from memory Tregs abnormalities and provide novel targets for diagnosing and treating pregnancy-associated diseases.
Collapse
Affiliation(s)
- Zeyang Chen
- School of Medicine, Qingdao University, Qingdao, China
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanan Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Hore Z, Royds J, Abuukar Abdullahi R, Lampa J, Al-Kaisy A, Denk F. Cerebrospinal fluid immune cells appear similar across neuropathic and non-neuropathic pain conditions. Wellcome Open Res 2023; 8:493. [PMID: 38707493 PMCID: PMC11069048 DOI: 10.12688/wellcomeopenres.20153.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 05/07/2024] Open
Abstract
Background Microglia have been implicated in the pathophysiology of neuropathic pain. Here, we sought to investigate whether cerebrospinal fluid (CSF) might be used as a proxy-measure of microglial activation in human participants. Methods We preformed fluorescence-activated cell sorting (FACS) of CSF immune cell populations derived from individuals who experienced pain with neuropathic features. We sorted CD4+, CD8+ T cells and monocytes and analyzed their transcriptome using RNA sequencing. We also performed Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing to characterize the expression of all CSF immune cells in a patient with postherpetic neuralgia and in a patient with neuropathic pain after failed back surgery. Results Immune cell numbers and phenotypes were not obviously different between individuals regardless of the etiology of their pain. This was true when examining our own dataset, as well as when comparing it to previously published single-cell RNA sequencing data of human CSF. In all instances, CSF monocytes showed expression of myeloid cell markers commonly associated with microglia ( P2RY12, TMEM119 and OLFML3), which will make it difficult to ascertain the origin of CSF proteins: do they derive directly from circulating CSF monocytes or could some originate in spinal cord microglia in the parenchyma? Conclusions We conclude that it will not be straightforward to use CSF as a biomarker for microglial function in humans.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| | - Jonathan Royds
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | | | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adnan Al-Kaisy
- Guy’s and St Thomas’ Chronic Pain Department, St Thomas Hospital, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, London, England, UK
| |
Collapse
|
36
|
Khatun A, Wu X, Qi F, Gai K, Kharel A, Kudek MR, Fraser L, Ceicko A, Kasmani MY, Majnik A, Burns R, Chen Y, Salzman N, Taparowsky EJ, Fang D, Williams CB, Cui W. BATF is Required for Treg Homeostasis and Stability to Prevent Autoimmune Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206692. [PMID: 37587835 PMCID: PMC10558681 DOI: 10.1002/advs.202206692] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Regulatory T (Treg) cells are inevitable to prevent deleterious immune responses to self and commensal microorganisms. Treg function requires continuous expression of the transcription factor (TF) FOXP3 and is divided into two major subsets: resting (rTregs) and activated (aTregs). Continuous T cell receptor (TCR) signaling plays a vital role in the differentiation of aTregs from their resting state, and in their immune homeostasis. The process by which Tregs differentiate, adapt tissue specificity, and maintain stable phenotypic expression at the transcriptional level is still inconclusivei. In this work, the role of BATF is investigated, which is induced in response to TCR stimulation in naïve T cells and during aTreg differentiation. Mice lacking BATF in Tregs developed multiorgan autoimmune pathology. As a transcriptional regulator, BATF is required for Treg differentiation, homeostasis, and stabilization of FOXP3 expression in different lymphoid and non-lymphoid tissues. Epigenetically, BATF showed direct regulation of Treg-specific genes involved in differentiation, maturation, and tissue accumulation. Most importantly, FOXP3 expression and Treg stability require continuous BATF expression in Tregs, as it regulates demethylation and accessibility of the CNS2 region of the Foxp3 locus. Considering its role in Treg stability, BATF should be considered an important therapeutic target in autoimmune disease.
