1
|
Qiu S, Hadidchi R, Vichare A, Lu JY, Hou W, Henry S, Akalin E, Duong TQ. SARS-CoV-2 Infection Is Associated with an Accelerated eGFR Decline in Kidney Transplant Recipients up to Four Years Post Infection. Diagnostics (Basel) 2025; 15:1091. [PMID: 40361909 PMCID: PMC12072077 DOI: 10.3390/diagnostics15091091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Although kidney transplant recipients (KTRs) who are immune-compromised have been shown to be at high risk of adverse acute COVID-19 outcomes (i.e., mortality and critical illness), the long-term outcomes of KTRs with a history of SARS-CoV-2 infection are unknown. We aimed to compare long-term outcomes of KTRs with and without exposure to SARS-CoV-2. Methods: This study retrospectively evaluated 1815 KTRs in the Montefiore Health System from 4 January 2001 to 31 January 2024. The final cohorts consisted of KTRs who survived COVID-19 (n = 510) and matched KTRs without COVID-19 (n = 510, controls). Outcomes were defined as all-cause mortality and changes in estimated glomerular filtration rate (eGFR) and urine protein to creatinine ratio (UPCR) from 30 days up to four years post index date. Kaplan-Meier survival analysis and Cox proportional modeling were performed for mortality. Generalized estimating equations were used to analyze changes in eGFR and UPCR across time. Results: There was no significant group difference in long-term all-cause mortality (adjusted hazard ratio = 0.66, [0.43, 1.01] p = 0.057). eGFR in controls and COVID-19 patients before infection similarly decreased -0.98 units/year [-1.50, -0.46]. By contrast, eGFR declined at a significantly greater rate (-1.80 units/year [-2.45, -1.15]) in KTRs after COVID-19 compared to KTRs without COVID-19. This association was only seen among male and not female KTRs. COVID-19 status was not significantly associated with rate of change in UPCR or acute kidney rejection rate. Conclusions: SARS-CoV-2 infection was associated with an accelerated decline in eGFR up to four years post infection, suggesting potential long-term implications for graft health. These findings underscore the importance of vigilant monitoring and management of kidney function post SARS-CoV-2 infection in this vulnerable population.
Collapse
Affiliation(s)
- Shawn Qiu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Roham Hadidchi
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Aditi Vichare
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Justin Y. Lu
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Wei Hou
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Sonya Henry
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| | - Enver Akalin
- Department of Medicine (Nephrology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA;
| | - Tim Q. Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; (S.Q.); (R.H.); (A.V.); (J.Y.L.); (W.H.); (S.H.)
| |
Collapse
|
2
|
Morris AB, Adelman MW, Bennion KB, Martinez CD, McCook KM, Woodworth MH, Langelier CR, Rouphael N, Scharer CD, Maier CL, Kraft CS, Ford ML. Fgl2 regulates FcγRIIB+CD8+ T cell responses during infection. JCI Insight 2025; 10:e186259. [PMID: 40197366 PMCID: PMC11981615 DOI: 10.1172/jci.insight.186259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
While the inhibitory receptor FcγRIIB has been shown to be upregulated on activated CD8+ T cells in both mice and humans, its effect on T cell fate during infection has not been fully elucidated. We identified an increase in FcγRIIB-expressing CD8+ T cells in patients with COVID-19 relative to healthy controls as well as in mouse models of viral infection. Despite its well-known role as an Fc receptor, FcγRIIB also ligates the immunosuppressive cytokine Fgl2, resulting in CD8+ T cell apoptosis. Both chronic LCMV infection in mice and COVID-19 in humans resulted in a significant increase in plasma Fgl2. Transfer of CD8+ T cells into a Fgl2-replete, but not Fgl2-devoid, environment resulted in elimination of FcγRIIB+, but not FcγRIIB-, CD8+ T cells. Similarly, plasma Fgl2 was directly proportional to CD8+ T cell lymphopenia in patients with COVID-19. RNA-Seq analysis demonstrated that Fgl2 was produced by murine virus-specific CD8+ T cells, with an increase in Fgl2 in CD8+ T cells elicited during chronic versus acute viral infection. Fgl2 was also upregulated in CD8+ T cells from patients with COVID-19 versus healthy controls. In summary, CD8+ T cell production of Fgl2 during viral infection underpinned an FcγRIIB-mediated loss of CD8+ T cell immunity in both mice and humans.
Collapse
Affiliation(s)
| | - Max W. Adelman
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | | | | | | | - Michael H. Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Charles R. Langelier
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, California, USA
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | | | - Cheryl L. Maier
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Colleen S. Kraft
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Mandy L. Ford
- Department of Surgery and Emory Transplant Center and
| |
Collapse
|
3
|
Shah FH, Bang JY, Nam YS, Hwang IS, Kim DH, Ki M, Salman S, Lee HW. Understanding the Impact of SARS-CoV-2 on Lung Endothelial Cells: Brief Mechanisms Unveiled. Cell Biochem Biophys 2025; 83:221-227. [PMID: 39312156 DOI: 10.1007/s12013-024-01529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 03/03/2025]
Abstract
As the world grapples with the coronavirus-19 (COVID) pandemic, more reports are coming in regarding Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in endotheliopathy. It is a vascular condition in which endothelial cell injury or damage inflicts anatomical and functional changes in the endothelium, significantly impacting the physiological process and function. Previously, it was assumed that SARS-CoV-2 infects respiratory epithelial cells via spike glycoproteins present on the surface of the virus. However, severe cases and different autopsy studies described the clandestine role of this virus in infecting endothelial cells other than epithelial cells. It was observed that SARS-CoV-2 targets the pulmonary and extrapulmonary systems to damage the microvasculature and affect respiratory functioning, resulting in the onset of endotheliopathy, thrombosis, inflammation, pulmonary edema, and fibrosis. Such deleterious events are the consequence of the hyperactive immune response initiated by the SARS-CoV-2 infection, leading to pulmonary and extrapulmonary complications. However, the molecular mechanism behind endotheliopathy and other complications caused by this virus is elusive and will be unraveled by covering recent literature in this mini-review.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jun Young Bang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Yoon Seok Nam
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - In Seo Hwang
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dae Hong Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Biochemical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Minkyoung Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Saad Salman
- Department of Pharmacy, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
4
|
Nurden AT, Nurden P. Glanzmann Thrombasthenia 10 Years Later: Progress Made and Future Directions. Semin Thromb Hemost 2025; 51:196-208. [PMID: 38499192 DOI: 10.1055/s-0044-1782519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the ITGA2B and ITGB3 genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate. The application of next-generation sequencing (NGS) to patients with IPDs has accelerated genotyping for GT; progress accompanied by improved mutation curation. The evaluation by NGS of variants in other hemostasis and vascular genes is a major step toward understanding why bleeding varies so much between patients. The recently discovered role for glycoprotein VI in thrombus formation, through its binding to fibrin and surface-bound Fg, may offer a mechanosensitive back-up for αIIbβ3, especially at sites of inflammation. The setting up of national networks for IPDs and GT is improving patient care. Hematopoietic stem cell therapy provides a long-term cure for severe cases; however, prophylaxis by monoclonal antibodies designed to accelerate fibrin formation at injured sites in the vasculature is a promising development. Gene therapy using lentil-virus vectors remains a future option with CRISPR/Cas9 technologies offering a promising alternative route.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
5
|
Eltayeb A, Redwan EM. T-cell immunobiology and cytokine storm of COVID-19. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:1-30. [PMID: 40246342 DOI: 10.1016/bs.pmbts.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The 2019 coronavirus illness (COVID 2019) first manifests as a newly identified pneumonia and may quickly escalate to acute respiratory distress syndrome, which has caused a global pandemic. Except for individualized supportive care, no curative therapy has been steadfastly advised for COVID-19 up until this point. T cells and virus-specific T lymphocytes are required to guard against viral infection, particularly COVID-19. Delayed immunological reconstitution (IR) and cytokine storm (CS) continue to be significant barriers to COVID-19 cure. While severe COVID-19 patients who survived the disease had considerable lymphopenia and increased neutrophils, especially in the elderly, their T cell numbers gradually recovered. Exhausted T lymphocytes and elevated levels of pro-inflammatory cytokines, including IL6, IL10, IL2, and IL17, are observed in peripheral blood and the lungs. It implies that while convalescent plasma, IL-6 blocking, mesenchymal stem cells, and corticosteroids might decrease CS, Thymosin α1 and adaptive COVID-19-specific T cells could enhance IR. There is an urgent need for more clinical research in this area throughout the world to open the door to COVID-19 treatment in the future.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Mansour N, Battocchio RM, Storaci A, Rossi MC, Torelli R, De Feo TM, Ferrero S, Del Gobbo A. Assessing the reliability of rapid frozen tissue sections from pre-transplant kidney biopsies in DCD donors and correlations with clinico-pathological data: a pilot study. Updates Surg 2024; 76:2961-2967. [PMID: 39373846 DOI: 10.1007/s13304-024-02011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Compared to donations after brain death, donations after circulatory death present a series of difficulties: the acquisition of the family's consent, the need for qualified personnel and specific resources, death assessment, assessment of the organ, and graft care (pre- and post-transplant). These are all time-related factors that negatively impact the organ, resulting in increased tubular, glomerular, and vascular damage. The evaluation of the organ, as per today's standards, requires three hours for the preparation and processing of formalin-fixed paraffin-embedded (FFPE) samples. An alternative to this is the use of the extemporaneous frozen biopsy. However, frozen samples are considered a second choice in the decision-making process. This retrospective study investigates the reliability of the frozen samples in identifying a series of morphological alterations compared to the more accepted results from FFPE samples. Additionally, two important clinical data, terminal serum creatinine levels and warm ischemia time, were correlated to the presence of some morphological alterations in an attempt to find effective and fast strategies to predict the kidney transplant outcome.
Collapse
Affiliation(s)
- Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, Italy
| | - Roberto Maria Battocchio
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, Italy
| | - Alessandra Storaci
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Maria Carmela Rossi
- SC Trapianti Lombardia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosanna Torelli
- SC Trapianti Lombardia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Tullia Maria De Feo
- SC Trapianti Lombardia, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, Italy.
| |
Collapse
|
7
|
Havaldar AA, Sushmitha EAC, Shrouf SB, H S M, N M, Selvam S. Epidemiological study of hospital acquired acute kidney injury in critically ill and its effect on the survival. Sci Rep 2024; 14:28129. [PMID: 39548198 PMCID: PMC11568283 DOI: 10.1038/s41598-024-79533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
In the intensive care unit (ICU), acute kidney injury (AKI) is the most common cause of morbidity and mortality. Hospital-acquired acute kidney injury (HAAKI) is AKI developing after 48 h. We aimed to study the development of AKI and its associated risk factors. We conducted a longitudinal observational study. Inclusion criteria were patients > 18 years of age admitted to ICU. The primary outcome was the development of AKI as defined by Kidney Disease Improving Global Outcomes (KDIGO) criteria. A total of 273 patients were included in the study. Out of 273, 44(16.11%) patients developed AKI. The mean age was 45.80(17.39) years, and 60.81% were males. The median acute physiology and chronic health evaluation (APACHE II) and sequential organ failure assessment (SOFA) scores were 12(8-18) and 5(3-7), respectively. Diabetes mellitus (23.44%) and hypertension (23.81%) were predominant comorbidities. The risk factors associated with AKI were serum chloride level, colistin, invasive ventilation, positive end-expiratory pressure (PEEP), and fluid balance. The hospital mortality was significantly higher in patients with AKI (43.18%) as compared with no AKI (14.41%). Among the secondary outcomes, 7 (15.90%) patients required renal replacement therapy (RRT) during hospitalisation. The length of ICU stay was higher in patients with AKI 8(5-13) compared to no AKI 5(3-8). A total of 16.11% developed HAAKI, and mortality was 43.18%. Post 6 months follow-up of AKI patients, mortality was 23%. Among survivors none of the patients were on RRT.Patients admitted with normal kidney function can develop AKI. Hence, careful monitoring of ICU patients is necessary.
