1
|
Aoyama N, Nakajo K, Sasabe M, Inaba A, Nakanishi Y, Seno H, Yano T. Effects of artificial intelligence assistance on endoscopist performance: Comparison of diagnostic performance in superficial esophageal squamous cell carcinoma detection using video-based models. DEN OPEN 2026; 6:e70083. [PMID: 40322543 PMCID: PMC12046500 DOI: 10.1002/deo2.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 05/08/2025]
Abstract
Objectives Superficial esophageal squamous cell carcinoma (ESCC) detection is crucial. Although narrow-band imaging improves detection, its effectiveness is diminished by inexperienced endoscopists. The effects of artificial intelligence (AI) assistance on ESCC detection by endoscopists remain unclear. Therefore, this study aimed to develop and validate an AI model for ESCC detection using endoscopic video analysis and evaluate diagnostic improvements. Methods Endoscopic videos with and without ESCC lesions were collected from May 2020 to January 2022. The AI model trained on annotated videos and 18 endoscopists (eight experts, 10 non-experts) evaluated their diagnostic performance. After 4 weeks, the endoscopists re-evaluated the test data with AI assistance. Sensitivity, specificity, and accuracy were compared between endoscopists with and without AI assistance. Results Training data comprised 280 cases (140 with and 140 without lesions), and test data, 115 cases (52 with and 63 without lesions). In the test data, the median lesion size was 14.5 mm (range: 1-100 mm), with pathological depths ranging from high-grade intraepithelial to submucosal neoplasia. The model's sensitivity, specificity, and accuracy were 76.0%, 79.4%, and 77.2%, respectively. With AI assistance, endoscopist sensitivity (57.4% vs. 66.5%) and accuracy (68.6% vs. 75.9%) improved significantly, while specificity increased slightly (87.0% vs. 91.6%). Experts demonstrated substantial improvements in sensitivity (59.1% vs. 70.0%) and accuracy (72.1% vs. 79.3%). Non-expert accuracy increased significantly (65.8% vs. 73.3%), with slight improvements in sensitivity (56.1% vs. 63.7%) and specificity (81.9% vs. 89.2%). Conclusions AI assistance enhances ESCC detection and improves endoscopists' diagnostic performance, regardless of experience.
Collapse
Affiliation(s)
- Naoki Aoyama
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Keiichiro Nakajo
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- NEXT Medical Device Innovation CenterNational Cancer Center Hospital EastChibaJapan
| | - Maasa Sasabe
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- Division of EndoscopySaitama Cancer CenterSaitamaJapan
| | - Atsushi Inaba
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
| | - Yuki Nakanishi
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Hiroshi Seno
- Department of Gastroenterology and HepatologyKyoto University Graduate School of MedicineKyotoJapan
| | - Tomonori Yano
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
- NEXT Medical Device Innovation CenterNational Cancer Center Hospital EastChibaJapan
| |
Collapse
|
2
|
Zhou S, Xie Y, Feng X, Li Y, Shen L, Chen Y. Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications. Cancer Lett 2025; 614:217555. [PMID: 39952597 DOI: 10.1016/j.canlet.2025.217555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal tumors are characterized by complexity and heterogeneity, posing significant challenges for early detection, diagnostic accuracy, and the development of personalized treatment strategies. The application of AI in digestive oncology has demonstrated its transformative potential. AI not only alleviates the diagnostic burden on clinicians, but it improves tumor screening sensitivity, specificity, and accuracy. Additionally, AI aids the detection of biomarkers such as microsatellite instability and mismatch repair, supports intraoperative assessments of tumor invasion depth, predicts treatment responses, and facilitates the design of personalized treatment plans to potentially significantly enhance patient outcomes. Moreover, the integration of AI with multiomics analyses and imaging technologies has led to substantial advancements in foundational research on the tumor microenvironment. This review highlights the progress of AI in gastrointestinal oncology over the past 5 years with focus on early tumor screening, diagnosis, molecular marker identification, treatment planning, and prognosis predictions. We also explored the potential of AI to enhance medical imaging analyses to aid tumor detection and characterization as well as its role in automating and refining histopathological assessments.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yi Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xujiao Feng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing, 102200, China.