Collapse
Affiliation(s)
- Achia Khatun
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Xiaopeng Wu
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Fu Qi
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Kexin Gai
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Arjun Kharel
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Matthew R. Kudek
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Lisa Fraser
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Ashley Ceicko
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Moujtaba Y. Kasmani
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Amber Majnik
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Robert Burns
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Yi‐Guang Chen
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Max McGee National Research Center for Juvenile DiabetesMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Nita Salzman
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | | | - Dayu Fang
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Calvin B. Williams
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| |
Collapse
|
37
|
Wang J, Zhu M, Jiao C, Xu X, Xu F, Liang D, Liu Z, Chen Y, Zhang H. Association of regulatory T cells with renal outcomes in patients with proliferative lupus nephritis. Lupus 2023; 32:1237-1244. [PMID: 37695664 DOI: 10.1177/09612033231201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Despite progress in the diagnosis and treatment of proliferative lupus nephritis (PLN), the prognosis remains unfavorable. Previous investigations have suggested that the deficiency of regulatory T cells (Tregs) is involved in the pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis (LN). But the prognostic value of Tregs in PLN remains controversial. This study aimed to investigate the association of Tregs with renal outcomes in patients with PLN. METHODS The baseline and follow-up data of patients with biopsy-proven PLN were collected in this study. All patients were divided into two groups according to whether the renal endpoint event occurred. Clinicopathologic features and therapeutic responses were compared between the two groups. Cox regression analyses curve fitting and threshold effect analysis were implemented to investigate the relationship between Tregs level and the long-term renal outcomes. The renal endpoint was defined as end-stage kidney disease (ESKD) or doubling the SCr value. RESULTS A total of 405 PLN patients were included. After a follow-up of 71.53 (53.13-97.47) months, 42 (10.4%) patients reached the renal endpoint. The Treg cell counts (16/μL) in the renal endpoint group were significantly decreased than that in the non-renal endpoint group (p < 0.001). Univariate and multivariate Cox regression analyses showed that the high level of Tregs was an independent protective factor for the long-term renal prognosis of PLN. Smooth curve fitting of the generalized additive mixed model analysis indicated that the risk of renal endpoint first decreased with Tregs and then slightly increased along with Treg cell levels. The segmented linear model revealed that when Treg cell counts <46/μL, the risk of renal endpoint decreased by 6.8% for every 1 μL increase in Treg levels (p = 0.0029). CONCLUSION Treg cell counts are closely related to the long-term renal outcomes of patients with PLN, and increasing Treg cell levels may play an important role in improving the prognosis of the kidney, but there may be a turning point (i.e., threshold effect) at the Treg cell counts that leads to directional changes in the renal outcomes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengyue Zhu
- Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chenfeng Jiao
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhengzhao Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yinghua Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haitao Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
39
|
Li D, Quan Z, Ni J, Li H, Qing H. The many faces of the zinc finger protein 335 in brain development and immune system. Biomed Pharmacother 2023; 165:115257. [PMID: 37541176 DOI: 10.1016/j.biopha.2023.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Zinc finger protein 335 (ZNF335) plays a crucial role in the methylation and, consequently, regulates the expression of a specific set of genes. Variants of the ZNF335 gene have been identified as risk factors for microcephaly in a variety of populations worldwide. Meanwhile, ZNF335 has also been identified as an essential regulator of T-cell development. However, an in-depth understanding of the role of ZNF335 in brain development and T cell maturation is still lacking. In this review, we summarize current knowledge of the molecular mechanisms underlying the involvement of ZNF335 in neuronal and T cell development across a wide range of pre-clinical, post-mortem, ex vivo, in vivo, and clinical studies. We also review the current limitations regarding the study of the pathophysiological functions of ZNF335. Finally, we hypothesize a potential role for ZNF335 in brain disorders and discuss the rationale of targeting ZNF335 as a therapeutic strategy for preventing brain disorders.
Collapse
Affiliation(s)
- Danyang Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
40
|
Chen G, Zeng M, Liu Z, Zhou M, Zha J, Zhang L, Chen H, Liu H. The kinetics of mTORC1 activation associates with FOXP3 expression pattern of CD4+ T cells and outcome of steroid-sensitive minimal change disease. Int Immunopharmacol 2023; 122:110589. [PMID: 37418986 DOI: 10.1016/j.intimp.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Minimal change disease (MCD) usually responds to glucocorticoids (GCs) but relapses in most cases. Relapse pathogenesis after complete remission (CR) remains unclear. We hypothesized that FOXP3+ T regulatory cell (Treg) dysregulation may drive early relapses (ER). In this study, a cohort of 23 MCD patients were treated with a conventional GC regimen for the initial onset of nephrotic syndrome. Upon GC withdrawal, seven patients suffered from ER, while 16 patients sustained remission (SR) during the 12-month follow-up. Patients with ER had reduced FOXP3+ Treg proportions compared with healthy controls. Treg reduction, accompanied by IL-10 impairment, was ascribed to a proportional decline of FOXP3medium rather than FOXP3high cells. GC-induced CR was marked by a rise in the proportions of FOXP3+ and FOXP3medium cells compared to baseline levels. These increases declined in patients with ER. The expression level of phosphorylated ribosomal protein S6 was used to track the dynamic shifts in mTORC1 activity within CD4+ T cells of MCD patients at various stages of treatment. Baseline mTORC1 activity was inversely correlated with FOXP3+ and FOXP3medium Treg proportion. The mTORC1 activity in CD4+ T cells served as a reliable indicator for ER and demonstrated improved performance when paired with FOXP3 expression. Mechanically, targeting mTORC1 intervention by siRNAs sufficiently altered the conversion pattern of CD4+ T cell to FOXP3+ Treg. Taken together, the activity of mTORC1 in CD4+ T cells can act as a credible predictor for ER in MCD, especially when combined with FOXP3 expression, and may offer a potential therapeutic avenue for the treatment of podocytopathies.
