1
|
Ma Y, Wei G, Dong Z, Wang Z, Zhai X, Liu Y, Chen H, Fu Y, Hou H, Hu Q, Chu M. Solanesol: a promising natural product. Front Pharmacol 2025; 16:1504245. [PMID: 40196358 PMCID: PMC11973293 DOI: 10.3389/fphar.2025.1504245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Solanesol, identified as Nonaprenol alcohol, predominates in the Solanaceae family. This compound exists as a white to pale yellow solid at room temperature, characterized by low polarity and water insolubility. Its unique chemical structure-featuring nine non-conjugated double bonds and low polarity-confers remarkable biological activities. Recent studies have demonstrated that solanesol exhibits polypharmacological properties, including antimicrobial, antioxidant, anti-inflammatory, and membrane-stabilizing effects. Mechanistically, solanesol suppresses ROS generation and inhibits pro-inflammatory cytokines (IL-1β, TNF-α). Preclinical studies highlight its therapeutic potential in inflammatory disorders (periodontitis, neuropathic pain) and neurodegenerative diseases (Alzheimer's, Parkinson's). However, current research still faces critical bottlenecks, such as a lack of in vivo pharmacokinetic data, unclear molecular targets, and insufficient toxicity assessments. Future studies urgently need to integrate experimental approaches, including target screening, nanotechnology-based delivery systems, and multi-omics analysis, to elucidate its mechanisms of action and promote clinical translation. As a compound that combines natural safety with multi-target effects, solanesol is not only a research focus for the development of novel drugs but also a bridge connecting natural products and precision medicine, poised to lead the innovation of next-generation biocompatible therapies.
Collapse
Affiliation(s)
- Yinchao Ma
- Beijing Life Science Academy, Beijing, China
| | - Ge Wei
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhichen Dong
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ziyuan Wang
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinlong Zhai
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuan Liu
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, China
| | - Yaning Fu
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, China
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing, China
| | - Ming Chu
- Beijing Life Science Academy, Beijing, China
- NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Guo G, Xu W, Fu J, Ma S, Huang K, Wei Y, Yang Y, Lan X, He X. A novel polysaccharide from Macadamia peel: Extraction, purification, structural characterization and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2681-2696. [PMID: 39579006 DOI: 10.1002/jsfa.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Macadamia peels are the main by-product of postharvest treatment of the whole fresh fruit weight, they contain various bioactive substances, such as polysaccharides, phenols, flavonoids, phenolic acids, saponins, and other nutritional and functional components, that are known to have anti-tumor and anti-oxidation functions. RESULTS Two purified polysaccharide fractions were obtained (MPP-1 and MPP-2) by extracting with ultrasonic-microwave-aided water extraction and purifying by with DEAE-52 and Sephadex G-50 columns, and then characterized using Fourier-transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and NMR, and the antioxidant activity was also investigated. The results indicated that MPP-1 and MPP-2 were mainly glucose, the molecular weight was 8.16 kDa and 7.73 kDa, respectively. Methylation with gas chromatography-mass spectrometry and NMR analyses confirmed that two fractions comprised of →4) -α-d- Glcp -(1→, →6) -β-d- Glcp -(1→ and →3,4) -β-d- Glcp -(1→) as the main chain. In addition, MPP-1 and MPP-2 polysaccharides showed significant antioxidant activity with respect to 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl group and reducing power, and MPP-2 demonstrated excellent antioxidant activities compared to MPP-1 with IC50 values of 35.12, 18.82 and 40.12 μg mL-1, respectively. CONCLUSION The novel polysaccharide, MPP-1 and MPP-2, mainly containing glucose, showed significant antioxidant activity with respect to DPPH, hydroxyl group and reducing power. This study has enhanced waste utilization and reduced environmental pollution, providing some inspiration for the reuse of the waste generated during agricultural production. It may bring good prospects for their use as antioxidants in functional foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Wenting Xu
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Jiarong Fu
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Shangxuan Ma
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Kechang Huang
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Yuanmiao Wei
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Yuexue Yang
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Xiuhua Lan
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| | - Xiyong He
- Yunnan Institute of Tropical Crops, Jinghong, China
- Yunnan Macadamia Agricultural Engineering Research Center, Jinghong, China
| |
Collapse
|
3
|
Mandal AK, Parida S, Behera AK, Adhikary SP, Lukatkin AA, Lukatkin AS, Jena M. Seaweed in the Diet as a Source of Bioactive Metabolites and a Potential Natural Immunity Booster: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:367. [PMID: 40143143 PMCID: PMC11945151 DOI: 10.3390/ph18030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Seaweed plays an essential role in the survival of marine life, provides habitats and helps in nutrient recycling. It is rich in valuable nutritious compounds such as pigments, proteins, polysaccharides, minerals, vitamins, omega-rich oils, secondary metabolites, fibers and sterols. Pigments like fucoxanthin and astaxanthin and polysaccharides like laminarin, fucoidan, galactan and ulvan possess immune-modulatory and immune-enhancing properties. Moreover, they show antioxidative, antidiabetic, anticancer, anti-inflammatory, antiproliferative, anti-obesity, antimicrobial, anticoagulation and anti-aging properties and can prevent diseases such as Alzheimer's and Parkinson's and cardiovascular diseases. Though seaweed is frequently consumed by Eastern Asian countries like China, Japan, and Korea and has gained the attention of Western countries in recent years due to its nutritional properties, its consumption on a global scale is very limited because of a lack of awareness. Thus, to incorporate seaweed into the global diet and to make it familiar as a functional food, issues such as large-scale cultivation, processing, consumer acceptance and the development of seaweed-based food products need to be addressed. This review is intended to give a brief overview of the present status of seaweed, its nutritional value and its bioactive metabolites as functional foods for human health and diseases owing to its immunity-boosting potential. Further, seaweed as a source of sustainable food and its prospects along with its issues are discussed in this review.
Collapse
Affiliation(s)
- Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Sudhamayee Parida
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Siba Prasad Adhikary
- Department of Biotechnology, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India;
| | - Andrey A. Lukatkin
- Department of Cytology, Histology and Embryology with Courses in Medical Biology and Molecular Cell Biology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk 430005, Russia;
| | | | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| |
Collapse
|
4
|
Liu Z, Wang M, Li J, Guo X, Guo Q, Zhu B. Differences in utilization and metabolism of Ulva lactuca polysaccharide by human gut Bacteroides species in the in vitro fermentation. Carbohydr Polym 2025; 351:123126. [PMID: 39779031 DOI: 10.1016/j.carbpol.2024.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/30/2025]
Abstract
Ulva lactuca polysaccharide (ULP), a sulfated polysaccharide, has been widely used in Asia. However, its digestion process and utilization by gut microbiota remain poorly understood. In this study, the in vitro simulated digestion and fermentation were used to analyze the digestibility of ULP. The results showed that ULP was not degraded during simulated digestion, but was utilized by human fecal microbiota. 16S rRNA sequencing revealed that ULP significantly increased the abundance of Bacteroides. Further evaluation of seven Bacteroides species showed that only B. thetaiotaomicron and B. vulgatus could utilize ULP. Interestingly, these two species exhibited different utilization patterns. B. vulgatus preferentially utilized rhamnose of ULP over glucuronic acid to promote growth. Metabolite profiles of B. thetaiotaomicron and B. vulgatus during in vitro fermentation with ULP as the sole carbon source were different. Although both B. thetaiotaomicron and B. vulgatus utilized ULP to produce various metabolites such as acetic acid, propionic acid, cysteic acid and riboflavin, B. thetaiotaomicron accumulated metabolites, such as linoleic acid, that were not accumulated by B. vulgatus. The effects of ULP on the metabolic pathways of B. thetaiotaomicron and B. vulgatus differed. These findings provide a new perspective on the utilization of ULP by human gut microbiota.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Liu Z, Wang M, Hu Y, Li J, Gong W, Guo X, Song S, Zhu B. Ulva lactuca polysaccharides combined with fecal microbiota transplantation ameliorated dextran sodium sulfate-induced colitis in C57BL/6J mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:422-432. [PMID: 39212113 DOI: 10.1002/jsfa.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) of healthy donors improves ulcerative colitis (UC) patients by restoring the balance of the gut microbiota. However, donors vary in microbial diversity and composition, often resulting in weak or even ineffective FMT. Improving the efficacy of FMT through combination treatment has become a promising strategy. Ulva lactuca polysaccharides (ULP) have been found to benefit host health by regulating gut microbiota. The effect of the combination of ULP and FMT in ameliorating UC has not yet been evaluated. RESULTS The present study found that supplementation with ULP combined with FMT showed better effects in ameliorating UC than supplementation with FMT alone. Results suggested that FMT or ULP combined with FMT alleviated the symptoms of UC in mice, as evidenced by prevention of body weight loss, improvement of disease activity index and protection of the intestinal mucus. Notably, ULP in combination with FMT was more effective than FMT in reducing levels of cytokines and related inflammatory enzymes. In addition, ULP combined with FMT effectively restored the dysbiosis induced by dextran sulfate sodium (DSS) and further enriched probiotics (such as Bifidobacterium). The production of short-chain fatty acids, especially acetic acid, was also significantly enriched by ULP combined with FMT. CONCLUSION Supplementation of ULP combined with FMT could significantly ameliorate DSS-induced colitis in mice by inhibiting inflammation and restoring dysbiosis of gut microbiota. These results suggested that ULP combined with FMT has potential application in ameliorating UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, PR China
