1
|
Xie C, Qiu N, Wang C, Chen J, Zhang H, Lu X, Chen S, Sun Y, Lian Z, Hu H, Zhu H, Xu X. G-LERP/miR-374i-b Attenuates IRI and Suppresses Hepatocellular Carcinoma Progression. Transplantation 2025:00007890-990000000-01080. [PMID: 40336158 DOI: 10.1097/tp.0000000000005412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
BACKGROUND Liver transplantation (LT) is the most effective therapeutic strategy for late-stage hepatocellular carcinoma (HCC), but it is prone to ischemia-reperfusion injury (IRI), leading to poor prognosis. Previous articles have reported that miR-374b-5p expression is increased in HCC tissues, and its relationship with IRI and HCC carcinoma progression is unclear. METHODS Previous reports have shown that miR-374b-5p expression is significantly upregulated in HCC tissues. The effect of miR-374b-5p on patient symptoms and prognosis were analyzed from The Cancer Genome Atlas database and liver specimens from LT patients. To further explore its therapeutic potential, a liver-targeted esterase-responsive gene delivery system (G-LERP/miR-374i-b) was developed to downregulate miR-374b-5p expression in the mouse hepatic IRI (HIRI) model. An orthotopic HCC model was further established to mimic the postoperative recurrence of HCC. RESULTS In this study, we found that miR-374b-5p expression correlates with tumor size and microvascular invasion based on patients' clinical information. Patients with low miR-374b-5p expression had a higher Milan criteria score and a lower Model for End-stage Liver Disease score. We verified the positive correlation between miR-374b-5p expression and the proliferation and invasion of HCC cells. Effective downregulation of miR-374b-5p simultaneously alleviated HIRI and reduced tumor burden by 56%, whereas miR-374b-5p upregulation promoted HCC progression. Furthermore, we found G-LERP/miR-374i-b attenuated hepatic inflammation by downregulating the nuclear factor kappa-B pathway, thereby reducing HIRI and the risk of HCC recurrence. CONCLUSIONS This research is the first to demonstrate miR-374b-5p as a dual therapeutic target during LT and postoperative recurrence of HCC. Preintervention of miR-374b-5p using an esterase-responsive gene delivery system during the preoperative period simultaneously alleviates IRI and suppresses HCC progression.
Collapse
Affiliation(s)
- Chang Xie
- School of Clinical Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Nasha Qiu
- School of Clinical Medicine, Hangzhou Normal University, Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Chao Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Jun Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Hui Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Xinfeng Lu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Siyu Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Yiyang Sun
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Zhejiang Province, Hangzhou, China
| | - Haitao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, China
| | - Hengkai Zhu
- Department of Hepatobiliary Pancreatic Surgery, Shulan Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Zhejiang Province, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Gheitasi I, Akbari G, Savari F. Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs. Mol Cell Biochem 2025; 480:855-868. [PMID: 39001984 DOI: 10.1007/s11010-024-05052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
Collapse
Affiliation(s)
- Izadpanah Gheitasi
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghaidafeh Akbari
- Department of Physiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| |
Collapse
|
3
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
4
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
5
|
Gu C, Mo W, Wang K, Gao M, Chen J, Zhang F, Shen J. Exosomal miR-370-3p increases the permeability of blood-brain barrier in ischemia/reperfusion stroke of brain by targeting MPK1. Aging (Albany NY) 2023; 15:1931-1943. [PMID: 37000151 PMCID: PMC10085611 DOI: 10.18632/aging.204573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 04/01/2023]
Abstract
Ischemia/reperfusion (I/R) damage induced by stroke poses a serious hazard to human life, while mechanism of blood-brain barrier (BBB) dysfunction is still unknown. To imitate stroke induced ischemia conditions in vivo, the rat model of cerebral I/R damage was created by middle cerebral artery occlusion (MCAO). In vitro, the rat microvascular endothelial cell line bEND.3 was subjected to oxygen-glucose deprivation/reperfusion (OGD/R). Evans blue was used to evaluate the permeability of the blood-brain barrier (BBB). To evaluate gene expression at the mRNA and protein levels, researchers used real-time PCR and western blotting. Infarct volume and BBB permeability were considerably higher in cerebral (I/R) animals than in the Sham group. Exosomal miR-370-3p expression was shown to be higher in the brains of I/R injured rats and OGD/R treatment bEND.3. The BBB permeability was considerably increased when miR-370-3p was downregulated in OGD/R pretreated bEND.3. miR-370-3p regulates MAPK1 expression by targeting it. In bEND.3, OGD/R therapy increased BBB permeability substantially. OGD/R was inhibited by miR-370-3p mimic transfection, while miR-370-3p mimic was abolished by co-transfection with MAPK1 overexpression lentivirus. In cerebral I/R damage, exosomal miR-370-3p targets MAPK1 and aggregates BBB permeability.
