1
|
Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab 2025; 37:87-103.e10. [PMID: 39366386 DOI: 10.1016/j.cmet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
Collapse
Affiliation(s)
- Li Zhang
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Fang Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Zhi-Hui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Wan-Jun Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ke-Qi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan-Dan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei-Hui Zhuang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Ming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang-Yan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Wang R, Tang C. Hydrogen Sulfide Biomedical Research in China-20 Years of Hindsight. Antioxidants (Basel) 2022; 11:2136. [PMID: 36358508 PMCID: PMC9686505 DOI: 10.3390/antiox11112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter that is produced by mammalian cells and performs profound physiological and pathophysiological functions. Biomedical research on H2S metabolism and function in China began 20 years ago, which pioneered the examination of the correlation of abnormal H2S metabolism and cardiovascular diseases. Over the last two decades, research teams in China have made numerous breakthrough discoveries on the effects of H2S metabolism on hypertension, atherosclerosis, pulmonary hypertension, shock, angiogenesis, chronic obstructive pulmonary disease, pain, iron homeostasis, and testicle function, to name a few. These research developments, carried by numerous research teams all over China, build nationwide research network and advance both laboratory study and clinical applications. An integrated and collaborative research strategy would further promote and sustain H2S biomedical research in China and in the world.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
| |
Collapse
|
3
|
The Role of H 2S in the Gastrointestinal Tract and Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:67-98. [PMID: 34302689 DOI: 10.1007/978-981-16-0991-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathways and mechanisms of the production of H2S in the gastrointestinal tract are briefly described, including endogenous H2S produced by the organism and H2S from microorganisms in the gastrointestinal tract. In addition, the physiological regulatory functions of H2S on gastrointestinal motility, sensation, secretion and absorption, endocrine system, proliferation and differentiation of stem cells, and the possible mechanisms involved are introduced. In view of the complexity of biosynthesis, physiological roles, and the mechanism of H2S, this chapter focuses on the interactions and dynamic balance among H2S, gastrointestinal microorganisms, and the host. Finally, we focus on some clinical gastrointestinal diseases, such as inflammatory bowel disease, colorectal cancer, functional gastrointestinal disease, which might occur or develop when the above balance is broken. Pharmacological regulation of H2S or the intestinal microorganisms related to H2S might provide new therapeutic approaches for some gastrointestinal diseases.
Collapse
|
4
|
Adult Stress Promotes Purinergic Signaling to Induce Visceral Pain in Rats with Neonatal Maternal Deprivation. Neurosci Bull 2020; 36:1271-1280. [PMID: 32909219 PMCID: PMC7674540 DOI: 10.1007/s12264-020-00575-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic visceral pain is one of the primary symptoms of patients with irritable bowel syndrome (IBS), which affects up to 15% of the population world-wide. The detailed mechanisms of visceral pain remain largely unclear. Our previous studies have shown that neonatal maternal deprivation (NMD) followed by adult multiple stress (AMS) advances the occurrence of visceral pain, likely due to enhanced norepinephrine (NE)-β2 adrenergic signaling. This study was designed to explore the roles of P2X3 receptors (P2X3Rs) in the chronic visceral pain induced by combined stress. Here, we showed that P2X3Rs were co-expressed in β2 adrenergic receptor (β2-AR)-positive dorsal root ganglion neurons and that NE significantly enhanced ATP-induced Ca2+ signals. NMD and AMS not only significantly increased the protein expression of P2X3Rs, but also greatly enhanced the ATP-evoked current density, number of action potentials, and intracellular Ca2+ concentration of colon-related DRG neurons. Intrathecal injection of the P2X3R inhibitor A317491 greatly attenuated the visceral pain and the ATP-induced Ca2+ signals in NMD and AMS rats. Furthermore, the β2-AR antagonist butoxamine significantly reversed the expression of P2X3Rs, the ATP-induced current density, and the number of action potentials of DRG neurons. Overall, our data demonstrate that NMD followed by AMS leads to P2X3R activation, which is most likely mediated by upregulation of β2 adrenergic signaling in primary sensory neurons, thus contributing to visceral hypersensitivity.