- National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian, PR China
| |
Collapse
|
6
|
Akoulina EA, Bonartseva GA, Dudun AA, Kochevalina MY, Bonartsev AP, Voinova VV. Current State of Research on the Mechanisms of Biological Activity of Alginates. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S263-S286. [PMID: 40164162 DOI: 10.1134/s0006297924604519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 04/02/2025]
Abstract
Alginates are anionic unbranched plant and bacterial polysaccharides composed of mannuronic and guluronic acid residues. Alginates can form hydrogels under mild conditions in the presence of divalent cations (e.g., Ca2+). Because of their capacity to form gels, high biocompatibility, and relatively low cost, these polysaccharides are employed in pharmaceutical industry, medicine, food industry, cosmetology, and agriculture. Alginate oligomers produced by enzymatic cleavage of high-molecular-weight algal alginates are used as medicinal agents and dietary supplements. The global market for alginate-based products exceeds $1 billion. Alginates and their oligomers have attracted a special interest in biomedical sciences due to manifestation of various types of therapeutic activity. Across more than 50-year history of studies of alginates, over 60% scientific articles in this field have been published in the last 5 years. Unfortunately, the works dedicated to the mechanisms of biological activity of alginates and their oligosaccharides are still very scarce. This review analyzes the current state of research on the mechanisms (mainly biochemical) underlying biological and therapeutic activities of alginates (antioxidant, antibacterial, anti-inflammatory, antitumor, neuroprotective, antihypertensive, regenerative, and prebiotic). A comprehensive understanding of these mechanisms will not only improve the efficiency of alginate application in medicine and other traditional fields (cosmetology, food industry), but might also reveal their potential in new areas such as tissue engineering, nanobiotechnology, and bioelectronics.
Collapse
Affiliation(s)
- Elizaveta A Akoulina
- Biological Faculty, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, 518172, China
| | - Garina A Bonartseva
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
| | - Andrey A Dudun
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | - Anton P Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vera V Voinova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
7
|
Repici A, Capra AP, Hasan A, Basilotta R, Scuderi SA, Campolo M, Paterniti I, Esposito E, Ardizzone A. Ulva pertusa Modulated Colonic Oxidative Stress Markers and Clinical Parameters: A Potential Adjuvant Therapy to Manage Side Effects During 5-FU Regimen. Int J Mol Sci 2024; 25:12988. [PMID: 39684698 DOI: 10.3390/ijms252312988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most used chemotherapy agents in clinical practice is 5-Fluorouracil (5-FU), a fluorinated pyrimidine in the category of antimetabolite agents. 5-FU is used to treat a variety of cancers, including colon, breast, pancreatic, and stomach cancers, and its efficacy lies in its direct impact on the patient's DNA and RNA. Specifically, its mechanism blocks the enzymes thymidylate synthetase and uracil phosphatase, inhibiting the synthesis of uracil, which cannot be incorporated into nuclear and cytoplasmic RNA. Despite being one of the most used drugs in oncology, it is associated with several significant side effects, including inflammation of the mouth, loss of appetite, and reduction in blood cells. In our study, we examined the reduction of side effects in a 5-FU regimen administered at doses of 15 mg/kg and 6 mg/kg for 14 days in 6-week-old male Sprague-Dawley rats. On the 14th day, the rats were treated orally for 2 weeks with 100 mg/kg of Ulva pertusa, a well-known seaweed from the Ulvaceae family, which has demonstrated powerful biological properties. The administration of this green alga alleviated the side effects of 5-FU, improving several parameters including body weight, food intake, and diarrhea index. It also helped reduce side effects in the blood, kidneys, and liver. Histological and molecular analyses were conducted on serum and colon tissues from the rats, examining changes in colon structure and the release of oxidative stress markers such as iNOS, COX-2, and nitrotyrosine. Several biochemical indicators, including SOD, CAT, GSH, MDA, and ascorbic acid, were also evaluated. Overall, our data indicated Ulva pertusa to be a promising therapeutic against 5-FU's adverse effects, therefore, it could be worthwhile to investigate the possibility of using this alga in safer cancer treatment formulations. Certainly, future preclinical and clinical studies could assess the alga's efficacy in diverse cancer treatment regimens, exploring its role as an adjuvant therapy that may reduce chemotherapy-related toxicity without compromising therapeutic outcomes.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ahmed Hasan
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Center of Neuroscience, School of Advanced Studies, University of Camerino, 62032 Camerino, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
8
|
Wen Y, Ullah H, Ma R, Farooqui NA, Li J, Alioui Y, Qiu J. Anemarrhena asphodeloides Bunge polysaccharides alleviate lipoteichoic acid-induced lung inflammation and modulate gut microbiota in mice. Heliyon 2024; 10:e39390. [PMID: 39469699 PMCID: PMC11513480 DOI: 10.1016/j.heliyon.2024.e39390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Pneumonia remains a prevalent infection primary ailment characterized by severe lung inflammation, leading to respiratory distress and significant mortality rates, particularly affecting young children in less developed regions. This study explores the therapeutic potential of low and high-molecular weight polysaccharides derived from Anemarrhena asphodeloides in a murine model of lipoteichoic acid (LTA)-induced pneumonia, which represents bacterial-induced lung inflammation. Administration of Anemarrhena asphodeloides polysaccharides effectively alleviated LTA-induced symptoms, including decreased lung and colon inflammation, and restored dysbiosis of gut microbiota. Polysaccharide treatment notably increased mucin-2 expression, reduced serum cytokine levels (IL-10, TNF-α), and increased tight junction protein production (ZO-1, Occludin, Claudin). Additionally, polysaccharides promoted a significant recovery in gut microbiota composition, indicating potential prebiotic effects. These findings highlight the therapeutic capability of Anemarrhena asphodeloides polysaccharides against LTA-induced pneumonia through gut microbiota modulation and restored intestinal homeostasis.
Collapse
Affiliation(s)
- Yuqi Wen
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Renzhen Ma
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Nabeel Ahmad Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Li
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Mansour FB, Guermazi W, Chamkha M, Bellassoued K, Salah HB, Harrath AH, Aldahmash W, Rahman MA, Ayadi H. Bioactive Potential of the Sulfated Exopolysaccharides From the Brown Microalga Halamphora sp.: Antioxidant, Antimicrobial, and Antiapoptotic Profiles. ANALYTICAL SCIENCE ADVANCES 2024; 5:e202400030. [PMID: 39479574 PMCID: PMC11519544 DOI: 10.1002/ansa.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/02/2024]
Abstract
This study aims to investigate the physicochemical characteristics of the exopolysaccharides (EPS) extracted from the microalgae species Halamphora sp., as well as to evaluate their antioxidant, antibacterial, and anti-apoptotic activities. The crude extracellular polysaccharides from the halophilic diatom Halamphora sp. were found to be extracellular heterosulfated anionic polysaccharides containing carbohydrates (76.33 ± 1.80%), proteins (0.15 ± 0.02%), uronic acids (5.44 ± 0.08%) and sulfate (7.56 ± 0.86%). The lowest protein (0.24%) and lipid (0.15%) contents suggested that EPS was highly pure. Gas chromatography-mass spectrometry analysis revealed that the carbohydrate fraction consisted of xylose, l-galactose, d-galactose, glucose, ribitol, mannose, and inositol with corresponding mole percentages of 40.55, 13.25, 13.00, 9.95, 9.82, 2.90, and 2.28, respectively. In vitro, tests showed a high total antioxidant capacity probably related to l-galactose followed by d-galactose, uronic acid, and ribitol. In addition, extracellular polysaccharides (EPS) demonstrated effective antimicrobial Gram + properties with inhibition zones ranging from 10 to 12 mm. Molecular docking showed an antiapoptotic effect, as the best docking score was generated due to the interaction of xylose and caspase 3 (-6.9 kcal/mol) and l-galactose and caspase 3 (-5 kcal/mol). Overall, the findings of this study suggest the possibility of using the EPS extract of Halamphora sp. as an additive for nutraceutical and cosmetic purposes.