Collapse
Affiliation(s)
- Caifeng Gu
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Weichun Mo
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kunlun Wang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Mingqiang Gao
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Junfeng Chen
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Feng Zhang
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Center of Emergency and Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Zhu SF, Yuan W, Du YL, Wang BL. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2023; 22:45-53. [PMID: 35934611 DOI: 10.1016/j.hbpd.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shan-Fei Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yong-Liang Du
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| |
Collapse
|
7
|
Pretzsch E, Nieß H, Khaled NB, Bösch F, Guba M, Werner J, Angele M, Chaudry IH. Molecular Mechanisms of Ischaemia-Reperfusion Injury and Regeneration in the Liver-Shock and Surgery-Associated Changes. Int J Mol Sci 2022; 23:12942. [PMID: 36361725 PMCID: PMC9657004 DOI: 10.3390/ijms232112942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) represents a major challenge during liver surgery, liver preservation for transplantation, and can cause hemorrhagic shock with severe hypoxemia and trauma. The reduction of blood supply with a concomitant deficit in oxygen delivery initiates various molecular mechanisms involving the innate and adaptive immune response, alterations in gene transcription, induction of cell death programs, and changes in metabolic state and vascular function. Hepatic IRI is a major cause of morbidity and mortality, and is associated with an increased risk for tumor growth and recurrence after oncologic surgery for primary and secondary hepatobiliary malignancies. Therapeutic strategies to prevent or treat hepatic IRI have been investigated in animal models but, for the most part, have failed to provide a protective effect in a clinical setting. This review focuses on the molecular mechanisms underlying hepatic IRI and regeneration, as well as its clinical implications. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Florian Bösch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
MicroRNAs: Novel Targets in Hepatic Ischemia–Reperfusion Injury. Biomedicines 2022; 10:biomedicines10040791. [PMID: 35453542 PMCID: PMC9028838 DOI: 10.3390/biomedicines10040791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatic ischemia–reperfusion injury (IRI) is one of the main factors for early allograft dysfunction (EAD), which may lead to graft rejection, graft loss, or shortened graft life in liver transplantation. Hepatic IRI appears to be inevitable during the majority of liver procurement and transportation of donor organs, resulting in a cascade of biological changes. The activation of signaling pathways during IRI results in the up- and downregulation of genes and microRNAs (miRNAs). miRNAs are ~21 nucleotides in length and well-characterized for their role in gene regulations; they have recently been used for therapeutic approaches in addition to their role as biomarkers for many diseases. miRNAs that are associated with hepatic IRI in in vitro and in vivo animal models are comprehensively summarized in this review. In those studies, the manipulation of miRNAs has been shown for the inhibition of aggravated immune response, reduction of apoptosis, stimulation of tissue repair, and enhancement of cell recovery to attenuate liver damage. Therefore, the utilization of liver-specific miRNA holds great potential as a therapeutic agent to improve early allograft dysfunction, hepatic injury, and patient outcome.
