1
|
Xu W, Hu J, Ma Z, Feng W, Gong W, Fu S, Chen X. Decreased BIRC5-206 promotes epithelial-mesenchymal transition in nasopharyngeal carcinoma through sponging miR-145-5p. Open Med (Wars) 2024; 19:20241007. [PMID: 39308922 PMCID: PMC11416051 DOI: 10.1515/med-2024-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024] Open
Abstract
Metastasis significantly contributes to the poor prognosis of advanced nasopharyngeal carcinoma (NPC). Our prior studies have demonstrated a decrease in BIRC5-206 expression in NPC, which promotes disease progression. However, the role of BIRC5-206 in the invasion and metastasis of NPC has not been fully elucidated. In this study, our objective was to explore the biological function and underlying mechanisms of BIRC5-206 in NPC. Additionally, we established an NPC mouse model of lung invasiveness using C666 cells to assess the impact of BIRC5-206 on NPC metastasis. Our results revealed that silencing BIRC5-206 inhibited apoptosis and enhanced the invasion of NPC cells, whereas its overexpression reversed these effects. Moreover, decreased BIRC5-206 expression significantly increased N-cadherin and Vimentin expression while reducing E-cadherin and occludin levels, both in vivo and in vitro. Additionally, silencing BIRC5-206 markedly augmented the formation of invasive foci in lung tissues. Rescue experiments further confirmed that decreased BIRC5-206 expression facilitates NPC metastasis via modulation of the miR-145-5p/CD40 signaling pathway. In summary, our study suggests that BIRC5-206 may serve as a potential prognostic biomarker and therapeutic target in the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Weihua Xu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Junjie Hu
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Zhichao Ma
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, Haikou, Hainan, 570312, China
| | - Wanyi Feng
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Wei Gong
- Hainan Lvtou Medical Laboratory Center, Haikou, Hainan, 570206, China
- School of Life Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, No. 19 Xiuhua Road, Xiuying District, Haikou, Hainan, 570311, China
- Hainan Lvtou Medical Laboratory Center, No. 16 Jinyu East Road, Longhua District, Haikou, Hainan, 570206, China
| | - Xinping Chen
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Hainan Tropical Cancer Research Institute, No. 6, Changbin West 4th Street, Xiuying District, Haikou, Hainan, 570312, China
| |
Collapse
|
2
|
Guo F, Chen D, Zong Z, Wu W, Mo C, Zheng Z, Li J, Zhang X, Xiong D. Comprehensive analysis of aberrantly expressed circRNAs, mRNAs and lncRNAs in patients with nasopharyngeal carcinoma. J Clin Lab Anal 2023; 37:e24836. [PMID: 36597889 PMCID: PMC9937882 DOI: 10.1002/jcla.24836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The location of nasopharyngeal cancer is hidden, so it is difficult to diagnose at an early stage. In this study, we aimed to investigate the expression profiles of circRNAs, mRNAs and IncRNAs and to provide some basis for further studies. METHODS Expression profiles of circRNAs, mRNAs, and lncRNAs were analyzed using microarray techniques. The differentially expressed ncRNA was calculated by bioinformatics. RESULTS A total of 3048 circRNAs, 2179 lncRNAs, and 2015 mRNAs were detected to be significantly differentially expressed in NPC. The most upregulated circRNAs, lncRNAs, and mRNAs were hsa-circ-0067562, NONHSAT232922.1, and HOXB13, respectively. And, the most downregulated circRNAs, lncRNAs, and mRNAs were hsa_circ_0078837, lnc-TTC8-4:3, and LTF, respectively. The number of upregulated DE lncRNAs was more than twice than those downregulated. Our data showed that 80.44% of pairs of lncRNAs and cis-mRNAs demonstrated positive correlations. For lncRNAs and trans-mRNAs pairs, 53.7% of pairs showed positive correlation. LncRNA-mediated cis regulation is a prevalent regulatory mode in the development of nasopharyngeal carcinoma. CR1, LRMP and SORBS2 are predicted to be mediated not only by cis-acting lncRNA modes of action, but also by trans-acting lncRNA mechanisms. Additionally, we constructed a diagnostic prediction model with a high sensitivity and specificity. CONCLUSION Our study characterized the landscape of circRNAs, mRNAs and lncRNAs in NPC tissue and provided novel insights into the molecular mechanisms of NPC.
Collapse
Affiliation(s)
- Feifan Guo
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zengyan Zong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Wei Wu
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Chan Mo
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Zhou Zheng
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jian Li
- Department of Otolaryngology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina,Guangzhou Key Laboratory of OtorhinolaryngologyGuangzhouChina
| | - Xiuming Zhang
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dan Xiong
- School of MedicineAnhui University of Science and TechnologyHuainanChina,Medical Laboratory of the Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
3
|
Wang JZ, Nassiri F, Aldape K, von Deimling A, Sahm F. The Epigenetic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:175-188. [PMID: 37432627 DOI: 10.1007/978-3-031-29750-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Epigenetic changes have been found to be increasingly important in tumor development and progression. These alterations can be present in tumors such as meningiomas in the absence of any gene mutations and alter gene expression without affecting the sequence of the DNA itself. Some examples of these alterations that have been studied in meningiomas include DNA methylation, microRNA interaction, histone packaging, and chromatin restructuring. In this chapter we will describe in detail each of these mechanisms of epigenetic modification in meningiomas and their prognostic significance.
Collapse
Affiliation(s)
- Justin Z Wang
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| | - Kenneth Aldape
- Laboratory of Pathology, Center Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andreas von Deimling
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Tumor-Suppressive and Oncogenic Roles of microRNA-149-5p in Human Cancers. Int J Mol Sci 2022; 23:ijms231810823. [PMID: 36142734 PMCID: PMC9501226 DOI: 10.3390/ijms231810823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Malignant tumors are always a critical threat to human health, with complex pathogenesis, numerous causative factors, and poor prognosis. The features of cancers, such as gene mutations, epigenetic alterations, and the activation and inhibition of signaling pathways in the organism, play important roles in tumorigenesis and prognosis. MicroRNA (miRNA) enables the control of various molecular mechanisms and plays a variety of roles in human cancers, such as radiation sensitivity and tumor immunity, through the regulation of target genes. MiR-149-5p participates in the process and is closely related to lipogenesis, the migration of vascular endothelial cells, and the expression of stem-cell-related proteins. In recent years, its role in cancer has dramatically increased. In this review, we summarize the regular physiological roles of miRNAs, specifically miR-149-5p, in the organism and discuss the tumor-suppressive or oncogenic roles of miR-149-5p in different human cancers with respect to signaling pathways involved in regulation. Possible clinical applications of miR-149-5p in future targeted therapies and prognosis improvement in oncology are suggested.
Collapse
|
5
|
Jiang J, Ying H. Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:244. [PMID: 35964134 PMCID: PMC9375932 DOI: 10.1186/s13046-022-02457-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelial cells located in the nasopharynx and has a distinct geographic distribution. Chronic Epstein-Barr virus (EBV) infection, as its most common causative agents, can be detected in 100% of NPC types. In-depth studies of the cellular and molecular events leading to immunosuppression in NPC have revealed new therapeutic targets and diverse combinations that promise to benefit patients with highly refractory, advanced and metastatic NPC. This paper reviews the mechanisms by which NPC cells to circumvent immune surveillance and approaches being attempted to restore immunity. We integrate existing insights into anti-NPC immunity and molecular signaling pathways as well as targeting therapies in anticipation of broader applicability and effectiveness in advanced metastatic NPC.
Collapse
|
6
|
Scheurer T, Steffens J, Markert A, Du Marchie Sarvaas M, Roderburg C, Rink L, Tacke F, Luedde T, Kraus T, Baumann R. The human long noncoding RNAs CoroMarker, MALAT1, CDR1as, and LINC00460 in whole blood of individuals after controlled short-term exposure with ultrafine metal fume particles at workplace conditions, and in human macrophages in vitro. J Occup Med Toxicol 2022; 17:15. [PMID: 35915466 PMCID: PMC9344619 DOI: 10.1186/s12995-022-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term inhalation of occupationally relevant ultrafine zinc/copper (Zn/Cu) containing welding fumes has been shown to induce subclinical systemic inflammation, associated with an elevated risk for cardiovascular diseases. The involvement of noncoding RNAs (lncRNAs) in this setting is currently unknown. However, lncRNAs have been reported to fulfill essential roles in, e.g., cardiovascular diseases, inflammation, infectious diseases, and pollution-related lung disorders. METHODS In this study, the specific lncRNAs levels of the 4 lncRNAs CoroMarker, MALAT1, CDR1as and LINC00460 were determined by RT-qPCR in THP-1 macrophages exposed to Zn/Cu metal fume suspensions for 1, 2, and 4 hours in vitro. Furthermore, 14 subjects were exposed to Zn/Cu containing welding fumes (at 2.5 mg/m3) for 6 hours. Before, 6, 10, and 29 hours after exposure start, whole blood cell lncRNAs levels were determined by RT-qPCR. RESULTS In THP-1 macrophages, we observed a 2.3-fold increase of CDR1as at 1 h (Wilcoxon p = 0.03), a non-significant increase of CoroMarker at 1 h, and an increase of LINC00460 at 2 h (p = 0.03) and at 4 h (p = 0.06). In whole blood cells, we determined a non-significant upregulation of CDR1as at 6 h (p = 0.2), a significant downregulation of CoroMarker at 6 h (p = 0.04), and a significant upregulation of LINC00460 levels at 10 h (p = 0.04) and 29 h (p = 0.04). MALAT-1 remained unchanged in both settings. CONCLUSION The orientation of regulation of the lncRNAs is (except for CoroMarker) similar in the in vitro and in vivo experiments and in line with their described functions. Therefore, these results, e.g. the upregulation of the potential risk marker for cardiovascular diseases, CDR1as, contribute to understanding the underlying mechanisms of Zn/Cu-induced subclinical inflammation in metal workers.
Collapse
Affiliation(s)
- Theresa Scheurer
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Steffens
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany.
| | - Agnieszka Markert
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Miriam Du Marchie Sarvaas
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tom Luedde
- Department of Medicine III, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ralf Baumann
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Institute for Translational Medicine (ITM), Medical School Hamburg (MSH) - Am Kaiserkai 1, 20457, Hamburg, Germany
| |
Collapse
|
7
|
Su M, Tang J, Yang D, Wu Z, Liao Q, Wang H, Xiao Y, Wang W. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int 2022; 22:240. [PMID: 35906593 PMCID: PMC9336008 DOI: 10.1186/s12935-022-02655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent an important group of endogenous RNAs with limit protein-encoding capability, with a length of more than 200 nucleotides. Emerging evidence have demonstrated that lncRNAs are greatly involved in multiple cancers by playing critical roles in tumor initiation and progression. Long intergenic non-protein coding RNA 460 (LINC00460), a novel cancer-related lncRNA, exhibits abnormal expression and oncogenic function in multiple cancers, and positively correlates with poor clinical characteristics of cancer patients. LINC00460 has also been shown to be a promising biomarker for diagnosis as well as prognostic evaluation in cancer patients. In this review, we briefly summarized recent knowledge on the expression, functional roles, molecular mechanisms, and diagnostic and prognostic values of LINC00460 in human malignancies.