Collapse
Affiliation(s)
- Fatma Ben Mansour
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| | - Wassim Guermazi
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| | - Mohamed Chamkha
- Laboratory of Environmental BioprocessesCentre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
| | - Khaled Bellassoued
- Department of Life SciencesAnimal Ecophysiology LaboratoryUniversity of SfaxSfaxTunisia
| | - Hichem Ben Salah
- Department of Life Sciences, Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team)Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
| | | | - Waleed Aldahmash
- Zoology DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Md Ataur Rahman
- Department of OncologyKarmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Habib Ayadi
- Department of Life SciencesLaboratory of Marine Biodiversity and EnvironmentFaculty of SciencesUniversity of SfaxSfaxTunisia
| |
Collapse
|
10
|
Huang A, Wu X, Lu F, Liu F. Sustainable Production of Ulva Oligosaccharides via Enzymatic Hydrolysis: A Review on Ulvan Lyase. Foods 2024; 13:2820. [PMID: 39272585 PMCID: PMC11395424 DOI: 10.3390/foods13172820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the β-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process.
Collapse
Affiliation(s)
- Ailan Huang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453000, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
| |
Collapse
|
11
|
do Prado Schneidewind FCC, de Castilho PF, Galvão F, de Andrade Dos Santos JV, da Silva Dantas FG, Negri M, da Silva Pinto L, Moraes CAF, Freitas J, de Souza PRB, Nogueira CR, de Oliveira KMP. Effects of bioconversion by Battus polydamas on the chemical composition of Aristolochia spp. and evaluation of antimicrobial activity and biocompatibility. Fitoterapia 2024; 175:105949. [PMID: 38583636 DOI: 10.1016/j.fitote.2024.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Aristolochia plants are emblematic from an ethnopharmacological viewpoint and are know to possess numerous biological properties, including antiseptic. However, the medicinal potential of these species is debatable because of their representative chemical constituents, aristolochic acids (AAs) and aristolactams (ALs), which are associated, for instance, with nephropathy and cancer. These contrasting issues have stimulated the development of approaches intended to detoxification of aristoloquiaceous biomasses, among which is included the bioconversion method using larvae of the specialist phytophagous insect Battus polydamas, previously shown to be viable for chemical diversification and to reduce toxicity. Thus, eleven Aristolochia spp. were bioconverted, and the antimicrobial activities of the plant methanolic extracts and its respective bioconversion products were evaluated. The best results were found for Aristolochia esperanzae, Aristolochia gibertii, and Aristolochia ringens against Bacillus cereus, with MIC ranging from 7.8 to 31.25 μg/mL. These three species were selected for chemical, antioxidant, cytotoxic, hemolytic, and mutagenic analyses. Chemical analysis revealed 65 compounds, 21 of them possible bioconversion products. The extracts showed potential to inhibit the formation and degradation of B. cereus biofilms. Extracts of A. gibertii and its bioconverted biomass showed antioxidant activity comparable to dibutylhydroxytoluene (BHT) standard. Bioconversion decreased the hemolytic activity of A. esperanzae and the cytotoxicities of A. esperanzae and A. gibertii. None of the extracts was found to be mutagenic. The bioactivities of the fecal extracts were maintained, and biocompatibility was improved. Therefore, the results obtained in this study reveal positive expectations about the natural detoxification process of the Aristolochia species.
Collapse
Affiliation(s)
| | | | - Fernanda Galvão
- Faculdade de Ciências de Saúde, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | | | | | - Melyssa Negri
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Luciano da Silva Pinto
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carlos André Ferreira Moraes
- Centro de Ciências Exatas e de Tecnologia, Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Joelcio Freitas
- Instituto Nacional da Mata Atlântica, Divisão de Ciências, Santa Teresa, ES, Brazil
| | | | - Cláudio Rodrigo Nogueira
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | | |
Collapse
|
12
|
Caetano D, Junior LA, Carneiro J, Ducatti DRB, Gonçalves AG, Noseda MD, Duarte MER. Semisynthesis of new sulfated heterorhamnan derivatives obtained from green seaweed Gayralia brasiliensis and evaluation of their anticoagulant activity. Int J Biol Macromol 2024; 267:131506. [PMID: 38604422 DOI: 10.1016/j.ijbiomac.2024.131506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Marine green algae produce sulfated polysaccharides with diverse structures and a wide range of biological activities. This study aimed to enhance the biotechnological potential of sulfated heterorhamnan (Gb1) from Gayralia brasiliensis by chemically modifying it for improved or new biological functions. Using controlled Smith Degradation (GBS) and O-alkylation with 3-chloropropylamine, we synthesized partially water-soluble amine derivatives. GBS modification increase sulfate groups (29.3 to 37.5 %) and α-l-rhamnose units (69.9 to 81.2 mol%), reducing xylose and glucose, compared to Gb1. The backbone featured predominantly 3- and 2-linked α-l-rhamnosyl and 2,3- linked α-l-rhamnosyl units as branching points. Infrared and NMR analyses confirmed the substitution of hydroxyl groups with aminoalkyl groups. The modified compounds, GBS-AHCs and GBS-AHK, exhibited altered anticoagulant properties. GBS-AHCs showed reduced effectiveness in the APTT assay, while GBS-AHK maintained a similar anticoagulant activity level to Gb1 and GBS. Increased nitrogen content and N-alkylation in GBS-AHCs compared to GBS-AHK may explain their structural differences. The chemical modification proposed did not enhance its anticoagulant activity, possibly due to the introduction of amino groups and a positive charge to the polymer. This characteristic presents new opportunities for investigating the potential of these polysaccharides in various biological applications, such as antimicrobial and antitumoral activities.
Collapse
Affiliation(s)
- Danielly Caetano
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Lauri Alves Junior
- Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Jaqueline Carneiro
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Diogo R B Ducatti
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | | | - Miguel D Noseda
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| | - Maria Eugênia R Duarte
- Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Pós-graduação em Ciências - Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
13
|
Huang A, Chen Z, Wu X, Yan W, Lu F, Liu F. Improving the thermal stability and catalytic activity of ulvan lyase by the combination of FoldX and KnowVolution campaign. Int J Biol Macromol 2024; 257:128577. [PMID: 38070809 DOI: 10.1016/j.ijbiomac.2023.128577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Thermal stability is one of the most important properties of ulvan lyases for their application in algae biomass degradation. The Knowledge gaining directed eVolution (KnowVolution) protein engineering strategy could be employed to improve thermostability of ulvan lyase with less screening effort. Herein, the unfolding free energies (ΔΔG) of the loop region were calculated using FoldX and four sites (D103, G104, T113, Q229) were selected for saturation mutagenesis, resulting in the identification of a favorable single-site mutant Q229M. Subsequently, iteration mutation was carried out with the mutant N57P (previously obtained by our group) to further enhance the performance of ulvan lyase. The results showed that the most beneficial variant N57P/Q229M exhibited a 1.67-fold and 2-fold increase in residual activity compared to the wild type after incubation at 40 °C and 50 °C for 1 h, respectively. In addition, the variant produced 1.06 mg/mL of reducing sugar in 2 h, which was almost four times as much as the wild type. Molecular dynamics simulations revealed that N57P/Q229M mutant enhanced the structural rigidity by augmenting intramolecular hydrogen bonds. Meanwhile, the shorter proton transmission distance between the general base of the enzyme and the substrate contributed to the glycosidic bond breakage. Our research showed that in silico saturation mutagenesis using position scan module in FoldX allowed for faster screening of mutants with improved thermal stability, and combining it with KnowVolution enabled a balanced effect of thermal stability and enzyme activity in protein engineering.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Zhengqi Chen
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Xinming Wu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Wenxing Yan
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China.
| |
Collapse
|
14
|
Tesvichian S, Sangtanoo P, Srimongkol P, Saisavoey T, Buakeaw A, Puthong S, Thitiprasert S, Mekboonsonglarp W, Liangsakul J, Sopon A, Prawatborisut M, Reamtong O, Karnchanatat A. Sulfated polysaccharides from Caulerpa lentillifera: Optimizing the process of extraction, structural characteristics, antioxidant capabilities, and anti-glycation properties. Heliyon 2024; 10:e24444. [PMID: 38293411 PMCID: PMC10826829 DOI: 10.1016/j.heliyon.2024.e24444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead β-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.