Collapse
|
5
|
Tian JJ, Tan CY, Chen QY, Zhou Y, Qu ZW, Zhang M, Ma KT, Shi WY, Li L, Si JQ. Upregulation of Nav1.7 by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain. Int J Mol Med 2020; 46:782-794. [PMID: 32468069 PMCID: PMC7307826 DOI: 10.3892/ijmm.2020.4611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 01/26/2023] Open
Abstract
Nav1.7 is closely associated with neuropathic pain. Hydrogen sulfide (H2S) has recently been reported to be involved in numerous biological functions, and it has been shown that H2S can enhance the sodium current density, and inhibiting the endogenous production of H2S mediated by cystathionine β-synthetase (CBS) using O-(carboxymethyl) hydroxylamine hemihydrochloride (AOAA) can significantly reduce the expression of Nav1.7 and thus the sodium current density in rat dorsal root ganglion (DRG) neurons. In the present study, it was shown that the fluorescence intensity of H2S was increased in a spared nerve injury (SNI) model and AOAA inhibited this increase. Nav1.7 is expressed in DRG neurons, and the expression of CBS and Nav1.7 were increased in DRG neurons 7, 14 and 21 days post-operation. AOAA inhibited the increase in the expression of CBS, phosphorylated (p)-MEK1/2, p-ERK1/2 and Nav1.7 induced by SNI, and U0126 (a MEK blocker) was able to inhibit the increase in p-MEK1/2, p-ERK1/2 and Nav1.7 expression. However, PF-04856264 did not inhibit the increase in CBS, p-MEK1/2, p-ERK1/2 or Nav1.7 expression induced by SNI surgery. The current density of Nav1.7 was significantly increased in the SNI model and administration of AOAA and U0126 both significantly decreased the density. In addition, AOAA, U0126 and PF-04856264 inhibited the decrease in rheobase, and the increase in action potential induced by SNI in DRG neurons. There was no significant difference in thermal withdrawal latency among each group. However, the time the animals spent with their paw lifted increased significantly following SNI, and the time the animals spent with their paw lifted decreased significantly following the administration of AOAA, U0126 and PF-04856264. In conclusion, these data show that Nav1.7 expression in DRG neurons is upregulated by CBS-derived endogenous H2S in an SNI model, contributing to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Jun-Jie Tian
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Chao-Yang Tan
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Qin-Yi Chen
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ying Zhou
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zu-Wei Qu
- Department of Pharmacology, Shihezi University Pharmaceutical College, Shihezi, Xinjiang 832002, P.R. China
| | - Meng Zhang
- First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Jiaxing University Medical College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
6
|
Camilleri M, Wieben E, Eckert D, Carlson P, O’Dwyer RH, Gibbons D, Acosta A, Klee EW. Familial chronic megacolon presenting in childhood or adulthood: Seeking the presumed gene association. Neurogastroenterol Motil 2019; 31:e13550. [PMID: 30663199 PMCID: PMC6432647 DOI: 10.1111/nmo.13550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We identified a pedigree over five generations with 49 members, some of whom had chronic megacolon presenting in adolescence or adulthood. We aimed to assess the genetic cause of chronic megacolon through clinical and DNA studies. DESIGN After ethical approval and informed consent, family members provided answers to standard bowel disease questionnaires, radiological or surgical records, and DNA (buccal mucosal scraping). Exome DNA sequencing of colon tissue or blood DNA from seven family members with colon or duodenal dilatation, or no megacolon (n = 1) was carried out. Sanger sequencing was performed in 22 additional family members to further evaluate candidate variants. The study focused on genes of potential relevance to enteric nerve (ENS) maturation and Hirschsprung's disease or megacolon, based on the literature (GFRA1, NKX2-1, KIF26A, TPM3, ACTG2, SCN10A, and C17orf107 [CHRNE]) and other genetic variants that co-segregated with megacolon in the six affected family members. RESULTS Information was available in all except five members alive at time of study; among 30 members who provided DNA, six had definite megacolon, one megaduodenum, seven significant constipation without bowel dilatation, and 16 normal bowel function by questionnaire. Among genes studied, SEMA3F (g.3:50225360A>G; c1873A>G) was found in 6/6 family members with megacolon. The SEMA3F gene variant was assessed as potentially pathogenic, based on M-CAP in silico prediction. SEMA3F function is associated with genes (KIT and PDGFRB) that impact intestinal pacemaker function. CONCLUSION Familial chronic megacolon appears to be associated with SEMA3F, which is associated with genes impacting enteric nerve or pacemaker function.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Eric Wieben