Collapse
|
9
|
Ren Z, Lv M, Yu Q, Bao J, Lou K, Li X. MicroRNA-370-3p shuttled by breast cancer cell-derived extracellular vesicles induces fibroblast activation through the CYLD/Nf-κB axis to promote breast cancer progression. FASEB J 2021; 35:e21383. [PMID: 33629796 DOI: 10.1096/fj.202001430rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a malignancy arising in the mammary epithelial tissues. Recent studies have indicated the abundance of microRNAs (miRNAs) in extracellular vesicles (EVs), and their interactions have been illustrated to exert crucial roles in the cell-to-cell communication. The present study focused on investigating whether EV-delivered miR-370-3p affects breast cancer. Initially, the miR-370-3p expression pattern was examined in the cancer-associated fibroblasts (CAFs), normal fibroblasts (NFs), and cancerous cells-derived EVs. The relation of miR-370-3p to CYLD was assessed using luciferase activity assay. Afterwards, based on ectopic expression and depletion experiments in the MCF-7 breast cancer cells, we evaluated stemness, migration, invasion, and sphere formation ability, and EMT, accompanied with measurement on the expression patterns of pro-inflammatory factors and nuclear factor-kappa B (NF-κB) signaling-related genes. Finally, tumorigenesis and proliferation were analyzed in vivo using a nude mouse xenograft model. The in vitro experiments revealed that breast cancer cell-derived EVs promoted NF activation, while activated fibroblasts contributed to enhanced stemness, migration, invasion, as well as EMT of cancerous cells. In addition, EVs could transfer miR-370-3p from breast cancer cells to NFs, and EV-encapsulated miR-370-3p was also found to facilitate fibroblast activation. Mechanistically, EV-encapsulated miR-370-3p downregulated the expression of CYLD through binding to its 3'UTR and activated the NF-κB signaling pathway, thereby promoting the cellular functions in vitro and in vivo in breast cancer. Taken together, EVs secreted by breast cancer cells could carry miR-370-3p to aggravate breast cancer through downregulating CYLD expression and activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaojun Ren
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kexin Lou
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiujuan Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
10
|
Cao J, Xu T, Zhou C, Wang S, Jiang B, Wu K, Ma L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J Cell Mol Med 2021; 25:5099-5112. [PMID: 33942481 PMCID: PMC8178266 DOI: 10.1111/jcmm.16493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptor subfamily 4, group A, member 1 (NR4A1) can aggravate ischaemia‐reperfusion (I/R) injury in the heart, kidney and brain. Thus, the present study aimed to unravel the role of NR4A1 on hepatic I/R injury. For this purpose, the mouse hepatic I/R model and H/R‐exposed mouse hepatocytes model were established to stimulate the hepatic and hepatocellular damage. Then, the levels of ALT and AST as well as TNF‐α and IL‐1β expression were measured in the mouse serum and supernatant of hepatocyte s, respectively. Thereafter, we quantified the levels of NR4A1, CYR61, NF‐kB p65 and TGFβ1 under pathological conditions, and their interactions were analysed using ChIP and dual‐luciferase reporter gene assays. The in vivo and in vitro effects of NR4A1, CYR61, NF‐kB p65 and TGFβ1 on I/R‐induced hepatic and H/R‐induced hepatocellular damage were evaluated using gain‐ and loss‐of‐function approaches. NR4A1 was up‐regulated in the hepatic tissues of I/R‐operated mice and in H/R‐treated hepatocytes. Silencing NR4A1 relieved the I/R‐induced hepatic injury, as supported by suppression of ALT and AST as well as TNF‐α and IL‐1β. Meanwhile, NR4A1 knockdown attenuated the H/R‐induced hepatocellular damage by inhibiting the apoptosis of hepatocyte s. Moreover, we also found that NR4A1 up‐regulated the expression of CYR61 which resulted in the activation of the NF‐κB signalling pathway, thereby enhancing the transcription of TGFβ1, which was validated to be the mechanism underlying the contributory role of NR4A1 in hepatic I/R injury. Taken together, NR4A1 silencing reduced the expression of CYR61/NF‐κB/TGFβ1, thereby relieving the hepatic I/R injury.