Collapse
Affiliation(s)
- Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mi Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
41
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
42
|
Muth KN, Rech J, Losch FO, Hoerning A. Reversing the Inflammatory Process-25 Years of Tumor Necrosis Factor-α Inhibitors. J Clin Med 2023; 12:5039. [PMID: 37568441 PMCID: PMC10419406 DOI: 10.3390/jcm12155039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Immune-mediated inflammatory diseases, such as rheumatoid arthritis, psoriatic arthritis, peripheral and/or axial spondyloarthritis, Crohn's disease, and ulcerative colitis, are characterized by molecular and cellular changes in the immune system. Due to the systemic nature of these diseases, organs such as the liver or cardiovascular system are often affected by the inflammatory process. Tumor necrosis factor-α inhibitor therapy reduces the activation of pro-inflammatory signaling cascades, mitigates the chronic inflammatory process by restoring cellular balance, and alleviates clinical consequences, such as pain and tissue damage.
Collapse
Affiliation(s)
| | - Juergen Rech
- Department of Internal Medicine III, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | | | - André Hoerning
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Clinic for Children and Adolescent Medicine, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
43
|
Jovisic M, Mambetsariev N, Singer BD, Morales-Nebreda L. Differential roles of regulatory T cells in acute respiratory infections. J Clin Invest 2023; 133:e170505. [PMID: 37463441 PMCID: PMC10348770 DOI: 10.1172/jci170505] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.
Collapse
Affiliation(s)
- Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| | | | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
- Department of Biochemistry and Molecular Genetics, and
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
- Simpson Querrey Lung Institute for Translational Science
| |
Collapse
|
44
|
Valentini N, Requejo Cier CJ, Lamarche C. Regulatory T-cell dysfunction and its implication for cell therapy. Clin Exp Immunol 2023; 213:40-49. [PMID: 37158407 PMCID: PMC10324551 DOI: 10.1093/cei/uxad051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Regulatory T cells (Tregs) are a subtype of CD4+ T cells that can mediate immune tolerance by a multitude of immunomodulatory mechanisms. Treg-based adoptive immunotherapy is currently being tested in multiple phases I and II clinical trials in transplantation and autoimmune diseases. We have learned from the work done on conventional T cells that distinct mechanistic states can define their dysfunctions, such as exhaustion, senescence, and anergy. All three can negatively impact the therapeutic effectiveness of T-cell-based therapies. However, whether Tregs are susceptible to such dysfunctional states is not well studied, and results are sometimes found to be controversial. In addition, Treg instability and loss of FOXP3 expression is another Treg-specific dysfunction that can decreasein their suppressive potential. A better understanding of Treg biology and pathological states will be needed to compare and interpret the results of the different clinical and preclinical trials. We will review herein Tregs' mechanisms of action, describe different T-cell dysfunction subtypes and how and if they apply to Tregs (exhaustion, senescence, anergy, and instability), and finally how this knowledge should be taken into consideration when designing and interpreting Treg adoptive immunotherapy trials.