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Ralph Hurley O’Dwyer
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Denys Gibbons
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Du WJ, Hu S, Li X, Zhang PA, Jiang X, Yu SP, Xu GY. Neonatal Maternal Deprivation Followed by Adult Stress Enhances Adrenergic Signaling to Advance Visceral Hypersensitivity. Neurosci Bull 2018; 35:4-14. [PMID: 30560437 PMCID: PMC6357269 DOI: 10.1007/s12264-018-0318-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of visceral pain in patients with irritable bowel syndrome remains largely unknown. Our previous study showed that neonatal maternal deprivation (NMD) does not induce visceral hypersensitivity at the age of 6 weeks in rats. The aim of this study was to determine whether NMD followed by adult stress at the age of 6 weeks induces visceral pain in rats and to investigate the roles of adrenergic signaling in visceral pain. Here we showed that NMD rats exhibited visceral hypersensitivity 6 h and 24 h after the termination of adult multiple stressors (AMSs). The plasma level of norepinephrine was significantly increased in NMD rats after AMSs. Whole-cell patch-clamp recording showed that the excitability of dorsal root ganglion (DRG) neurons from NMD rats with AMSs was remarkably increased. The expression of β2 adrenergic receptors at the protein and mRNA levels was markedly higher in NMD rats with AMSs than in rats with NMD alone. Inhibition of β2 adrenergic receptors with propranolol or butoxamine enhanced the colorectal distention threshold and application of butoxamine also reversed the enhanced hypersensitivity of DRG neurons. Overall, our data demonstrate that AMS induces visceral hypersensitivity in NMD rats, in part due to enhanced NE-β2 adrenergic signaling in DRGs.
Collapse
Affiliation(s)
- Wan-Jie Du
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shufen Hu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xin Li
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Ping-An Zhang
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Center for Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China
| | - Xinghong Jiang
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shan-Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Guang-Yin Xu
- Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Center for Translational Medicine, The Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, 215600, China.
| |
Collapse
|
8
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
9
|
Jang DE, Bae JH, Chang YJ, Lee YH, Nam KT, Kim IY, Seong JK, Lee YC, Yeom SC. Neuronal Nitric Oxide Synthase Is a Novel Biomarker for the Interstitial Cells of Cajal in Stress-Induced Diarrhea-Dominant Irritable Bowel Syndrome. Dig Dis Sci 2018; 63:619-627. [PMID: 29372479 DOI: 10.1007/s10620-018-4933-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder involving changes in normal bowel movements. The pathophysiology of IBS is not clearly understood owing to the lack of identifiable pathological abnormalities and reliable biomarkers. AIM The aim of this study was to discover the novel and reliable biomarker for IBS. METHOD In this study, neonatal maternal separation (NMS) stress model was used for the IBS mouse model. Further assessment was conducted with whole gastrointestinal transit test, quantitative RT-PCR, histological examination, and western blot. RESULTS Male pups developed symptoms similar to those of human IBS with diarrhea (IBS-D), such as low-grade inflammation, stool irregularity, and increased bowel motility. NMS stress influenced to the interstitial cells of Cajal (ICC) and induced altered bowel motility, resulting in IBS-D-like symptoms. In addition, we found neuronal nitric oxide synthase (nNOS) to be a novel biomarker for ICC under NMS stress. nNOS expression was only observed in the ICC of the submucosal plexus of IBS-D mice, and the inhibition of nNOS changed the phenotype from IBS-D to IBS with constipation. CONCLUSION Our study demonstrates that early-life stress can influence to ICC and modulate bowel activity and that nNOS might be used as a biomarker for ICC stimulation in IBS.