Collapse
Affiliation(s)
- Suphaporn Tesvichian
- Program in Biotechnology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jatupol Liangsakul
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anek Sopon
- Aquatic Resources Research Institute, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Mongkhol Prawatborisut
- Bruker Switzerland AG, 175, South Sathorn Road, 10th Floor, Sathorn City Tower, Thungmahamek, Sathorn, Bangkok, 10120, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
15
|
Lee H, Depuydt S, Shin K, De Saeger J, Han T, Park J. Interactive Effects of Blue Light and Water Turbulence on the Growth of the Green Macroalga Ulva australis (Chlorophyta). PLANTS (BASEL, SWITZERLAND) 2024; 13:266. [PMID: 38256819 PMCID: PMC10820934 DOI: 10.3390/plants13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Macroalgal growth and yield are key to sustainable aquaculture. Although light and water turbulence are two important factors that affect algal productivity, research on their interaction is limited. Therefore, in this study, we investigated the effects of different wavelengths of light and the presence or absence of water turbulence on the growth of the green macroalga Ulva australis. Water turbulence was found to enhance the growth of U. australis irrespective of photosynthetic performance, but only in blue light cultures. The quantum dose of blue light required to induce 50% growth promotion was 1.02 mol m-2, which is comparable to the reported values for cryptochrome-mediated effects in other macroalgae. The combined effect of blue light and water turbulence led to the accumulation of photosynthesis-related proteins that support plastid differentiation and facilitate efficient photosynthesis and growth. Our findings thus highlight the potential of harnessing blue light and water turbulence to maximise macroalgal cultivation for sustainable and profitable algal aquaculture.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Nijverheidskaai 170, 1070 Brussels, Belgium
| | - Kisik Shin
- Water Environmental Engineering Research Division, National Institute of Environmental Research (NIER), 42, Hwangyeong-ro, Incheon 22689, Republic of Korea
| | - Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| |
Collapse
|
16
|
Hwang PA, Chen HY, Chang JS, Hsu FY. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol 2023; 253:126646. [PMID: 37659492 DOI: 10.1016/j.ijbiomac.2023.126646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Wound dressings can be used to create a temporary healing environment and expedite the wound healing process. Ulvan (ULV) is a sulfated polysaccharide with potent antiviral and anti-inflammatory activities. Polycaprolactone (PCL) is a hydrophobic biodegradable polyester that exhibits slow degradation, strong mechanical strength, and excellent biocompatibility. Electrospun nanofiber matrices mimic the microstructure of the extracellular matrix, allowing them to promote cell proliferation and differentiation. Therefore, the primary objective of this study was to fabricate a polycaprolactone-ulvan fibrous composite mat (PCL-ULV) using the electrospinning technique and to investigate its physical and chemical properties. To assess the characteristics of PCL-ULV, scanning electron microscopy (SEM) was utilized to examine its morphology and diameter distribution. Fourier transform infrared (FTIR) spectroscopy, calcofluor white staining, and monosaccharide analysis were employed to analyze the components of PCL-ULV. Additionally, the water contact angle was measured to evaluate the hydrophilicity. Furthermore, the proliferation and morphology of and gene expression in NIH3T3 fibroblasts on PCL-ULV were assessed. The results showed that the average PCL-ULV fiber diameter was significantly smaller than that of the PCL fibers. The water contact angle measurements indicated that PCL-ULV exhibited better hydrophilicity than the PCL mat. FTIR, calcofluor white staining, and monosaccharide analyses demonstrated that ULV could be successfully coelectrospun with PCL. NIH3T3 fibroblasts cultured on PCL and PCL-ULV showed different cellular behaviors. On PCL-ULV, cell adhesion, proliferation, and stretching were greater than those on PCL. Moreover, the behavior of NIH3T3 fibroblasts on PCL and PCL-ULV differed, as the cells on PCL-ULV exhibited higher proliferation and more stretching. Furthermore, NIH3T3 fibroblasts cultured on ULV-PCL showed higher α-SMA and MMP-9 gene expression and a lower ratio of TIMP-1/MMP-9 than those cultured on PCL. Notably, scarless wounds display lower TIMP/MMP expression ratios than scarring wounds. Thus, the fibrous composite mat PCL-ULV shows potential as a wound dressing for scarless wound healing.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Hsin-Yu Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
17
|
Chen T, Liu H, Song S, Qiang S, An Y, Li J, Liu J, Chen B, Chen L, Liu F, Liu R, Jiang X, Liao X. Synthesis and its biological activity of carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). Carbohydr Res 2023; 534:108972. [PMID: 37852129 DOI: 10.1016/j.carres.2023.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Hemicellulose extracted from ecalyptus APMP pulping waste liquor and undergoes etherification modification to produce carboxymethyl hemicellulose (CMHC). Subsequently, CMHC undergoes esterification reaction with p-hydroxybenzoic acid to synthesize a novel polysaccharide-based preservative known as carboxymethyl hemicellulose p-hydroxybenzoate (P-CMHC). The synthesis conditions of P-CMHC were optimized using the response surface methodology, resulting in an optimal esterification condition that achieved a degree of substitution of 0.232. P-CMHC exhibits excellent antioxidant activity, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activities. Additionally, it demonstrates favorable hygroscopic and moisturizing properties. Thiazole blue (MTT) experiments evaluating cell proliferation rate indicate that P-CMHC possesses negligible cytotoxicity, making it a promising, safe, and healthy preservative. Consequently, it can be considered as a new material for applications in the fields of biomedicine, food, and cosmetics.
Collapse
Affiliation(s)
- Ting Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Haitang Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.
| | - Shunxi Song
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; Patent Examination Cooperation Jiangsu Center of the Patent Office, CNIPA, Suzhou, Jiangsu Province, 215163, China
| | - Yongzhen An
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jie Li
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Liu
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Beibei Chen
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Lin Chen
- China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fufeng Liu
- School of Biological Engineering, Tianjin University of Science & Technology, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiaoyuan Liao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
18
|
Miguel SP, D’Angelo C, Ribeiro MP, Simões R, Coutinho P. Chemical Composition of Macroalgae Polysaccharides from Galician and Portugal Coasts: Seasonal Variations and Biological Properties. Mar Drugs 2023; 21:589. [PMID: 37999413 PMCID: PMC10672017 DOI: 10.3390/md21110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides extracted from the Codium sp. and Osmundea sp. macroalgae collected in different seasons (winter, spring and summer) from the Galician and North Portugal coasts were characterised, aiming to support their biomedical application to wound healing. An increase in polysaccharides' sulphate content was registered from winter to summer, and higher values were obtained for Osmundea sp. In turn, the monosaccharide composition constantly changed with a decrease in glucose in Osmundea sp. from spring to winter. For Codium sp., a higher increase was noticed regarding glucose content in the Galician and Portugal coasts. Galactose was the major monosaccharide in all the samples, remaining stable in all seasons and collection sites. These results corroborate the sulphate content and antioxidant activity, since the Osmundea sp.-derived polysaccharides collected in summer exhibited higher scavenging radical ability. The biocompatibility and wound scratch assays revealed that the Osmundea sp. polysaccharide extracted from the Portugal coast in summer possessed more potential for promoting fibroblast migration. This study on seasonal variations of polysaccharides, sulphate content, monosaccharide composition and, consequently, biological properties provides practical guidance for determining the optimal season for algae harvest to standardise preparations of polysaccharides for the biomedical field.
Collapse
Affiliation(s)
- Sónia P. Miguel
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Caíque D’Angelo
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rogério Simões
- FibEnTech, Fiber Materials and Envornmental Technologies, University of Beira Interior, R. Marques Avila e Bolama, 6201-001 Covilhã, Portugal;
| | - Paula Coutinho
- CPIRN-UDI/IPG, Center for Potential and Innovation of Natural Resources, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal; (S.P.M.); (C.D.); (M.P.R.)