Collapse
Affiliation(s)
- Nicolas Valentini
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Université de Montréal, Montreal, QC, Canada
| | - Christopher J Requejo Cier
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Medicine Department, Hôpital Maisonneuve-Rosemont Research Center, Montreal, QC, Canada
- Medicine Department, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
45
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
46
|
Tamargo CL, Kant S. Pathophysiology of Rejection in Kidney Transplantation. J Clin Med 2023; 12:4130. [PMID: 37373823 PMCID: PMC10299312 DOI: 10.3390/jcm12124130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation has been the optimal treatment for end-stage kidney disease for almost 70 years, with increasing frequency over this period. Despite the prevalence of the procedure, allograft rejection continues to impact transplant recipients, with consequences ranging from hospitalization to allograft failure. Rates of rejection have declined over time, which has been largely attributed to developments in immunosuppressive therapy, understanding of the immune system, and monitoring. Developments in these therapies, as well as an improved understanding of rejection risk and the epidemiology of rejection, are dependent on a foundational understanding of the pathophysiology of rejection. This review explains the interconnected mechanisms behind antibody-mediated and T-cell-mediated rejection and highlights how these processes contribute to outcomes and can inform future progress.
Collapse
Affiliation(s)
- Christina L. Tamargo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Sam Kant
- Division of Nephrology & Comprehensive Transplant Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
47
|
Henschel P, Landwehr-Kenzel S, Engels N, Schienke A, Kremer J, Riet T, Redel N, Iordanidis K, Saetzler V, John K, Heider M, Hardtke-Wolenski M, Wedemeyer H, Jaeckel E, Noyan F. Supraphysiological FOXP3 expression in human CAR-Tregs results in improved stability, efficacy, and safety of CAR-Treg products for clinical application. J Autoimmun 2023; 138:103057. [PMID: 37224732 DOI: 10.1016/j.jaut.2023.103057] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The forkhead family transcription factor (FOXP3) is an essential regulator for the development of regulatory T cells (Tregs) and orchestrates both suppressive function and Treg lineage identity. Stable expression of FOXP3 enables Tregs to maintain immune homeostasis and prevent autoimmunity. However, under pro-inflammatory conditions, FOXP3 expression in Tregs can become unstable, leading to loss of suppressive function and conversion into pathogenic T effector cells. Therefore, the success of adoptive cell therapy with chimeric antigen receptor (CAR) Tregs is highly dependent on the stability of FOXP3 expression to ensure the safety of the cell product. To warrant the stable expression of FOXP3 in CAR-Treg products, we have developed an HLA-A2-specific CAR vector that co-expresses FOXP3. The transduction of isolated human Tregs with the FOXP3-CAR led to an increase in the safety and efficacy of the CAR-Treg product. In a hostile microenvironment, under pro-inflammatory and IL-2-deficient conditions, FOXP3-CAR-Tregs showed a stable expression of FOXP3 compared to Control-CAR-Tregs. Furthermore, additional exogenous expression of FOXP3 did not induce phenotypic alterations and dysfunctions such as cell exhaustion, loss of functional Treg characteristics or abnormal cytokine secretion. In a humanized mouse model, FOXP3-CAR-Tregs displayed an excellent ability to prevent allograft rejection. Furthermore, FOXP3-CAR-Tregs revealed coherent Treg niche-filling capabilities. Overexpression of FOXP3 in CAR-Tregs has thereby the potential to increase the efficacy and reliability of cellular products, promoting their clinical use in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Pierre Henschel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sybille Landwehr-Kenzel
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Niklas Engels
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Goettingen, Germany
| | - Andrea Schienke
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jakob Kremer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Riet
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department I of Internal Medicine, Tumor Genetics, University Hospital of Cologne and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Nella Redel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Valerie Saetzler
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katharina John
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Miriam Heider
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Institute of Medical Microbiology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Department of Liver Transplantation, Multi Organ Transplant Program, University Health Network, Toronto, University of Toronto, Canada
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
48
|
Zhang W, Chen Y, Zhao Z, Zheng H, Wang S, Liao Z, Sheng T, Zhao S, Hou W, Yu X, He F, Yu J, Zhang Y, Gu Z. Adoptive T reg therapy with metabolic intervention via perforated microneedles ameliorates psoriasis syndrome. SCIENCE ADVANCES 2023; 9:eadg6007. [PMID: 37196084 PMCID: PMC11803960 DOI: 10.1126/sciadv.adg6007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Regulatory T (Treg) cells underlie multiple autoimmune disorders and potentialize an anti-inflammation treatment with adoptive cell therapy. However, systemic delivery of cellular therapeutics often lacks tissue targeting and accumulation for localized autoimmune diseases. Besides, the instability and plasticity of Treg cells also induce phenotype transition and functional loss, impeding clinical translation. Here, we developed a perforated microneedle (PMN) with favorable mechanical performance and a spacious encapsulation cavity to support cell survival, as well as tunable channels to facilitate cell migration for local Treg therapy of psoriasis. In addition, the enzyme-degradable microneedle matrix could release fatty acid in the hyperinflammatory area of psoriasis, enhancing the Treg suppressive functions via the fatty acid oxidation (FAO)-mediated metabolic intervention. Treg cells administered through PMN substantially ameliorated psoriasis syndrome with the assistance of fatty acid-mediated metabolic intervention in a psoriasis mouse model. This tailorable PMN could offer a transformative platform for local cell therapy to treat a variety of diseases.