Collapse
Affiliation(s)
- Jun Cao
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Xu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chengming Zhou
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Baofei Jiang
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kun Wu
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Long Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Sabet Sarvestani F, Azarpira N, Al-Abdullah IH, Tamaddon AM. microRNAs in liver and kidney ischemia reperfusion injury: insight to improve transplantation outcome. Biomed Pharmacother 2020; 133:110944. [PMID: 33227704 DOI: 10.1016/j.biopha.2020.110944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/25/2020] [Indexed: 12/26/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is a condition that occurs wherever blood flow and oxygen is reduced or absent, such as trauma, vascular disease, stroke, and solid organ transplantation. This condition can lead to tissue damage, especially during organ transplantation. Under such circumstances, some signaling pathways are activated, leading to up- or down- regulation of several genes such as microRNAs (miRNAs) that might attenuate or ameliorate this status. Therefore, by manipulating miRNAs level, they can be used as a biomarker for early diagnosis of IRI or suggestive to be therapeutic agents in clinical situation in future.
Collapse
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA.
| | - Ali-Mohammad Tamaddon
- Department of Pharmaceutics and Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Xu L, Hu G, Xing P, Zhou M, Wang D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci 2020; 262:118505. [PMID: 32998017 DOI: 10.1016/j.lfs.2020.118505] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the effects of paclitaxel on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its related mechanisms. MAIN METHODS The sepsis-associated AKI was induced by LPS using HK-2 cells. Then the mRNA and protein expression levels of relevant genes in the serum of sepsis patients and HK-2 cells with LPS-induced AKI were detected by qRT-PCR and western blot analyses before and after paclitaxel treatment, respectively. Subsequently, the cell counting kit-8 (CCK-8) and flow cytometry assays were performed to estimate the effects of paclitaxel, lnc-MALAT1, miR-370-3p and HMGB1 on the proliferation and apoptosis of HK-2 cells injured by LPS. KEY FINDINGS Lnc-MALAT1 was increased both in the serum of sepsis patients and cells injured by LPS, which could inhibit the cell proliferation, promote the cell apoptosis and increase the expression of TNF-α, IL-6 and IL-1β caused by paclitaxel. Moreover, lnc-MALAT1 was sponged with miR-370-3p which had the inverse effects with lnc-MALAT1 in LPS induced HK-2 cells. What's more, miR-370-3p targeted HMGB1 which was induced in serum and cells of sepsis. Knockdown of miR-370-3p inhibited the expression of HMGB1 and suppressed the proliferation but promoted the apoptosis of HK-2 cells injured by LPS as well as the expression of TNF-α, IL-6 and IL-1β. Besides, paclitaxel restrained the expression of HMGB1 via regulating lnc-MALAT1/miR-370-3p axis. SIGNIFICANCE Paclitaxel could protect against LPS-induced AKI via the regulation of lnc-MALAT1/miR-370-3p/HMGB1 axis and the expression of TNF-α, IL-6 and IL-1β, revealing that paclitaxel might act as a therapy drug in reducing sepsis-associated AKI.
Collapse
Affiliation(s)
- Lina Xu
- Department of Infectious Diseases, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Guyong Hu
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Pengcheng Xing
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China.
| | - Minjie Zhou
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| | - Donglian Wang
- Department of Emergency, Shanghai University of Medicine & Health Sciences Affiliated Shanghai Sixth People's Hospital East, No. 222, West Three Road Around Lake, Pudong District, Shanghai 201306, PR China
| |
Collapse
|
13
|
Ruan ZF, Xie M, Gui SJ, Lan F, Wan J, Li Y. MiR-370 accelerated cerebral ischemia reperfusion injury via targeting SIRT6 and regulating Nrf2/ARE signal pathway. Kaohsiung J Med Sci 2020; 36:741-749. [PMID: 32311231 DOI: 10.1002/kjm2.12219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia reperfusion (CIR) is one of the highly lethal diseases in the world. MicroRNA-370 (miR-370) exerts multiple functions in different diseases. However, further research is needed to investigate the potential role of miR-370 in CIR injury. The in vivo middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) SH-SY5Y cell model were successfully established to mimic CIR injury. The infarct sizes of brain tissues from rats were evaluated. The relationship between miR-370 and silencing information regulatory protein 6 (SIRT6) was confirmed by luciferase activity assay. The cell viability and apoptosis were determined by CCK-8 assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. In this study, miR-370 was upregulated in brain tissues of MCAO rats and knockdown of miR-370 decreased cerebral infarction volume of MCAO rats and it alleviated CIR injury in vivo. The in vitro experiments indicated that knockdown of miR-370 promoted cell viability and alleviated OGD/R-induced SH-SY5Y cell apoptosis. Additionally, the TargetScan predicted that SIRT6 was a target of miR-370 and confirmed by luciferase activity assay. Moreover, miR-370 inhibited SIRT6 expression and regulated Nrf2/ARE signal pathway, whereas overexpression of SIRT6 partly reversed the effect of miR-370 on OGD/R-induced SH-SY5Y cell injury. Thus, we could conclude that miR-370 accelerated CIR injury via targeting SIRT6 and regulating Nrf2/ARE signal pathway, which might provide novel therapeutic targets for CIR injury treatment.