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
19
|
Wan Y, Wang S, Chen K, Liu L, Wang X, Zhang B, Hu L, Liu S, Zhao T, Qi H. High-sulfated derivative of polysaccharide from Ulva pertusa improves Adriamycin-induced nephrotic syndrome by suppressing oxidative stress. Food Funct 2023; 14:9167-9180. [PMID: 37721012 DOI: 10.1039/d3fo01290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Nephrotic syndrome (NS) is characterized by proteinuria, hyperlipidemia, and hypoalbuminemia. Ulva pertusa, a green seaweed, is a nutritional supplement. In this study, the high-sulfated derivative of Ulva pertusa polysaccharide (HU) was prepared by combining U pertusa polysaccharide with chlorosulfonic acid. The NS rat model was established by tail vein single injection of Adriamycin (6.0 mg kg-1). Normal rats were used as the control group. NS rat models were treated with HU or U (173 mg kg-1 day-1). After treatment for 6 weeks, we assessed urine protein, renal function, and blood lipids, and observed morphology and histologic injury of the kidney and glomerular microstructure. Furthermore, we detected antioxidant enzyme activity and expression level of the Keap1/Nrf2 signaling pathway to explore the potential mechanism of HU. Results showed that HU not only alleviated hyperlipidemia and hypoalbuminemia, but also reduced urine protein by inhibiting podocyte detachment, thickening of the glomerular basement membrane, and expression of kidney fibrosis markers (collagens I and IV). In addition, HU enhanced antioxidant enzyme activity (GSH-Px, CAT, SOD) in both serum and the kidney, which may be due to upregulating the expression of Nrf2 and downregulating the expression of Keap1. In conclusion, HU appears to be effective in attenuating NS in rats through suppressing oxidative stress by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuzhou Wan
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Shaopeng Wang
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Kexu Chen
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Lin Liu
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Xiaoqian Wang
- Department of Pharmacy, Dezhou People's Hospital, No. 1166 Dongfanghong West Road, Dezhou 253000, PR China.
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Lin Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Shunmei Liu
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
20
|
Baghel RS, Choudhary B, Pandey S, Pathak PK, Patel MK, Mishra A. Rehashing Our Insight of Seaweeds as a Potential Source of Foods, Nutraceuticals, and Pharmaceuticals. Foods 2023; 12:3642. [PMID: 37835294 PMCID: PMC10573080 DOI: 10.3390/foods12193642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In a few Southeast Asian nations, seaweeds have been a staple of the cuisine since prehistoric times. Seaweeds are currently becoming more and more popular around the world due to their superior nutritional value and medicinal properties. This is because of rising seaweed production on a global scale and substantial research on their composition and bioactivities over the past 20 years. By reviewing several articles in the literature, this review aimed to provide comprehensive information about the primary and secondary metabolites and various classes of bioactive compounds, such as polysaccharides, polyphenols, proteins, and essential fatty acids, along with their bioactivities, in a single article. This review also highlights the potential of seaweeds in the development of nutraceuticals, with a particular focus on their ability to enhance human health and overall well-being. In addition, we discuss the challenges and potential opportunities associated with the advancement of pharmaceuticals and nutraceuticals derived from seaweeds, as well as their incorporation into different industrial sectors. Furthermore, we find that many bioactive constituents found in seaweeds have demonstrated potential in terms of different therapeutic attributes, including antioxidative, anti-inflammatory, anticancer, and other properties. In conclusion, seaweed-based bioactive compounds have a huge potential to play an important role in the food, nutraceutical, and pharmaceutical sectors. However, future research should pay more attention to developing efficient techniques for the extraction and purification of compounds as well as their toxicity analysis, clinical efficacy, mode of action, and interactions with regular diets.
Collapse
Affiliation(s)
- Ravi S. Baghel
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji 403004, Goa, India;
| | - Babita Choudhary
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sonika Pandey
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7528809, Israel;
| | - Pradeep Kumar Pathak
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
21
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
22
|
Zhang D, Tang Q, He X, Wang Y, Zhu G, Yu L. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of Cordyceps militaris spent substrate. PLoS One 2023; 18:e0291363. [PMID: 37682981 PMCID: PMC10490986 DOI: 10.1371/journal.pone.0291363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Cordyceps militaris is a medicinal mushroom and has been extensively used as a traditional medicine in East Asia. After the chrysalis seeds are matured and harvested, the spent substrate of C. militaris still contains active ingredients but is usually discarded as waste. This study aimed to determine the antioxidant and anti-inflammatory activities of C. militaris spent substrate extract and its inhibitory activity on the Malassezia commensal yeasts that can cause dandruff and seborrheic dermatitis. Active substances in the spent substrate of C. militaris were extracted using a hot water extraction method and were used for the determination of antioxidant activity by measuring their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radicals, hydrogen peroxide, and superoxide anions. The ability to inhibit Malassezia was analyzed using the broth microdilution method, and the reparative effect on oxidative damage in HaCaT cells was measured using in vitro cell analysis. Respiratory burst evaluation was used to determine the anti-inflammatory capacity of extracts. Analysis of the Malassezia-inhibiting activity of the extracts showed that the minimum inhibitory concentration was 6.25 mg/mL. The half maximal inhibitory concentration (IC50) values of DPPH, O2-, H2O2 and OH- were 3.845 mg/mL, 2.673 mg/mL, 0.037 mg/mL and 0.046 mg/mL, respectively. In the concentration range of 2 to 50%, the extract was non-toxic to cells and was able to protect HaCaT cells from H2O2 damage. When the volume fraction of the extract was 20.96%, its anti-inflammatory ability reached 50%. These results demonstrated that the extract may be a safe and efficacious source for pharmaceutical or cosmetic applications, with Malassezia-inhibiting, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Danyu Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qingjiu Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xianzhe He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yipeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Guangyong Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Ling Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
23
|
Zhang J, Xu X, Liu X, Chen M, Bai B, Yang Y, Bo T, Fan S. The Separation, Purification, Structure Identification, and Antioxidant Activity of Elaeagnus umbellata Polysaccharides. Molecules 2023; 28:6468. [PMID: 37764243 PMCID: PMC10534330 DOI: 10.3390/molecules28186468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In order to investigate the antioxidant activity of Elaeagnus umbellata polysaccharides, the physicochemical characteristics of purified Elaeagnus umbellata polysaccharides (EUP, consisting of two fractions, EUP1 and EUP2) were investigated using UV spectrophotometry, high-performance liquid chromatography (HPLC), high-performance gel permeation chromatography (HPGPC), and Fourier transform infrared spectroscopy (FT-IR). This revealed that EUP1 and EUP2 were acidic polysaccharides with an average molecular weight (MW) of 63 and 38 kDa, respectively. EUP1 mainly consisted of L-rhamnose and D-galactose in a molar ratio of 2.05:1, and EUP2 consisted of D-mannose, L-rhamnose, D-galactose, and D-arabinose in a molar ratio of 2.06:1:2.78:1. Furthermore, EUP exhibited considerable antioxidant potential for scavenging hydroxyl, superoxide anion, DPPH, and ABTS radicals. Therefore, EUP can be developed as a potential antioxidant for the functional food or pharmaceutical field.
Collapse
Affiliation(s)
- Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Xin Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Xinyi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Min Chen
- Shanxi Food Research Institute, Co., Ltd., Taiyuan 030024, China
| | - Baoqing Bai
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
24
|
Ma L, Chen T, Wu J, Li X, Wang J, Li W. The structure and in vitro antioxidant activity of carboxymethyl glucans. Nat Prod Res 2023; 37:3048-3064. [PMID: 36562541 DOI: 10.1080/14786419.2022.2146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
In this study, a degree substitution of 0.796 was obtained through the process of carboxymethylation (CMG). Carboxymethyl glucans with three different molecular weights (CMG-A, CMG-B and CMG-C) were obtained using membrane separation technology. Structural characterization and in vitro antioxidant activity were also evaluated. As per the outcomes of infrared spectroscopy spectroscopy and Nuclear magnetic resonance studies, CMG-A, CMG-B, CMG-C and contained carboxyl methyl groups. The substitution order of carboxymethylation branched-chain was as follows: 6δ > 4δ > 2δ. Atomic Force Microscope images obtained from the analysis of dilute aqueous solution (0.1 mg/mL) showed that some of the structures in CMG-A, CMG-B and CMG-C, were triple-helical species coexisting with larger aggregates and single chains. In vitro antioxidant experiment shown that the CMG-C had the best antioxidant property, the half-inhibitory concentration of hydroxyl radical scavenging, iron chelation and ABTS scavenging were 0.319, 0.168 and 1.344 mg/mL, respectively.