Collapse
Affiliation(s)
- Min Su
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Jinming Tang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Yuhang Xiao
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China.
| | - Wenxiang Wang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
8
|
The interplay of cytokine signaling and non-coding RNAs in head and neck squamous cell carcinoma pathobiology. Mol Biol Rep 2022; 49:10825-10847. [DOI: 10.1007/s11033-022-07770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|
9
|
Research Value of Intensity Modulated Radiation Therapy in Alleviating Parotid Gland Function Injury in Patients with Stage N0 Nasopharyngeal Carcinoma from Physical and Dosimetric Aspects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4651364. [PMID: 35860184 PMCID: PMC9293508 DOI: 10.1155/2022/4651364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
Objective To study the feasibility of intensity modulated radiation therapy (IMRT) for stage N0 nasopharyngeal carcinoma (NPC) and its parotid gland (PG) function preservation from physical and dosimetric aspects. Methods All the clinical data of 77 patients with pathologically confirmed T1-4N0M0 NPC who received radiotherapy between July 2017 and October 2019 in the Radiotherapy Center of Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University were analyzed retrospectively. Three-dimensional conformal radiotherapy (3D-CRT) and IMRT were used in 35 and 42 cases, respectively. The treatment efficiency and the dosimetry differences of the PG in the intensity modulation plan were compared between groups. Quantitative monitoring of 99mTc radionuclide imaging of PG was performed before, at the end of, and 3, 6, and 12 months after radiotherapy. The degree of PG function injury and xerostomia was compared between groups at the end of radiotherapy and 12 months later. Results Higher minimal, maximal, and average irradiation doses of PG were determined in 3D-CRT-treated patients compared with IMRT-treated cases (P < 0.05). Compared with before radiotherapy, the PG uptake index (UI) and excretion index (EI) of both cohorts of patients decreased to varying degrees at the end of radiotherapy, with PG function injury and xerostomia symptoms observed in all cases but with no obvious difference between groups (P > 0.05). To a certain extent, the PG function recovered and the xerostomia symptoms relieved in both groups 12 months after radiotherapy, with better improvements in IMRT group versus 3D-CRT group. Conclusion IMRT has similar short-term efficacy to 3D-CRT in treating patients with stage N0 NPC, but it can effectively reduce the dose of PG radiotherapy and protect the PG function on the premise of ensuring sufficient tumor coverage and dose, showing certain dosimetry advantages.
Collapse
|
10
|
Du P, Chai Y, Zong S, Yue J, Xiao H. Identification of a Prognostic Model Based on Fatty Acid Metabolism-Related Genes of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:888764. [PMID: 35846149 PMCID: PMC9280184 DOI: 10.3389/fgene.2022.888764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
The fatty acid metabolism (FAM) is known to impact tumorigenesis, tumor progression and treatment resistance via enhancing lipid synthesis, storage and catabolism. However, the role of FAM in head and neck squamous cell carcinoma (HNSCC) has remained elusive. In the present study, we obtained a total of 69 differentially expressed FAM-related genes between 502 HNSCC samples and 44 normal samples from The Cancer Genome Atlas (TCGA) database. The HNSCC samples were divided into 2 clusters according to 69 differentially expressed genes (DEGs) via cluster analysis. Then DEGs in the two clusters were found, and 137 prognostic DEGs were identified by univariate analysis. Subsequently, combined with the clinical information of 546 HNSCC patients from TCGA database, a 12-gene prognostic risk model was established (FEPHX3, SPINK7, FCRLA, MASP1, ZNF541, CD5, BEST2 and ZAP70 were down-regulation, ADPRHL1, DYNC1I1, KCNG1 and LINC00460 were up-regulation) using multivariate Cox regression and LASSO regression analysis. The risk scores of 546 HNSCC samples were calculated. According to the median risk score, 546 HNSCC patients were divided into the high- and low-risk (high- and low score) groups. The Kaplan-Meier survival analysis showed that the survival time of HNSCC patients was significantly shorter in the high-risk group than that in the low-risk group (p < 0.001). The same conclusion was obtained in the Gene Expression Omnibus (GEO) dataset. After that, the multivariate Cox regression analysis indicated that the risk score was an independent factor for patients with HNSCC in the TCGA cohort. In addition, single-sample gene set enrichment analysis (ssGSEA) indicated that the level of infiltrating immune cells was relatively low in the high-risk group compared with the low-risk group. In summary, FAM-related gene expression-based risk signature could predict the prognosis of HNSCC independently.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chai
- Department of Medical Oncology, National Cancer Cente, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxin Yue
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| |
Collapse
|
11
|
Stanniocalcin 2 (STC2): a universal tumour biomarker and a potential therapeutical target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:161. [PMID: 35501821 PMCID: PMC9063168 DOI: 10.1186/s13046-022-02370-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Stanniocalcin 2 (STC2) is a glycoprotein which is expressed in a broad spectrum of tumour cells and tumour tissues derived from human breast, colorectum, stomach, esophagus, prostate, kidney, liver, bone, ovary, lung and so forth. The expression of STC2 is regulated at both transcriptional and post-transcriptional levels; particularly, STC2 is significantly stimulated under various stress conditions like ER stress, hypoxia and nutrient deprivation. Biologically, STC2 facilitates cells dealing with stress conditions and prevents apoptosis. Importantly, STC2 also promotes the development of acquired resistance to chemo- and radio- therapies. In addition, multiple groups have reported that STC2 overexpression promotes cell proliferation, migration and immune response. Therefore, the overexpression of STC2 is positively correlated with tumour growth, invasion, metastasis and patients' prognosis, highlighting its potential as a biomarker and a therapeutic target. This review focuses on discussing the regulation, biological functions and clinical importance of STC2 in human cancers. Future perspectives in this field will also be discussed.
Collapse
|
12
|
Mahmoudi A, Moadab F, Safdarian E, Navashenaq JG, Rezaee M, Gheibihayat SM. MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy. Mini Rev Med Chem 2022; 22:2641-2660. [PMID: 35362375 DOI: 10.2174/1389557522666220330150937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
About 10-100 billion cells are generated in the human body in a day, and accordingly, 10-100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Iran
| | - Fatemeh Moadab
- Medical student, Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Esmat Safdarian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran Iran
| | | | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran;
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
LINC00460 Stimulates the Proliferation of Vascular Endothelial Cells by Downregulating miRNA-24-3p. DISEASE MARKERS 2022; 2022:2524156. [PMID: 35222741 PMCID: PMC8881155 DOI: 10.1155/2022/2524156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
Objective To clarify the effect of LINC00460 on mediating the proliferative ability of vascular endothelial cells (ECs) by targeting microRNA-24-3p (miRNA-24-3p), thus influencing the progression of atherosclerotic diseases. Methods Relative levels of LINC00460 and miRNA-24-3p in ECs induced with different doses of ox-LDL (oxidized low density lipoprotein) for different time points were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Influences of LINC00460 and miRNA-24-3p on the viability of ECs were assessed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) assay. Through dual-luciferase reporter gene assay, the binding between LINC00460 and miRNA-24-3p was evaluated. At last, rescue experiments were performed to identify the function of the LINC00460/miRNA-24-3p axis in regulating the proliferative ability of ECs. Results LINC00460 was upregulated after ox-LDL treatment in a dose- and time-dependent manner. Viability of ECs gradually increased with the prolongation of ox-LDL treatment and the treatment of increased dose. The overexpression of LINC00460 enhanced the viability and EdU-positive rate in ECs treated with ox-LDL. miRNA-24-3p was the direct target of LINC00460, which was negatively regulated by LINC00460. miRNA-24-3p was downregulated with the prolongation of ox-LDL treatment. The overexpression of miRNA-24-3p could reverse the effect of LINC00460 on regulating the proliferative ability of ECs. Conclusions LINC00460 regulates the proliferative ability of ECs and thus the occurrence and development of coronary atherosclerotic diseases by targeting miRNA-24-3p.
Collapse
|
14
|
Yao H, Tian L, Yan B, Yang L, Li Y. LncRNA TP73-AS1 promotes nasopharyngeal carcinoma progression through targeting miR-342-3p and M2 polarization via exosomes. Cancer Cell Int 2022; 22:16. [PMID: 35012518 PMCID: PMC8751349 DOI: 10.1186/s12935-021-02418-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a deadly cancer, mainly presenting in southeast and east Asia. Long noncoding RNAs (lncRNAs) play essential roles in cancer progression. Exosomes are critical for intercellular communication. Thus, the aim of this study was to identify the functional lncRNAs in NPC and its relevant mechanisms. METHODS Data from public databases were utilized to screen for functional lncRNAs in NPC. Functional and mechanical experiments were performed to determine the role of lncRNAs in NPC and its relative molecular mechanisms. Exosomes derived from NPC cells were isolated to determine their function in tumor-associated macrophages. RESULTS LncRNA TP73-AS1 was increased in NPC cells and tissues and was associated with a poor prognosis. TP73-AS1 overexpression promoted proliferation, colony formation, and DNA synthesis of NPC cells while TP73-AS1 knockdown showed opposite roles. TP73-AS1 could directly bind with miR-342-3p. MiR-342-3p overexpression attenuated the effect of TP73-AS1 in NPC cells. Furthermore, TP73-AS1 was transferred by exosomes to promote M2 polarization of macrophages. Lastly, exosomal TP73-AS1 enhanced the motility and tube formation of macrophages. CONCLUSIONS Together, this study suggests that TP73-AS1 promotes NPC progression through targeting miR-342-3p and exosome-based communication with macrophages and that TP73-AS1 might be an emerging biomarker for NPC.
