1
|
Mei X, Uribe Estrada MF, Rizwan M, Lukin I, Sanchez Gonzalez B, Marin Canchola JG, Velarde Jarquín V, Salazar Parraguez X, Del Valle Rodríguez F, Garciamendez-Mijares CE, Lin Z, Guo J, Wang Z, Maharjan S, Orive G, Zhang YS. A bioprinted animal patient-derived breast cancer model for anti-cancer drug screening. Mater Today Bio 2025; 31:101449. [PMID: 39896287 PMCID: PMC11782996 DOI: 10.1016/j.mtbio.2025.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Animal models are commonly used for drug screening before clinical trials. However, developing these models is time-consuming, and the results obtained from these models may differ from clinical outcomes due to the differences between animals and humans. To this end, 3D bioprinting offers several advantages for drug screening, such as high reproducibility and improved throughput, in addition to the human cells that can be used to generate these models. Here, we report the development of an animal patient-derived in vitro breast cancer model for drug screening using digital light processing (DLP) bioprinting. These bioprinted models demonstrated good cytocompatibility and preserved phenotypes of the cells. DLP enabled rapid fabrication with blood vessel-like channels to replicate, to a good extent, the tumor microenvironment. Our findings suggested that the improved microenvironment, provided by vascular structures within the bioprinted models, played a crucial role in reducing the chemoresistance of drugs. In addition, the correlation of the in vitro and in vivo drug-screening results was preliminarily performed to evaluate the predictive feasibility of this bioprinted model, suggesting a potential strategy for the design of future drug-testing platforms.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Maria Fernanda Uribe Estrada
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Muhammad Rizwan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad 45550, Pakistan
| | - Izeia Lukin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01009, Spain
| | - Begoña Sanchez Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Jose Gerardo Marin Canchola
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Valeria Velarde Jarquín
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Ximena Salazar Parraguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Francisco Del Valle Rodríguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Zeng Lin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Zhenwu Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz 01009, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, MA, USA
| |
Collapse
|
2
|
Srbova L, Arasalo O, Lehtonen AJ, Pokki J. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. SOFT MATTER 2024; 20:3483-3498. [PMID: 38587658 DOI: 10.1039/d3sm01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.
Collapse
Affiliation(s)
- Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| |
Collapse
|
3
|
Nuernberg E, Bruch R, Hafner M, Rudolf R, Vitacolonna M. Quantitative Analysis of Whole-Mount Fluorescence-Stained Tumor Spheroids in Phenotypic Drug Screens. Methods Mol Biol 2024; 2764:311-334. [PMID: 38393603 DOI: 10.1007/978-1-0716-3674-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Three-dimensional cell cultures, such as spheroids or organoids, serve as important models for drug screening purposes. Optical tissue clearing (OTC) enhances the visualization of fluorescence stainings and enables in toto microscopy of 3D cell culture models. Furthermore, subsequent automated image analysis tools convert qualitative confocal image sets into quantitative data. In this chapter, we describe a detailed protocol for preparation of HT29 cancer spheroids, 3D in toto immunostaining, glycerol-based OTC, whole-mount imaging, and semi-automated downstream image processing and segmentation for nuclear image analysis using open-source software.
Collapse
Affiliation(s)
- Elina Nuernberg
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Ruediger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.
| |
Collapse
|
4
|
Parent C, Raj Melayil K, Zhou Y, Aubert V, Surdez D, Delattre O, Wilhelm C, Viovy JL. Simple droplet microfluidics platform for drug screening on cancer spheroids. LAB ON A CHIP 2023; 23:5139-5150. [PMID: 37942508 DOI: 10.1039/d3lc00417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
3D in vitro biological systems are progressively replacing 2D systems to increase the physiological relevance of cellular studies. Microfluidics-based approaches can be powerful tools towards such biomimetic systems, but often require high-end complicated and expensive processes and equipment for microfabrication. Herein, a drug screening platform is proposed, minimizing technicality and manufacturing steps. It provides an alternate way of spheroid generation in droplets in tubes. Droplet microfluidics then elicit multiple droplets merging events at programmable times, to submit sequentially the spheroids to chemotherapy and to reagents for cytotoxicity screening. After a comprehensive study of tumorogenesis within the droplets, the system is validated for drug screening (IC50) with chemotherapies in cancer cell lines as well as cells from a patient-derived-xenografts (PDX). As compared to microtiter plates methods, our system reduces the initial number of cells up to 10 times and opens new avenues towards primary tumors drug screening approaches.