Collapse
Affiliation(s)
- Da Eun Jang
- Graduate School of International Agricultural Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Ji Hyun Bae
- Designed Animal and Transplantation Research Institute, Institute of Greenbio Research and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Yoo Jin Chang
- Graduate School of International Agricultural Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Yoon Hoo Lee
- Graduate School of International Agricultural Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 25354, Republic of Korea
| | - Il Yong Kim
- Department of Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Je Kyung Seong
- Department of Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yong Chan Lee
- Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea.
- Designed Animal and Transplantation Research Institute, Institute of Greenbio Research and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Gangwon, 25354, Republic of Korea.
| |
Collapse
|
10
|
Inhibition of cystathionine β-synthetase suppresses sodium channel activities of dorsal root ganglion neurons of rats with lumbar disc herniation. Sci Rep 2016; 6:38188. [PMID: 27905525 PMCID: PMC5131276 DOI: 10.1038/srep38188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022] Open
Abstract
The pathogenesis of pain in lumbar disc herniation (LDH) remains poorly understood. We have recently demonstrated that voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons were sensitized in a rat model of LDH. However, the detailed molecular mechanism for sensitization of VGSCs remains largely unknown. This study was designed to examine roles of the endogenous hydrogen sulfide synthesizing enzyme cystathionine β-synthetase (CBS) in sensitization of VGSCs in a previously validated rat model of LDH. Here we showed that inhibition of CBS activity by O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA) significantly attenuated pain hypersensitivity in LDH rats. Administration of AOAA also reduced neuronal hyperexcitability, suppressed the sodium current density, and right-shifted the V1/2 of the inactivation curve, of hindpaw innervating DRG neurons, which is retrogradely labeled by DiI. In vitro incubation of AOAA did not alter the excitability of acutely isolated DRG neurons. Furthermore, CBS was colocalized with NaV1.7 and NaV1.8 in hindpaw-innervating DRG neurons. Treatment of AOAA markedly suppressed expression of NaV1.7 and NaV1.8 in DRGs of LDH rats. These data suggest that targeting the CBS-H2S signaling at the DRG level might represent a novel therapeutic strategy for chronic pain relief in patients with LDH.
Collapse
|
11
|
Miao X, Luo Q, Zhao H, Qin X. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity. Sci Rep 2016; 6:37983. [PMID: 27897262 PMCID: PMC5126701 DOI: 10.1038/srep37983] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a genome-wide analysis of the miRNAs in the ovaries from these two goats using RNA-Seq technology. Thirty miRNAs were differentially expressed between the Jining Grey and Laiwu Black goats. Gene Ontology and KEGG pathway analyses revealed that the target genes of the differentially expressed miRNAs were significantly enriched in several biological processes and pathways. A protein-protein interaction analysis indicated that the miRNAs and their target genes were related to the reproduction complex regulation network. The differential miRNA expression profiles found in the ovaries between the two distinctive breeds of goats studied here provide a unique resource for addressing fecundity differences in goats.