Collapse
Affiliation(s)
- Amarja Ashok Havaldar
- Department of Critical Care, St. John's Medical College, Bangalore,, 560034,, India.
| | - E A Chinny Sushmitha
- Department of Critical Care, St. John's Medical College, Bangalore,, 560034,, India
| | - Sahad Bin Shrouf
- Department of Critical Care, St. John's Medical College, Bangalore,, 560034,, India
| | - Monisha H S
- Department of Critical Care, St. John's Medical College, Bangalore,, 560034,, India
| | - Madhammal N
- Surgical Intensive Care Unit, St John's Medical College, Bangalore, 560034, India
| | - Sumithra Selvam
- Department of Biostatistics, St Johns Research Institute, Bangalore,, 560034, India
| |
Collapse
|
8
|
Bhoopat L, Martynova A, Choi A, Pattharanitima P, Han S, Du S, Syed I, Chan C, Oh EE, Borok Z, Liebler J, Wilson ML, Tantiyavarong P, Connell CO. A Dynamic, D-dimer-based Thromboprophylaxis Strategy in Patients with COVID-19. F1000Res 2024; 13:887. [PMID: 39399164 PMCID: PMC11467651 DOI: 10.12688/f1000research.146710.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background COVID-19 pandemics increases venous thromboembolism (VTE) risk during hospitalization, despite prophylactic anticoagulation. Limited radiological diagnosis in pandemic requires a guided protocol for anticoagulant adjustment. Methods This retrospective cohort study was conducted at a single center as part of a quality improvement program evaluating the efficacy and safety of anticoagulation protocols. The study focused on implementing a guideline for anticoagulant dosing protocol based on dynamic changes in D-dimer levels in COVID-19 hospitalized patients. The dosing guideline allowed for dose escalation from standard prophylactic levels to escalated prophylactic or therapeutic levels, depending on the patient's risk profile for VTE. The primary endpoints included in-hospital survival comparing between fix and dynamic adjustment treatment groups. Secondary endpoints encompassed major and clinically relevant non-major bleeding (CRNMB) events, incidence of breakthrough thrombosis, length of hospitalization and ICU stay, days of mechanical ventilator use, and survival duration. Findings Among the 260 COVID-19-infected patients hospitalized between March 15th and June 15th, 2020. The patients received fixed anticoagulant dosage in 188, 72.3%) patients, while 72 (27.7%) were up-titrated according to the protocol. In-hospital survival at 30 days demonstrated superiority among patients whose anticoagulation was up-titrated to either escalated prophylactic or therapeutic (80.2%) compared to receiving fixed anticoagulant dosage (51.3%) (p=0.01). Bleeding events were significantly higher in up-titrate group (12.5%) compared to fixed anticoagulant dosage group (2.13%). Most of them are CRNMB. Conclusion A dynamic, D-dimer-based dose escalation of anticoagulation for hospitalized patients with COVID-19 holds promise in improving in-hospital mortality rates without a significant increase in fatal bleeding events.
Collapse
Affiliation(s)
- Lantarima Bhoopat
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
- Department of Internal Medicine, Thammasat University, Pathum Thani, Pathum Thani, 12120, Thailand
| | - Anastasia Martynova
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| | - April Choi
- Division of Hematology and Oncology, University of California Irvine, Orange, California, 92868, USA
| | | | - Semi Han
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| | - Senxi Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| | - Ibrahim Syed
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| | - Catherine Chan
- Los Angeles County + University of Southern California Medical Center, Los Angeles, California, 90089, USA
| | - Esther E Oh
- Los Angeles County + University of Southern California Medical Center, Los Angeles, California, 90089, USA
| | - Zea Borok
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
- Department of Medicine, University of California San Diego, San Diego, California, 92037, USA
| | - Janice Liebler
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| | - Melissa Lee Wilson
- Department of Population and Public Health Sciences & SC-CTSI, University of Southern California, Los Angeles, California, 90089, USA
| | - Pichaya Tantiyavarong
- Department of Internal Medicine, Thammasat University, Pathum Thani, Pathum Thani, 12120, Thailand
| | - Casey O Connell
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|
9
|
Pottecher J, Raffi F, Jandrot-Perrus M, Binay S, Comenducci A, Desort-Henin V, François D, Gharakhanian S, Labart M, Meilhoc A, Toledano E, Pletan Y, Avenard G, Sato VH, the GARDEN Investigators. Targeting GPVI with glenzocimab in COVID-19 patients: Results from a randomized clinical trial. PLoS One 2024; 19:e0302897. [PMID: 38885234 PMCID: PMC11182546 DOI: 10.1371/journal.pone.0302897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Glenzocimab is a novel antithrombotic agent which targets platelet glycoprotein VI (GPVI) and does not induce haemorrhage. SARS-CoV-2 triggers a prothrombotic state and lung injury whose mechanisms include coagulopathy, endothelial dysfunction, and inflammation with dysregulated platelets. METHODS AND PATIENTS GARDEN was a randomised double-blind, exploratory phase II study of glenzocimab in SARS-CoV-2 respiratory failure (NCT04659109). PCR+ adults in Brazil and France (7 centres) were randomized to standard-of-care (SOC) plus glenzocimab (1000 mg/dayx3 days) or placebo, followed for 40 days. Primary efficacy endpoint was clinical progression at Day 4. All analyses concerned the intention-to-treat population. RESULTS Between December 2020 and August 2021, 61 patients received at least one dose (30 glenzocimab vs 32 placebo) and 58 completed the study (29 vs 29). Clinical progression of COVID-19 ARDS was not statistically different between glenzocimab and placebo arms (43.3% and 29.0%, respectively; p = 0.245). Decrease in the NEWS-2 category at D4 was statistically significant (p = 0.0290) in the glenzocimab arm vs placebo. No Serious Adverse Event (SAE) was deemed related to study drug; bleeding related events were reported in 6 patients (7 events) and 4 patients (4 events) in glenzocimab and placebo arms, respectively. CONCLUSIONS Therapeutic GPVI inhibition assessment during COVID-19 was conducted in response to a Public Health emergency. Glenzocimab in coagulopathic patients under therapeutic heparin was neither associated with increased bleeding, nor SAE. Clinical impact of glenzocimab on COVID-19 ARDS was not demonstrated. A potential role for GPVI inhibition in other types of ARDS deserves further experimentation. Glenzocimab is currently studied in stroke (ACTISAVE: NCT05070260) and cardiovascular indications.
Collapse
Affiliation(s)
- Julien Pottecher
- Strasbourg University Hospital, UR3072, FHU OMICARE, FMTS, Strasbourg, France
| | - Francois Raffi
- Nantes Université, CHU Nantes, INSERM, Department of Infectious Diseases, CIC 1413, Nantes, France
| | | | | | | | | | | | - Shahin Gharakhanian
- Acticor-Biotech, Paris, France
- Shahin Gharakhanian MD Consulting LLC, Cambridge Innovation Center, Cambridge, MA, United States of America
| | | | | | | | | | | | - Victor H. Sato
- International Research Center, Hospital Alemão Oswaldo Cruz, Sao Paulo, Brazil
| | | |
Collapse
|
10
|
Vinod P, Krishnappa V, Rathell W, Amir S, Sundil S, Dogbey G, Patel H, Herzog W. Effect of Aspirin Use on the Adverse Outcomes in Patients Hospitalized for COVID-19. Cardiol Res 2024; 15:179-188. [PMID: 38994222 PMCID: PMC11236346 DOI: 10.14740/cr1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) triggers multiple components of the immune system and causes inflammation of endothelial walls across vascular beds, resulting in respiratory failure, arterial and venous thrombosis, myocardial injury, and multi-organ failure leading to death. Early in the COVID-19 pandemic, aspirin was suggested for the treatment of symptomatic individuals, given its analgesic, antipyretic, anti-inflammatory, anti-thrombotic, and antiviral effects. This study aimed to evaluate the association of aspirin use with various clinical outcomes in patients hospitalized for COVID-19. Methods This was a retrospective study involving patients aged ≥ 18 years and hospitalized for COVID-19 from March 2020 to October 2020. Primary outcomes were acute cardiovascular events (ST elevation myocardial infarction (STEMI), type 1 non-ST elevation myocardial infarction (NSTEMI), acute congestive heart failure (CHF), and acute stroke) and death. Secondary outcomes were respiratory failure, need for mechanical ventilation, and acute deep vein thrombosis (DVT)/pulmonary embolism (PE). Results Of 376 patients hospitalized for COVID-19, 128 were taking aspirin. Significant proportions of native Americans were hospitalized for COVID-19 in both aspirin (22.7%) and non-aspirin (24.6%) groups. Between aspirin and non-aspirin groups, no significant differences were found with regard to mechanical ventilator support (21.1% vs. 15.3%, P = 0.16), acute cardiovascular events (7.8% vs. 5.2%, P = 0.32), acute DVT/PE (3.9% vs. 5.2%, P = 0.9), readmission rate (13.3% vs. 12.9%, P = 0.91) and mortality (23.4% vs. 20.2%, P = 0.5); however, the median duration of mechanical ventilation was significantly shorter (7 vs. 9 days, P = 0.04) and median length of hospitalization was significantly longer (5.5 vs. 4 days, P = 0.01) in aspirin group compared to non-aspirin group. Conclusion No significant differences were found in acute cardiovascular events, acute DVT/PE, mechanical ventilator support, and mortality rate between hospitalized COVID-19 patients who were taking aspirin compared to those not taking aspirin. However, larger studies are required to confirm our findings.
Collapse
Affiliation(s)
- Poornima Vinod
- Department of Internal Medicine, University of North Carolina Health Southeastern, Lumberton, NC, USA
- Department of Medicine, Campbell University, Buies Creek, NC, USA
| | - Vinod Krishnappa
- Department of Internal Medicine, University of North Carolina Health Southeastern, Lumberton, NC, USA
| | - William Rathell
- Department of Internal Medicine, University of North Carolina Health Southeastern, Lumberton, NC, USA
| | - Saira Amir
- Department of Nephrology, University of Maryland, Baltimore, MD, USA
| | - Subrina Sundil
- Department of Nephrology, East Carolina University, Greenville, NC, USA
| | - Godwin Dogbey
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Hiten Patel
- Department of Cardiology, University of North Carolina Health Southeastern, Lumberton, NC, USA
| | - William Herzog
- Department of Cardiology, University of North Carolina Health Southeastern, Lumberton, NC, USA
- Department of Cardiology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Sugihara H, Marumo A, Okabe H, Kohama K, Mera T, Morishita E. Platelet and large platelet ratios are useful in predicting severity of COVID-19. Int J Hematol 2024; 119:638-646. [PMID: 38520659 DOI: 10.1007/s12185-024-03737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
The role of platelets in coronavirus disease (COVID-19) severity requires further exploration. To determine whether the platelet index is useful in predicting COVID-19 severity, we compared the platelet index in patients with higher and lower oxygen requirements (≥ 4 L/min vs. < 4 L/min) and patients without COVID-19. We also analyzed the time course of the platelet index in each group. A total of 285 patients with COVID-19 and 36 without COVID-19 who were hospitalized at Fussa Hospital were analyzed. After matching for oxygen requirement at admission, multivariate analysis was performed. Platelets (≤ 16.6 × 104/μL) and platelet-large cell ratio (P-LCR) (≥ 27.8%) were significant factors influencing severity. Based on these factors, we created the Fussa platelet score, and the group with a Fussa platelet score ≥ 2 was significantly more likely to reach the 4 L/min oxygen requirement (event-free survival: Fussa platelet score ≥ 2 versus < 2, P < 0.00000001). Analysis of platelet index by time period showed a significant increase from 6-10 days after onset. The Fussa platelet score can be measured quickly, easily, and inexpensively in a clinic and may be useful in determining need for transfer to a critical care hospital.