Collapse
Affiliation(s)
- Hongchao Yao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Harbin, 150086, China.
| | - Linli Tian
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Harbin, 150086, China
| | - Bingrui Yan
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Harbin, 150086, China
| | - Like Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Harbin, 150086, China
| | - Yushan Li
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, Harbin, 150086, China
| |
Collapse
|
15
|
Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer 2022; 13:3-14. [PMID: 34821482 PMCID: PMC8720622 DOI: 10.1111/1759-7714.14238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length and with limited protein-coding potential, play vital roles in the pathogenesis, tumorigenesis, and angiogenesis of cancers. Aberrant expression of lncRNAs has been detected in various carcinomas and may be correlated with oncogenesis by affecting related genes expression. Recently, an increasing number of studies have reported on long intergenic non-protein coding RNA 460 (LINC00460) in human tumor fields. LINC00460 is upregulated in diverse cancer tissues and cells. The upregulated expression level of LINC00460 is correlated with larger tumor size, tumor node metastasis (TNM) stage, lymph node metastasis, and shorter overall survival. The regulatory mechanism of LINC00460 was complex and diverse. LINC00460 could act as a competitive endogenous RNA (ceRNA), directly bind with proteins or regulate multiple pathways, which affected tumor progression. Moreover, LINC00460 was also identified to increase drug resistance, and therefore, weaken the effectiveness of tumor treatment. It has become increasingly important to investigate the roles of LINC00460 in various cancers by different mechanisms. Therefore, a more comprehensive understanding of LINC00460 is crucial to expound on the cellular function and molecular mechanism of human cancers. In this review, we refer to studies concerning LINC00460 and provide the basis for the evaluation of LINC00460 as a predicted biomarker or potential therapeutic target in malignancies, and also provide ideas for the future research of lncRNAs similar to LINC00460.
Collapse
Affiliation(s)
- Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
| | - Jiwu Song
- Department of StomatologyWeifang People's Hospital, First Affiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Xiaoxiao Wang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yunxia Liu
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| |
Collapse
|
16
|
Zhang FY, Li X, Huang TT, Xiang ML, Sun LL, Sun ZL. LINC00839 knockdown restrains the metastatic behavior of nasopharyngeal carcinoma by sponging miR-454-3p. Aging (Albany NY) 2021; 13:26022-26033. [PMID: 34965215 PMCID: PMC8751606 DOI: 10.18632/aging.203792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a pro-metastasis factor in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be illuminated, as well as its underlying mechanism. Here, we disclosed that LINC00839 is highly expressed in NPC. Deletion of LINC00839 suppresses NPC cells rapid growth, invasive capacity and EMT in vitro. Besides, LINC00839 is identified as a "sponge" for miR-454-3p, and upregulation of LINC00839 reverses miR-454-3p-mediated inhibition of aggressiveness in NPC cells. Furthermore, the expression of cellular-mesenchymal epithelial transition factor (c-Met), the downstream target of miR-454-3p, is downregulated by LINC00839 knockdown in NPC cells. In vivo, LINC00839 knockdown retards the tumor growth of NPC cells in the xenografted mice model. Collectively, attenuation of LINC00839 expression attenuates the aggressive properties of NPC cells via directly sponging the miR-454-3p and regulating c-Met expression.
Collapse
Affiliation(s)
- Feng Ying Zhang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xia Li
- Department of Anesthesiology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Ting Ting Huang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Mei Ling Xiang
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lin Lin Sun
- Department of Otorhinolaryngology, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Zhao Lan Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
17
|
Wang J, Yang K, Cao J, Li L. Knockdown of circular RNA septin 9 inhibits the malignant progression of breast cancer by reducing the expression of solute carrier family 1 member 5 in a microRNA-149-5p-dependent manner. Bioengineered 2021; 12:10624-10637. [PMID: 34738502 PMCID: PMC8809977 DOI: 10.1080/21655979.2021.2000731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women. Increasing evidence suggests that circular RNA (circRNA) exerts critical functions in BC progression. However, the roles of circRNA septin 9 (circSEPT9) in BC development and the underneath mechanism remain largely unclear so far. In this work, the RNA levels of circSEPT9, microRNA-149-5p (miR-149-5p) and solute carrier family 1 member 5 (SLC1A5) were detected by quantitative real-time polymerase chain reaction. Western blot was performed to check protein expression. Glutamine uptake, cell proliferation and cell apoptosis were investigated by glutamine uptake, cell counting kit-8, cell colony formation, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis or DNA content quantitation assay. The interactions of miR-149-5p with circSEPT9 and SLC1A5 were identified by a dual-luciferase reporter assay. Mouse model assay was carried out to analyze the effect of circSEPT9 on tumor formation in vivo. Results showed that circSEPT9 and SLC1A5 expression were significantly upregulated, while miR-149-5p was downregulated in BC tissues and cells as compared with paracancerous normal breast tissues and human normal breast cells. Knockdown of circSEPT9 or SLC1A5 inhibited glutamine uptake and cell proliferation, but induced cell apoptosis in BC cells. SLC1A5 overexpression relieved circSEPT9 silencing-induced repression of BC cell malignancy. In mechanism, circSEPT9 regulated SLC1A5 expression by sponging miR-149-5p. In support, circSEPT9 knockdown led to delayed tumor tumorigenesis in vivo. In summary, these results indicates that circSEPT9 may act an oncogenic role in BC malignant progression by regulating miR-149-5p/SLC1A5 pathway, providing a novel mechanism responsible for BC development.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Kunxian Yang
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Junyu Cao
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| | - Li Li
- Department of Breast and Thyroid Tumors Surgery, The First People’s Hospital of Yunnan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Yunnan, China
| |
Collapse
|
18
|
Ren D, Lu J, Han X, Xiong W, Jiang H, Wei Y, Wang Y. LINC00641 contributes to nasopharyngeal carcinoma cell malignancy through FOXD1 upregulation at the post-transcriptional level. Biochem Cell Biol 2021; 99:750-758. [PMID: 34767742 DOI: 10.1139/bcb-2020-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in the head and neck and is prevalent in China, especially in the southern regions. Molecular mechanisms have attracted much attention in NPC research. FOXD1 has been reported to be a tumor promoter in various cancers. The present study was designed to explore the function of FOXD1 in NPC cells. Functional analyses, including the trypan blue staining assay, EdU and JC-1 assay, and flow cytometry analysis, revealed that FOXD1 facilitated NPC cell proliferation and inhibited NPC cell apoptosis. Next, by means of "starBase" database and mechanism analyses, such as RIP assay, RNA pull-down assay and luciferase reporter assay, miR-378a-3p was found to target FOXD1 and negatively regulate FOXD1 expression in NPC cells. Moreover, miR-378a-3p plays a suppressive role in NPC cells. LINC00641 was identified as a sponge of miR-378a-3p and positively modulated FOXD1 expression in NPC cells. Finally, a series of rescue assays indicated that LINC00641 accelerated NPC cell proliferation and hindered NPC cell apoptosis through FOXD1 upregulation. In conclusion, the present study demonstrated an innovative ceRNA mechanism of LINC00641/miR-378a-3p/FOXD1 in NPC cells, which might provide new insights into NPC treatment.
Collapse
Affiliation(s)
- Dan Ren
- Department of Human Anatomy, Basic Medical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinlong Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xing Han
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Weiming Xiong
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - He Jiang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yunzhong Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
19
|
Zhang F, Cheng N, Han Y, Zhang C, Zhang H. miRNA Expression Profiling Uncovers a Role of miR-139-5p in Regulating the Calcification of Human Aortic Valve Interstitial Cells. Front Genet 2021; 12:722564. [PMID: 34745206 PMCID: PMC8569802 DOI: 10.3389/fgene.2021.722564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 01/02/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common structural heart disease, and the morbidity is increased with elderly population. Several microRNAs (miRNAs) have been identified to play crucial roles in CAVD, and numerous miRNAs are still waiting to be explored. In this study, the miRNA expression signature in CAVD was analyzed unbiasedly by miRNA-sequencing, and we found that, compared with the normal control valves, 152 miRNAs were upregulated and 186 miRNAs were downregulated in calcified aortic valves. The functions of these differentially expressed miRNAs were associated with cell differentiation, apoptosis, adhesion and immune response processes. Among downregulated miRNAs, the expression level of miR-139-5p was negatively correlated with the osteogenic gene RUNX2, and miR-139-5p was also downregulated during the osteogenic differentiation of primary human aortic valve interstitial cells (VICs). Subsequent functional studies revealed that miR-139-5p overexpression inhibited the osteogenic differentiation of VICs by negatively modulating the expression of pro-osteogenic gene FZD4 and CTNNB1. In conclusion, these results suggest that miR-139-5p plays an important role in osteogenic differentiation of VICs via the Wnt/β-Catenin pathway, which may further provide a new therapeutic target for CAVD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Naixuan Cheng
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Vascular Diseases, Beijing, China
| | - Yingchun Han
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Vascular Diseases, Beijing, China
| | - Congcong Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Vascular Diseases, Beijing, China
| | - Haibo Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Fang X, Liu X, Lu L, Liu G. Identification of a Somatic Mutation-Derived Long Non-Coding RNA Signatures of Genomic Instability in Renal Cell Carcinoma. Front Oncol 2021; 11:728181. [PMID: 34676164 PMCID: PMC8523920 DOI: 10.3389/fonc.2021.728181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a malignant tumor with high morbidity and mortality. It is characterized by a large number of somatic mutations and genomic instability. Long non-coding RNAs (lncRNAs) are widely involved in the expression of genomic instability in renal cell carcinoma. But no studies have identified the genome instability-related lncRNAs (GInLncRNAs) and their clinical significances in RCC. Methods Clinical data, gene expression data and mutation data of 943 RCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Based on the mutation data and lncRNA expression data, GInLncRNAs were screened out. Co-expression analysis, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to explore their potential functions and related signaling pathways. A prognosis model was further constructed based on genome instability-related lncRNAs signature (GInLncSig). And the efficiency of the model was verified by receiver operating characteristic (ROC) curve. The relationships between the model and clinical information, prognosis, mutation number and gene expression were analyzed using correlation prognostic analysis. Finally, the prognostic model was verified in clinical stratification according to TCGA dataset. Results A total of 45 GInLncRNAs were screened out. Functional analysis showed that the functional genes of these GInLncRNAs were mainly enriched in chromosome and nucleoplasmic components, DNA binding in molecular function, transcription and complex anabolism in biological processes. Univariate and Multivariate Cox analyses further screened out 11 GInLncSig to construct a prognostic model (AL031123.1, AC114803.1, AC103563.7, AL031710.1, LINC00460, AC156455.1, AC015977.2, 'PRDM16-dt', AL139351.1, AL035661.1 and LINC01606), and the coefficient of each GInLncSig in the model was calculated. The area under the curve (AUC) value of the ROC curve was 0.770. Independent analysis of the model showed that the GInLncSig model was significantly correlated with the RCC patients' overall survival. Furthermore, the GInLncSig model still had prognostic value in different subgroups of RCC patients. Conclusion Our study preliminarily explored the relationship between genomic instability, lncRNA and clinical characteristics of RCC patients, and constructed a GInLncSig model consisted of 11 GInLncSig to predict the prognosis of patients with RCC. At the same time, our study provided theoretical support for the exploration of the formation and development of RCC.