Collapse
Affiliation(s)
- Liang Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Ten Chen
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu Province, China
| | - Jiaxin Wu
- School of Pharmacy Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xin Li
- Environmental and Applied Microbiology Key Laboratory, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, province, China
| | - Jie Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
25
|
Selim MS, Mohamed SS, Asker MS, Ibrahim AY, El-Newary SA, El Awady ME. Characterization and in-vitro Alzheimer's properties of exopolysaccharide from Bacillus maritimus MSM1. Sci Rep 2023; 13:11399. [PMID: 37452077 PMCID: PMC10349148 DOI: 10.1038/s41598-023-38172-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Four bacterial isolates were obtained from marine sediments collected from Sahl Hashish, Hurghada Red Sea, Egypt. This study was designed to search for promising anti-Alzheimer natural polysaccharide; therefore, four isolates were screened for exopolysaccharides (EPSs) production and acetylcholinesterase inhibition. The isolate S16 provided the highest EPS yield (7.51 g/L) and acetylcholinesterase inhibition. It was identified morphologically and genetically using 16S rRNA gene sequence analysis as Bacillus maritimus. A Physicochemical analysis of S16 exopolysaccharide (BMEPS) was estimated, which pointed to the presence of uronic acid and sulfate (24.7% and 18.3%, respectively). HPLC analysis indicated that mannuronic acid, glucuronic acid, glucose, and mannose are presented in a molar ratio of 0.8:1.0:2.8:2.3, respectively. Furthermore, FT-IR revealed an abundance of β-configurations. The GPC estimated the average molecular weight (Mw) as 4.31 × 104 g/mol. BMEPS inhibited AChE (IC50; 691.77 ± 8.65 μg/ ml), BChE (IC50; 288.27 ± 10.50 μg/ ml), and tyrosinase (IC50; 3.34 ± 0.09, 14.00 ± 0.14, and 22.96 ± 1.23 μg/ ml during incubation durations of 10, 20, and 40 min). It also demonstrated a selective anti-inflammatory action against COX-2 rather than COX-1. Moreover, BMEPS exhibited antioxidant capabilities as free radical and oxygen reactive species (ROS) scavenger, metal chelator, reductant agent, and lipid peroxidation suppressor. These activities are due to the distinct chemical composition. The findings of this study indicate that BMEPS could be considered as promising anti-disease Alzheimer's (AD) material in an in-vitro model, which qualifies it for advanced in-vivo studies in the discovery of alternative Alzheimer's treatment.
Collapse
Affiliation(s)
- Manal S Selim
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Sahar S Mohamed
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Mohsen S Asker
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt
| | - Abeer Y Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Samah A El-Newary
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Mohamed E El Awady
- Microbial Biotechnology Department, Institute of Biotechnology Research, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
26
|
Muhaxi M, Liu F, Ng TB. Structural characterization and in vitro hepatoprotective activity of a novel antioxidant polysaccharide from fruiting bodies of the mushroom Pleurotus ferulae. Int J Biol Macromol 2023:125124. [PMID: 37290546 DOI: 10.1016/j.ijbiomac.2023.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
In the present study, three novel antioxidant polysaccharides (G-1, AG-1, and AG-2) were isolated and purified from Pleurotus ferulae using mouse erythrocyte hemolysis inhibitory activity as an indicator. These components showed antioxidant activity at the chemical and cellular levels. Given that G-1 displayed superior performance in protecting the human hepatocyte L02 cells against oxidative damage caused by H2O2 compared to AG-1 and AG-2 and had a higher yield and purification rate, the detailed structure of G-1 was further characterized. G-1 mainly contains six kinds of linkage type units as A: →4,6)-α-d-Glcp-(1→, B: →3)-β-d-Glcp-(1→, C: →2,6)-β-d-Glcp-(1→, d: β-d-Manp(1→, E: →6)-β-d-Galp-(1→, F: →4)-β-d-Glcp-(1→. Finally, the potential in vitro hepatoprotective mechanism of G-1 was discussed and elucidated. Results suggested that G-1 can protect L02 cells from H2O2-induced damage by reducing the leakage of AST and ALT from the cytoplasm, enhancing the activities of SOD and CAT, and suppressing lipid peroxidation and production of LDH. G-1 could further reduce the production of ROS, stabilize mitochondrial membrane potential and maintain cell morphology. Hence, G-1 could be a valuable functional food with antioxidant and hepatoprotective activities.
Collapse
Affiliation(s)
- Muguli Muhaxi
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
27
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
28
|
Aitouguinane M, El Alaoui-Talibi Z, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Le Cerf D, Rihouey C, Gardarin C, Dubessay P, Michaud P, Pierre G, Delattre C, El Modafar C. Elicitor Activity of Low-Molecular-Weight Alginates Obtained by Oxidative Degradation of Alginates Extracted from Sargassum muticum and Cystoseira myriophylloides. Mar Drugs 2023; 21:301. [PMID: 37233495 PMCID: PMC10222107 DOI: 10.3390/md21050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.
Collapse
Affiliation(s)
- Meriem Aitouguinane
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| | - Halima Rchid
- Laboratoire de Biotechnologies et Valorisation des Ressources Végétales, Faculté des Sciences, Université Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Mohamed Didi Ould El-Hadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Zakaria Boual
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, F-75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| |
Collapse
|
29
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
30
|
Qian Y, Shi C, Cheng C, Liao D, Liu J, Chen GT. Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Steinbruch E, Wise J, Levkov K, Chemodnov A, Israel Á, Livney Y, Golberg A. Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hong CY, Jo YJ, Kim MY, Chung MN, Choi E, Kim Y, Lee J, Jeong HS. Biological activities of sweet potato ( Ipomoea batatas L.) tips and tubers. Food Sci Nutr 2022; 10:4041-4048. [PMID: 36348769 PMCID: PMC9632182 DOI: 10.1002/fsn3.2999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 03/27/2024] Open
Abstract
This study was conducted to evaluate the biological activities of sweet potato tips and tubers. Antioxidant activity of 2,2-azino-bis 93-ethlbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities had the highest value of 32.45 mg, AAE/g, and 15.10 mg AAE/g, respectively, in 'Pungwonmi' tips. Angiotensin converting enzyme I inhibitory activity ranged between 47.72% in 'Sinjami' tubers and 62.25% in 'Pungwonmi' tips. α-Glucosidase inhibitory activity had the highest value of 78.81% and 62.93% in 'Pungwonmi' tips and 'Juhwangmi' tubers, respectively. In particular, 'Pungwonmi' tips had the most effective inhibiting effect on intracellular reactive oxygen species levels in HepG2 cells. Wound healing assay result revealed that 'Sinjami' showed 75% wound healing effect. For skin whitening, 'Pungwonmi' tips showed 63% activity at 10 mg/ml. These results suggest that sweet potato tips and tubers can be used to develop functional food and cosmetic materials.
Collapse
Affiliation(s)
- Chae Young Hong
- Department of Food Science and BiotechnologyChungbuk National UniversityCheongjuKorea
| | - Yeon Jae Jo
- Department of Food Science and BiotechnologyChungbuk National UniversityCheongjuKorea
| | - Min Young Kim
- National Institute of Crop ScienceRural Development AdministrationMiryangKorea
| | - Mi Nam Chung
- Bioenergy Crop Research InstituteRural Development AdministrationMuanKorea
| | - Ehn‐Kyoung Choi
- College of Veterinary MedicineChungbuk National UniversityCheongjuKorea
| | - Yun‐Bae Kim
- College of Veterinary MedicineChungbuk National UniversityCheongjuKorea
| | - Junsoo Lee
- Department of Food Science and BiotechnologyChungbuk National UniversityCheongjuKorea
| | - Heon Sang Jeong
- Department of Food Science and BiotechnologyChungbuk National UniversityCheongjuKorea
| |
Collapse
|
35
|
Recent advances in Mung bean polysaccharides: Extraction, physicochemical properties and biological activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Zheng H, Cui S, Sun B, Zhang B, Tao D, Wang Z, Zhang Y, Ma F. Synergistic effect of discrete ultrasonic and H2O2 on physicochemical properties of chitosan. Carbohydr Polym 2022; 291:119598. [DOI: 10.1016/j.carbpol.2022.119598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
|
37
|
Nataraj A, Govindan S, Ramani P, Subbaiah KA, Sathianarayanan S, Venkidasamy B, Thiruvengadam M, Rebezov M, Shariati MA, Lorenzo JM, Pateiro M. Antioxidant, Anti-Tumour, and Anticoagulant Activities of Polysaccharide from Calocybe indica (APK2). Antioxidants (Basel) 2022; 11:antiox11091694. [PMID: 36139769 PMCID: PMC9495384 DOI: 10.3390/antiox11091694] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/12/2022] Open
Abstract
The initial structural features and in vitro biological study of crude polysaccharides from Calocybe indica (CICP) extracted by hot water followed by ethanol precipitation was investigated. High-performance gel permeation chromatography, HPLC-DAD, UV, IR and NMR spectroscopy, X-ray diffraction, scanning electron microscopy, and Congo red methods were used to determine structural features. The results revealed that CICP is a hetero-polysaccharide with a molecular weight of 9.371 × 104 Da and 2.457 × 103 Da which is composed of xylose, mannose, fucose, rhamnose, arabinose, galactose, and glucose. The antioxidant activity of CICP was evaluated using radical scavenging activity (three methods), reducing ability (three methods), metal chelating activity, and lipid peroxidation inhibition activity (two methods). It was found that the antioxidant capacity is concentration-dependent and EC50 values were found to be 1.99–3.82 mg/mL (radical scavenging activities), 0.78–2.78 mg/mL (reducing ability), 4.11 mg/mL (metal chelating activity), and 0.56–4.18 mg/mL (lipid peroxidation inhibition activity). In vitro anticoagulant assay revealed that CICP could prolong activated partial thromboplastin time (APTT), thrombin time (TT), but not prothrombin time (PT). CICP exhibited antiproliferative activity on HeLa, PC3, HT29, HepG2, and Jurkat cell lines with IC50 (μg/mL) values of 148.40, 143.60,151.00, 168.30, and 156.30, respectively. The above findings suggested that CICP could be considered a natural antioxidant and cancer preventative.