Collapse
Affiliation(s)
- Hisae Sugihara
- Division of Clinical Laboratory, Fussa Hospital, Fussa, Tokyo, Japan
| | - Atsushi Marumo
- Division of Internal Medicine, Fussa Hospital, 1-6-1 Kamidaira, Fussa, Tokyo, 197-8511, Japan.
- Department of Hematology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Haruka Okabe
- Division of Internal Medicine, Fussa Hospital, 1-6-1 Kamidaira, Fussa, Tokyo, 197-8511, Japan
| | - Kiyotaka Kohama
- Division of Internal Medicine, Fussa Hospital, 1-6-1 Kamidaira, Fussa, Tokyo, 197-8511, Japan
| | - Takashi Mera
- Division of Clinical Laboratory, Fussa Hospital, Fussa, Tokyo, Japan
| | - Eriko Morishita
- Department of Hematology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Clinical Laboratory Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Faculty of Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Borczuk AC. Pathology of COVID-19 Lung Disease. Surg Pathol Clin 2024; 17:203-214. [PMID: 38692805 DOI: 10.1016/j.path.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathology of severe COVID-19 lung injury is predominantly diffuse alveolar damage, with other reported patterns including acute fibrinous organizing pneumonia, organizing pneumonia, and bronchiolitis. Lung injury was caused by primary viral injury, exaggerated immune responses, and superinfection with bacteria and fungi. Although fatality rates have decreased from the early phases of the pandemic, persistent pulmonary dysfunction occurs and its pathogenesis remains to be fully elucidated.
Collapse
Affiliation(s)
- Alain C Borczuk
- Department of Pathology, Northwell Health, 2200 Northern Boulevard Suite 104, Greenvale, NY 11548, USA.
| |
Collapse
|
13
|
Huang S, Perry A, Sanchez Parra C, Gonzalez Torriente A, Ghumman H, Charkowick S, Colon J, Heide M, Jaglal M, Mhaskar R, Rico JF. Incidence of Thrombosis in COVID-19 Patients Compared to Non-COVID-19 Sepsis Patients in the Intensive Care Unit. J Clin Med 2024; 13:2974. [PMID: 38792515 PMCID: PMC11121895 DOI: 10.3390/jcm13102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: The hypercoagulable state associated with COVID-19 infection is associated with adverse outcomes and mortality. Studies have also demonstrated high rates of venous thromboembolism (VTE) events among patients with sepsis. We aimed to evaluate how the increase in thrombotic events in critically ill patients with COVID-19 infection compares to that of critically ill patients with non-COVID-19 sepsis. Methods: A chart review was performed of patients 18 years or older admitted to the intensive care unit (ICU) at Tampa General Hospital between 1 January 2020 and 31 December 2020 diagnosed with COVID-19 or sepsis secondary to other pathogens. Non-COVID-19 sepsis patients and COVID-19 patients were propensity-matched 3:1 on the Charlson Comorbidity Index. Multivariate analyses adjusting for confounding were conducted to report odds ratio (OR) and 95% confidence intervals (95% CIs) of predictors for thrombotic events and overall mortality. Results: After propensity score matching, 492 sepsis patients and 164 COVID-19 patients were included in the analysis. COVID-19 patients were significantly older (p = 0.021) and showed higher BMI (p < 0.001) than sepsis patients. COVID-19 patients did not show significantly higher odds of thrombosis after adjustment for confounders (OR 0.85, 95% CI 0.42-1.72), but had significantly lower odds of mortality than sepsis patients (OR 0.33, 95% CI 0.16-0.66). Conclusions: Our results suggest that further study is required to lower the rate of VTE in COVID-19 and non-COVID-19 sepsis patients admitted to the ICU; it is also reasonable to consider similar thromboembolism practices between these two patient groups.
Collapse
Affiliation(s)
- Sherri Huang
- Department of Internal Medicine and Pediatrics, University of South Florida, Tampa, FL 33606, USA
| | - Ashley Perry
- Department of Internal Medicine and Pediatrics, University of South Florida, Tampa, FL 33606, USA
| | - Carlos Sanchez Parra
- Department of Internal Medicine and Pediatrics, University of South Florida, Tampa, FL 33606, USA
- Division of Pediatric Cardiology, Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Haider Ghumman
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shaun Charkowick
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joshua Colon
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - McKenzi Heide
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael Jaglal
- Department of Hematology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Hematology and Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Rahul Mhaskar
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Juan Felipe Rico
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33606, USA
| |
Collapse
|
14
|
Othman HY, Zaki IAH, Isa MR, Ming LC, Zulkifly HH. A systematic review of thromboembolic complications and outcomes in hospitalised COVID-19 patients. BMC Infect Dis 2024; 24:484. [PMID: 38730292 PMCID: PMC11088167 DOI: 10.1186/s12879-024-09374-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Thromboembolic (TE) complications [myocardial infarction (MI), stroke, deep vein thrombosis (DVT), and pulmonary embolism (PE)] are common causes of mortality in hospitalised COVID-19 patients. Therefore, this review was undertaken to explore the incidence of TE complications and mortality associated with TE complications in hospitalised COVID-19 patients from different studies. A literature search was performed using ScienceDirect and PubMed databases using the MeSH term search strategy of "COVID-19", "thromboembolic complication", "venous thromboembolism", "arterial thromboembolism", "deep vein thrombosis", "pulmonary embolism", "myocardial infarction", "stroke", and "mortality". There were 33 studies included in this review. Studies have revealed that COVID-19 patients tend to develop venous thromboembolism (PE:1.0-40.0% and DVT:0.4-84%) compared to arterial thromboembolism (stroke:0.5-15.2% and MI:0.8-8.7%). Lastly, the all-cause mortality of COVID-19 patients ranged from 4.8 to 63%, whereas the incidence of mortality associated with TE complications was between 5% and 48%. A wide range of incidences of TE complications and mortality associated with TE complications can be seen among hospitalized COVID-19 patients. Therefore, every patient should be assessed for the risk of thromboembolic complications and provided with an appropriate thromboprophylaxis management plan tailored to their individual needs.
Collapse
Affiliation(s)
- Hanies Yuhana Othman
- Department of Clinical Pharmacy, Fakulti Farmasi, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
| | - Izzati Abdul Halim Zaki
- Department of Clinical Pharmacy, Fakulti Farmasi, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
- Cardiology Therapeutics Research Group, Universiti Teknologi MARA, Puncak Alam, Selangor, Malaysia
| | - Mohamad Rodi Isa
- Faculty of Medicine, Universiti Teknologi MARA Selangor, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia
| | - Hanis Hanum Zulkifly
- Department of Clinical Pharmacy, Fakulti Farmasi, Universiti Teknologi MARA Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia.
- Cardiology Therapeutics Research Group, Universiti Teknologi MARA, Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
15
|
Riou M, Coste F, Meyer A, Enache I, Talha S, Charloux A, Reboul C, Geny B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int J Mol Sci 2024; 25:4941. [PMID: 38732160 PMCID: PMC11084496 DOI: 10.3390/ijms25094941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Florence Coste
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Samy Talha
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Anne Charloux
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Cyril Reboul
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| |
Collapse
|
16
|
Scarlatescu E, Iba T. The Effect of Antiplatelet Therapy on COVID-19. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:118-120. [PMID: 39430203 PMCID: PMC11487358 DOI: 10.14789/jmj.jmj24-0004-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 10/22/2024]
Abstract
Platelets are one of the major targets of SARS-CoV-2. Activated platelets release prothrombotic substances, express adhesion molecules, and activate coagulation, thereby contributing to the thrombotic tendency in COVID-19. However, the antiplatelet therapy is not recommended in the current international guidelines. We think that the initiation timing and the target severity are the causes of the failure in clinical trials. As shown in the clinical studies that examined the effects of anticoagulants, early initiation in moderate severity is necessary for the success of antithrombotic therapy. Future trials are warranted to study the effects of antiplatelets in such conditions.
Collapse
|
17
|
Youness M, Mansour S, Sakr F, Olabi S, Atwi S, Martinez IY, El Khatib S, Hallit S, Salameh P, Malaeb D, Hosseini H. Odds and associated factors for thrombosis development among Lebanese COVID-19 patients: a case-control retrospective study. J Pharm Policy Pract 2024; 17:2319743. [PMID: 38505825 PMCID: PMC10950289 DOI: 10.1080/20523211.2024.2319743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Background Thromboembolism is reported to be up to 27% in COVID-19 patients due to SARS-CoV-2 infection. Dysregulated systemic inflammation and various patient traits play a vital role in thrombosis progression. Purpose To assess odds and associated factors for thrombosis development among Lebanese COVID-19 patients. Methods This was a case-control retrospective study conducted in January-May 2021. Patients infected with COVID-19 and developed thrombosis were classified as cases and patients who were thrombosis-free identified as control. A questionnaire assessed socio-demographics, clinical parameters, and WHO COVID-19 disease severity. Results Among 267 patients, 26 (9.7%) developed thrombosis and the majority of thrombosis 34.6% was myocardial infarction, and the least (3.8%) was for catheter-related thrombosis. Results showed that the risk of thrombosis development is higher in patients with previous thromboembolic event (OR = 9.160) and previous intake of anti-hypertensive medications at home (OR = 3.116). However, females (OR = 0.330; CI: 0.118-0.925), intake of anticoagulants during hospital admission (OR = 0.126; CI: 0.053-0.300) and non-severe COVID-19 were at lower thrombosis risk (OR = 0.273). Patients who developed thromboembolic events had longer hospital stay (OR = 0.077). Conclusion Patients with COVID-19 and thromboembolism were at higher risk of mortality as compared to patients with COVID-19 but without thromboembolism. The use of anticoagulants significantly reduced the risk for thromboembolism.
Collapse
Affiliation(s)
- Mahmoud Youness
- Research Department, Beirut Cardiac Institute, Beirut, Lebanon
| | - Sara Mansour
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Fouad Sakr
- School of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Samer Olabi
- Rafic Hariri University Hospital, Beirut, Lebanon
| | - Sarah Atwi
- Rafic Hariri University Hospital, Beirut, Lebanon
| | | | - Sami El Khatib
- Department of Biomedical Sciences, Lebanese International University, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, Epidémiologie Clinique et Toxicologie, Beirut, Lebanon
- Faculty of Pharmacy, Lebanese University, Hadath, Lebanon
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Diana Malaeb
- College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Hassan Hosseini
- Neurology Department, Henri Mondor Hospital, AP-HP, Creteil, France
- UPEC-University Paris-Est, Creteil, France
- RAMSAY SANTÉ, HPPE, Champigny sur Marne, France
| |
Collapse
|
18
|
Sokolski M, Reszka K, Adamik B, Kilis-Pstrusinska K, Lis W, Pomorski M, Sokolowski J, Doroszko A, Madziarska K, Jankowska EA, Protasiewicz M. Antiplatelet therapy prior to COVID-19 infection impacts on patients mortality: a propensity score-matched cohort study. Sci Rep 2024; 14:4832. [PMID: 38413716 PMCID: PMC10899234 DOI: 10.1038/s41598-024-55407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
One of the major pathomechanisms of COVID-19 is the interplay of hyperinflammation and disruptions in coagulation processes, involving thrombocytes. Antiplatelet therapy (AP) by anti-inflammatory effect and inhibition of platelet aggregation may affect these pathways. The aim of this study was to investigate if AP has an impact on the in-hospital course and medium-term outcomes in hospitalized COVID-19 patients. The study population (2170 COVID-19 patients: mean ± SD age 60 ± 19 years old, 50% male) was divided into a group of 274 patients receiving any AP prior to COVID-19 infection (AP group), and after propensity score matching, a group of 274 patients without previous AP (non-AP group). Patients from the AP group were less frequently hospitalized in the intensive care unit: 9% vs. 15%, 0.55 (0.33-0.94), developed less often shock: 9% vs. 15%, 0.56 (0.33-0.96), and required less aggressive forms of therapy. The AP group had more coronary revascularizations: 5% vs. 1%, 3.48 (2.19-5.55) and strokes/TIA: 5% vs. 1%, 3.63 (1.18-11.2). The bleeding rate was comparable: 7% vs. 7%, 1.06 (0.54-2.06). The patients from the AP group had lower 3-month mortality: 31% vs. 39%, 0.69 (0.51-0.93) and didn't differ significantly in 6-month mortality: 34% vs. 41%, 0.79 (0.60-1.04). When analyzing the subgroup with a history of myocardial infarction and/or coronary revascularization and/or previous stroke/transient ischemic attack and/or peripheral artery disease, AP had a beneficial effect on both 3-month: 37% vs. 56%, 0.58 (0.40-0.86) and 6-month mortality: 42% vs. 57%, 0.63 (0.44-0.92). Moreover, the favourable effect was highly noticeable in this subgroup where acetylsalicylic acid was continued during hospitalization with reduction of in-hospital: 19% vs. 43%, 0.31 (0.15-0.67), 3-month: 30% vs. 54%, 044 (0.26-0.75) and 6-month mortality: 33% vs. 54%, 0.49 (0.29-0.82) when confronted with the subgroup who had acetylsalicylic acid suspension during hospitalization. The AP may have a beneficial impact on hospital course and mortality in COVID-19 and shouldn't be discontinued, especially in high-risk patients.