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Ren FJ, Yao Y, Cai XY, Cai YT, Su Q, Fang GY. MiR-149-5p: An Important miRNA Regulated by Competing Endogenous RNAs in Diverse Human Cancers. Front Oncol 2021; 11:743077. [PMID: 34722295 PMCID: PMC8554335 DOI: 10.3389/fonc.2021.743077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) consist of a large family of small, non-coding RNAs with the ability to result in gene silencing post-transcriptionally. With recent advances in research technology over the past several years, the physiological and pathological potentials of miRNAs have been gradually uncovered. MiR-149-5p, a conserved miRNA, was found to regulate physiological processes, such as inflammatory response, adipogenesis and cell proliferation. Notably, increasing studies indicate miR-149-5p may act as an important regulator in solid tumors, especially cancers in reproductive system and digestive system. It has been acknowledged that miR-149-5p can function as an oncogene or tumor suppressor in different cancers, which is achieved by controlling a variety of genes expression and adjusting downstream signaling pathway. Moreover, the levels of miR-149-5p are influenced by several newly discovered long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there is blank about systematic function and mechanism of miR-149-5p in human cancers. In this review, we firstly summarize the present comprehension of miR-149-5p at the molecular level, its vital role in tumor initiation and progression, as well as its potential roles in monitoring diverse reproductive and digestive malignancies.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-ting Cai
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Qian Su
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
22
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Hajiesmaeili M. Long intergenic non-protein coding RNA 460: Review of its role in carcinogenesis. Pathol Res Pract 2021; 225:153556. [PMID: 34391180 DOI: 10.1016/j.prp.2021.153556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) establish a group of long non-coding RNAs (lncRNAs) that have no overlap with protein-coding genes. These transcripts have been found to affect chromatin configurations, arrange high-order nuclear structures, function as scaffolds for proteins and RNAs and serve as molecular decoys. LINC00460 is a member of this group of lincRNAs that participate in the pathoetiology of cancers. This lincRNA has been found to serve as a sponge for a number of tumor suppressor miRNAs, including miR-539, miR-1224-5p, miR-612, miR-342-3p, miR-485-5p and miR-149-5p, and increase expression of oncogenic targets of these miRNAs. Moreover, through targeting miRNAs that regulate sensitivity to chemotherapeutic agents, it can affect response of cancer cells to these agents. In the current manuscript, we tended to describe the role of LINC00460 in this process through summarizing the results of in vitro, in vivo and human studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Yi E, Zhang J, Zheng M, Zhang Y, Liang C, Hao B, Hong W, Lin B, Pu J, Lin Z, Huang P, Li B, Zhou Y, Ran P. Long noncoding RNA IL6-AS1 is highly expressed in chronic obstructive pulmonary disease and is associated with interleukin 6 by targeting miR-149-5p and early B-cell factor 1. Clin Transl Med 2021; 11:e479. [PMID: 34323408 PMCID: PMC8288003 DOI: 10.1002/ctm2.479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease is a complex condition with multiple etiologies, including inflammation. We identified a novel long noncoding RNA (lncRNA), interleukin 6 antisense RNA 1 (IL6-AS1), which is upregulated in this disease and is associated with airway inflammation. We found that IL6-AS1 promotes the expression of inflammatory factors, especially interleukin (IL) 6. Mechanistically, cytoplasmic IL6-AS1 acts as an endogenous sponge by competitively binding to the microRNA miR-149-5p to stabilize IL-6 mRNA. Nuclear IL6-AS1 promotes IL-6 transcription by recruiting early B-cell factor 1 to the IL-6 promoter, which increases the methylation of the H3K4 histone and acetylation of the H3K27 histone. We propose a model of lncRNA expression in both the nucleus and cytoplasm that exerts similar effects through differing mechanisms, and IL6-AS1 probably increases inflammation via multiple pathways.
Collapse
Affiliation(s)
- Erkang Yi
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Jiahuan Zhang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Mengning Zheng
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Yi Zhang
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Chunxiao Liang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Binwei Hao
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Wei Hong
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Biting Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Jinding Pu
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Zhiwei Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Peiyu Huang
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Bing Li
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdong510000China
| | - Yumin Zhou
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| | - Pixin Ran
- National Center for Respiratory MedicineState Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical University151 Yanjiang Xi RoadGuangzhouGuangdong510000China
| |
Collapse
|
24
|
Li M, Zhang X, Ding X, Zheng Y, Du H, Li H, Ji H, Wang Z, Jiao P, Song X, Zhong Y, Wu H. Long Noncoding RNA LINC00460 Promotes Cell Progression by Sponging miR-4443 in Head and Neck Squamous Cell Carcinoma. Cell Transplant 2021; 29:963689720927405. [PMID: 32478564 PMCID: PMC7563806 DOI: 10.1177/0963689720927405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide. Long noncoding RNAs were proved to be associated with the development and progression in HNSCC. However, the mechanism of LINC00460 in HNSCC needs to be further investigated. The study used quantitative real-time polymerase chain reaction assay to detect the expression of LINC00460 in cancer tissues and cell lines. Gain and loss of function experiments were conducted to analyze the effects of LINC00460 and miR-4443 on cell proliferation, invasion, and apoptosis of HNSCC cells in vitro. The interactions among miR-4443 and LINC00460 were detected by dual-luciferase reporter assay. Here, the study showed that LINC00460 was highly expressed in HNSCC tissues and cell lines. Functionally, knockdown of LINC00460 inhibited HNSCC cell proliferation and migration in vitro. Besides, LINC00460 promoted cell progression by sponging miR-4443, and miR-4443 inhibitor could reverse the effects of si-LINC00460 on cell proliferation and migration. In summary, LINC00460 could potentially promote cell progression and epithelial mesenchymal transition by sponging miR-4443 in HNSCC. LINC00460 could be used as a potential therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Meng Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xiaomin Zhang
- Paediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China.,Both the authors contributed equally to this article
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Hongming Du
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huaiqi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Huan Ji
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Jiangsu, China
| | - Zeyu Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Pengfei Jiao
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| | - Yi Zhong
- Department of Oral Pathology, Institute of Stomatology, Nanjing Medical University, Jiangsu, China
| | - HeMing Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
25
|
Kozłowska J, Kolenda T, Poter P, Sobocińska J, Guglas K, Stasiak M, Bliźniak R, Teresiak A, Lamperska K. Long Intergenic Non-Coding RNAs in HNSCC: From "Junk DNA" to Important Prognostic Factor. Cancers (Basel) 2021; 13:2949. [PMID: 34204634 PMCID: PMC8231241 DOI: 10.3390/cancers13122949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Even a multimodal approach consisting of standard chemo- and radiotherapy along with surgical resection is only effective in approximately 50% of the cases. The rest of the patients develop a relapse of the disease and acquire resistance to treatment. Especially this group of individuals needs novel, personalized, targeted therapy. The first step to discovering such solutions is to investigate the tumor microenvironment, thus understanding the role and mechanism of the function of coding and non-coding sequences of the human genome. In recent years, RNA molecules gained great interest when the complex character of their impact on our biology allowed them to come out of the shadows of the "junk DNA" label. Furthermore, long non-coding RNAs (lncRNA), specifically the intergenic subgroup (lincRNA), are one of the most aberrantly expressed in several malignancies, which makes them particularly promising future diagnostic biomarkers and therapeutic targets. This review contains characteristics of known and validated lincRNAs in HNSCC, such as XIST, MALAT, HOTAIR, HOTTIP, lincRNA-p21, LINC02487, LINC02195, LINC00668, LINC00519, LINC00511, LINC00460, LINC00312, and LINC00052, with a description of their prognostic abilities. Even though much work remains to be done, lincRNAs are important factors in cancer biology that will become valuable biomarkers of tumor stage, outcome prognosis, and contribution to personalized medicine.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland
| | - Paulina Poter
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Centere, Garbary 15, 61-866 Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, ul. Zwirki 61 and ul. Wigury, 02-091 Warsaw, Poland
| | - Maciej Stasiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (T.K.); (J.S.); (K.G.); (M.S.); (R.B.); (A.T.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland;
| |
Collapse
|
26
|
Yang H, Xiong X, Li H. Development and Interpretation of a Genomic Instability Derived lncRNAs Based Risk Signature as a Predictor of Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2021; 11:678253. [PMID: 34094983 PMCID: PMC8176022 DOI: 10.3389/fonc.2021.678253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a kind of frequently diagnosed cancer, leading to high death rate in patients. Genomic instability (GI) is regarded as playing indispensable roles in tumorigenesis and impacting the prognosis of patients. The aberrant regulation of long non-coding RNAs (lncRNAs) is a main cause of GI. We combined the somatic mutation profiles and expression profiles to identify GI derived lncRNAs (GID-lncRNAs) in ccRCC and developed a GID-lncRNAs based risk signature for prognosis prediction and medication guidance. METHODS We decided cases with top 25% cumulative number of somatic mutations as genomically unstable (GU) group and last 25% as genomically stable (GS) group, and identified differentially expressed lncRNAs (GID-lncRNAs) between two groups. Then we developed the risk signature with all overall survival related GID-lncRNAs with least absolute shrinkage and selection operator (LASSO) Cox regression. The functions of the GID-lncRNAs were partly interpreted by enrichment analysis. We finally validated the effectiveness of the risk signature in prognosis prediction and medication guidance. RESULTS We developed a seven-lncRNAs (LINC00460, AL139351.1, AC156455.1, AL035446.1, LINC02471, AC022509.2, and LINC01606) risk signature and divided all samples into high-risk and low-risk groups. Patients in high-risk group were in more severe clinicopathologic status (higher tumor grade, pathological stage, T stage, and more metastasis) and were deemed to have less survival time and lower survival rate. The efficacy of prognosis prediction was validated by receiver operating characteristic analysis. Enrichment analysis revealed that the lncRNAs in the risk signature mainly participate in regulation of cell cycle, DNA replication, material metabolism, and other vital biological processes in the tumorigenesis of ccRCC. Moreover, the risk signature could help assess the possibility of response to precise treatments. CONCLUSION Our study combined the somatic mutation profiles and the expression profiles of ccRCC for the first time and developed a GID-lncRNAs based risk signature for prognosis predicting and therapeutic scheme deciding. We validated the efficacy of the risk signature and partly interpreted the roles of the seven lncRNAs composing the risk signature in ccRCC. Our study provides novel insights into the roles of genomic instability derived lncRNAs in ccRCC.