Collapse
Affiliation(s)
- Xiangyang Miao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingmiao Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huijing Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyu Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Medland JE, Pohl CS, Edwards LL, Frandsen S, Bagley K, Li Y, Moeser AJ. Early life adversity in piglets induces long-term upregulation of the enteric cholinergic nervous system and heightened, sex-specific secretomotor neuron responses. Neurogastroenterol Motil 2016; 28:1317-29. [PMID: 27134125 PMCID: PMC5002263 DOI: 10.1111/nmo.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early life adversity (ELA) is a risk factor for the later-life onset of gastrointestinal (GI) diseases such as irritable bowel syndrome (IBS); however, the mechanisms are poorly understood. Here, we utilized a porcine model of ELA, early weaning stress (EWS), to investigate the influence of ELA on the development and function of the enteric nervous system (ENS). METHODS Female and castrated male (Male-C) piglets were weaned from their sow either at 15 days of age (EWS) or 28 days of age (late weaning control, LWC). At 60 and 170 days of age, ileal mucosa-submucosa preparations were mounted in Ussing chambers and veratridine- and corticotropin releasing factor (CRF)-releasing factor-evoked short circuit current (Isc ) responses were recorded as indices of secretomotor neuron function. Enteric neuron numbers and the expression of select neurotransmitters and their receptors were also measured. KEY RESULTS Compared with LWC pigs, female, but not Male-C EWS, pigs exhibited heightened veratridine-induced Isc responses at 60 and 170 days of age that were inhibited with tetrodotoxin and atropine. Ileum from EWS pigs had higher numbers of enteric neurons that were choline acetyltransferase positive. Markers of increased cholinergic signaling (increased acetylcholinesterase) and downregulated mucosal muscarinic receptor 3 gene expression were also observed in EWS pigs. CONCLUSIONS & INFERENCES This study demonstrated that EWS in pigs induces lasting and sex-specific hypersensitivity of secretomotor neuron function and upregulation of the cholinergic ENS. These findings may represent a mechanistic link between ELA and lifelong susceptibility to GI diseases such as IBS.
Collapse
Affiliation(s)
- Julia E. Medland
- Comparative Biomedical Sciences Program, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Calvin S. Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Laura L. Edwards
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Shellsea Frandsen
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Adam J. Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA,Neuroscience Program, Michigan State University
| |
Collapse
|
13
|
Yasuda M, Shinoda M, Honda K, Fujita M, Kawata A, Nagashima H, Watanabe M, Shoji N, Takahashi O, Kimoto S, Iwata K. Maternal Separation Induces Orofacial Mechanical Allodynia in Adulthood. J Dent Res 2016; 95:1191-7. [DOI: 10.1177/0022034516661159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well known that exposure to maternal separation (MS) in early life causes plastic changes in the nervous system in adulthood, occasionally resulting in ubiquitous chronic pain. However, the pathogenic mechanisms of pain hypersensitivity remain unclear. Here, the authors examined the involvement of corticosterone in orofacial mechanical hypersensitivity induced by MS. To establish a rat model of MS, pups were placed in isolated cages 180 min/d and kept in a temperature-controlled environment at 22 ± 2 °C for 14 d. Mechanical allodynia in the whisker pad skin in adulthood was induced by MS and was significantly suppressed by successive postnatal subcutaneous administration of the glucocorticoid receptor antagonist mifepristone. Corticosterone levels were increased in the serum of MS rats, and successive postnatal administration of subcutaneous corticosterone to naive rats induced mechanical allodynia in the whisker pad skin. The number of P2X3 receptor-immunoreactive (P2X3R-IR) trigeminal ganglion (TG) neurons innervating the whisker pad skin was significantly increased in MS rats and decreased following subcutaneous administration of mifepristone. The number of P2X3R-IR TG neurons innervating the whisker pad skin was also significantly increased following successive postnatal administration of subcutaneous corticosterone in naive rats. Moreover, the mechanical allodynia was suppressed 30 min after administration of the P2X3R antagonist A317491 to the whisker pad skin in MS rats. These findings suggest that the increase in P2X3R-IR TG neurons innervating the whisker pad skin via enhanced neonatal corticosterone signaling by MS plays an important role in orofacial mechanical allodynia in adulthood.
