1
|
Vela RJ, Jessen ME, Peltz M. Ice, ice, maybe? Is it time to ditch the igloo cooler? Benefits of machine perfusion preservation of donor hearts. Artif Organs 2019; 44:220-227. [DOI: 10.1111/aor.13599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ryan J. Vela
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center Dallas Texas
| | - Michael E. Jessen
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center Dallas Texas
| | - Matthias Peltz
- Department of Cardiovascular and Thoracic Surgery University of Texas Southwestern Medical Center Dallas Texas
| |
Collapse
|
2
|
Kappler B, Ledezma CA, van Tuijl S, Meijborg V, Boukens BJ, Ergin B, Tan PJ, Stijnen M, Ince C, Díaz-Zuccarini V, de Mol BAJM. Investigating the physiology of normothermic ex vivo heart perfusion in an isolated slaughterhouse porcine model used for device testing and training. BMC Cardiovasc Disord 2019; 19:254. [PMID: 31711426 PMCID: PMC6849278 DOI: 10.1186/s12872-019-1242-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background The PhysioHeart™ is a mature acute platform, based isolated slaughterhouse hearts and able to validate cardiac devices and techniques in working mode. Despite perfusion, myocardial edema and time-dependent function degradation are reported. Therefore, monitoring several variables is necessary to identify which of these should be controlled to preserve the heart function. This study presents biochemical, electrophysiological and hemodynamic changes in the PhysioHeart™ to understand the pitfalls of ex vivo slaughterhouse heart hemoperfusion. Methods Seven porcine hearts were harvested, arrested and revived using the PhysioHeart™. Cardiac output, SaO2, glucose and pH were maintained at physiological levels. Blood analyses were performed hourly and unipolar epicardial electrograms (UEG), pressures and flows were recorded to assess the physiological performance. Results Normal cardiac performance was attained in terms of mean cardiac output (5.1 ± 1.7 l/min) and pressures but deteriorated over time. Across the experiments, homeostasis was maintained for 171.4 ± 54 min, osmolarity and blood electrolytes increased significantly between 10 and 80%, heart weight increased by 144 ± 41 g, free fatty acids (− 60%), glucose and lactate diminished, ammonia increased by 273 ± 76% and myocardial necrosis and UEG alterations appeared and aggravated. Progressively deteriorating electrophysiological and hemodynamic functions can be explained by reperfusion injury, waste product intoxication (i.e. hyperammonemia), lack of essential nutrients, ion imbalances and cardiac necrosis as a consequence of hepatological and nephrological plasma clearance absence. Conclusions The PhysioHeart™ is an acute model, suitable for cardiac device and therapy assessment, which can precede conventional animal studies. However, observations indicate that ex vivo slaughterhouse hearts resemble cardiac physiology of deteriorating hearts in a multi-organ failure situation and signalize the need for plasma clearance during perfusion to attenuate time-dependent function degradation. The presented study therefore provides an in-dept understanding of the sources and reasons causing the cardiac function loss, as a first step for future effort to prolong cardiac perfusion in the PhysioHeart™. These findings could be also of potential interest for other cardiac platforms.
Collapse
Affiliation(s)
- Benjamin Kappler
- Department Cardiothoracic Surgery, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands. .,LifeTec Group B.V, Eindhoven, The Netherlands.
| | - Carlos A Ledezma
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | | | - Veronique Meijborg
- Department of Medical Biology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Bülent Ergin
- Department of Translational Physiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - P J Tan
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | | | - Can Ince
- Department of Translational Physiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London, UK. .,WEISS Centre for Surgical and Interventional Sciences, UCL, Gower Street 10, London, UK.
| | - Bas A J M de Mol
- Department Cardiothoracic Surgery, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, The Netherlands.,LifeTec Group B.V, Eindhoven, The Netherlands
| |
Collapse
|
3
|
Hearts Donated After Circulatory Death and Reconditioned Using Normothermic Regional Perfusion Can Be Successfully Transplanted Following an Extended Period of Static Storage. Circ Heart Fail 2019; 12:e005364. [DOI: 10.1161/circheartfailure.118.005364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Chai YC, Dang GX, He HQ, Shi JH, Zhang HK, Zhang RT, Wang B, Hu LS, Lv Y. Hypothermic machine perfusion with metformin-University of Wisconsin solution for ex vivo preservation of standard and marginal liver grafts in a rat model. World J Gastroenterol 2017; 23:7221-7231. [PMID: 29142469 PMCID: PMC5677206 DOI: 10.3748/wjg.v23.i40.7221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the effect of University of Wisconsin (UW) solution with or without metformin, an AMP-activated protein kinase (AMPK) activator, for preserving standard and marginal liver grafts of young and aged rats ex vivo by hypothermic machine perfusion (HMP).