Collapse
Affiliation(s)
- Ambika Nataraj
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636011, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem 636011, India
- Correspondence: (S.G.); (P.R.); (M.P.)
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Correspondence: (S.G.); (P.R.); (M.P.)
| | | | - S. Sathianarayanan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhin st., 109316 Moscow, Russia
- Biophotonics center, Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilov st., 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave., Almaty 050060, Kazakhstan
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Correspondence: (S.G.); (P.R.); (M.P.)
| |
Collapse
|
38
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
39
|
Ulva pertusa, a Marine Green Alga, Attenuates DNBS-Induced Colitis Damage via NF-κB/Nrf2/SIRT1 Signaling Pathways. J Clin Med 2022; 11:jcm11154301. [PMID: 35893393 PMCID: PMC9331369 DOI: 10.3390/jcm11154301] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) represent gastrointestinal (GI) disorders associated with varied responses to microbial and environmental agents. Natural compounds have been suggested as a valid approach to the management of various GI diseases, particularly the green alga Ulva pertusa, belonging to the Ulvaceae family, which showed powerful biological properties. Here, we aimed to evaluate the effect and the mechanism of Ulva pertusa treatments in a murine model of DNBS-induced colitis. Colitis was induced by DNBS intrarectal installation (4 mg in 100 μL of 50% ethanol), while Ulva pertusa treatments (doses of 10, 50 and 100 mg/kg) were administered orally daily. Ulva pertusa, at the higher doses of 50 and 100 mg/kg, significantly reduced tissue damage DNBS-induced and the consequent inflammatory cascade via NF-κB inhibition. Furthermore, we demonstrated, for the first time, Ulva pertusa action on the SIRT1/Nrf2 axis, enhancing antioxidant response and the modulation of the apoptosis pathway colitis-induced, regulating the expression of p53, Bax, Bcl-2, and Caspases. Taken together, Ulva pertusa could be considered a valid approach for counteracting and blocking the progression of IBDs through modulation of the NF-κB/SIRT1/Nrf2 axis.
Collapse
|
40
|
Zhou P, Xiao W, Wang X, Wu Y, Zhao R, Wang Y. A Comparison Study on Polysaccharides Extracted from Atractylodes chinensis (DC.) Koidz. Using Different Methods: Structural Characterization and Anti-SGC-7901 Effect of Combination with Apatinib. Molecules 2022; 27:4727. [PMID: 35897903 PMCID: PMC9332031 DOI: 10.3390/molecules27154727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
For hundreds of years, Atractylodes chinensis (DC.) Koidz. (AK) has been widely used as a treatment for spleen and stomach diseases in China. The AK polysaccharides (AKPs) have been thought to be the important bioactive components. In this stud, the impacts of different extraction methods were analyzed. The differences between AKPs extracted by hot water extraction (HWE), AKPs extracted by ultrasonic extraction (UAE), and AKPs extracted by enzyme extraction (EAE) were compared in terms of yield, total carbohydrate content, molecular weight distribution, monosaccharide composition, and synergistic activity of the AKPs with apatinib were determined. The results indicated that the yield of the polysaccharide obtained from HWE was higher than that of UAE and EAE. However, activity assays indicated that UAE-AKPs and HWE-AKPs enhanced apoptosis of human gastric cancer cells (SGC-7901) treated with apatinib and UAE-AKPs showed the strongest synergistic activities. This is also in agreement with the fact that UAE-AKPs have a smaller molecular weight, β-configuration, and higher galactose content. These findings suggested that UAE is an efficient and environmentally friendly method for producing new polysaccharides from Atractylodes chinensis (DC.) Koidz. for the development of natural synergist and for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Pingfan Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (P.Z.); (W.X.)
| | - Wanwan Xiao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (P.Z.); (W.X.)
| | - Xiaoshuang Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.W.); (Y.W.)
| | - Yayun Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.W.); (Y.W.)
| | - Ruizhi Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (X.W.); (Y.W.)
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, China
| | - Yan Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (P.Z.); (W.X.)
| |
Collapse
|
41
|
El Fayoumy RA, El-Sheekh MM, Abu Ahmed SE. Potential of Ulvan Polysaccharide from Ulva lactuca as Antifungal Against Some Foodborne Fungi Isolated from Spoiled Tomato Sauce Cans. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Reham A. El Fayoumy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Mostafa M. El-Sheekh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Seham E. Abu Ahmed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
42
|
Kakar MU, Li J, Mehboob MZ, Sami R, Benajiba N, Ahmed A, Nazir A, Deng Y, Li B, Dai R. Purification, characterization, and determination of biological activities of water-soluble polysaccharides from Mahonia bealei. Sci Rep 2022; 12:8160. [PMID: 35581215 PMCID: PMC9114413 DOI: 10.1038/s41598-022-11661-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Mahonia bealei is one of the important members of the genus Mahonia and Traditional Chinese Medicine (TCM). Several compounds isolated from this plant have exhibited useful biological activities. Polysaccharides, an important biomacromolecule have been underexplored in case of M. bealei. In this study, hot water extraction and ethanol precipitation were used for the extraction of polysaccharides from the stem of M. bealei, and then extract was purified using ultrafiltration membrane at 50,000 Da cut off value. Characterization of the purified M. bealei polysaccharide (MBP) was performed using Fourier Transform Infrared Spectroscopy (FT-IR), along with Scanning Electron Microscopy (SEM), X-ray crystallography XRD analysis and Thermal gravimetric analysis (TGA). The purified polysaccharide MBP was tested for antioxidant potential by determining its reducing power, besides determining the DPPH, ABTS, superoxide radical, and hydroxyl radical scavenging along with ferrous ion chelating activities. An increased antioxidant activity of the polysaccharide was reported with increase in concentration (0.5 to 5 mg/ml) for all the parameters. Antimicrobial potential was determined against gram positive and gram-negative bacteria. 20 µg/ml MBP was found appropriate with 12 h incubation period against Escherichia coli and Bacillus subtilis bacteria. We conclude that polysaccharides from M. bealei possess potential ability of biological importance; however, more studies are required for elucidation of their structure and useful activities.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.,Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Jingyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Muhammad Zubair Mehboob
- CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Nada Benajiba
- Department of Basic Health Sciences, Deanship of Preparatory Year, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aziz Ahmed
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, (LUAWMS), Uthal, Balochistan, Pakistan
| | - Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Industry North Road 202, Jinan, Shandong Province, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China. .,Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Sciences, Beijing Institute of Technology (BIT), Beijing, 100081, China.