Collapse
Affiliation(s)
- Zhong-Fan Ruan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Ming Xie
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Shu-Jia Gui
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang City, Hunan Province, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province, China
| |
Collapse
|
14
|
Wang K, Wei X, Wei Q, Lu D, Li W, Pan B, Chen J, Xie H, Zheng S, Xu X. A two-circular RNA signature of donor circFOXN2 and circNECTIN3 predicts early allograft dysfunction after liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:94. [PMID: 32175387 DOI: 10.21037/atm.2019.12.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Early allograft dysfunction (EAD) following liver transplantation is associated with poor recipient and graft survival. In recent years, circular RNAs (circRNAs) have emerged as important components of endogenous RNAs. This study aims to explore the expression profile and predictive value of graft circular RNAs for EAD after liver transplantation. Methods RNA sequencing was conducted to identify the circRNA profile in donor liver tissues. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify candidate circRNAs. A novel model combining circular RNA signature was established to predict EAD based on the multivariate analysis. Results A total of 442 circRNAs were differentially expressed between the EAD and non-EAD groups, of which, 223 were significantly upregulated and 219 were downregulated in the EAD group (Fold change >2, P<0.05). qRT-PCR validation indicated that circFOXN2 and circNECTIN3 levels in the EAD group were significantly lower than those in the non-EAD group (P=0.038, 0.024, respectively; n=115). Among the 115 recipients, 32 recipients with high circFOXN2 expression were classified as circular RNA signature A and the rest recipients with low circFOXN2 expression were categorized into circular RNA signature B (n=33, high circNECTIN3 expression) and C (n=50, low circNECTIN3 expression). The incidence rates of EAD in signature A, B and C were significantly different (3.1%, 21.2% and 42.0%, respectively; P=0.000). According to the multivariate analysis, a novel predictive model for EAD was developed based on CIT (P=0.000) and circular RNA signature (P=0.013). The novel model displayed a high predictive value for EAD with areas under the curve (AUC) of 0.870 (95% CI: 0.797-0.942). Conclusions Donor circFOXN2 and circNEXTIN3 were associated with the incidence of EAD. The novel model combing the two-circular RNA signature had a high predictive value for EAD.