| |
Collapse
|
3
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
4
|
Li B, Du YY, Tan WM, He DL, Qi ZP, Yu HH, Shi Q, Ren Z, Cai MY, Yan B, Cai SL, Zhong YS. Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists. NPJ Digit Med 2025; 8:160. [PMID: 40082585 PMCID: PMC11906877 DOI: 10.1038/s41746-025-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
A computer-aided detection (CAD) system for early esophagus carcinoma identification during endoscopy with narrow-band imaging (NBI) was evaluated in a large-scale, prospective, tandem, randomized controlled trial to assess its effectiveness. The study was registered at the Chinese Clinical Trial Registry (ChiCTR2100050654, 2021/09/01). Involving 3400 patients were randomly assigned to either routine (routine-first) or CAD-assisted (CAD-first) NBI endoscopy, followed by the other procedure, with targeted biopsies taken at the end of the second examination. The primary outcome was the diagnosis of 1 or more neoplastic lesion of esophagus during the first examination. The CAD-first group demonstrated a significantly higher neoplastic lesion detection rate (3.12%) compared to the routine-first group (1.59%) with a relative detection ratio of 1.96 (P = 0.0047). Subgroup analysis revealed a higher detection rate in junior endoscopists using CAD-first, while no significant difference was observed for senior endoscopists. The CAD system significantly improved esophageal neoplasm detection, particularly benefiting junior endoscopists.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Yun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ming-Yan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
5
|
Zhou N, Yuan X, Liu W, Luo Q, Liu R, Hu B. Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions. Chin Med J (Engl) 2025:00029330-990000000-01442. [PMID: 40008787 DOI: 10.1097/cm9.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 02/27/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Collapse
Affiliation(s)
- Nuoya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianglei Yuan
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruide Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
7
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
8
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [PMID: 39492825 PMCID: PMC11525855 DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
9
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
10
|
Rey JF. As how artificial intelligence is revolutionizing endoscopy. Clin Endosc 2024; 57:302-308. [PMID: 38454543 PMCID: PMC11133999 DOI: 10.5946/ce.2023.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 03/09/2024] Open
Abstract
With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Institut Arnaut Tzanck Gastrointestinal Unt, Saint Laurent du Var, France
| |
Collapse
|
11
|
Yuan XL, Liu W, Lin YX, Deng QY, Gao YP, Wan L, Zhang B, Zhang T, Zhang WH, Bi XG, Yang GD, Zhu BH, Zhang F, Qin XB, Pan F, Zeng XH, Chaudhry H, Pang MY, Yang J, Zhang JY, Hu B. Effect of an artificial intelligence-assisted system on endoscopic diagnosis of superficial oesophageal squamous cell carcinoma and precancerous lesions: a multicentre, tandem, double-blind, randomised controlled trial. Lancet Gastroenterol Hepatol 2024; 9:34-44. [PMID: 37952555 DOI: 10.1016/s2468-1253(23)00276-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Despite the usefulness of white light endoscopy (WLE) and non-magnified narrow-band imaging (NBI) for screening for superficial oesophageal squamous cell carcinoma and precancerous lesions, these lesions might be missed due to their subtle features and interpretation variations among endoscopists. Our team has developed an artificial intelligence (AI) system to detect superficial oesophageal squamous cell carcinoma and precancerous lesions using WLE and non-magnified NBI. We aimed to evaluate the auxiliary diagnostic performance of the AI system in a real clinical setting. METHODS We did a multicentre, tandem, double-blind, randomised controlled trial at 12 hospitals in China. Eligible patients were aged 18 years or older and underwent sedated upper gastrointestinal endoscopy for screening, investigation of gastrointestinal symptoms, or surveillance. Patients were randomly assigned (1:1) to either the AI-first group or the routine-first group using a computerised random number generator. Patients, pathologists, and statistical analysts were masked to group assignment, whereas endoscopists and research assistants were not. The same endoscopist at each centre did tandem upper gastrointestinal endoscopy for each eligible patient on the same day. In the AI-first group, the endoscopist did the first examination with the assistance of the AI system and the second examination without it. In the routine-first group, the order of examinations was reversed. The primary outcome was the miss rate of superficial oesophageal squamous cell carcinoma and precancerous lesions, calculated on a per-lesion and per-patient basis. All analyses were done on a per-protocol basis. This trial is registered with the Chinese Clinical Trial Registry (ChiCTR2100052116) and is completed. FINDINGS Between Oct 19, 2021, and June 8, 2022, 5934 patients were randomly assigned to the AI-first group and 5912 to the routine-first group, of whom 5865 and 5850 were eligible for analysis. Per-lesion miss rates were 1·7% (2/118; 95% CI 0·0-4·0) in the AI-first group versus 6·7% (6/90; 1·5-11·8) in the routine-first group (risk ratio 0·25, 95% CI 0·06-1·08; p=0·079). Per-patient miss rates were 1·9% (2/106; 0·0-4·5) in AI-first group versus 5·1% (4/79; 0·2-9·9) in the routine-first group (0·37, 0·08-1·71; p=0·40). Bleeding after biopsy of oesophageal lesions was observed in 13 (0·2%) patients in the AI-first group and 11 (0·2%) patients in the routine-first group. No serious adverse events were reported by patients in either group. INTERPRETATION The observed effect of AI-assisted endoscopy on the per-lesion and per-patient miss rates of superficial oesophageal squamous cell carcinoma and precancerous lesions under WLE and non-magnified NBI was consistent with substantial benefit through to a neutral or small negative effect. The effectiveness and cost-benefit of this AI system in real-world clinical settings remain to be further assessed. FUNDING National Natural Science Foundation of China, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University, and Chengdu Science and Technology Project. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Xiang-Lei Yuan