Collapse
Affiliation(s)
| | | | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
28
|
Meng X, Wang ZF, Lou QY, Rankine AN, Zheng WX, Zhang ZH, Zhang L, Gu H. Long non-coding RNAs in head and neck squamous cell carcinoma: Diagnostic biomarkers, targeted therapies, and prognostic roles. Eur J Pharmacol 2021; 902:174114. [PMID: 33901464 DOI: 10.1016/j.ejphar.2021.174114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
At present, emerging evidence shows that non-coding RNAs (ncRNAs) play crucial roles for development of multiple tumors. Amongst these ncRNAs, long non-coding RNAs (lncRNAs) play prominent roles in physiological and pathological processes. LncRNAs are RNA transcripts larger than 200 nucleotides and have been shown to serve important regulatory roles in different types of cancer via interactions with DNA, RNA and proteins. Head and neck squamous cell carcinoma (HNSCC) is one of the most malignant tumors with low survival rates in advanced stages. Recently, lncRNAs have been demonstrated to be involved in a wide range of biological processes, including proliferation, metastasis, and prognosis of HNSCC. Therefore, this review describes molecular mechanisms of up- or down-regulation of lncRNAs and expounds their functions in pathology and clinical practices in HNSCC. It also highlights their potential clinical applications as biomarkers for the diagnosis, prognosis, and treatment of HNSCC. However, studies on lncRNAs are still not comprehensive, and more investigations are needed in the future.
Collapse
Affiliation(s)
- Xiang Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| | - Zi-Fei Wang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Qiu-Yue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Abigail N Rankine
- Clinical Medicine in Chinese (MBBS), Anhui Medical University, Hefei, 230032, China.
| | - Wan-Xin Zheng
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Zi-Hao Zhang
- School of Stomatology, Anhui Medical University, Hefei, 230032, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China; Periodontal Department, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
29
|
Yuan F, Lou Z, Zhou Z, Yan X. Long non‑coding RNA KCNQ1OT1 promotes nasopharyngeal carcinoma cell cisplatin resistance via the miR‑454/USP47 axis. Int J Mol Med 2021; 47:54. [PMID: 33576460 PMCID: PMC7895519 DOI: 10.3892/ijmm.2021.4887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Long non‑coding RNAs serve an essential role in drug resistance in various types of cancer, including lung, breast and bladder cancer. The present study aimed to investigate whether KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) was associated with cisplatin (DDP) resistance in nasopharyngeal carcinoma (NPC). KCNQ1OT1, microRNA (miR)‑454 and ubiquitin specific peptidase 47 (USP47) expression levels were measured via reverse transcription‑quantitative PCR. 5‑8F/DDP and SUNE‑1/DDP cell viability and chemosensitivity were assessed by performing Cell Counting Kit‑8 assays. Colony forming and Transwell assays were conducted to assess the effect of the KCNQ1OT1/miR‑454/USP47 axis on DDP resistance in NPC cells. The association between miR‑454 and KCNQ1OT1 or USP47 was verified via bioinformatics analysis, dual‑luciferase reporter assays and RIP assays. KCNQ1OT1 and USP47 expression levels were significantly upregulated, whereas miR‑454 expression levels were significantly downregulated in DDP‑resistant NPC cells compared with parental NPC cells. KCNQ1OT1 knockdown promoted chemosensitivity in DDP‑resistant NPC cells (5‑8F/DDP and SUNE‑1/DDP), as indicated by significantly decreased cell proliferation, migration and invasion in the short hairpin RNA (sh)KCNQ1OT1 group compared with the sh‑negative control (NC) group. Moreover, miR‑454 was identified as a target of KCNQ1OT1. KCNQ1OT1 overexpression significantly reversed miR‑454 overexpression‑mediated effects on NPC cell viability and DDP resistance. Furthermore, the results indicated that miR‑454 directly targeted USP47. Compared with the shNC group, USP47 knockdown significantly suppressed NPC cell viability and DDP resistance, which was significantly reversed by co‑transfection with miR‑454 inhibitor. Furthermore, compared with the shNC group, KCNQ1OT1 knockdown significantly downregulated USP47 expression, which was significantly counteracted by miR‑454 knockdown. Collectively, the results of the present study indicated that KCNQ1OT1 enhanced DDP resistance in NPC cells via the miR‑454/USP47 axis, suggesting a potential therapeutic target for patients with DDP‑resistant NPC.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Otolaryngology, Zhuji Hospital Affiliated to Shaoxing College of Arts and Sciences, Zhuji, Zhejiang 311800, P.R. China
| | - Zhiping Lou
- Department of Otolaryngology, Zhuji Hospital Affiliated to Shaoxing College of Arts and Sciences, Zhuji, Zhejiang 311800, P.R. China
| | - Zhifeng Zhou
- Department of Otolaryngology, Zhuji Central Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Xiaojun Yan
- Department of Otorhinolaryngology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
30
|
Han C, Yang Y, Sheng Y, Wang J, Li W, Zhou X, Guo L. The mechanism of lncRNA-CRNDE in regulating tumour-associated macrophage M2 polarization and promoting tumour angiogenesis. J Cell Mol Med 2021; 25:4235-4247. [PMID: 33742511 PMCID: PMC8093957 DOI: 10.1111/jcmm.16477] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
M2 macrophages can promote liver cancer metastasis by promoting tumour angiogenesis; however, the mechanism underlying macrophage polarization has not been completely revealed. In this study, we mainly explored the mechanism underlying long non‐coding RNA‐CRNDE (lncRNA‐CRNDE) in regulating M2 macrophage polarization and promoting liver cancer angiogenesis. The expression of CRNDE was up‐regulated or down‐regulated in THP‐1 cells (CRNDE‐/‐‐THP‐1 cells and pcDNA3.1‐CRNDE‐THP‐1). THP‐1 cells were co‐cultured with liver cancer cell line H22, and M2 polarization was induced in THP‐1 by IL‐4/13 to simulate tumour‐induced macrophage polarization. As a result, after CRNDE overexpression, THP‐1 cell viability was up‐regulated, the expression of M2 membrane marker CD163 was up‐regulated, and the proportion of F4/80 + CD163+ cells was also up‐regulated. ELISA assay showed that the expression of M2 markers (including TGF‐β1 and IL‐10) and chemokines (including CCl22 and CCL22) was up‐regulated, and the expression of key signals (including STAT6, JAK‐1, p‐AKT1, and Arg‐1) was also up‐regulated, which were significantly different compared with the control group (Con). In addition, the intervention effect of CRNDE on THP‐1 was consistent between co‐culture with H22 cells and IL‐4/13 induction assay. The induced M2 THP‐1 cells were co‐cultured with HUVEC. As a result, THP‐1 cells with CRNDE overexpression can promote the migration and angiogenesis of HUVEC cells in vitro and simultaneously up‐regulate the expression of Notch1, Dll4 and VEGFR2, indicating that THP‐1 M2 polarization induced by CRNDE could further promote angiogenesis. The H22 cell tumour‐bearing mouse model was constructed, followed by injection of CRNDE anti‐oligosense nucleotides and overexpression plasmids to interfere CRNDE expression in tumour‐bearing tissues. Consequently, down‐regulation of CRNDE could down‐regulate tumour volume, simultaneously down‐regulate the expression of CD163 and CD31 in tissues, decrease the expression of key proteins (including JAK‐1, STAT‐6, p‐STAT6 and p‐AKT1), and down‐regulate the expression of key angiogenesis‐related proteins (including VEGF, Notch1, Dll4 and VEGFR2). In this study, we found that CENDE could indirectly regulate tumour angiogenesis by promoting M2 polarization of macrophages, which is also one of the mechanisms of microenvironmental immune regulation in liver cancer.
Collapse
Affiliation(s)
- Chenyang Han
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi Yang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yongjia Sheng
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyan Li
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
31
|
Kong D, Long D, Liu B, Pei D, Cao N, Zhang G, Xia Z, Luo M. Downregulation of long non-coding RNA LOC101928477 correlates with tumor progression by regulating the epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Thorac Cancer 2021; 12:1303-1311. [PMID: 33713583 PMCID: PMC8088935 DOI: 10.1111/1759-7714.13858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies. There is a growing body of evidence showing that long non‐coding RNAs (lncRNAs) play critical roles in ESCC oncogenesis. The present study aimed to explore the role of LOC101928477, a newly discovered lncRNA, in the development and metastasis of ESCC. Methods In this study, real‐time PCR, western blotting, cell counting kit‐8 (CCK‐8), flow cytometry, colony formation, wound healing, transwell migration/invasion assay, immunofluorescence, and immunohistochemistry were used. We also applied an in situ xenograft mouse model and a lung metastasis mouse model to verify our findings. Results We determined that LOC101928477 expression was inhibited in ESCC tissue and ESCC cell lines when compared with controls. Moreover, forced expression of LOC101928477 effectively inhibited ESCC cell proliferation, colony formation, migration, and invasion via suppression of epithelial‐mesenchymal transition (EMT). Furthermore, LOC101928477 overexpression inhibited in situ tumor growth and lung metastasis in a mouse model. Conclusions Together, our results suggested that LOC101928477 could be a novel suppressor gene involved in ESCC progression.
Collapse
Affiliation(s)
- Demiao Kong
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dali Long
- Department of Intensive Care Unit, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Liu
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Dengke Pei
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Na Cao
- Department of Logistics, Guizhou Provincial People's Hospital, Guizhou, Guiyang, China
| | - Guihua Zhang
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Meng Luo
- Department of Thoracic Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
32
|
Jin H, Liang G, Yang L, Liu L, Wang B, Yan F. SP1-induced AFAP1-AS1 contributes to proliferation and invasion by regulating miR-497-5p/CELF1 pathway in nasopharyngeal carcinoma. Hum Cell 2021; 34:491-501. [PMID: 33400247 DOI: 10.1007/s13577-020-00475-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma is a type of otolaryngological malignancy with high incidence. Long non-coding RNAs (lncRNAs) are closely related to nasopharyngeal carcinoma. LncRNA AFAP1-AS1 (AFAP1-AS1) has been found to play important roles in nasopharyngeal carcinoma progression and poor prognosis. However, the mechanism underlying AFAP1-AS1 in regulating nasopharyngeal carcinoma is still unclear. In current study, AFAP1-AS1 was found to be up-regulated in nasopharyngeal carcinoma tissues and cells. AFAP1-AS1 overexpression and knockdown were conducted in nasopharyngeal carcinoma cells. The results proved that AFAP1-AS1 promoted the survival and migration of nasopharyngeal carcinoma cells. Additionally, specificity protein 1 (SP1) was enhanced in nasopharyngeal carcinoma tissues and cells, and induced AFAP1-AS1 expression. The interaction between AFAP1-AS1 and miR-497-5p was confirmed. AFAP1-AS1 was demonstrated to regulate CELF1, a target gene of miR-497-5p. Further functional analysis revealed that AFAP1-AS1 knockdown attenuated SP1-induced nasopharyngeal carcinoma progression. These results indicate that SP1-induced AFAP1-AS1 facilitates nasopharyngeal carcinoma progression by regulating miR-497-5p/CELF1 pathway, which provides a new target for nasopharyngeal carcinoma treatment.