Collapse
Affiliation(s)
- Mateusz Sokolski
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
- Institute of Heart Disease, University Hospital, Wroclaw, Poland.
| | - Konrad Reszka
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Barbara Adamik
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Weronika Lis
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Michał Pomorski
- Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Janusz Sokolowski
- Clinical Department of Emergency Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Adrian Doroszko
- Clinical Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Madziarska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Marcin Protasiewicz
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| |
Collapse
|
19
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
21
|
Troxel AB, Bind MAC, Flotte TJ, Cordon-Cardo C, Decker LA, Finn AV, Padera RF, Reichard RR, Stone JR, Adolphi NL, Casimero FVC, Crary JF, Elifritz J, Faustin A, Ghosh SKB, Krausert A, Martinez-Lage M, Melamed J, Mitchell RA, Sampson BA, Seifert AC, Simsir A, Adams C, Haasnoot S, Hafner S, Siciliano MA, Vallejos BB, Del Boccio P, Lamendola-Essel MF, Young CE, Kewlani D, Akinbo PA, Parent B, Chung A, Cato TC, Mudumbi PC, Esquenazi-Karonika S, Wood MJ, Chan J, Monteiro J, Shinnick DJ, Thaweethai T, Nguyen AN, Fitzgerald ML, Perlowski AA, Stiles LE, Paskett ML, Katz SD, Foulkes AS, on behalf of the RECOVER Initiative Autopsy Group. Researching COVID to enhance recovery (RECOVER) tissue pathology study protocol: Rationale, objectives, and design. PLoS One 2024; 19:e0285645. [PMID: 38198481 PMCID: PMC10781091 DOI: 10.1371/journal.pone.0285645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024] Open
Abstract
IMPORTANCE SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or organ dysfunction after the acute phase of infection, termed Post-Acute Sequelae of SARS-CoV-2 (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are poorly understood. The objectives of the Researching COVID to Enhance Recovery (RECOVER) tissue pathology study (RECOVER-Pathology) are to: (1) characterize prevalence and types of organ injury/disease and pathology occurring with PASC; (2) characterize the association of pathologic findings with clinical and other characteristics; (3) define the pathophysiology and mechanisms of PASC, and possible mediation via viral persistence; and (4) establish a post-mortem tissue biobank and post-mortem brain imaging biorepository. METHODS RECOVER-Pathology is a cross-sectional study of decedents dying at least 15 days following initial SARS-CoV-2 infection. Eligible decedents must meet WHO criteria for suspected, probable, or confirmed infection and must be aged 18 years or more at the time of death. Enrollment occurs at 7 sites in four U.S. states and Washington, DC. Comprehensive autopsies are conducted according to a standardized protocol within 24 hours of death; tissue samples are sent to the PASC Biorepository for later analyses. Data on clinical history are collected from the medical records and/or next of kin. The primary study outcomes include an array of pathologic features organized by organ system. Causal inference methods will be employed to investigate associations between risk factors and pathologic outcomes. DISCUSSION RECOVER-Pathology is the largest autopsy study addressing PASC among US adults. Results of this study are intended to elucidate mechanisms of organ injury and disease and enhance our understanding of the pathophysiology of PASC.
Collapse
Affiliation(s)
- Andrea B. Troxel
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Marie-Abele C. Bind
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Thomas J. Flotte
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Mount Sinai Health System, New York, NY, United States of America
| | - Lauren A. Decker
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Aloke V. Finn
- Department of Pathology, CVPath Institute, Gaithersburg, MD, United States of America
| | - Robert F. Padera
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - James R. Stone
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Natalie L. Adolphi
- Office of the Medical Investigator, University of New Mexico School of Medicine, Albuquerque, NM, United States of America
| | | | - John F. Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States of America
| | - Jamie Elifritz
- Departments of Radiology and Pathology, University of New Mexico, Albuquerque, NM, United States of America
| | - Arline Faustin
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Saikat Kumar B. Ghosh
- Department of Molecular Biology and Genomics, CVPath Institute, Gaithersburg, MD, United States of America
| | - Amanda Krausert
- Department of Pathology, Molecular and Cell-Based Medicine, Mount Sinai Health System, New York, NY, United States of America
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jonathan Melamed
- Department of Anatomical Pathology, NYU Langone Hospital—Long Island, Mineola, NY, United States of America
| | - Roger A. Mitchell
- Department of Pathology, Howard University College of Medicine, Washington DC, United States of America
| | - Barbara A. Sampson
- Department of Pathology, Molecular and Cell-Based Medicine, Mount Sinai Health System, New York, NY, United States of America
| | - Alan C. Seifert
- Biomedical Engineering and Imaging Institute, Department of Radiology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Aylin Simsir
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Cheryle Adams
- Department of Pathology, Howard University College of Medicine, Washington DC, United States of America
| | - Stephanie Haasnoot
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States of America
| | - Stephanie Hafner
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, United States of America
| | - Michelle A. Siciliano
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Brittany B. Vallejos
- Office of the Medical Investigators, Department of Research, University of New Mexico, Albuquerque, NM, United States of America
| | - Phoebe Del Boccio
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Michelle F. Lamendola-Essel
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Chloe E. Young
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Deepshikha Kewlani
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Precious A. Akinbo
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Brendan Parent
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Alicia Chung
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Teresa C. Cato
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Praveen C. Mudumbi
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Shari Esquenazi-Karonika
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Marion J. Wood
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - James Chan
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jonathan Monteiro
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Daniel J. Shinnick
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Tanayott Thaweethai
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Amber N. Nguyen
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | - Megan L. Fitzgerald
- Patient-Led Research Collaborative on COVID-19, Washington DC, United States of America
| | | | - Lauren E. Stiles
- Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Moira L. Paskett
- Department of Anatomical Pathology, NYU Langone Hospital—Long Island, Mineola, NY, United States of America
| | - Stuart D. Katz
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Andrea S. Foulkes
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, United States of America
| | | |
Collapse
|
22
|
Spinello I, Saulle E, Quaranta MT, Pelosi E, Castelli G, Cerio A, Pasquini L, Morsilli O, Dupuis ML, Labbaye C. AC-73 and Syrosingopine Inhibit SARS-CoV-2 Entry into Megakaryocytes by Targeting CD147 and MCT4. Viruses 2024; 16:82. [PMID: 38257782 PMCID: PMC10818282 DOI: 10.3390/v16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.
Collapse
Affiliation(s)
- Isabella Spinello
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Ernestina Saulle
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Maria Teresa Quaranta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.P.); (G.C.); (A.C.)
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Ornella Morsilli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| | - Catherine Labbaye
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (E.S.); (M.T.Q.); (M.L.D.)
| |
Collapse
|
23
|
Potpara T, Angiolillo DJ, Bikdeli B, Capodanno D, Cole O, Yataco AC, Dan GA, Harrison S, Iaccarino JM, Moores LK, Ntaios G, Lip GYH. Antithrombotic Therapy in Arterial Thrombosis and Thromboembolism in COVID-19: An American College of Chest Physicians Expert Panel Report. Chest 2023; 164:1531-1550. [PMID: 37392958 DOI: 10.1016/j.chest.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Evidence increasingly shows that the risk of thrombotic complications in COVID-19 is associated with a hypercoagulable state. Several organizations have released guidelines for the management of COVID-19-related coagulopathy and prevention of VTE. However, an urgent need exists for practical guidance on the management of arterial thrombosis and thromboembolism in this setting. RESEARCH QUESTION What is the current available evidence informing the prevention and management of arterial thrombosis and thromboembolism in patients with COVID-19? STUDY DESIGN AND METHODS A group of approved panelists developed key clinical questions by using the Population, Intervention, Comparator, and Outcome (PICO) format that address urgent clinical questions regarding prevention and management of arterial thrombosis and thromboembolism in patients with COVID-19. Using MEDLINE via PubMed, a literature search was conducted and references were screened for inclusion. Data from included studies were summarized and reviewed by the panel. Consensus for the direction and strength of recommendations was achieved using a modified Delphi survey. RESULTS The review and analysis of the literature based on 11 PICO questions resulted in 11 recommendations. Overall, a low quality of evidence specific to the population with COVID-19 was found. Consequently, many of the recommendations were based on indirect evidence and prior guidelines in similar populations without COVID-19. INTERPRETATION The existing evidence and panel consensus do not suggest a major departure from the management of arterial thrombosis according to recommendations predating the COVID-19 pandemic. Data on the optimal strategies for prevention and management of arterial thrombosis and thromboembolism in patients with COVID-19 are sparse. More high-quality evidence is needed to inform management strategies in these patients.
Collapse
Affiliation(s)
- Tatjana Potpara
- School of Medicine, University of Belgrade, Belgrade, Serbia; Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia.
| | | | - Behnood Bikdeli
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Yale/YNHH Center for Outcomes Research & Evaluation, New Haven, CT; Cardiovascular Research Foundation, New York, NY
| | - Davide Capodanno
- Azienda Ospedalielo-Universitaria Policlinico "G- Rodolico-San Marco", University of Catania, Catania, Italy
| | - Oana Cole
- Liverpool Heart and Chest Hospital, Liverpool, England
| | - Angel Coz Yataco
- Departments of Critical Care and of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Gheorghe-Andrei Dan
- "Carol Davila" University of Medicine, Colentina University Hospital, Bucharest, Romania
| | - Stephanie Harrison
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool, England
| | - Jonathan M Iaccarino
- The Pulmonary Center, Boston University School of Medicine, Boston, MA; American College of Chest Physicians, Glenview, IL
| | - Lisa K Moores
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| | - George Ntaios
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool, England; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Hranjec T, Mayhew M, Rogers B, Solomon R, Hurst D, Estreicher M, Augusten A, Nunez A, Green M, Malhotra S, Katz R, Rosenthal A, Hennessy S, Pepe P, Sawyer R, Arenas J. Diagnosis and treatment of coagulopathy using thromboelastography with platelet mapping is associated with decreased risk of pulmonary failure in COVID-19 patients. Blood Coagul Fibrinolysis 2023; 34:508-516. [PMID: 37831624 DOI: 10.1097/mbc.0000000000001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Treatment of coronavirus disease 2019 (COVID-19) patients may require antithrombotic and/or anti-inflammatory medications. We hypothesized that individualized anticoagulant (AC) management, based on diagnosis of coagulopathy using thromboelastography with platelet mapping (TEG-PM), would decrease the frequency of pulmonary failure (PF) requiring mechanical ventilation (MV), mitigate thrombotic and hemorrhagic events, and, in-turn, reduce mortality. METHODS Hospital-admitted COVID-19 patients, age 18 or older, with escalating oxygen requirements were included. Prospective and supplemental retrospective chart reviews were conducted during a 2-month period. Patients were stratified into two groups based on clinician-administered AC treatment: TEG-PM guided vs. non-TEG guided. RESULTS Highly-elevated inflammatory markers (D-dimer, C-reactive protein, ferritin) were associated with poor prognosis but did not distinguish coagulopathic from noncoagulopathic patients. TEG-guided AC treatment was used in 145 patients vs. 227 treated without TEG-PM guidance. When managed by TEG-PM, patients had decreased frequency of PF requiring MV (45/145 [31%] vs. 152/227 [66.9%], P < 0.0001), fewer thrombotic events (2[1.4%] vs. 39[17.2%], P = 0.0019) and fewer hemorrhagic events (6[4.1%] vs. 24[10.7%], P = 0.0240), and had markedly reduced mortality (43[29.7%] vs. 142[62.6%], P < 0.0001). Platelet hyperactivity, indicating the need for antiplatelet medications, was identified in 75% of TEG-PM patients. When adjusted for confounders, empiric, indiscriminate AC treatment (not guided by TEG-PM) was shown to be an associated risk factor for PF requiring MV, while TEG-PM guided management was associated with a protective effect (odds ratio = 0.18, 95% confidence interval 0.08-0.4). CONCLUSIONS Following COVID-19 diagnosis, AC therapies based on diagnosis of coagulopathy using TEG-PM were associated with significantly less respiratory decompensation, fewer thrombotic and hemorrhagic complications, and improved likelihood of survival.