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Xiu Lin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian-Yi Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Gao
- Department of Gastroenterology, Meishan People's Hospital, Meishan, China
| | - Ling Wan
- Department of Gastroenterology, Shimian People's Hospital, Ya'an, China
| | - Bin Zhang
- Department of Gastroenterology, Nanbu People's Hospital, Nanchong, China
| | - Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, China
| | - Wan-Hong Zhang
- Department of Gastroenterology, Cangxi People's Hospital, Guangyuan, China
| | - Xiao-Gang Bi
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, China
| | - Guo-Dong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bi-Hui Zhu
- Department of Gastroenterology, Zizhong People's Hospital, Neijiang, China
| | - Fan Zhang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Xiao-Bo Qin
- Department of Gastroenterology, The First Veterans Hospital of Sichuan Province, Chengdu, China
| | - Feng Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Huai'an, China
| | - Xian-Hui Zeng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hunza Chaudhry
- Department of Internal Medicine, University of California San Francisco-Fresno, CA, USA
| | - Mao-Yin Pang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jing-Yu Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Zhang L, Yao L, Lu Z, Yu H. Current status of quality control in screening esophagogastroduodenoscopy and the emerging role of artificial intelligence. Dig Endosc 2024; 36:5-15. [PMID: 37522555 DOI: 10.1111/den.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Esophagogastroduodenoscopy (EGD) screening is being implemented in countries with a high incidence of upper gastrointestinal (UGI) cancer. High-quality EGD screening ensures the yield of early diagnosis and prevents suffering from advanced UGI cancer and minimal operational-related discomfort. However, performance varied dramatically among endoscopists, and quality control for EGD screening remains suboptimal. Guidelines have recommended potential measures for endoscopy quality improvement and research has been conducted for evidence. Moreover, artificial intelligence offers a promising solution for computer-aided diagnosis and quality control during EGD examinations. In this review, we summarized the key points for quality assurance in EGD screening based on current guidelines and evidence. We also outline the latest evidence, limitations, and future prospects of the emerging role of artificial intelligence in EGD quality control, aiming to provide a foundation for improving the quality of EGD screening.
Collapse
Affiliation(s)
- Lihui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liwen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihua Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Rey JF. Artificial intelligence in digestive endoscopy: recent advances. Curr Opin Gastroenterol 2023:00001574-990000000-00089. [PMID: 37522929 DOI: 10.1097/mog.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW With the incessant advances in information technology and its implications in all domains of our life, artificial intelligence (AI) started to emerge as a need for better machine performance. How it can help endoscopists and what are the areas of interest in improving both diagnostic and therapeutic endoscopy in each part of the gastrointestinal (GI) tract. What are the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. RECENT FINDINGS The two main AI systems categories are computer-assisted detection 'CADe' for lesion detection and computer-assisted diagnosis 'CADx' for optical biopsy and lesion characterization. Multiple softwares are now implemented in endoscopy practice. Other AI systems offer therapeutic assistance such as lesion delineation for complete endoscopic resection or prediction of possible lymphanode after endoscopic treatment. Quality assurance is the coming step with complete monitoring of high-quality colonoscopy. In all cases it is a computer-aid endoscopy as the overall result rely on the physician. Video capsule endoscopy is the unique example were the computer conduct the device, store multiple images, and perform accurate diagnosis. SUMMARY AI is a breakthrough in digestive endoscopy. Screening gastric and colonic cancer detection should be improved especially outside of expert's centers. Prospective and multicenter trials are mandatory before introducing new software in clinical practice.
Collapse
Affiliation(s)
- Jean-Francois Rey
- Arnault Tzanck Institute, 116 rue du commandant Cahuzac, Saint Laurent du var, France
| |
Collapse
|
14
|
Pan Y, He L, Chen W, Yang Y. The current state of artificial intelligence in endoscopic diagnosis of early esophageal squamous cell carcinoma. Front Oncol 2023; 13:1198941. [PMID: 37293591 PMCID: PMC10247226 DOI: 10.3389/fonc.2023.1198941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract. The most effective method of reducing the disease burden in areas with a high incidence of esophageal cancer is to prevent the disease from developing into invasive cancer through screening. Endoscopic screening is key for the early diagnosis and treatment of ESCC. However, due to the uneven professional level of endoscopists, there are still many missed cases because of failure to recognize lesions. In recent years, along with remarkable progress in medical imaging and video evaluation technology based on deep machine learning, the development of artificial intelligence (AI) is expected to provide new auxiliary methods of endoscopic diagnosis and the treatment of early ESCC. The convolution neural network (CNN) in the deep learning model extracts the key features of the input image data using continuous convolution layers and then classifies images through full-layer connections. The CNN is widely used in medical image classification, and greatly improves the accuracy of endoscopic image classification. This review focuses on the AI-assisted diagnosis of early ESCC and prediction of early ESCC invasion depth under multiple imaging modalities. The excellent image recognition ability of AI is suitable for the detection and diagnosis of ESCC and can reduce missed diagnoses and help endoscopists better complete endoscopic examinations. However, the selective bias used in the training dataset of the AI system affects its general utility.
Collapse
Affiliation(s)
- Yuwei Pan
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lanying He
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongtao Yang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|