| |
Collapse
|
43
|
Zhang X, Liu J, Wang X, Hu H, Zhang Y, Liu T, Zhao H. Structure characterization and antioxidant activity of carboxymethylated polysaccharide from
Pholiota nameko. J Food Biochem 2022; 46:e14121. [DOI: 10.1111/jfbc.14121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute Changchun China
| | - Xi Wang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hewen Hu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Yanrong Zhang
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Tingting Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| | - Hui Zhao
- College of Food Science and Engineering Jilin Agricultural University Changchun China
| |
Collapse
|
44
|
Zhang Y, Shi Q, Jiang W, Yao J, Zeng J, Wang W, Zhang Y. Comparison of the chemical composition and antioxidant stress ability of polysaccharides from Auricularia auricula under different drying methods. Food Funct 2022; 13:2938-2951. [PMID: 35191914 DOI: 10.1039/d1fo03956c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Auricularia auricula fruiting body-derived polysaccharides (AAPs) were dried using different drying procedures, including hot air-, far infrared-, freeze-, and microwave-drying. The influences of different drying procedures on the chemical compositions and antioxidant activity in vitro and in vivo of AAPs were investigated. The results indicated that freeze-dried AAPs (AAPs-F) possessed the highest uronic acid content (33.53%) and the lowest molecular weight (406.77 kDa). Moreover, AAPs-F exhibited the most potent antioxidant abilities in vitro, including ABTS+ and DPPH˙ scavenging abilities, ferric reducing power, and metal ion chelating capacity. Besides, AAPs-F could significantly prolong the lifespan of wild-type C. elegans under oxidative stress induced by H2O2 and methyl viologen (p < 0.05) and upregulate the mRNA expression levels of daf-16 (>2.7 fold), sod-3 (>9.2 fold), skn-1 (>4.5 fold) and sir-2.1 (>1.9 fold), and play a significant role in protecting C. elegans against apoptosis (p < 0.05). Hence, freeze-drying was determined as the preferred procedure for obtaining high-quality AAPs.
Collapse
Affiliation(s)
- Yakun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Qianwen Shi
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Wen Jiang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Jing Yao
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Jiangying Zeng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Yongjun Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| |
Collapse
|
45
|
Mousavian Z, Safavi M, Azizmohseni F, Hadizadeh M, Mirdamadi S. Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae. AMB Express 2022; 12:27. [PMID: 35239029 PMCID: PMC8894541 DOI: 10.1186/s13568-022-01365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
The sulfated exopolysaccharide extracted from marine microalgae attracted considerable attention from both the nutraceutical and pharmaceutical industries. In the present study biomass of five marine microalgae were screened to find strains with high capacity for the production of sulfated exopolysaccharides. The anticoagulant and antioxidant activities of extracted sulfated polysaccharides were evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT), DPPH and ABTS assays, respectively. The sulfated polysaccharides extracted from Picochlorum sp. showed a strong DPPH scavenging effect with 85% antioxidant activity. The sulfated polysaccharides of Chlorella sorokiniana, Chlorella sp. (L2) and Chlorella sp. (D1) scavenged more than 90% of the ABTS radicals. However, the sulfated polysaccharide extracted from Chlorella sorokiniana, and Chlorella sp. (N4) showed anticoagulant properties. The dual anticoagulant-antioxidant activities in Chlorella sorokiniana could be explained by the combination of various factors including sulfate content and their binding site, monosaccharide residue and glycoside bond which are involved in the polysaccharide’s bioactivity.
Sulfated exopolysaccharides (sPS) were extracted from marine green microalgae by the heated acid extraction method. sPS with the higher sulfate/sugar ratio presented potent ABTS radical scavenging activity. Some of the sPS revealed anticoagulant effects in activated partial thromboplastin time (aPTT) and prothrombin time (PT) assays.
Collapse
|
46
|
Hamouda RA, Hussein MH, El-Naggar NEA, Karim-Eldeen MA, Alamer KH, Saleh MA, Al Masoudi LM, Sharaf EM, El-Azeem RMA. Promoting Effect of Soluble Polysaccharides Extracted from Ulva spp. on Zea mays L. Growth. Molecules 2022; 27:1394. [PMID: 35209184 PMCID: PMC8879857 DOI: 10.3390/molecules27041394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Seaweeds can play a vital role in plant growth promotion. Two concentrations (5 and 10 mg/mL) of soluble polysaccharides extracted from the green macroalgae Ulva fasciata and Ulva lactuca were tested on Zea mays L. The carbohydrate and protein contents, and antioxidant activities (phenols, ascorbic, peroxidase, and catalase) were measured, as well as the protein banding patterns. The soluble polysaccharides at 5 mg/mL had the greatest effect on the base of all of the parameters. The highest effects of soluble polysaccharides on the Zea mays were 38.453, 96.76, 4, 835, 1.658, 7.462, and 38615.19, mg/mL for carbohydrates, proteins, phenol, µg ascorbic/mL, mg peroxidase/g dry tissue, and units/g tissue of catalase, respectively. The total number of protein bands (as determined by SDS PAGE) was not changed, but the density of the bands was correlated to the treatments. The highest band density and promoting effect were correlated to 5 mg/mL soluble polysaccharide treatments extracted from Ulva fasciata in Zea mays, which can be used as a biofertilizer.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Mervat H. Hussein
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (M.H.H.); (M.A.K.-E.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt;
| | - Mohammed A. Karim-Eldeen
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (M.H.H.); (M.A.K.-E.)
| | - Khalid H. Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Muneera A. Saleh
- Department of Biology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.S.); (L.M.A.M.)
| | - Luluah M. Al Masoudi
- Department of Biology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.S.); (L.M.A.M.)
| | - Eman M. Sharaf
- Bacteriology, Immunology and Mycology Dep., Animal Health Research Institute, Shebin El Kom 32511, Egypt;
| | - Reham M. Abd El-Azeem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| |
Collapse
|
47
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
48
|
Ben Salem M, Affes H, Dhouibi R, Charfi S, Turki M, Hammami S, Ayedi F, Sahnoun Z, Zeghal KM, Ksouda K. Effect of Artichoke ( cynara scolymus) on cardiac markers, lipid profile and antioxidants levels in tissue of HFD-induced obesity. Arch Physiol Biochem 2022; 128:184-194. [PMID: 31564131 DOI: 10.1080/13813455.2019.1670213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity plays a pivotal role in the insulin resistance disease, which is related to hypertension, hyperlipidemia, type 2 diabetes mellitus, and an increased risk of cardiovascular disease. The purpose of the present study was done to evaluate the effect of artichoke leaves extract (ALE) in the high-fat diet (HFD)-induced cellular obesity and cardiac damage in Wistar rats. Body and organ weights, serum lipid profile, cardiac markers, and antioxidants enzymes were measured. Oral administration of ALE at two doses 200 and 400 mg/kg for a period of 60 days showed a significant decrease in body and organ weights, serum total cholesterol, triglycerides, LDH, ALT accompanied by decreasing in oxidative stress biomarker (MDA, and AOPP) and increasing antioxidant enzymes (SOD, CAT, and GPx) levels as compared to HFD groups. The histological findings showed a cardioprotective effect of ALE. These findings suggest that ALE exert anti-oxidant cardiac effects in HFD- induced obese rats.
Collapse
Affiliation(s)
- Maryem Ben Salem
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Khaled Mounir Zeghal
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
49
|
Kang J, Jia X, Wang N, Xiao M, Song S, Wu S, Li Z, Wang S, Cui SW, Guo Q. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, Zhao C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci 2022; 5:1330-1341. [PMID: 36082139 PMCID: PMC9445227 DOI: 10.1016/j.crfs.2022.08.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides are usually composed of more than ten monosaccharide units, which are connected by linear or branched glycosidic bonds. The immunomodulatory effect of natural polysaccharides is one of the most important bioactive function. In this review, molecular weight, monosaccharide (including galactose, mannose, rhamnogalacturonan-I arabinogalactan and uronic acid), functional groups (namely sulfate, selenium, and acetyl groups), types of glycoside bond connection (including β-1,3-D-glucosyl, α-1,4-D-glucosyl, β-1,4-D-glucosyl, α-1,6-D-glucosyl, β-1,4-D-mannosyl, and β-1,4-D-Xylopyranosyl), conformation and the branching degrees are systematically identified as their contribution to the immunostimulatory activity of polysaccharides. At present, studies on the structure-activity relationships of polysaccharides are limited due to their low purity and high heterogeneity. However, it is an important step in providing useful guidance for dietary supplements with polysaccharides. The chemical structures and the process of immune responses induced are necessary to be discussed. Polysaccharides may bind with the cell surface receptors to modulate immune responses. This review mainly discusses the structure-activity relationship of dietary polysaccharides.
Structure - activity relationships of polysaccharides with immune-enhancing effect are proposed. Polysaccharides with the higher molecular weight are helpful to improve immunity. Higer galactose, mannose, rhamnogalacturonan-I, arabinogalacta,n and uronic acid contents have immunoregulation.
Collapse
Affiliation(s)
- Ruoxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Corresponding author.No.15 Shangxiadian Rd, Fuzhou, 350002, China
| |
Collapse
|