Collapse
Affiliation(s)
- M. Yasuda
- Department of Oral Function and Restoration, Division of Pediatric Dentistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - M. Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K. Honda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - M. Fujita
- Department of Oral Function and Restoration, Division of Pediatric Dentistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - A. Kawata
- Department of Histology, Embryology and Neuroanatomy, Kanagawa Dental University, Yokosuka, Japan
| | - H. Nagashima
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - M. Watanabe
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - N. Shoji
- Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - O. Takahashi
- Department of Histology, Embryology and Neuroanatomy, Kanagawa Dental University, Yokosuka, Japan
| | - S. Kimoto
- Department of Oral Function and Restoration, Division of Pediatric Dentistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - K. Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
- Division of Applied System Neuroscience Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Xiao Y, Chen X, Zhang PA, Xu Q, Zheng H, Xu GY. TRPV1-mediated presynaptic transmission in basolateral amygdala contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Sci Rep 2016; 6:29026. [PMID: 27364923 PMCID: PMC4929564 DOI: 10.1038/srep29026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/14/2016] [Indexed: 12/27/2022] Open
Abstract
The central mechanisms of visceral hypersensitivity remain largely unknown. It's reported that there are highest densities of TRPV1 labeled neurons within basolateral amygdala (BLA). The aim of this study was to explore the role and mechanisms of TRPV1 in BLA in development of visceral hypersensitivity. Visceral hypersensitivity was induced by neonatal maternal deprivation (NMD) and was quantified by abdominal withdrawal reflex. Expression of TRPV1 was determined by Western blot. The synaptic transmission of neurons in BLA was recorded by patch clamping. It was found that the expression of TRPV1 in BLA was significantly upregulated in NMD rats; glutamatergic synaptic activities in BLA were increased in NMD rats; application of capsazepine (TRPV1 antagonist) decreased glutamatergic synaptic activities of BLA neurons in NMD slices through a presynaptic mechanism; application of capsaicin (TRPV1 agonist) increased glutamatergic synaptic activities of BLA neurons in control slices through presynaptic mechanism without affecting GABAergic synaptic activities; microinjecting capsazepine into BLA significantly increased colonic distension threshold both in control and NMD rats. Our data suggested that upregulation of TRPV1 in BLA contributes to visceral hypersensitivity of NMD rats through enhancing excitation of BLA, thus identifying a potential target for treatment of chronic visceral pain.
Collapse
Affiliation(s)
- Ying Xiao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoqi Chen
- Department of Gastroenterology, the First Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou 45000, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Qiya Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Hang Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory of Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
15
|
Zhu H, Hu S, Miao X, Xiao Y, Xu G. Electroacupuncture Attenuates Visceral Pain and Reverses Upregulation of TRPV1 Expression in Adult Rats with Neonatal Maternal Deprivation. Chin Med 2016. [DOI: 10.4236/cm.2016.71001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Syhr KM, Boosen M, Hohmann SW, Longen S, Köhler Y, Pfeilschifter J, Beck KF, Geisslinger G, Schmidtko A, Kallenborn-Gerhardt W. The H 2 S-producing enzyme CSE is dispensable for the processing of inflammatory and neuropathic pain. Brain Res 2015; 1624:380-389. [DOI: 10.1016/j.brainres.2015.07.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
17
|
Yan J, Zou K, Liu X, Hu S, Wang Q, Miao X, Zhu HY, Zhou Y, Xu GY. Hyperexcitability and sensitization of sodium channels of dorsal root ganglion neurons in a rat model of lumber disc herniation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 25:177-185. [PMID: 26245907 DOI: 10.1007/s00586-015-4171-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE Low back pain and sciatica are the most common symptoms of patients with lumbar disc herniation (LDH). The pathophysiology of lumbocrural pain and sciatica is not fully understood. The aim of the present study was to define the membrane properties and activities of voltage-gated sodium channels of dorsal root ganglion (DRG) neurons in a rat model of LDH. METHODS LDH was established by transplantation of autologous nucleus pulposus (NP) to lumbar 5 and 6 spinal nerves (L5-L6 DRG) of adult male rats. Mechanical paw withdrawal threshold (PWT) and thermal paw withdrawal latency (PWL) were measured 1 day before and through 35 days after transplantation of NP. Changes in expression of VGSCs were determined by western blotting. L5-L6 DRGs neurons innervating the hindpaw were labeled with DiI and acutely dissociated for measuring excitability and sodium channel currents under whole-cell patch clamp configurations. RESULTS NP transplantation significantly reduced the PWT and PWL in association with a significant reduction in rheobase and an increase in numbers of action potentials evoked by 2X and 3X rheobase current stimulation. Voltage-gated sodium current density was significantly enhanced in L5-L6 DRG neurons from LDH rats. The inactivation curve showed a leftward shift in LDH rats while activation curve did not significantly alter. However, NP transplantation remarkably enhanced expression of NaV1.7 and NaV1.8 in L5-L6 DRGs but not in T10-12 DRGs. CONCLUSION These data suggest that NP application produces pain-related behavior and potentiates sodium current density of DRG neurons, which is most likely mediated by enhanced expression of NaV1.7 and NaV1.8.