Collapse
Affiliation(s)
- Tjasa Hranjec
- Department of Surgery, Bronson Methodist Hospital
- Department of Surgery, Western Michigan University, Homer Stryker MD School of Medicine, Kalamazoo, Michigan
- Department of Surgery, Memorial Regional Hospital, Hollywood
| | - Mackenzie Mayhew
- Florida International University, Miami, Florida
- University of Virginia, Charlottesville, Virginia
| | | | - Rachele Solomon
- Department of Surgery, Memorial Regional Hospital, Hollywood
| | | | | | | | - Aaron Nunez
- Department of Medicine, Memorial Regional Hospital, Hollywood, Florida
| | - Melissa Green
- Department of Medicine, Memorial Regional Hospital, Hollywood, Florida
| | - Shivali Malhotra
- Department of Medicine, Memorial Regional Hospital, Hollywood, Florida
| | | | | | - Sara Hennessy
- Department of Surgery, University of Texas Southwestern Medical Center
| | - Paul Pepe
- Metropolitan Emergency Medical Services, Medical Directors Coalition Global Hdqtrs, Dallas, Texas, USA
| | - Robert Sawyer
- Department of Surgery, Bronson Methodist Hospital
- Department of Surgery, Western Michigan University, Homer Stryker MD School of Medicine, Kalamazoo, Michigan
| | - Juan Arenas
- Department of Surgery, Memorial Regional Hospital, Hollywood
| |
Collapse
|
25
|
Scheim DE, Vottero P, Santin AD, Hirsh AG. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int J Mol Sci 2023; 24:17039. [PMID: 38069362 PMCID: PMC10871123 DOI: 10.3390/ijms242317039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Consistent with well-established biochemical properties of coronaviruses, sialylated glycan attachments between SARS-CoV-2 spike protein (SP) and host cells are key to the virus's pathology. SARS-CoV-2 SP attaches to and aggregates red blood cells (RBCs), as shown in many pre-clinical and clinical studies, causing pulmonary and extrapulmonary microthrombi and hypoxia in severe COVID-19 patients. SARS-CoV-2 SP attachments to the heavily sialylated surfaces of platelets (which, like RBCs, have no ACE2) and endothelial cells (having minimal ACE2) compound this vascular damage. Notably, experimentally induced RBC aggregation in vivo causes the same key morbidities as for severe COVID-19, including microvascular occlusion, blood clots, hypoxia and myocarditis. Key risk factors for COVID-19 morbidity, including older age, diabetes and obesity, are all characterized by markedly increased propensity to RBC clumping. For mammalian species, the degree of clinical susceptibility to COVID-19 correlates to RBC aggregability with p = 0.033. Notably, of the five human betacoronaviruses, the two common cold strains express an enzyme that releases glycan attachments, while the deadly SARS, SARS-CoV-2 and MERS do not, although viral loads for COVID-19 and the two common cold infections are similar. These biochemical insights also explain the previously puzzling clinical efficacy of certain generics against COVID-19 and may support the development of future therapeutic strategies for COVID-19 and long COVID patients.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520, USA
| | | |
Collapse
|
26
|
Wang Q, Long G, Luo H, Zhu X, Han Y, Shang Y, Zhang D, Gong R. S100A8/A9: An emerging player in sepsis and sepsis-induced organ injury. Biomed Pharmacother 2023; 168:115674. [PMID: 37812889 DOI: 10.1016/j.biopha.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Sepsis, the foremost contributor to mortality in intensive care unit patients, arises from an uncontrolled systemic response to invading infections, resulting in extensive harm across multiple organs and systems. Recently, S100A8/A9 has emerged as a promising biomarker for sepsis and sepsis-induced organ injury, and targeting S100A8/A9 appeared to ameliorate inflammation-induced tissue damage and improve adverse outcomes. S100A8/A9, a calcium-binding heterodimer mainly found in neutrophils and monocytes, serves as a causative molecule with pro-inflammatory and immunosuppressive properties, which are vital in the pathogenesis of sepsis. Therefore, improving our comprehension of how S100A8/A9 acts as a pathological player in the development of sepsis is imperative for advancing research on sepsis. Our review is the first-to the best of our knowledge-to discuss the biology of S100A8/A9 and its release mechanisms, summarize recent advances concerning the vital roles of S100A8/A9 in sepsis and the consequential organ damage, and underscore its potential as a promising diagnostic biomarker and therapeutic target for sepsis.
Collapse
Affiliation(s)
- Qian Wang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Gangyu Long
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Hong Luo
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China
| | - Xiqun Zhu
- Hubei Cancer Hospital, Tongji Medical College, HUST, Wuhan 430079, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan 430023, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan 430030, China.
| | - Dingyu Zhang
- Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430023, China; Hubei Clinical Research Center for Infectious Diseases, Wuhan 430023, China; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan 430023, China; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China.
| | - Rui Gong
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
27
|
Matharu SS, Nordmann CS, Ottman KR, Akkem R, Palumbo D, Cruz DRD, Campbell K, Sievert G, Sturgill J, Porterfield JZ, Joshi S, Alfar HR, Peng C, Pokrovskaya ID, Kamykowski JA, Wood JP, Garvy B, Aronova MA, Whiteheart SW, Leapman RD, Storrie B. Deep learning, 3D ultrastructural analysis reveals quantitative differences in platelet and organelle packing in COVID-19/SARSCoV2 patient-derived platelets. Platelets 2023; 34:2264978. [PMID: 37933490 PMCID: PMC10809228 DOI: 10.1080/09537104.2023.2264978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.
Collapse
Affiliation(s)
- Sagar S Matharu
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Cassidy S Nordmann
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kurtis R Ottman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rahul Akkem
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Douglas Palumbo
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Denzel R D Cruz
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Campbell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gail Sievert
- Center for Clinical Translational Science, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jamie Sturgill
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - James Z Porterfield
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Hammodah R Alfar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Chi Peng
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Irina D Pokrovskaya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey A Kamykowski
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeremy P Wood
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Beth Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Brian Storrie
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
28
|
Thomas C, Ali R, Park I, Kim H, Short S, Kaunfer S, Durai L, Yilmam OA, Shenoy T, Battinelli EM, Al-Samkari H, Leaf DE. Platelet Factor 4 Antibodies and Severe AKI. KIDNEY360 2023; 4:1672-1679. [PMID: 37907435 PMCID: PMC10758522 DOI: 10.34067/kid.0000000000000287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Key Points Patients testing positive for platelet factor 4 antibodies have a >50% higher odds of developing severe AKI compared with those who test negative. The relationship between platelet factor 4 antibodies and severe AKI was independent of demographics, comorbidities, laboratory values, and severity-of-illness characteristics. Background Heparin-induced thrombocytopenia, which results from production of antibodies that bind to heparin-platelet factor 4 (PF4) complexes, is a hypercoagulable state associated with considerable morbidity and mortality due to thrombotic complications. We investigated whether PF4 antibodies are associated with an increased risk of AKI. Methods We conducted a cohort study of hospitalized adults who underwent testing for PF4 antibodies at two large medical centers in Boston between 2015 and 2021. The primary exposure was PF4 test positivity. The primary outcome was severe AKI, defined by Kidney Disease: Improving Global Outcomes stage 3 as a ≥3-fold increase in serum creatinine or receipt of KRT within 7 days after the PF4 test. We used multivariable logistic regression to adjust for potential confounders. Results A total of 4224 patients were included in our analysis, 469 (11.1%) of whom had a positive PF4 test. Severe AKI occurred in 50 of 469 patients (10.7%) with a positive PF4 test and in 235 of 3755 patients (6.3%) with a negative test (unadjusted odds ratio, 1.79 [95% confidence interval, 1.30 to 2.47]). In multivariable analyses adjusted for demographics, comorbidities, laboratory values, and severity-of-illness characteristics, PF4 test positivity remained associated with a higher risk of severe AKI (adjusted odds ratio, 1.56 [95% confidence interval, 1.10 to 2.20]). Conclusions Among hospitalized adults, the presence of PF4 antibodies is independently associated with a 56% higher odds of developing severe AKI. Additional studies are needed to investigate potential mechanisms that may underlie these findings, such as pathogenic effects of PF4 antibodies on the microvasculature of the kidneys.
Collapse
Affiliation(s)
- Charlotte Thomas
- Harvard Medical School, Boston, Massachusetts
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Rafia Ali
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Isabel Park
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Helena Kim
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Samuel Short
- Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Sarah Kaunfer
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lavanya Durai
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Osman A. Yilmam
- Harvard Medical School, Boston, Massachusetts
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tushar Shenoy
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Elisabeth M. Battinelli
- Harvard Medical School, Boston, Massachusetts
- Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, Massachusetts
- Division of Hematology, Massachusetts General Hospital, Boston, Massachusetts
| | - David E. Leaf
- Harvard Medical School, Boston, Massachusetts
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
29
|
Gu Y, Xing Y, Zhu J, Zeng L, Hu X. Post-Coronavirus Disease 2019 (COVID-19) Liver Injury in Pregnant Women: A Retrospective Cohort Study. CLIN EXP OBSTET GYN 2023; 50. [DOI: 10.31083/j.ceog5011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Coronavirus Disease 2019 (COVID-19) has risen as a global threat to public health and can cause both respiratory and multisystemic diseases in humans. This study aimed to describe the incidence of abnormal liver function tests (LFTs) in post-COVID-19 pregnant women, and to explore characteristics of pregnant women with abnormal LFTs. Methods: This retrospective cohort study comprised 155 pregnant patients who experienced COVID-19, alongside 76 uninfected pregnant women as a control group. All participants were randomly selected from the Obstetrics outpatient clinic at the Affiliated Maternity and Child Health Care Hospital of Nantong University between December 25 2022 and January 31 2023. Demographic data and laboratory data were collected, and results were statistically analyzed. Results: Of the 155 pregnant women who had experienced COVID-19, 63 (40.6%) showed abnormally raised liver enzymes. In the control group, 9 (11.8%) cases had abnormal LFTs. Differences between the two groups were statistically significant (p < 0.05). Of the 63 post-COVID-19 patients with abnormal LFTs, the median serum level of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) was: 175 U/L (range, 51–352 U/L), 113 U/L (range, 42–329 U/L), and 123 U/L (range, 35–250 U/L). Median total biliary acid (TBA) was 18.1 µmol/L (range, 1.8–33.5 µmol/L). The patients who developed abnormal LFTs did so within 7–14 days after contracting COVID-19, with a median of 10 days. Subsequently, their liver function returned to normal within 4–26 days, with a median of 12 days. The univariate analysis on factors that may affect abnormal LFTs revealed a statistically significant difference in gestational age and body mass index (BMI) (p < 0.001). Logistic regression analysis found that gestational age (odds ratio (OR): 1.095 [1.021–1.174]) and BMI (OR: 1.169 [1.059–1.289]) remained a significant independent risk factors for liver injury (p < 0.05). Conclusions: Pregnant women are at an increased risk of liver injury after contracting COVID-19. Moreover, with the increase of gestational age and BMI, the risk of liver injury increases.