Collapse
Affiliation(s)
- Kun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Wangyao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Binhua Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Junli Chen
- China Liver Transplant Registry, Hangzhou 310003, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou 310004, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| |
Collapse
|
15
|
Zhang Y, Lv J, Wu G, Li W, Zhang Z, Li W, Lei X. MicroRNA-449b-5p targets HMGB1 to attenuate hepatocyte injury in liver ischemia and reperfusion. J Cell Physiol 2019; 234:16367-16375. [PMID: 30805938 DOI: 10.1002/jcp.28305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) participate in the pathological process of liver ischemia/reperfusion (I/R) injury. MiR-449b-5p is the target miRNA of high mobility group box 1 (HMGB1). Its role and molecular mechanism in liver I/R injury remain unidentified. In this study, we found a protective effect of miR-449b-5p against hepatic I/R injury. HMGB1 expression significantly increased, whereas miR-449b-5p dramatically decreased in patients after liver transplant and in L02 cells exposed to hypoxia/reoxygenation (H/R). A dual-luciferase reporter assay confirmed the direct interaction between miR-449b-5p and the 3' untranslated region of HMGB1 messenger RNA. We also found that overexpression of miR-449b-5p significantly promoted cell viability and inhibited cell apoptosis of L02 cells exposed to H/R. Moreover, miR-449b-5p repressed HMGB1 protein expression and nuclear factor-κB (NF-κB) pathway activation in these L02 cells. In an in vivo rat model of hepatic I/R injury, overexpression of miR-449b-5p significantly decreased alanine aminotransferase and aspartate aminotransferase and inhibited the HMGB1/NF-κB pathway. Our study thus suggests that miR-449b-5p alleviated hepatic I/R injury by targeting HMGB1 and deactivating the NF-κB pathway, which may provide a novel and promising therapeutic target for hepatic I/R injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianrui Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenni Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoming Lei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Zhang Y, Zhu Y, Gao G, Zhou Z. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia. Cell Biochem Funct 2019; 37:348-358. [PMID: 31066476 PMCID: PMC6618287 DOI: 10.1002/cbf.3392] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Pneumonia is an inflammatory disease that occurs in the lungs associated with pathogens or other factors. It has been well established that long noncoding RNA X inactivate-specific transcript (XIST) is involved in several cancers. The present study focused on the effect and detailed mechanism of XIST in lipopolysaccharide (LPS)-induced injury in pneumonia. Here, XIST was silenced by transfection with XIST-targeted siRNA, and then, mRNA expression, cell viability, apoptosis, and protein expression were, respectively, assessed by qRT-PCR, CCK-8, flow cytometry, and Western blotting. Luciferase reporter, RIP, and RNA pull-down assays were used to detect the combination of miR-370-3p and XIST. Besides, the tested proinflammatory factors were analysed by qRT-PCR and Western blot, and their productions were quantified by ELISA. The results showed that XIST expression was robustly increased in serum of patients with acute-stage pneumonia and LPS-induced WI-38 human lung fibroblasts cells. Functional analyses demonstrated that knockdown of XIST remarkably alleviated LPS-induced cell injury through increasing cell viability and inhibiting apoptosis and inflammatory cytokine levels. Mechanistically, XIST functioned as a competitive endogenous RNA (ceRNA) by effectively binding to miR-370-3p and then restoring TLR4 expression. More importantly, miR-370-3p inhibitor abolished the function of XIST knockdown on cell injury and JAK/STAT and NF-κB pathways. Taken together, XIST may be involved in progression of cell inflammatory response, and XIST/miR-370-3p/TLR4 axis thus may shed light on the development of novel therapeutics to the treatment of acute stage of pneumonia. SIGNIFICANCE OF THE STUDY: Our study demonstrated that XIST was highly expressed in patients with acute stage of pneumonia. Knockdown of XIST remarkably alleviated LPS-induced cell injury through increasing cell viability and inhibiting apoptosis and inflammatory cytokine levels through regulating JAK/STAT and NF-κB pathways.