METHODS Eighteen young (4 mo old) and 18 aged (17 mo old) healthy male SD rats were selected and randomly divided into three groups: control group, UW solution perfusion group (UWP), and UW solution with metformin perfusion group (MUWP). Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), interleukin-18 (IL-18), and tumor necrosis factor-alpha (TNF-α) in the perfused liquid were tested. The expression levels of AMPK and endothelial nitric oxide synthase (eNOS) in liver sinusoidal endothelial cells were also examined. Additionally, microscopic evaluation of the harvested perfused liver tissue samples was done.
RESULTS AST, ALT, LDH, IL-18 and TNF-α levels in the young and aged liver-perfused liquid were, respectively, significantly lower in the MUWP group than in the UWP group (P < 0.05), but no significant differences were found between the young and aged MUWP groups. Metformin increased the expression of AMPK and eNOS protein levels, and promoted the extracellular release of nitric oxide through activation of the AMPK-eNOS mediated pathway. Histological examination revealed that in the MUWP group, the extent of liver cells and tissue damage was significantly reduced compared with the UWP group.
CONCLUSION The addition of metformin to the UW preservative solution for ex vivo HMP can reduce rat liver injury during cold ischemia, with significant protective effects on livers, especially of aged rats.
Collapse
Affiliation(s)
- Yi-Chao Chai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Guo-Xin Dang
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary and Vascular Surgery, the 521 Hospital of Ordnance Industry, Xi’an 710065, Shaanxi Province, China
| | - Hai-Qi He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Hua Shi
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Hong-Ke Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Rui-Tao Zhang
- Department of Hepatobiliary and Vascular Surgery, the 521 Hospital of Ordnance Industry, Xi’an 710065, Shaanxi Province, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Liang-Shuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Institute of Advanced Surgical Techniques and Engineering, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
5
|
Andrew J, Macdonald P. Latest developments in heart transplantation: a review. Clin Ther 2016; 37:2234-41. [PMID: 26497799 DOI: 10.1016/j.clinthera.2015.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/25/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE Heart transplantation (HT) remains the treatment of choice for advanced heart failure despite improvements in medical therapy and mechanical circulatory support. Significant developments have occurred in the field of HT over the past year, in particular the successful transplantation of donor hearts after circulatory determination of death. The purpose of this article was to review developments in HT published in 2014 and 2015. METHODS Selected articles found using a MEDLINE search of the key term heart transplant were reviewed. FINDINGS The year has seen improvements in the attenuation of ischemia and reperfusion injury, patient selection, immunosuppression, imaging of the transplanted heart, and donor organ preservation that hold promise for increasing the number of transplantations and improving outcomes in HT recipients. Advances in the detection and attenuation of cardiac rejection and allograft vasculopathy are highlighted. IMPLICATIONS A number of significant advances over the past year hold promise for tangible improvements in outcomes in the field of HT.
Collapse
Affiliation(s)
- Jabbour Andrew
- Heart and Lung Transplant Unit, St. Vincent's Hospital, Darlinghurst, Australia; Cardiac Physiology and Transplantation Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; Faculty of Medicine, University of New South Wales, Kensington, Australia.
| | - Peter Macdonald
- Heart and Lung Transplant Unit, St. Vincent's Hospital, Darlinghurst, Australia; Cardiac Physiology and Transplantation Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; Faculty of Medicine, University of New South Wales, Kensington, Australia
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW To summarize the history of organ preservation and place into this context the current trends in preservation. RECENT FINDINGS Multiple large retrospective studies have analyzed cold preservation solutions in an attempt to determine superiority with largely negative results. Experimental and some clinical studies have examined machine perfusion of procured grafts, in both hypothermic and normothermic contexts with variable, but promising, results. Lastly, there are experimental efforts to evaluate mesenchymal stem cell therapy on rehabilitation of marginal donor organs. SUMMARY New trends in organ preservation may soon translate into more efficient use of the limited donor pool.