Collapse
Affiliation(s)
- Yannan Gu
- Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, 226000 Nantong, Jiangsu, China
| | - Ying Xing
- Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, 226000 Nantong, Jiangsu, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, 226000 Nantong, Jiangsu, China
| | - Li Zeng
- Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, 226000 Nantong, Jiangsu, China
| | - Xiaohong Hu
- Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, 226000 Nantong, Jiangsu, China
| |
Collapse
|
30
|
Li F, He M, Zhou M, Lai Y, Zhu Y, Liu Z, Wang Y, Wang Y. Association of C-reactive protein with mortality in Covid-19 patients: a secondary analysis of a cohort study. Sci Rep 2023; 13:20361. [PMID: 37990060 PMCID: PMC10663442 DOI: 10.1038/s41598-023-47680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Our study aimed to explore the association between serum C-reactive protein (CRP) and COVID-19 mortality. This is a retrospective cohort study of all patients admitted to 4 hospitals within the Montefiore Health System between March 1 and April 16, 2020, with SARS-CoV-2 infection. All-cause mortality were collected in 7 May 2020. The mortality risk was estimated using Cox proportional hazards models. Of the 3545 patients with a median age of 63.7 years, 918 (25.9%) died within the time of cohort data collection after admission. When the CRP was < 15.6 mg/L, the mortality rate increased with an adjusted HR of 1.57 (95% CI 1.30-1.91, P < 0.0001) for every 10 mg/L increment in the CRP. When the CRP was ≥ 15.6 mg/L, the mortality rate increased with an adjusted HR of 1.11 (95% CI 0.99-1.24, P = 0.0819) for every 10 mg/L increment in the CRP. For patients with COVID-19, the association between the CRP and the mortality risk was curve and had a saturation effect. When the CRP was small, the mortality rate increased significantly with the increase of CRP. When CRP > 15.6 mg/L, with the increase of CRP, the mortality rate increases relatively flat.
Collapse
Affiliation(s)
- Fei Li
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China
| | - Mingjun He
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China
| | - Mingchao Zhou
- Department of Rehabilitation, Futian District, Shenzhen Second People's Hospital/Health Science Centre, The First Affiliated Hospital, School of Medicine, Shenzhen University, No. 3002, Sungang Road, Shenzhen, 518035, Guangdong, China
| | - Yuyao Lai
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China
| | - Yongjie Zhu
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China
| | - Ziji Liu
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China
| | - Yulong Wang
- Department of Rehabilitation, Futian District, Shenzhen Second People's Hospital/Health Science Centre, The First Affiliated Hospital, School of Medicine, Shenzhen University, No. 3002, Sungang Road, Shenzhen, 518035, Guangdong, China.
| | - Yao Wang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Nanao Street, Dapeng New District, Shenzhen, 518121, Guangdong, China.
| |
Collapse
|
31
|
Weeratunga P, Denney L, Bull JA, Repapi E, Sergeant M, Etherington R, Vuppussetty C, Turner GDH, Clelland C, Woo J, Cross A, Issa F, de Andrea CE, Melero Bermejo I, Sims D, McGowan S, Zurke YX, Ahern DJ, Gamez EC, Whalley J, Richards D, Klenerman P, Monaco C, Udalova IA, Dong T, Antanaviciute A, Ogg G, Knight JC, Byrne HM, Taylor S, Ho LP. Single cell spatial analysis reveals inflammatory foci of immature neutrophil and CD8 T cells in COVID-19 lungs. Nat Commun 2023; 14:7216. [PMID: 37940670 PMCID: PMC10632491 DOI: 10.1038/s41467-023-42421-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Laura Denney
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Martin Sergeant
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rachel Etherington
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chaitanya Vuppussetty
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gareth D H Turner
- Department of Cellular Pathology and Radcliffe Department of Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Colin Clelland
- Anatomic Pathology, Weill Cornell Medical College, Doha, Qatar
| | - Jeongmin Woo
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy Cross
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | | | - David Sims
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon McGowan
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - David J Ahern
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Eddie C Gamez
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Justin Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Richards
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Diseases, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia Monaco
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Irina A Udalova
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Stephen Taylor
- MRC WIMM Computational Biology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Sen HN, Vannella KM, Wang Y, Chung JY, Kodati S, Ramelli SC, Lee JW, Perez P, Stein SR, Grazioli A, Dickey JM, Ylaya K, Singh M, Yinda KC, Platt A, Ramos-Benitez MJ, Zerbe C, Munster VJ, de Wit E, Warner BM, Herr DL, Rabin J, Saharia KK, Kleiner DE, Hewitt SM, Chan CC, Chertow DS. Histopathology and SARS-CoV-2 Cellular Localization in Eye Tissues of COVID-19 Autopsies. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1809-1816. [PMID: 36963628 PMCID: PMC10032059 DOI: 10.1016/j.ajpath.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/24/2023]
Abstract
Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.
Collapse
Affiliation(s)
- H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin M Vannella
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yujuan Wang
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joon-Yong Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shilpa Kodati
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sabrina C Ramelli
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jung Wha Lee
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Sydney R Stein
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alison Grazioli
- Department of Medicine, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - James M Dickey
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manmeet Singh
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Kwe Claude Yinda
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Andrew Platt
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marcos J Ramos-Benitez
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland; Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland
| | - Christa Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Vincent J Munster
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Emmie de Wit
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Daniel L Herr
- Department of Medicine, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joseph Rabin
- Department of Surgery and Program in Trauma, R Adams Crowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kapil K Saharia
- Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, Maryland
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S Chertow
- the Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
33
|
Puhm F, Laroche A, Boilard E. Diversity of Megakaryocytes. Arterioscler Thromb Vasc Biol 2023; 43:2088-2098. [PMID: 37675634 DOI: 10.1161/atvbaha.123.318782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Megakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated. Moreover, the conception of megakaryocytes as uniform cells with the sole purpose of platelet production has been challenged. Here, we review the literature on megakaryocyte cell identity and location with a special focus on recent observations of megakaryocyte subpopulations identified by transcriptomic analyses.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Audrée Laroche
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| |
Collapse
|
34
|
Dalbeni A, Susca N, Daidone M, Rossi I, Giontella A, Cimellaro A, Talerico G, Pietrangelo A, Sesti G, Zaccone V, Villani R. Low dose aspirin and clinical outcomes in patients with SARS-CoV-2 pneumonia: a propensity score-matched cohort analysis from the National SIMI‑COVID‑19 Registry. Intern Emerg Med 2023; 18:2311-2319. [PMID: 37751084 DOI: 10.1007/s11739-023-03432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND SARS- CoV-2 virus has had dramatic consequences worldwide being able to cause acute respiratory distress syndrome (ARDS), massive thrombosis and pulmonary embolism and, finally, patients' death. In COVID-19 infection, platelets have a procoagulant phenotype that can cause thrombosis in the pulmonary and systemic vascular network. Aspirin is a well-known anti-platelet drug widely used for the prevention of cardiovascular events and systematic reviews suggest a possible benefit of low-dose aspirin (LDA) use in the prevention and treatment of ARDS in patients with COVID-19 infection. However, several studies are available in the literature which do not support any benefits and no association with the patients' outcome. Therefore, currently available data are inconclusive. MATERIALS AND PATIENTS Data from the nationwide cohort multicenter study of the Italian Society of Internal Medicine (SIMI) were analyzed. We conducted a propensity score-matched cohort analysis to investigate the impact of chronic assumption of LDA on mortality of adult COVID-19 patients admitted in Internal Medicine Units (IMU). Data from 3044 COVID-19 patients who referred to 41 Italian hospitals between February 3rd to May 8th 2020 were analyzed. A propensity score-matched analysis was conducted using the following variables: age, sex, hypertension, hyperlipidemia diabetes, atrial fibrillation, cerebrovascular disease, COPD, CKD and stratified upon LDA usage, excluding anticoagulant treatment. After matching, 380 patients were included in the final analysis (190 in LDA group and 190 in no-LDA group). RESULTS 66.2% were male, median age was 77 [70-83]. 34.8% of the population died during the hospitalization. Cardiovascular diseases were not significantly different between the groups. After comparison of LDA and no-LDA subgroups, we didn't record a significant difference in mortality rate (35.7% vs 33.7%) duration of hospital stay and ICU admission. In a logistic regression model, age (OR 1.05; 95% CI 1.01-1.09), FiO2 (OR 1.024; 95% CI 1.03-1.04) and days between symptoms onset and hospitalization (OR 0.93; 95% CI 0.87-0.99) were the only variables independently associated with death.
Collapse
Affiliation(s)
- A Dalbeni
- Section General Medicine C and Liver Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - N Susca
- Department of Biomedical Sciences and Human Oncology, "Aldo Moro" University of Bari Medical School, 70124, Bari, Italy
| | - M Daidone
- Internal Medicine and Stroke Care Ward. Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro", University of Palermo, Piazza delle Cliniche N.2, Palermo, Italy
| | - I Rossi
- Department of Medicine and Aging Sciences, Clinica Medica" Institute, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A Giontella
- Section General Medicine C and Liver Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - A Cimellaro
- Internal Medicine Unit, Pugliese-Ciaccio, Hospital, 88100, Catanzaro, Italy
| | - G Talerico
- Internal Medicine Unit, Policlinico Casilino, Rome, Italy
| | - A Pietrangelo
- Internal Medicine Unit, Department of Surgical and Medical Sciences for Children and Adults, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - G Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189, Rome, Italy
| | - V Zaccone
- Department of Emergency Medicine, Internal and Sub-Intensive Medicine, Azienda Ospedaliero-Universitaria "Ospedali Riuniti", 60166, Ancona, Italy.
| | - R Villani
- Liver Unit, Centro Universitario per la Ricerca e la Cura delle Epatopatie (C.U.R.E.), Università di Foggia, 71100, Foggia, Italy
| |
Collapse
|
35
|
Geyer CE, Chen HJ, Bye AP, Manz XD, Guerra D, Caniels TG, Bijl TP, Griffith GR, Hoepel W, de Taeye SW, Veth J, Vlaar AP, Vidarsson G, Bogaard HJ, Aman J, Gibbins JM, van Gils MJ, de Winther MP, den Dunnen J. Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe COVID-19. Life Sci Alliance 2023; 6:e202302106. [PMID: 37699657 PMCID: PMC10497933 DOI: 10.26508/lsa.202302106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial barrier integrity, and inducing thrombus formation. This hyperinflammation is dependent on high levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fcγ receptor hyperactivation. For development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive inflammation whereas simultaneously minimizing the inhibition of antiviral immunity. We here developed an in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-induced pathology. We identified that anti-spike-induced inflammation is specifically blocked by small molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-19.