Collapse
Affiliation(s)
- Wentao Zhang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingxin Chen
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhengjie Zhao
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hanqi Zheng
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziyan Liao
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sheng
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Zhao
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Hou
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinmin Yu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang He
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhen Gu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
49
|
Maharana PK, Mandal S, Kaweri L, Sahay P, Lata S, Asif MI, Nagpal R, Sharma N. Immunopathogenesis of corneal graft rejection. Indian J Ophthalmol 2023; 71:1733-1738. [PMID: 37203024 PMCID: PMC10391393 DOI: 10.4103/ijo.ijo_2866_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
The most common cause of corneal graft failure is corneal graft rejection (CGR). Although cornea is one of the immune-privileged sites, it can still get a rejection episode due to a breach in its natural protective mechanism. Both anatomical and structural properties of cornea and anterior chamber contribute toward its immune tolerance. Clinically, every layer of the transplanted cornea can get a rejection episode. A proper understanding of immunopathogenesis will help in understanding the various mechanism of CGR and the development of newer strategies for the prevention and management of such cases.
Collapse
Affiliation(s)
- Prafulla Kumar Maharana
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sohini Mandal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Luci Kaweri
- Consultant, Department of Ophthalmology, Narayan Nethralaya, Bengaluru, Karnataka, India
| | - Pranita Sahay
- Department of Ophthalmology, Centre for Sight Eye Hospital, New Delhi, India
| | - Suman Lata
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ritu Nagpal
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Sharma
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Liu Y, Yuan Y, Zhou Z, Jiang X, He S, Wei F, Cui Y, Yang L, Zhao G. Mettl14 sustains FOXP3 expression to promote the differentiation and functions of induced-regulatory T cells via the mTOR signaling pathway. Immunol Lett 2023; 258:35-44. [PMID: 37121553 DOI: 10.1016/j.imlet.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/23/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Induced regulatory T cell (iTregs) can be generated in vitro. Thus, iTregs-based therapeutics are receiving increased attention for their potential to treat autoimmune diseases and prevent transplant rejection. However, iTregs fail to maintain FoxP3 expression and suppressive activity, which limits their clinical application. Increasing lines of evidence suggest that methyltransferase-like 14 (METTL14), a critical component of the m6A writer complex, regulates the stability and function of the Treg cells. However, beyond meeting the epigenetic modification of Treg cells, whether Mettl14 plays a role in the fate determination of iTregs is unclear. Here, we systemically investigated the potential function of METTL14 in iTregs differentiation and regulatory activity. In our study, iTregs were generated from CD4+ naïve T cells under iTreg-polarizing conditions, we found that the expression of METTL14 was increased in iTregs compared with CD4+ naïve T cells. Subsequently, the expression of METTL14 was knocked down by siRNA-METTL14 interference in CD4+ naïve T cells and cultured under iTreg-polarizing conditions. According to the results, Mettl14 deficiency resulted in the disruption of iTregs differentiation evidenced by the limited FoxP3 expression. Meanwhile, inflammatory cytokines such as IFN-γ and IL-17a were upregulated in cultured iTregs. We next determined the functional change in METTL14-deficient iTregs. The results of the colitis development in Rag1-/- mice and CFSE assays revealed that loss of METTL14 significantly compromised the suppressive function of iTregs in vivo and in vitro. We further checked the altered signaling pathway in METTL14-deficient iTregs. We found that reduced METTL14 leads to activation of the mTOR pathway with increased p-mTOR and p-p70S6K, which are known to modulate the suppressive function of iTregs. In conclusion, our study revealed that Mettl14 plays a critical role in the development and suppressive function of iTregs in vitro and could thus serve as a regulatory element for stabilizing iTregs in cell-based therapy.
Collapse
Affiliation(s)
- Yanzhuo Liu
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Yinglin Yuan
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Xiaomei Jiang
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Shu He
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Fan Wei
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Yuanyuan Cui
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China.
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|