Collapse
Affiliation(s)
- Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, 215123, Suzhou, People's Republic of China
| | - Kang Zou
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, 215123, Suzhou, People's Republic of China
| | - Xiaofeng Liu
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, 215123, Suzhou, People's Republic of China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, 215123, Suzhou, People's Republic of China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital, Soochow University, 215123, Suzhou, People's Republic of China
| | - Xiuhua Miao
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital, Soochow University, 215600, Zhangjiagang, People's Republic of China
| | - Hong-Yan Zhu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital, Soochow University, 215600, Zhangjiagang, People's Republic of China
| | - Youlang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, 215123, Suzhou, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Laboratory for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, 215123, Suzhou, People's Republic of China.
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital, Soochow University, 215600, Zhangjiagang, People's Republic of China.
| |
Collapse
|
18
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
19
|
Wang S, Zhu HY, Jin Y, Zhou Y, Hu S, Liu T, Jiang X, Xu GY. Adrenergic signaling mediates mechanical hyperalgesia through activation of P2X3 receptors in primary sensory neurons of rats with chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G710-9. [PMID: 25634810 DOI: 10.1152/ajpgi.00395.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/24/2015] [Indexed: 02/08/2023]
Abstract
The mechanism of pain in chronic pancreatitis (CP) is poorly understood. The aim of this study was designed to investigate roles of norepinephrine (NE) and P2X receptor (P2XR) signaling pathway in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced in male adult rats by intraductal injection of trinitrobenzene sulfonic acid (TNBS). Mechanical hyperalgesia was assessed by referred somatic behaviors to mechanical stimulation of rat abdomen. P2XR-mediated responses of pancreatic dorsal root ganglion (DRG) neurons were measured utilizing calcium imaging and whole cell patch-clamp-recording techniques. Western blot analysis and immunofluorescence were performed to examine protein expression. TNBS injection produced a significant upregulation of P2X3R expression and an increase in ATP-evoked responses of pancreatic DRG neurons. The sensitization of P2X3Rs was reversed by administration of β-adrenergic receptor antagonist propranolol. Incubation of DRG neurons with NE significantly enhanced ATP-induced intracellular calcium signals, which were abolished by propranolol, and partially blocked by protein kinase A inhibitor H-89. Interestingly, TNBS injection led to a significant elevation of NE concentration in DRGs and the pancreas, an upregulation of β2-adrenergic receptor expression in DRGs, and amplification of the NE-induced potentiation of ATP responses. Importantly, pancreatic hyperalgesia was markedly attenuated by administration of purinergic receptor antagonist suramin or A317491 or β2-adrenergic receptor antagonist butoxamine. Sensitization of P2X3Rs, which was likely mediated by adrenergic signaling in primary sensory neurons, contributes to pancreatic pain, thus identifying a potential target for treating pancreatic pain caused by inflammation.