Collapse
Affiliation(s)
- Chiara E Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
- Molecular and Clinical Sciences Research Institute, St George's University, London, UK
- School of Pharmacy, University of Reading, Reading, UK
| | - Xue D Manz
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Denise Guerra
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom G Caniels
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Tom Pl Bijl
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Willianne Hoepel
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Steven W de Taeye
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Pj Vlaar
- Department of Intensive Care Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Harm Jan Bogaard
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jurjan Aman
- Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, and School of Biological Sciences, University of Reading, Reading, UK
| | - Marit J van Gils
- Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Menno Pj de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
36
|
Nasr P, Jönsson C, Ekstedt M, Kechagias S. Non-metabolic causes of steatotic liver disease. METABOLISM AND TARGET ORGAN DAMAGE 2023; 3. [DOI: 10.20517/mtod.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis is caused by exaggerated hepatic lipid accumulation and is a common histological and radiological finding. Non-alcoholic fatty liver disease (NAFLD), or metabolic dysfunction associated steatotic liver disease (MASLD), is highly associated with metabolic syndrome and represents the most common cause of hepatic steatosis. However, since several comorbidities, lifestyle factors, and drugs can cause hepatic steatosis, MASLD is, to some extent, a diagnosis of exclusion. Nevertheless, initiatives have been taken to encompass positive (instead of negative) criteria for diagnosis - such as the presence of cardiometabolic risk factors together with hepatic steatosis. Nonetheless, before confirming a patient with MASLD, it is essential to map and evaluate other causes of fatty liver disease or steatotic liver disease. Several causes of hepatic steatosis have been identified in studies; however, the study cohorts are scarce and often anecdotal. Additionally, many studies have shown correlation without proving causation, and many are retrospective without reporting relevant patient characteristics and comorbidities - making it difficult to draw conclusions regarding the underlying etiology or present comorbidity of hepatic steatosis. In this narrative review, we aimed to identify and summarize present studies evaluating the impact of the most common and often suggested causes of hepatic steatosis.
Collapse
|
37
|
Erickson R, Huang C, Allen C, Ireland J, Roth G, Zou Z, Lu J, Lafont BAP, Garza NL, Brumbaugh B, Zhao M, Suzuki M, Olano L, Brzostowski J, Fischer ER, Twigg HL, Johnson RF, Sun PD. SARS-CoV-2 infection of human lung epithelial cells induces TMPRSS-mediated acute fibrin deposition. Nat Commun 2023; 14:6380. [PMID: 37821447 PMCID: PMC10567911 DOI: 10.1038/s41467-023-42140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Severe COVID-associated lung injury is a major confounding factor of hospitalizations and death with no effective treatments. Here, we describe a non-classical fibrin clotting mechanism mediated by SARS-CoV-2 infected primary lung but not other susceptible epithelial cells. This infection-induced fibrin formation is observed in all variants of SARS-CoV-2 infections, and requires thrombin but is independent of tissue factor and other classical plasma coagulation factors. While prothrombin and fibrinogen levels are elevated in acute COVID BALF samples, fibrin clotting occurs only with the presence of viral infected but not uninfected lung epithelial cells. We suggest a viral-induced coagulation mechanism, in which prothrombin is activated by infection-induced transmembrane serine proteases, such as ST14 and TMPRSS11D, on NHBE cells. Our finding reveals the inefficiency of current plasma targeted anticoagulation therapy and suggests the need to develop a viral-induced ARDS animal model for treating respiratory airways with thrombin inhibitors.
Collapse
Affiliation(s)
- Rachel Erickson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Chang Huang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Cameron Allen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beniah Brumbaugh
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Ming Zhao
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Lisa Olano
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA.
| |
Collapse
|
38
|
Pandiar D, Krishnan RP, Behera A, Ramani P. Intravascular Papillary Endothelial Hyperplasia of Buccal Mucosa Masquerading as Mucocele - A Case Report. Indian J Dent Res 2023; 34:445-447. [PMID: 38739829 DOI: 10.4103/ijdr.ijdr_258_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/08/2023] [Indexed: 05/16/2024] Open
Abstract
INTRODUCTION Oral intravascular papillary endothelial hyperplasia (IPEH) is a rare entity with only 105 cases reported so far. Labial and buccal mucosa are the commonly affected sites. These sites are coincidently subjected to continuous minor trauma, which led the researchers to opine that IPEH could have a traumatic etiology with a further role of fibroblast growth factors. CLINICAL PRESENTATION We report a case of IPEH of right buccal mucosa in a 35 years old South Indian male who clinically presented as mucocele. Histopathologically, multiple lesions were found. Immunohistochemical and histochemical findings have also been presented. DISCUSSION The case is supported by a plausible mechanism involved in the pathogenesis. Thus, IPEH must be included in the clinical differential diagnosis of oral mucoceles and hemangioma. TAKEAWAY LESSONS Being a reactive lesion, it does not require extensive treatment. Clinicians and histopathologists must be aware of this uncommon yet benign condition for appropriate therapy.
Collapse
Affiliation(s)
- Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Reshma Poothakulath Krishnan
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Aklesha Behera
- Department of Oral Pathology and Microbiology, Coorg Institute of Dental Sciences, Virajpet, Coorg District, Karnataka, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
39
|
Garcia C, Compagnon B, Ribes A, Voisin S, Vardon-Bounes F, Payrastre B. SARS-CoV-2 Omicron variant infection affects blood platelets, a comparative analysis with Delta variant. Front Immunol 2023; 14:1231576. [PMID: 37828997 PMCID: PMC10565689 DOI: 10.3389/fimmu.2023.1231576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction In November 2021, the SARS-CoV-2 Omicron variant of concern has emerged and is currently dominating the COVID-19 pandemic over the world. Omicron displays a number of mutations, particularly in the spike protein, leading to specific characteristics including a higher potential for transmission. Although Omicron has caused a significant number of deaths worldwide, it generally induces less severe clinical signs compared to earlier variants. As its impact on blood platelets remains unknown, we investigated platelet behavior in severe patients infected with Omicron in comparison to Delta. Methods Clinical and biological characteristics of severe COVID-19 patients infected with the Omicron (n=9) or Delta (n=11) variants were analyzed. Using complementary methods such as flow cytometry, confocal imaging and electron microscopy, we examined platelet activation, responsiveness and phenotype, presence of virus in platelets and induction of selective autophagy. We also explored the direct effect of spike proteins from the Omicron or Delta variants on healthy platelet signaling. Results Severe Omicron variant infection resulted in platelet activation and partial desensitization, presence of the virus in platelets and selective autophagy response. The intraplatelet processing of Omicron viral cargo was different from Delta as evidenced by the distribution of spike protein-positive structures near the plasma membrane and the colocalization of spike and Rab7. Moreover, spike proteins from the Omicron or Delta variants alone activated signaling pathways in healthy platelets including phosphorylation of AKT, p38MAPK, LIMK and SPL76 with different kinetics. Discussion Although SARS-CoV-2 Omicron has different biological characteristics compared to prior variants, it leads to platelet activation and desensitization as previously observed with the Delta variant. Omicron is also found in platelets from severe patients where it induces selective autophagy, but the mechanisms of intraplatelet processing of Omicron cargo, as part of the innate response, differs from Delta, suggesting that mutations on spike protein modify virus to platelet interactions.
Collapse
Affiliation(s)
- Cédric Garcia
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Baptiste Compagnon
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Agnès Ribes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Sophie Voisin
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| | - Fanny Vardon-Bounes
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Pôle Anesthésie-Réanimation, Toulouse, France
| | - Bernard Payrastre
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, Toulouse, France
| |
Collapse
|
40
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
Kumar R, Rivkin MJ, Raffini L. Thrombotic complications in children with Coronavirus disease 2019 and Multisystem Inflammatory Syndrome of Childhood. J Thromb Haemost 2023; 21:2313-2326. [PMID: 37268064 PMCID: PMC10232718 DOI: 10.1016/j.jtha.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) associated coagulopathy is multifactorial and involves inflammation driven hypercoagulability, endothelial dysfunction, platelet activation, and impaired fibrinolysis. Hospitalized adults with COVID-19 are at an increased risk of both venous thromboembolism and ischemic stroke, resulting in adverse outcomes, including increased mortality. Although COVID-19 in children follows a less severe course, both arterial and venous thromboses have been reported in hospitalized children with COVID-19. Additionally, some children develop a postinfectious, hyperinflammatory illness termed multisystem inflammatory syndrome of childhood (MIS-C), which is also associated with hypercoagulability and thrombosis. Several randomized trials have evaluated the safety and efficacy of antithrombotic therapy in adults with COVID-19, although similar pediatric data are lacking. In this narrative review, we discuss the postulated pathophysiology of COVID-19 coagulopathy and summarize principal findings of the recently completed adult trials of antithrombotic therapy. We provide an up-to-date summary of pediatric studies investigating the rate of venous thromboembolism and ischemic stroke in COVID-19 and multisystem inflammatory syndrome of childhood in addition to reviewing the findings of the single, nonrandomized pediatric trial investigating the safety of prophylactic anticoagulation. Lastly, we outline adult and pediatric consensus guidelines on the use of antithrombotic therapy in this cohort. A detailed discussion of the practical implementation and current limitations of published data will hopefully address the knowledge deficits surrounding the use of antithrombotic therapy in children with COVID-19 and generate hypotheses for future research.
Collapse
Affiliation(s)
- Riten Kumar
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| | - Michael J Rivkin
- Department of Neurology, Stroke and Cerebrovascular Center, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Leslie Raffini
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Affiliation(s)
- Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Kellie R Machlus
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Fortmann SD, Patton MJ, Frey BF, Tipper JL, Reddy SB, Vieira CP, Hanumanthu VS, Sterrett S, Floyd JL, Prasad R, Zucker JD, Crouse AB, Huls F, Chkheidze R, Li P, Erdmann NB, Harrod KS, Gaggar A, Goepfert PA, Grant MB, Might M. Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Adv 2023; 7:4200-4214. [PMID: 36920790 PMCID: PMC10022176 DOI: 10.1182/bloodadvances.2022009022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1β; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.