Collapse
Affiliation(s)
- Hui Jin
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Gengtian Liang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Liping Yang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Li Liu
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Binru Wang
- Department of Otolaryngology, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Fengqin Yan
- Department of Head and Neck Radiation Therapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No. 1 Banshan Road, Gongshu District, Hangzhou, 310021, Zhejiang, China.
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
33
|
Zhou M, Dong Z, Hu S, Xiao M. LINC01433 targets miR-506-3p to promote the biological progress of nasopharyngeal carcinoma cells. Eur Arch Otorhinolaryngol 2021; 278:3363-3374. [PMID: 33479848 DOI: 10.1007/s00405-021-06607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The current study aimed to investigate the role of long intergenic noncoding 01433 (LINC01433) in the proliferation, migration and invasion of nasopharyngeal carcinoma (NPC). METHODS Real-time quantitative PCR (RT-qPCR) was performed to determine the expressions of LINC01433 and miR-506-3p in NPC samples and cell lines. The effects of LINC01433 on cell proliferation, migration and invasion were measured by CCK-8, wound healing assay and Transwell, respectively. In addition, Pearson correlation analysis, starBase, RNA immunoprecipitation, luciferase assay, Western blot and functional experiments were conducted to detect and confirm the relationship between LINC01433 and miR-506-3p. RESULTS LINC01433 level was noticeably elevated in NPC tissues and cell lines. As the expression of LINC01433 in 5-8F cells was the highest in NPC cell lines and the expression of LINC01433 in SUNE1 cells was the lowest, 5-8F and SUNE1 cells were therefore selected as the target cells for following experiments. Furthermore, miR-506-3p was predicted as the target of LINC01433, and the two were negatively correlated with each other. Interestingly, overexpression of LINC01433 promoted proliferation, migration and invasion of NPC cells, while miR-506-3p reversed such effects of LINC01433. Moreover, LINC01433 silencing had the opposite effects to LINC01433 overexpression. Furthermore, miR-506-3p overexpression inhibited the expressions of MMP2, N-cadherin, p-PI3K and p-Akt, and promoted the expressions of E-cadherin and TIMP-2, and partially reversed the role of LINC01433 in promoting cancer development. CONCLUSION The current findings reveal that LINC01433 regulates NPC cell biological progress through miR-506-3p.
Collapse
Affiliation(s)
- Mingguang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Zhihuai Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Sunhong Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Mang Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3, East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| |
Collapse
|
34
|
Ruan T, Lu S, Xu J, Zhou JY. lncRNA LINC00460 Functions as a Competing Endogenous RNA and Regulates Expression of BGN by Sponging miR-149-5p in Colorectal Cancer. Technol Cancer Res Treat 2021; 20:1533033820964238. [PMID: 33472555 PMCID: PMC7829460 DOI: 10.1177/1533033820964238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background and Aim: There are an increasing number of studies indicating the important roles
served by long non-coding RNAs (lncRNAs) in the development of different
types of cancer. LINC00460 is a novel identified lncRNA that was found to be
upregulated in colorectal cancer. However, the biological roles of LINC00460
in colorectal cancer have yet to be fully elucidated. This study was aimed
to investigate the functions and molecular mechanisms of LINC00460 on
colorectal cancer metastasis. Methods: Expression of LINC00460 and biglycan (BGN) in colorectal
cancer tissues and cell lines were quantified by real time PCR or western
blotting assay. Cell migration and invasion assays were performed to
determine the effect of LINC00460 on tumor metastasis in vitro. The binding
interaction between microRNA-149-5p and LINC00460 was revealed by luciferase
reporter assay. Results: In the present study, lncRNA LINC00460 was shown to be upregulated in
colorectal cancer tissues, and overexpression of LINC00460 significantly
promoted metastasis of colorectal cancer in vitro. Furthermore, miR-149-5p
interacted with LINC00460, and they negatively regulated expression of each
other. Transfection of miR-149-5p mimics partially counteracted the tumor
metastasis-promoting effects induced by LINC00460 overexpression. Finally,
overexpression of LINC00460 upregulated the expression levels of
biglycan, a target gene of miR-149-5p, which has also
been identified as an oncogenic driver in colorectal cancer. Conclusion: Taken together, the present study demonstrated that LINC00460 promoted
metastasis of CRC by sponging miR-149-5p and thereby affecting
biglycan expression levels.
Collapse
Affiliation(s)
- Tingyan Ruan
- Department of Radiation Oncology, 74566The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu People's Republic of China
| | - Shourong Lu
- Department of Geriatrics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Junying Xu
- Department of Radiation Oncology, 74566The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, 74566The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu People's Republic of China
| |
Collapse
|
35
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
36
|
Wei H, Li L, Zhang H, Xu F, Chen L, Che G, Wang Y. Circ-FOXM1 knockdown suppresses non-small cell lung cancer development by regulating the miR-149-5p/ATG5 axis. Cell Cycle 2021; 20:166-178. [PMID: 33413028 DOI: 10.1080/15384101.2020.1867780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) have been reported to be related to the development of human cancers. However, the function of circ-FOXM1 in non-small cell lung cancer (NSCLC) was largely unknown. Here, we revealed the role and functional mechanism of circ-FOXM1 in NSCLC progression. The relative expression of circ-FOXM1, microRNA-149-5p (miR-149-5p), and autophagy-related 5 (ATG5) was determined by quantitative real-time polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assay were employed to assess cell viability, apoptosis, and migration, respectively. The relative protein expression was detected by western blot. Furthermore, mouse xenograft was carried out to analyze the effect of circ-FOXM1 on tumor growth in vivo. In addition, the interaction between miR-149-5p and circ-FOXM1 or ATG5 was predicted by Starbase3.0 and confirmed by the dual-luciferase reporter assay and RNA pull-down assay. Circ-FOXM1 and ATG5 levels were upregulated, while the miR-149-5p level was downregulated in NSCLC tissues and cells. Circ-FOXM1 knockdown suppressed NSCLC cell viability, migration, and autophagy, and induced cell apoptosis. Interestingly, circ-FOXM1 targeted miR-149-5p to upregulate the ATG5 level. Moreover, circ-FOXM1 exerted function through repressing miR-149-5p expression, and miR-149-5p exerted function via inhibiting ATG5 expression. Our results suggested that circ-FOXM1 knockdown attenuated the development of NSCLC through modulating the miR-149-5p/ATG5 axis, providing a theoretical basis for the therapy of NSCLC.
Collapse
Affiliation(s)
- Haitao Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China.,Department of Thoracic Surgery, Huaihe Hospital of Henan University , Kaifeng, Henan, China
| | - Li Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China.,School of Nursing and Health, Henan University , Kaifeng, Henan, China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University , Kaifeng, Henan, China
| | - Feng Xu
- Department of Respiratory, Huaihe Hospital, Henan University , Kaifeng, Henan, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University , Chengdu, Sichuan, China
| |
Collapse
|
37
|
Comprehensive analysis of prognostic biomarkers in lung adenocarcinoma based on aberrant lncRNA-miRNA-mRNA networks and Cox regression models. Biosci Rep 2020; 40:221898. [PMID: 31950990 PMCID: PMC6997105 DOI: 10.1042/bsr20191554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/04/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer-related death worldwide, and its underlying mechanism remains unclear. Accumulating evidence has highlighted that long non-coding RNA (lncRNA) acts as competitive endogenous RNA (ceRNA) and plays an important role in the occurrence and development of LUAD. Here, we comprehensively analyzed and provided an overview of the lncRNAs, miRNAs, and mRNAs associated with LUAD from The Cancer Genome Atlas (TCGA) database. Then, differentially expressed lncRNAs (DElncRNA), miRNAs (DEmiRNA), and mRNAs (DEmRNA) were used to construct a lncRNA–miRNA–mRNA regulatory network according to interaction information from miRcode, TargetScan, miRTarBase, and miRDB. Finally, the RNAs of the network were analyzed for survival and submitted for Cox regression analysis to construct prognostic indicators. A total of 1123 DElncRNAs, 95 DEmiRNAs, and 2296 DEmRNAs were identified (|log2FoldChange| (FC) > 2 and false discovery rate (FDR) or adjusted P value < 0.01). The ceRNA network was established based on this and included 102 lncRNAs, 19 miRNAs, and 33 mRNAs. The DEmRNAs in the ceRNA network were found to be enriched in various cancer-related biological processes and pathways. We detected 22 lncRNAs, 12 mRNAs, and 1 miRNA in the ceRNA network that were significantly associated with the overall survival of patients with LUAD (P < 0.05). We established three prognostic prediction models and calculated the area under the 1,3,5-year curve (AUC) values of lncRNA, mRNA, and miRNA, respectively. Among them, the prognostic index (PI) of lncRNA showed good predictive ability which was 0.737, 0.702 and 0.671 respectively, and eight lncRNAs can be used as candidate prognostic biomarkers for LUAD. In conclusion, our study provides a new perspective on the prognosis and diagnosis of LUAD on a genome-wide basis, and develops independent prognostic biomarkers for LUAD.
Collapse
|
38
|
Wang H, Niu X, Mao F, Liu X, Zhong B, Jiang H, Fu G. Hsa_circRNA_100146 Acts as a Sponge of miR-149-5p in Promoting Bladder Cancer Progression via Regulating RNF2. Onco Targets Ther 2020; 13:11007-11017. [PMID: 33149615 PMCID: PMC7605652 DOI: 10.2147/ott.s273622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background Mounting evidence has demonstrated that circular RNAs (circRNAs) play indispensable roles in the progression of bladder cancer. Public database mining showed that hsa_circRNA_100146 (circRNA_100146) was highly expressed in bladder cancer. This study aimed to characterize the biological role of circRNA_100146 and clarify the underlying mechanism in bladder cancer. Methods We evaluated the relationship between circRNA_100146 expression and clinicopathological features. Furthermore, gain- and loss-of-function studies were conducted in bladder cancer cells via transfection with gene-carrying plasmids (over-expression) or specific short hairpin RNAs (knockdown). Moreover, computational algorithms and dual-luciferase reporter assays were performed to explore the possible mechanisms of action. Additionally, in vivo xenograft experiments were performed to further analyze the effect of circRNA_100146 on tumor growth. Results Our data showed that circRNA_100146 expression was increased in bladder cancer tissues and cell lines, and that high expression of circRNA_100146 was correlated with poor patient prognosis. Upregulation of circRNA_100146 promoted cell proliferation, migration, and invasion, and inhibited cell apoptosis, whereas knockdown of circRNA_100146 displayed opposite effects on bladder cancer cells. Notably, circRNA_100146 could combine with miR-149-5p and promote ring finger protein 2 (RNF2) expression, thereby facilitating the progression of bladder cancer. Furthermore, overexpression of RNF2 reversed the effects of circRNA_100146 knockdown on the biological behaviors of bladder cancer cells. The in vivo experiments revealed that downregulation of circRNA_100146 dramatically delayed tumor growth. Conclusion Our findings indicate that circRNA_100146 functions as a sponge of miR-149-5p in promoting bladder cancer progression by regulating RNF2 expression and that circRNA_100146 may serve as a novel biomarker in human bladder cancer.