Collapse
Affiliation(s)
- Shusheng Wang
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Hong-Yan Zhu
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Jin
- Department of Anesthesiology, Nanjing Jinling Hospital, Nanjing, China
| | - Youlang Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shufen Hu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Tong Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xinghong Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China;
| |
Collapse
|
20
|
Chen A, Bao C, Tang Y, Luo X, Guo L, Liu B, Lin C. Involvement of protein kinase ζ in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity. J Neurophysiol 2015; 113:3047-55. [PMID: 25761958 PMCID: PMC4455563 DOI: 10.1152/jn.00929.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The hippocampal long-term potentiation (LTP) was implicated in the formation of visceral hypersensitivity in rats with irritable bowel syndrome in our previous study. Recent studies have shown that protein kinase M ζ (PKMζ) may be responsible for the maintenance of LTP in memory formation. However, it remains unclear whether PKMζ is involved in the visceral hypersensitivity. In this study, a rat model of visceral hypersensitivity was generated by neonatal maternal separation (NMS). The visceral hypersensitivity was assessed by recording responses of the external oblique abdominal muscle to colorectal distension. Our results demonstrated that hippocampal LTP and visceral hypersensitivity were enhanced significantly in rats of NMS. ζ-Pseudosubstrate inhibitory peptide (ZIP) could dose dependently inhibit the maintenance of Cornu Ammonis area 1 LTP in rats of NMS. Furthermore, Western blot data showed that the expression of hippocampal phosphorylated PKMζ (p-PKMζ) significantly increased in rats of NMS. In addition, bilateral intrahippocampal injections of ZIP attenuated the visceral hypersensitivity dose dependently in rats of NMS. The maximal inhibition was observed at 30 min, and significant inhibition lasted for 1.5–2 h after ZIP application. Besides, data from the open-field test and Morris water maze showed that ZIP did not influence the movement and spatial procedural memory in rats of NMS. In conclusion, p-PKMζ might be a critical protein in the maintenance of hippocampal LTP, which could result in visceral hypersensitivity.
Collapse
Affiliation(s)
- Aiqin Chen
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Chengjia Bao
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Ying Tang
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Xiaoqing Luo
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Lixia Guo
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Bin Liu
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| | - Chun Lin
- Fujian Medical University, School of Basic Medical Sciences, Laboratory of Pain Research, Key Laboratory of Brain Aging and Neurodegenerative Diseases, Neuroscience Research Center, Fuzhou City, Fujian Province, People's Republic of China
| |
Collapse
|
21
|
Qin HY, Cheng CW, Tang XD, Bian ZX. Impact of psychological stress on irritable bowel syndrome. World J Gastroenterol 2014; 20:14126-14131. [PMID: 25339801 PMCID: PMC4202343 DOI: 10.3748/wjg.v20.i39.14126] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/02/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Psychological stress is an important factor for the development of irritable bowel syndrome (IBS). More and more clinical and experimental evidence showed that IBS is a combination of irritable bowel and irritable brain. In the present review we discuss the potential role of psychological stress in the pathogenesis of IBS and provide comprehensive approaches in clinical treatment. Evidence from clinical and experimental studies showed that psychological stresses have marked impact on intestinal sensitivity, motility, secretion and permeability, and the underlying mechanism has a close correlation with mucosal immune activation, alterations in central nervous system, peripheral neurons and gastrointestinal microbiota. Stress-induced alterations in neuro-endocrine-immune pathways acts on the gut-brain axis and microbiota-gut-brain axis, and cause symptom flare-ups or exaggeration in IBS. IBS is a stress-sensitive disorder, therefore, the treatment of IBS should focus on managing stress and stress-induced responses. Now, non-pharmacological approaches and pharmacological strategies that target on stress-related alterations, such as antidepressants, antipsychotics, miscellaneous agents, 5-HT synthesis inhibitors, selective 5-HT reuptake inhibitors, and specific 5-HT receptor antagonists or agonists have shown a critical role in IBS management. A integrative approach for IBS management is a necessary.
Collapse
|
22
|
Miyamoto R, Otsuguro KI, Yamaguchi S, Ito S. Contribution of cysteine aminotransferase and mercaptopyruvate sulfurtransferase to hydrogen sulfide production in peripheral neurons. J Neurochem 2014; 130:29-40. [DOI: 10.1111/jnc.12698] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Ryo Miyamoto
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Ken-ichi Otsuguro
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Shigeo Ito
- Laboratory of Pharmacology; Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| |
Collapse
|
23
|
Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem Biophys Res Commun 2014; 445:225-9. [PMID: 24508802 DOI: 10.1016/j.bbrc.2014.01.185] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/29/2014] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca(2+) channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5mM, but not 0.1-0.3mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1-0.3mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo.
Collapse
|