Collapse
Affiliation(s)
- Seth D. Fortmann
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL
| | - Michael J. Patton
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Blake F. Frey
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Sivani B. Reddy
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Cristiano P. Vieira
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, Department of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sarah Sterrett
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jason L. Floyd
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL
| | - Ram Prasad
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy D. Zucker
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, WA
| | - Andrew B. Crouse
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Forest Huls
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Rati Chkheidze
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Peng Li
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Nathaniel B. Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Paul A. Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Maria B. Grant
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL
| | - Matthew Might
- Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
44
|
Babkina AS, Yadgarov MY, Volkov AV, Kuzovlev AN, Grechko AV, Golubev AM. Spectrum of Thrombotic Complications in Fatal Cases of COVID-19: Focus on Pulmonary Artery Thrombosis In Situ. Viruses 2023; 15:1681. [PMID: 37632023 PMCID: PMC10458612 DOI: 10.3390/v15081681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19-related thrombosis affects the venous and arterial systems. Data from 156 autopsies of COVID-19 patients were retrospectively analyzed to investigate the pattern of thrombotic complications and factors associated with pulmonary artery thrombosis and thromboembolism. Thrombotic complications were observed in a significant proportion (n = 68, 44%), with pulmonary artery thrombosis the most frequently identified thrombotic event (42, 27%). Multivariate analysis revealed that the length of hospital stay (OR 1.1, p = 0.004), neutrophil infiltration in the alveolar spaces (OR 3.6, p = 0.002), and the absence of hyaline membranes (OR 0.1, p = 0.01) were associated with thrombotic complications. Neutrophil infiltration in the alveolar spaces (OR 8, p < 0.001) and the absence of hyaline membranes (OR 0.1, p = 0.003) were also independent predictors of pulmonary artery thrombosis. The association of pulmonary artery thrombosis with an absence of hyaline membranes suggests it occurs later in the course of COVID-19 infection. As neutrophil infiltration in the alveolar spaces may indicate bacterial infection, our studies suggest the consideration of bacterial infections in these critically ill patients.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Mikhail Y. Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Alexey V. Volkov
- Department of Pathological Anatomy, Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia;
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Arkady M. Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| |
Collapse
|
45
|
Smilowitz NR, Hade EM, Kornblith LZ, Castellucci LA, Cushman M, Farkouh M, Gong MN, Heath A, Hunt BJ, Kim KS, Kindzelski A, Lawler P, Leaf DE, Goligher E, Leifer ES, McVerry BJ, Reynolds HR, Zarychanski R, Hochman JS, Neal MD, Berger JS. Effect of therapeutic-dose heparin on severe acute kidney injury and death in noncritically ill patients hospitalized for COVID-19: a prespecified secondary analysis of the ACTIV4a and ATTACC randomized trial. Res Pract Thromb Haemost 2023; 7:102167. [PMID: 37727846 PMCID: PMC10506136 DOI: 10.1016/j.rpth.2023.102167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023] Open
Abstract
Background Acute kidney injury (AKI) in patients with COVID-19 is partly mediated by thromboinflammation. In noncritically ill patients with COVID-19, therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support. Objectives We investigated whether therapeutic-dose heparin reduces the incidence of AKI or death in noncritically ill patients hospitalized for COVID-19. Methods We report a prespecified secondary analysis of the ACTIV4a and ATTACC open-label, multiplatform randomized trial of therapeutic-dose heparin vs usual-care pharmacologic thromboprophylaxis on the incidence of severe AKI (≥2-fold increase in serum creatinine or initiation of kidney replacement therapy (KDIGO stage 2 or 3) or all-cause mortality in noncritically ill patients hospitalized for COVID-19. Bayesian statistical models were adjusted for age, sex, D-dimer, enrollment period, country, site, and platform. Results Among 1922 enrolled, 23 were excluded due to pre-existing end stage kidney disease and 205 were missing baseline or follow-up creatinine measurements. Severe AKI or death occurred in 4.4% participants assigned to therapeutic-dose heparin and 5.5% assigned to thromboprophylaxis (adjusted relative risk [aRR]: 0.72; 95% credible interval (CrI): 0.47, 1.10); the posterior probability of superiority for therapeutic-dose heparin (relative risk < 1.0) was 93.6%. Therapeutic-dose heparin was associated with a 97.7% probability of superiority to reduce the composite of stage 3 AKI or death (3.1% vs 4.6%; aRR: 0.64; 95% CrI: 0.40, 0.99) compared to thromboprophylaxis. Conclusion Therapeutic-dose heparin was associated with a high probability of superiority to reduce the incidence of in-hospital severe AKI or death in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
| | - Erinn M. Hade
- NYU Grossman School of Medicine, New York, New York, USA
| | - Lucy Z. Kornblith
- Zuckerberg San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Lana A. Castellucci
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Cushman
- Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | - Michael Farkouh
- Peter Munk Cardiac Centre at University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Michelle N. Gong
- Montefiore Medical Center, Bronx, New York, USA
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anna Heath
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Keri S. Kim
- University of Illinois, Chicago, Illinois, USA
| | | | - Patrick Lawler
- Peter Munk Cardiac Centre at University Health Network, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - David E. Leaf
- Brigham and Women’s Hospital Harvard Medical School, Boston, Massachusetts, USA
| | - Ewan Goligher
- University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Eric S. Leifer
- National Heart Lung & Blood Institute, NIH, Bethesda, Maryland, USA
| | - Bryan J. McVerry
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC, Pittsburgh, Pennsylvania, USA
| | | | - Ryan Zarychanski
- University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | - Matthew D. Neal
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
46
|
Volbeda M, Jou-Valencia D, van den Heuvel MC, Zijlstra JG, Franssen CFM, van der Voort PHJ, Moser J, van Meurs M. Acute and chronic histopathological findings in renal biopsies in COVID-19. Clin Exp Med 2023; 23:1003-1014. [PMID: 36396750 PMCID: PMC9672628 DOI: 10.1007/s10238-022-00941-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
The dominant ICU admission diagnosis of COVID-19 patients is respiratory insufficiency, but 32-57% of hospitalized COVID-19 patients develop acute kidney injury (COVID-AKI). The renal histopathological changes accompanying COVID-AKI are not yet fully described. To obtain a detailed insight into renal histopathological features of COVID-19, we conducted a review including all studies reporting histopathological findings of diagnostic and postmortem kidney biopsies from patients with COVID-19 published between January 1, 2020, and January 31, 2021. A total of 89 diagnostic and 194 postmortem renal biopsies from individual patients in 39 published studies were investigated and were included in the analysis. In the diagnostic biopsy group, mean age was 56 years and AKI incidence was 96%. In the postmortem biopsy group, mean age was 69 years and AKI incidence was 80%. In the diagnostic biopsy group, the prevalence of acute glomerular diseases was 74%. The most common glomerular lesions were collapsing focal segmental glomerulosclerosis (c-FSGS) in 54% and thrombotic microangiopathy (TMA) in 9% of patients. TMA was also found in 10% of patients in the postmortem biopsy group. The most common acute tubular lesions was acute tubular necrosis (ATN) which was present in 87% of patients in the diagnostic and in 77% of patients in the postmortem biopsy group. Additionally, we observed a high prevalence of preexisting chronic lesions in both groups such as atherosclerosis and glomerulosclerosis. Histopathological changes in renal biopsies of COVID-19 patients show a heterogeneous picture with acute glomerular lesions, predominantly c-FSGS and TMA, and acute tubular lesions, predominantly ATN. In many patients, these lesions were present on a background of chronic renal injury.
Collapse
Affiliation(s)
- Meint Volbeda
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Daniela Jou-Valencia
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Casper F M Franssen
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter H J van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine and Vascular Drug Targeting Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology and Medical Biology, Medical Biology Section, Laboratory for Endothelial Biomedicine and Vascular Drug Targeting Research, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
Zhu K, Tsai O, Chahal D, Hussaini T, Yoshida EM. COVID-19 and Liver Disease: An Evolving Landscape. Semin Liver Dis 2023; 43:351-366. [PMID: 37604206 DOI: 10.1055/a-2157-3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The COVID-19 pandemic has resulted in significant worldwide morbidity and mortality. In this review, we examine the intricate relationships between COVID-19 and liver diseases. While respiratory manifestations of COVID-19 are well known, its impact and consequences in patients with liver diseases remain an area of ongoing investigation. COVID-19 can induce liver injury through various mechanisms and is associated with higher mortality in individuals with preexisting chronic liver disease. Mortality increases with the severity of chronic liver disease and the level of care required. The outcomes in patients with autoimmune hepatitis remain unclear, whereas liver transplant recipients are more likely to experience symptomatic COVID-19 but have comparable outcomes to the general population. Despite suboptimal immunological response, COVID-19 vaccinations are safe and effective in liver disease, although cases of autoimmune hepatitis-like syndrome have been reported. In conclusion, COVID-19 has significant implications in liver diseases; early recognition and treatments are important for improving patient outcomes.
Collapse
Affiliation(s)
- Kai Zhu
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivia Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daljeet Chahal
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
- BC Liver Transplant Program, Vancouver, British Columbia, Canada
| | - Trana Hussaini
- BC Liver Transplant Program, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada
- BC Liver Transplant Program, Vancouver, British Columbia, Canada
| |
Collapse
|
48
|
Nadeem AUR, Naqvi SM, Chandy KG, Nagineni VV, Nadeem R, Desai S. Effects of Different Anticoagulation Doses on Moderate-to-Severe COVID-19 Pneumonia With Hypoxemia. Cureus 2023; 15:e43389. [PMID: 37700943 PMCID: PMC10495222 DOI: 10.7759/cureus.43389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 09/14/2023] Open
Abstract
Background COVID-19 is a prothrombotic disease that can cause thromboembolism and microthrombi, which could lead to multiorgan failure and death. Since COVID-19 is a relatively new disease, there are guidelines for anticoagulation dosing for COVID-19 patients without consensus on the dosing. We studied the effects of different doses of anticoagulation in hospitalized patients with COVID-19 pneumonia and hypoxemia on any differences in need for high-flow oxygen, mechanical ventilation, and mortality. We also analyzed the patient population who benefited most from anticoagulation. Methodology We performed a retrospective chart review of all patients who were admitted with the diagnosis of COVID-19 infection with positive polymerase chain reaction, pneumonia (confirmed either by chest X-ray or CT chest), and hypoxemia (oxygen saturation of <94%, while on room air). These patients were studied for outcomes (the need for high-flow oxygen, the requirement for mechanical ventilation, and overall mortality) for different doses of anticoagulation (prophylactic, escalated, and therapeutic). Results The sample consists of 132 subjects, predominantly males (116, 87%), with a mean age of 59 years and a standard deviation of 15. About one-third of the participants had diabetes, and more than 50% had hypertension. Additionally, 27 (20.3%) had a history of heart disease, and 70 (53%) of the subjects were admitted to the intensive care unit (ICU) at some point during the study. Among those admitted to the ICU, about 11 (8%) subjects required mechanical ventilation and 16 (12%) passed away during the study. Those who died had higher use of high-flow oxygen, noninvasive mechanical ventilation, and invasive mechanical ventilation and had a longer stay on mechanical ventilation. There was no significant difference in mortality or need for mechanical ventilation for any strategy of anticoagulation. Conclusions Different doses of anticoagulation did not show any statistically significant relationship between the need for mechanical ventilation and mortality. More patients on high-flow oxygen had received escalated doses of anticoagulation as compared to those who were not on high-flow oxygen. Anticoagulation levels did not have any statistically significant effect on overall survival of patients.
Collapse
Affiliation(s)
- Amin Ur Rehman Nadeem
- Department of Critical Care Medicine, James A Lovell Federal Healthcare Center, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Syed M Naqvi
- Department of Internal Medicine, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Kurian G Chandy
- Department of Internal Medicine, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | | | - Rashid Nadeem
- Department of Critical Care Medicine, Dubai Hospital, Dubai, ARE
| | - Shreya Desai
- Department of Hematology and Oncology, Georgia Cancer Center at Augusta University, Georgia, USA
| |
Collapse
|
49
|
Dorken-Gallastegi A, Lee Y, Li G, Li H, Naar L, Li X, Ye T, Van Cott E, Rosovsky R, Gregory D, Tompkins R, Karniadakis G, Kaafarani HMA, Velmahos GC, Lee J, Frydman GH. Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19. iScience 2023; 26:107202. [PMID: 37485375 PMCID: PMC10290732 DOI: 10.1016/j.isci.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.
Collapse
Affiliation(s)
- Ander Dorken-Gallastegi
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yao Lee
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| | - Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - He Li
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Leon Naar
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Ting Ye
- Information and Computational Mathematics, Ji Lin University, Changchun, China
| | - Elizabeth Van Cott
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Rosovsky
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Gregory
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ronald Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Haytham MA. Kaafarani
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George C. Velmahos
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jarone Lee
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Galit H. Frydman
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| |
Collapse
|
50
|
Vottero P, Tavernini S, Santin AD, Scheim DE, Tuszynski JA, Aminpour M. Computational Prediction of the Interaction of Ivermectin with Fibrinogen. Int J Mol Sci 2023; 24:11449. [PMID: 37511206 PMCID: PMC10380762 DOI: 10.3390/ijms241411449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Hypercoagulability and formation of extensive and difficult-to-lyse microclots are a hallmark of both acute COVID-19 and long COVID. Fibrinogen, when converted to fibrin, is responsible for clot formation, but abnormal structural and mechanical clot properties can lead to pathologic thrombosis. Recent experimental evidence suggests that the spike protein (SP) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may directly bind to the blood coagulation factor fibrinogen and induce structurally abnormal blood clots with heightened proinflammatory activity. Accordingly, in this study, we used molecular docking and molecular dynamics simulations to explore the potential activity of the antiparasitic drug ivermectin (IVM) to prevent the binding of the SARS-CoV-2 SP to fibrinogen and reduce the occurrence of microclots. Our computational results indicate that IVM may bind with high affinity to multiple sites on the fibrinogen peptide, with binding more likely in the central, E region, and in the coiled-coil region, as opposed to the globular D region. Taken together, our in silico results suggest that IVM may interfere with SP-fibrinogen binding and, potentially, decrease the formation of fibrin clots resistant to degradation. Additional in vitro studies are warranted to validate whether IVM binding to fibrinogen is sufficiently stable to prevent interaction with the SP, and potentially reduce its thrombo-inflammatory effect in vivo.
Collapse
Affiliation(s)
- Paola Vottero
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (P.V.); (M.A.)
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Alessandro D. Santin
- Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, P.O. Box 208063, New Haven, CT 06520-8063, USA;
| | - David E. Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060-6367, USA;
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Maral Aminpour
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (P.V.); (M.A.)
| |
Collapse
|