Collapse
|
7
|
Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg 2014; 20:510-9. [PMID: 25538253 DOI: 10.1093/icvts/ivu432] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methods of donor heart preservation are aimed at minimizing graft dysfunction caused by ischaemia-reperfusion injury (IRI) which inevitably occurs during the ex vivo transport interval. At present, the standard technique of heart preservation is cardiac arrest followed by static cold storage in a crystalloid heart preservation solution (HPS). This technique ensures an acceptable level of heart protection against IRI for <6 h. In clinical trials, comparable levels of myocardial protection against IRI were provided by various HPSs. The growing shortage of donor hearts is one of the major factors stimulating the development of new techniques of heart preservation. Here, we summarize new HPS formulations and provide a focus for optimization of the composition of existing HPSs. Such methods of donor heart preservation as machine perfusion, preservation at sub-zero temperature and oxygen persufflation are also discussed. Furthermore, we review experimental data showing that pre- and post-conditioning of the cardiac graft can improve its function when used in combination with cold storage. The evidence on the feasibility of cardiac donation after circulatory death, as well as the techniques of heart reconditioning after a period of warm ischaemia, is presented. The implementation of new techniques of donor heart preservation may contribute to the use of hearts from extended criteria donors, thereby expanding the total donor pool.
Collapse
Affiliation(s)
- Sarkis M Minasian
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Yuri V Dmitriev
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation
| | - Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| | - Timur D Vlasov
- Institute of Experimental Medicine, Federal Almazov Medical Research Centre, St Petersburg, Russian Federation Department of Pathophysiology, First Pavlov State Medical University of St Petersburg, St Petersburg, Russian Federation
| |
Collapse
|
8
|
Lowalekar SK, Treanor PR, Thatte HS. Cardioplegia at subnormothermia facilitates rapid functional resuscitation of hearts preserved in SOMAH for transplants. J Cardiothorac Surg 2014; 9:155. [PMID: 25238790 PMCID: PMC4182865 DOI: 10.1186/s13019-014-0155-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 01/30/2023] Open
Abstract
Objectives Hearts preserved ex vivo at 4°C undergo time-dependent irreversible injury due to extreme hypothermia. Studies using novel organ preservative solution SOMAH, suggest that hearts are optimally `preserved' at subnormothermic temperature of 21°C. Present study evaluates relative efficacy of SOMAH `cardioplegia' at 4 and 21°C in preservation of optimum heart function after in vitro storage at subnormothermia. Methods Porcine hearts arrested with SOMAH cardioplegia at 4 or 21°C were stored in SOMAH for 5-hour at 21°C (n = 5). At the end of storage, the weight of hearts was recorded and biopsies taken for cardiac tissue high energy phosphate level measurements. The hearts were then attached to a reperfusion apparatus and biochemical parameters including cardiac enzyme release and myocardial oxygen consumption and lactate production were determined in perfusate samples at regular intervals during ex vivo perfusion experiment. Functional evaluation of the hearts intraoperatively and ex vivo was performed by 2D echocardiography using trans-esophageal echocardiography probe. Results Post-storage heart weights were unaltered in both groups, while available high-energy phosphates (HEP) were greater in the 21°C group. Upon ex vivo reperfusion, coronary flow was significantly greater (p < 0.05) in 21°C group. 2D echo revealed a greater cardiac output, fractional area change and ejection fraction in 21°C group that was not significantly different than the 4°C group. However, unlike 4°C hearts, 21°C hearts did not require inotropic intervention. Upon reperfusion, rate of cardiac enzyme release temporally resolved in 21°C group, but not in the 4°C group. 21°C working hearts maintained their energy state during the experimental duration but not the 4°C group; albeit, both groups demonstrated robust metabolism and function during this period. Conclusions Rapid metabolic switch, increased synthesis of HEP, decreased injury and optimal function provides evidence that hearts arrested at 21°C remain viably and functionally superior to those arrested at 4°C when stored in SOMAH at ambient temperature pre-transplant. Ultramini-abstract Cardioplegic arrest and preservation of hearts in SOMAH at ambient temperature efficiently conserves metabolism and function in in vitro porcine model of heart transplant. Electronic supplementary material The online version of this article (doi:10.1186/s13019-014-0155-z) contains supplementary material, which is available to authorized users.
Collapse
|