Collapse
Affiliation(s)
- Hengbing Wang
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Fei Mao
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Xuzhong Liu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Bing Zhong
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Hesong Jiang
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| | - Guangbo Fu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an 223300, Jiangsu Province, People's Republic of China
| |
Collapse
|
39
|
Zhong Q, Wang Z, Liao X, Wu R, Guo X. LncRNA GAS5/miR‑4465 axis regulates the malignant potential of nasopharyngeal carcinoma by targeting COX2. Cell Cycle 2020; 19:3004-3017. [PMID: 33092435 DOI: 10.1080/15384101.2020.1816280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor that not only negatively affects the physical and mental health but also the quality of life of the patients. Growth arrest-specific transcript 5 (GAS5) is a common long-chain non-coding RNA (lncRNA) that has been reported to participate in the development of various cancers. However, the biological functions of lncRNA GAS5 in the occurrence and development of nasopharyngeal carcinoma are elusive. The expression of lncRNA GAS5 in nasopharyngeal carcinoma and normal samples were analyzed. Bioinformatic tool was utilized to predict the potential function of lncRNA in nasopharyngeal carcinoma. Transplanted mice were used for in vivo experiments. We observed that the expression of lncRNA GAS5 was upregulated in nasopharyngeal carcinoma tissues and cells. Down-regulation of lncRNA GAS5 inhibited the proliferation and promoted apoptosis of nasopharyngeal carcinoma cells. The expression of miR-4465 was down regulated in nasopharyngeal carcinoma tissues and cells. LncRNA GAS5 could directly bind to miR-4465 and regulated the expression of miR-4465. It was further confirmed that miR-4465 could directly bind with COX2 and inhibit the expression of COX2. Down-regulation of lncRNA GAS5 suppressed tumor growth, promoted the expression levels of miR-18a-5p and suppressed the expression of COX2 in vivo. LncRNA GAS5 regulated nasopharyngeal carcinoma malignancy through targeting miR-4465 and modulating COX2. The GAS5/miR-4465/COX2 axis in nasopharyngeal carcinoma pathogenesis was confirmed, which would provide a new therapeutic target for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Zongqi Wang
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Xiaohong Liao
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Renrui Wu
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Xiaoqing Guo
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| |
Collapse
|
40
|
Li J, Huang S, Zhang Y, Zhuo W, Tong B, Cai F. LINC00460 Enhances Bladder Carcinoma Cell Proliferation and Migration by Modulating miR-612/FOXK1 Axis. Pharmacology 2020; 106:79-90. [PMID: 33027786 PMCID: PMC7949225 DOI: 10.1159/000509255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION LincRNA (long intergenic noncoding RNA) has been indicated as a mediator in tumorigenesis of bladder carcinoma. This study was performed to evaluate the role of LINC00460 in bladder carcinoma progression. METHODS Expression levels of LINC00460 in bladder carcinoma tissues and cell lines were analyzed via qRT-PCR. MTT, EdU (5-ethynyl-2'-deoxyuridine) staining, and colony formation assays were utilized to evaluate cell viability and proliferation. The wound healing assay was performed to evaluate bladder cancer cell migration, and the transwell assay was used to evaluate cell invasion. The microRNA (miRNA) target of LINC00460 and the corresponding target gene were validated via the dual luciferase activity assay. The tumorigenic function of LINC00460 was determined via establishment of a xenotransplanted tumor model. RESULTS LINC00460 was elevated in bladder carcinoma tissues and cell lines. Elevated LINC00460 was associated with shorter overall survival of bladder carcinoma patients. Overexpression of LINC00460 promoted cell viability, proliferation, invasion, and migration, while silencing of LINC00460 indicated the opposite effect on bladder carcinoma progression. LINC00460 could directly bind to miR-612 and inhibit miR-612 expression. Moreover, LINC00460 expression was negatively correlated with miR-612 in patients with bladder carcinoma. FOXK1 (Forkhead Box K1) was identified as the target of miR-612 and upregulated in patients with bladder carcinoma. Overexpression of FOXK1 attenuated interference of LINC00460-inhibited bladder carcinoma progression. Knockdown of LINC00460 suppressed in vivo bladder carcinoma growth. CONCLUSIONS LINC00460 promoted bladder carcinoma progression via sponging miR-612 to facilitate FOXK1 expression, suggesting that LINC00460 might have the potential of being explored as a therapeutic target for treatment of bladder carcinoma.
Collapse
Affiliation(s)
| | - Sihuai Huang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanmei Zhang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weifeng Zhuo
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Baocheng Tong
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Fangzhen Cai
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,
| |
Collapse
|
41
|
You H, Wang S, Yu S. KIF9-AS1 promotes nasopharyngeal carcinoma progression by suppressing miR-16. Oncol Lett 2020; 20:241. [PMID: 32973955 PMCID: PMC7509506 DOI: 10.3892/ol.2020.12104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to serve a crucial role in the progression of nasopharyngeal carcinoma (NPC); however, the underlying molecular mechanisms of lncRNA KIF9-AS1 in the tumorigenesis of NPC remains poorly understood. Reverse transcription-quantitative PCR was used to analyze the expression levels of KIF9-AS1 and microRNA (miR)-16, and Cell Counting Kit-8, wound healing and Transwell assays were used to determine the cell viability, invasion and migration, respectively, of NPC cells. In addition, a dual-luciferase reporter assay was used to analyze the direct interaction between KIF9-AS1 and miR-16. NPC stage was classified according to the seventh edition of the AJCC staging system. The results revealed that KIF9-AS1 expression levels were upregulated in NPC tissues and cell lines. In addition, miR-16 was demonstrated to directly interact with KIF9-AS1 and inhibit KIF9-AS1 expression levels, whereas the miR-16 inhibitor rescued the effects of the KIF9-AS1-knockdown in NPC cells. Furthermore, the expression levels of KIF9-AS1 were upregulated, while those of miR-16 were downregulated in NPC tissues. Notably, the expression levels of KIF9-AS1 were observed to be significantly more upregulated in advanced tumors (III–IV vs. I–II) and patients with high KIF9-AS1 expression levels exhibited a worse prognosis. In conclusion, the findings of the present study suggested that KIF9-AS1 may promote the progression of NPC by targeting miR-16, thus KIF9-AS1 may be a novel molecular target for NPC therapy.
Collapse
Affiliation(s)
- Huizeng You
- Department of Otolaryngology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Shuyong Wang
- Department of Otolaryngology, Weifang Traditional Chinese Hospital, Weifang, Shandong 261041, P.R. China
| | - Sa Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang 311800, P.R. China
| |
Collapse
|
42
|
Zhang C, Cao W, Wang J, Liu J, Liu J, Wu H, Li S, Zhang C. A prognostic long non-coding RNA-associated competing endogenous RNA network in head and neck squamous cell carcinoma. PeerJ 2020; 8:e9701. [PMID: 32983633 PMCID: PMC7500352 DOI: 10.7717/peerj.9701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to develop multi-RNA-based models using a competing endogenous RNA (ceRNA) regulatory network to provide survival risk prediction in head and neck squamous cell carcinoma (HNSCC). METHODS All long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA expression data and clinicopathological features related to HNSCC were derived from The Cancer Genome Atlas. Differentially expressed RNAs were calculated using R. Prognostic factors were identified using univariate Cox regression analysis. Functional analysis was performed using GO, KEGG pathways, and PPI network. Based on the results, we derived a risk signature and compared high- and low-risk subgroups using LASSO regression analysis. Survival analysis and the relationship between risk signature and clinicopathological features were performed using log-rank tests and Cox regression analysis. A ceRNA regulatory network was constructed, and prognostic lncRNAs and miRNA expression levels were validated in vitro and in vivo. RESULTS A list of 207 lncRNAs, 18 miRNAs and 362 mRNAs related to overall survival was established. Five lncRNAs (HOTTIP, LINC00460, RMST, SFTA1P, and TM4SF19-AS1), one miRNA (hsa-miR-206), and one mRNA (STC2) were used to construct the ceRNA network. Three prognostic models contained 13 lncRNAs, eight miRNAs, and 17 mRNAs, which correlated with the patient status, disease-free survival (DFS), stage, grade, T stage, N stage, TP53 mutation status, angiolymphatic invasion, HPV status, and extracapsular spread. KEGG pathway analysis revealed significant enrichment of "Transcriptional misregulation in cancer" and "Neuroactive ligand-receptor interaction." In addition, HOTTIP, LINC00460, miR-206 and STC2 were validated in GTEx data, GEO microarrays and six HNSCC cell lines. CONCLUSIONS Our findings clarify the interaction of ceRNA regulatory networks and crucial clinicopathological features. These results show that prognostic biomarkers can be identified by constructing multi-RNA-based prognostic models, which can be used for survival risk prediction in patients with HNSCC.