Collapse
Affiliation(s)
- Yena Zhang
- Department of Pulmonary Medicine, HwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
| | - Yuyin Zhu
- Department of Pulmonary Medicine, HwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
| | - Guosheng Gao
- Department of Laboratory, HwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
| | - Zhiming Zhou
- Department of Pulmonary Medicine, HwaMei HospitalUniversity Of Chinese Academy Of SciencesNingboChina
| |
Collapse
|
17
|
Liao X, Zhou S, Zong J, Wang Z. Sevoflurane exerts protective effects on liver ischemia/reperfusion injury by regulating NFKB3 expression via miR-9-5p. Exp Ther Med 2019; 17:2632-2640. [PMID: 30906455 PMCID: PMC6425234 DOI: 10.3892/etm.2019.7272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/27/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatic ischemia/reperfusion (IR) injury is a critical contraindication of hepatobiliary surgery and results in severe liver damage. It is imperative to identify underlying pathophysiological mechanisms. In the current study, a rat model of liver IR was established to explore the mechanisms of sevoflurane during surgical intervention on IR. The detection of cytokines was performed using ELISA and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to detect mRNA and protein expression levels, respectively. The target protein of microRNA (miR)-9-5p was identified by in vitro luciferase reporter assay. Cell apoptosis was detected by Annexin-V/propidium iodide and TUNEL staining assays. The results demonstrated that sevoflurane exerted protective effect against liver IR. Sevoflurane administration ameliorated a cytokine storm by decreasing serum levels of interleukin (IL)-1 and −6 and tumor necrosis factor (TNF)-α, and improved liver function was determined. IR-induced damage was mediated by an increase in transcription factor p65 expression and activation of the nuclear factor (NF)-κB signaling pathway, which were suppressed by sevoflurane treatment. In situ analysis predicted that NFKB3, encoding for p65, may be targeted by miR-9-5p and the hypothesis was verified by in vitro reporter assays using wild type and mutant sequences of the NFKB3 3′-untranslated region. Furthermore, pretreatment of hepatic tissue with a miR-9-5p mimic inhibited IR-associated injury as suggested by the decrease in the Suzuki score and decreased serum levels of TNF-α, IL-1 and IL-6. The results indicated that sevoflurane protected the liver from IR injury by increasing miR-9-5p expression and miR-9-5p may be a potential treatment target in IR.
Collapse
Affiliation(s)
- Xingzhi Liao
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China.,Department of Anesthesiology, The 101st Hospital of Chinese People's Liberation Army, Wuxi, Jiangsu 214044, P.R. China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jian Zong
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
18
|
Hu F, Yang D, Qian B, Fan S, Zhu Q, Ren H, Li X, Zhai B. The exogenous delivery of microRNA-449b-5p using spermidine-PLGA nanoparticles efficiently decreases hepatic injury. RSC Adv 2019; 9:35135-35144. [PMID: 35530696 PMCID: PMC9074739 DOI: 10.1039/c9ra06129k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023] Open
Abstract
A notable liver ischemia/reperfusion (I/R) injury is observed during liver transplantation, shock, trauma and other systemic diseases. The main aim of the present study was to evaluate the fact that HMGB1 acts as an early mediator of inflammation in hepatic injury and the potential of the miR-449b-5p mimic in the restoration of liver disorders. Herein, a miR-449b-5p-loaded spermidine/PLGA nanoparticle system was successfully formulated to improve the systemic delivery and performance of encapsulated miRNA. The major findings of the present study were as follows: (i) the HMGB1 levels were elevated upon the occurrence of I/R in vitro and in vivo; (ii) the inhibition of HMGB1 prevented the spread of inflammation; (iii) miR-449b-5p (PN-miR mimic) increased the cell viability of hepatic cells and decreased cell apoptosis; and (iv) the protective ability of the PN-miR mimic was attributed to the inhibition of the pNF-κB and p-p65 pathways. Compared to the case of the I/R group, the serum AST and ALT levels were significantly reduced in the group treated with miR-449b-5p (PN-miR mimic), indicating the extent of reduction in liver inflammation. The present study highlighted the importance of miR-449b-5p in the treatment of hepatic injury and could serve as a guide to effectively attenuate liver disorders. The application of the proposed nanoparticle system in the systemic delivery of miR-449b-5p further enhances the prospect of this treatment strategy. The present study highlights the importance of miR-449b-5p in the inhibition of HMGB1 and thereby it's treatment potential in hepatic injury.![]()
Collapse
Affiliation(s)
- Fengli Hu
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Dongdong Yang
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Bo Qian
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Shengjie Fan
- Department of Gastroenterology
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Qiankun Zhu
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Haiyang Ren
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Xiaodong Li
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Bo Zhai
- Department of Surgical Oncology and Hepatobiliary Surgery
- The Fourth Affiliated Hospital of Harbin Medical University
- Harbin
- China
| |
Collapse
|
19
|
Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver. Int J Mol Sci 2018; 19:ijms19051302. [PMID: 29701719 PMCID: PMC5983804 DOI: 10.3390/ijms19051302] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ) protects the liver against IRI, but with unidentified direct target gene(s) and unclear mechanism(s). Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.
Collapse
|