Collapse
Affiliation(s)
- Chengyao Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, Chongqing, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jiawu Wang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jiannan Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Jialiang Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| | - Hao Wu
- College of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Siyi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital & Shanghai Ninth People’s Hospital (Fengcheng Branch Hospital), College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Chenping Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, Shanghai, China
| |
Collapse
|
43
|
Huang D, Zhu X, Wang Y, Yu H, Pu Y. Long non-coding RNA FAM133B-2 represses the radio-resistance of nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6 axis. Aging (Albany NY) 2020; 12:16936-16950. [PMID: 32889799 PMCID: PMC7521541 DOI: 10.18632/aging.103600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play roles in various cancers, including nasopharyngeal carcinoma. In this study, we focused on the biological function of the lncRNA FAM133B-2 in the radio-resistance of nasopharyngeal carcinoma. The RNA-seq and qRT-PCR analysis showed that FAM133B-2 is highly expressed in the radio-resistant nasopharyngeal carcinoma cells. The following biochemical assays showed that FAM133B-2 represses the nasopharyngeal carcinoma radio-resistance and also affects the apoptosis and proliferation of nasopharyngeal carcinoma cells. Further investigations suggested that miR-34a-5p targets FAM133B-2 and also regulates the cyclin-dependent kinase 6 (CDK6). All these results suggested that the lncRNA FAM133B-2 might function as a competitive endogenous RNA (ceRNA) for miR-34a-5p in nasopharyngeal carcinoma radio-resistance, thus it may be regarded as a novel prognostic biomarker and therapeutic target in nasopharyngeal carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Xianhai Zhu
- Department of Interventional Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Yong Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Haobin Yu
- Department of Cancer Nutrition and Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| |
Collapse
|
44
|
Hui C, Tian L, He X. Circular RNA circNHSL1 Contributes to Gastric Cancer Progression Through the miR-149-5p/YWHAZ Axis. Cancer Manag Res 2020; 12:7117-7130. [PMID: 32848466 PMCID: PMC7429192 DOI: 10.2147/cmar.s253152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a considerable health burden around the world. Circular RNA Nance-Horan syndrome-like 1 (circNHSL1) is reported to be highly expressed in GC. Nevertheless, the function and molecule mechanism of circNHSL1 are still unclear. Methods The expression levels of circNHSL1, microRNA-149-5p (miR-149-5p) and YWHAZ were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The subcellular fractionation identified the remarkable cytoplasmic localization of circNHSL1. Cell migration and invasion were measured by transwell assays. The levels of glutamine, glutamate and α-ketoglutarate (α-KG) were assessed by the corresponding kit. The protein levels of CD63, CD9, CD81, alanine, serine, cysteine-preferring transporter 2 (ASCT2), glutaminase 1 (GLS1), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) were detected by Western blot assay. The binding relationship between miR-149-5p and circNHSL1 or YWHAZ was predicted by starBase 3.0 and then verified by RNA pull-down and dual-luciferase reporter assays. Xenograft tumor model examined the biological role of circNHSL1 in vivo. Exosomes were examined by a transmission electron microscope and nanoparticle tracking analysis (NTA). Results CircNHSL1 was highly expressed in GC cell-derived exosomes, GC tissues, and cells. Its knockdown impeded GC cell migration, invasion, and glutaminolysis. Mechanism analysis showed that circNHSL1 could affect YWHAZ expression by sponging miR-149-5p, thereby regulating GC progression. CircNHSL1 downregulation blocked GC tumor growth in vivo. Conclusion Our studies disclosed that circNHSL1 knockdown repressed migration, invasion, and glutaminolysis in vitro and inhibited tumor growth in vivo by miR-149-5p/YWHAZ axis in GC, implying an underlying circRNA-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Chunying Hui
- The Third Digestive Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China
| | - Lei Tian
- The Third Digestive Ward, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China
| | - Xinling He
- Department of Hand and Foot Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China
| |
Collapse
|
45
|
MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes (Basel) 2020. [DOI: 10.3390/pr8080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to reports published, the aberrant expression of microRNAs (miRNAs), a class of 19–25 nucleotide-long small non-coding RNAs, is responsible for human cancers, including nasopharyngeal cancer (NPC). The dysregulation of miRNAs that act either as a tumor suppressor or oncogene, leading to a wide range of NPC pathogenesis pathways, includes the proliferation, invasion, migration as well as the metastasis of NPC cells. This article reviews and highlights recent advances in the studies of miRNAs in NPC, with a specific demonstration of the functions of miRNA, especially circulating miRNAs, in the pathway of NPC pathogenesis. Additionally, the possible use of miRNAs as early screening and prognostic biomarkers and for therapeutic molecular monitoring has been extensively studied.
Collapse
|
46
|
Wang L, Chen X, Sun X, Suo J. Long Noncoding RNA LINC00460 Facilitates Colorectal Cancer Progression by Negatively Regulating miR-613. Onco Targets Ther 2020; 13:7555-7569. [PMID: 32821121 PMCID: PMC7423399 DOI: 10.2147/ott.s254489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Long-noncoding RNAs (lncRNAs) could exert a crucial effect on the development of human cancers, including CRC. However, the biological function and underlying mechanism of LINCRNA00460 in the development of CRC still need deeper exploration. Materials and Methods The expression of LINC00460 in CRC tissues and cell lines was assessed by qRT-PCR. Cell proliferation, migration, and invasion were measured by the respective cell counting Kit-8 (CCK-8), wound healing assay and transwell invasion assay. Cell apoptosis and caspase-3 activity were detected by flow cytometry and caspase-3 activity assay. The relationship between LINC00460 and miR-613 expression was explored by Dual-luciferase reporter assay. Protein expression was measured by Western blotting. In vivo tumour growth was evaluated using a xenograft model of nude mice. Results LINC00460 was markedly up-regulated in CRC tissues and cell lines compared to their corresponding controls, which was closely correlated with clinical stage, TNM (T) classification, nodal (N) classification, metastasis (M) classification, liver metastasis and pathological differentiation, and survival rate of CRC patients. Functionally, LINC00460 knockdown decreased the proliferative, migrative and invasive abilities, and enhanced apoptosis rates and caspase-3 activity in HT29 and LOVO cells. Mechanistic studies indicated that miR-613 was targeted by LINC00460, and SphK1 was targeted and inversely regulated by miR-613 in HT29 and LOVO cells. In vivo studies, LINC00460 knockdown attenuated tumour growth. MiR-613 downregulation and SphK1 upregulation in the CRC tissues, and LINC00460 expression levels were inversely correlated with miR-613 expression and positively correlated with the SphK1 mRNA expression. Overall, LINC00460 modulated cell proliferation, migration, invasion and sphingosine kinase 1 (SphK1) expression in HT29 and LOVO cells, at least in most part, by regulating miR‐613. Conclusion LINC00460 functions as a competing endogenous RNA to regulate SphK1 expression by sponging miR‐613 in CRC and provides a valuable therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Changchun, Jilin 130021, People's Republic of China
| | - Xinxin Chen
- Department of Burn Surgery, Jilin University First Hospital, Changchun, Jilin 130021, People's Republic of China
| | - Xuan Sun
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Changchun, Jilin 130021, People's Republic of China
| | - Jian Suo
- Department of Gastrointestinal Surgery, Jilin University First Hospital, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
47
|
Lin L, Xin B, Jiang T, Wang XL, Yang H, Shi TM. Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p. Mol Cell Biochem 2020; 475:1-13. [PMID: 32740791 DOI: 10.1007/s11010-020-03853-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs are associated with the pathogenesis of cancers. Moreover, LINC00460 is involved in the development of multiple cancers. However, the function of LINC00460 in cervical cancer (CC) remains inconclusive. Herein, CC tissues and tumor-adjacent tissues were collected from patients. The effect of LINC00460 silencing in cell proliferation and apoptosis in CC was explored in vitro and in vivo. Additionally, the interaction between LINC00460 and miR-503-5p was analyzed using dual luciferase reporter assay. The expression of genes and proteins was assayed using quantitative real-time PCR, western blotting and immunohistochemistry, cell viability using MTT assay, cell cycle distribution using flow cytometry, cell apoptosis using Annexin V staining, Hoechst staining and TUNEL assay. LINC00460 levels in CC tissues were higher than tumor-adjacent tissues. LINC00460 silencing suppressed proliferation and promoted apoptosis of CC cells as evidenced by decreased cell viability, inhibited proliferation-related protein and cell cycle protein expressions and G1/S transition, increased apoptotic cells and Hoechst-positive cells, and enhanced apoptosis-related protein expressions. LINC00460 could bind to miR-503-5p and LINC00460 silencing enhanced miR-503-5p expression and inhibited its target gene expressions in CC cells. MiR-503-5p inhibition reversed LINC00460 silencing-caused inhibition of cell proliferation and miR-503-5p target gene expressions, and promotion of cell apoptosis. LINC00460 silencing also attenuated tumor growth, promoted miR-503-5p levels and cell apoptosis, and inhibited cell proliferation and miR-503-5p target gene expressions in tumor tissues. Hence, LINC00460 functioned as an oncogene in CC that affected cell proliferation and apoptosis via sponging miR-503-5p. This study provides a novel therapeutic target for CC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Bing Xin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tao Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xin-Lu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Hua Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China
| | - Tie-Mei Shi
- Department of Ultrasound, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
48
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
49
|
Long noncoding RNA LINC00460 conduces to tumor growth and metastasis of hepatocellular carcinoma through miR-342-3p-dependent AGR2 up-regulation. Aging (Albany NY) 2020; 12:10544-10555. [PMID: 32493835 PMCID: PMC7346032 DOI: 10.18632/aging.103278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor in the world. It ranks third among cancer-induced deaths worldwide and has the characteristics of high metastasis and high recurrence rate. Long non-coding RNA (LncRNA) LINC00460 is significantly up-regulated in multiple types of cancers and is closely related to the progression of tumors. However, effects of LINC00460 and corresponding regulatory path in HCC are still poorly investigated. In our study, we found that expression of LINC00460 was up-regulated in HCC tissues and cell lines compared with the control. Then we revealed that knockdown of LINC00460 suppressed cell proliferation and cell mobility and induced cell apoptosis in HCC cells. Further study demonstrated that knockdown of LINC00460 suppressed the progression of HCC by elevating the expression of microRNA (miRNA, miR)-342-3p. Besides that, metastasis marker, Anterior gradient homolog 2 (AGR2) was found to be a target of miR-342-3p and overexpression of AGR2 promoted the progression of HCC. Finally, the in vivo experiments further verified the anti-tumor effects of LINC00460 / miR-342-3p / AGR2 axis in HCC. The LINC00460 / miR-342-3p / AGR2 axis exerts anti-tumor effect in HCC in vitro and in vivo, consolidating and expanding the research about targeted gene therapy for early diagnosis and treatment of HCC.
Collapse
|
50
|
Long non-coding RNA LINC00460 predicts poor survival and promotes cell viability in pancreatic cancer. Oncol Lett 2020; 20:1369-1375. [PMID: 32724379 PMCID: PMC7377077 DOI: 10.3892/ol.2020.11652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) possess great potential as vital biomarkers and powerful therapeutic targets in various diseases. In the present study, differentially expressed transcripts in pancreatic cancer (PC) were identified, and a competing endogenous RNA (ceRNA) network was constructed using The Cancer Genome Atlas database. An independent cohort consisting of 59 patients with PC was used to validate the clinical value of the identified lncRNA. Cell viability and colony formation assays were used to evaluate the biological functions of the lncRNA in PC cells. The present bioinformatic analysis revealed that LINC00460 was upregulated in PC samples with a prognostic significance. In the ceRNA network, it potentially targeted the microRNA-503/cyclin D1 axis. The results of real-time quantitative PCR confirmed that LINC00460 was significantly upregulated in cancer tissues and was associated with poor survival of patients with PC. The expression levels of LINC00460 were significantly associated with tumor size, but not with age, sex, differentiation, lymph node metastasis, vascular invasion and tumor stage. Through univariate and multivariate analysis, LINC00460 was characterized as an independent prognostic biomarker for PC. Further in vitro experiments demonstrated that suppressing LINC00460 using small interfering RNA inhibited viability and colony formation of PC cells. In summary, LINC00460 may be an independent prognostic biomarker for PC and may serve as an oncogenic lncRNA that promotes PC cell growth. Further in-depth exploration is required to reveal the specific biological mechanism of LINC00460 in PC cells.
Collapse
|