Collapse
Affiliation(s)
- Caroline Parent
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Kiran Raj Melayil
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Ya Zhou
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Vivian Aubert
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Didier Surdez
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Olivier Delattre
- INSERM U830, Institut Curie, PSL Research University, 75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| | - Jean-Louis Viovy
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75005 Paris, France.
| |
Collapse
|
5
|
Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. J Pers Med 2023; 13:1575. [PMID: 38003890 PMCID: PMC10672510 DOI: 10.3390/jpm13111575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
| | - Andrey Makarov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
6
|
Nayak P, Bentivoglio V, Varani M, Signore A. Three-Dimensional In Vitro Tumor Spheroid Models for Evaluation of Anticancer Therapy: Recent Updates. Cancers (Basel) 2023; 15:4846. [PMID: 37835541 PMCID: PMC10571930 DOI: 10.3390/cancers15194846] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Advanced tissue engineering processes and regenerative medicine provide modern strategies for fabricating 3D spheroids. Several different 3D cancer models are being developed to study a variety of cancers. Three-dimensional spheroids can correctly replicate some features of solid tumors (such as the secretion of soluble mediators, drug resistance mechanisms, gene expression patterns and physiological responses) better than 2D cell cultures or animal models. Tumor spheroids are also helpful for precisely reproducing the three-dimensional organization and microenvironmental factors of tumors. Because of these unique properties, the potential of 3D cell aggregates has been emphasized, and they have been utilized in in vitro models for the detection of novel anticancer drugs. This review discusses applications of 3D spheroid models in nuclear medicine for diagnosis and therapy, immunotherapy, and stem cell and photodynamic therapy and also discusses the establishment of the anticancer activity of nanocarriers.
Collapse
Affiliation(s)
- Pallavi Nayak
- Nuclear Medicine Unit, University Hospital Sant’Andrea, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy; (V.B.); (M.V.); (A.S.)
| | | | | | | |
Collapse
|
7
|
Kheiri S, Chen Z, Yakavets I, Rakhshani F, Young EWK, Kumacheva E. Integrating spheroid-on-a-chip with tubeless rocker platform: A high-throughput biological screening platform. Biotechnol J 2023; 18:e2200621. [PMID: 37436706 DOI: 10.1002/biot.202200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Spheroid-on-a-chip platforms are emerging as promising in vitro models that enable screening of the efficacy of biologically active ingredients. Generally, the supply of liquids to spheroids occurs in the steady flow mode with the use of syringe pumps; however, the utilization of tubing and connections, especially for multiplexing and high-throughput screening applications, makes spheroid-on-a-chip platforms labor- and cost-intensive. Gravity-induced flow using rocker platforms overcomes these challenges. Here, a robust gravity-driven technique was developed to culture arrays of cancer cell spheroids and dermal fibroblast spheroids in a high-throughput manner using a rocker platform. The efficiency of the developed rocker-based platform was benchmarked to syringe pumps for generating multicellular spheroids and their use for screening biologically active ingredients. Cell viability, internal spheroid structure as well as the effect of vitamin C on spheroids' protein synthesis was studied. The rocker-based platform not only offers comparable or enhanced performance in terms of cell viability, spheroids formation, and protein production by dermal fibroblast spheroids but also, from a practical perspective, offers a smaller footprint, requires a lower cost, and offers an easier method for handling. These results support the application of rocker-based microfluidic spheroid-on-a-chip platforms for in vitro screening in a high-throughput manner with industrial scaling-up opportunities.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Heredia-Mendez AJ, Sánchez-Sánchez G, López-Camarillo C. Reprogramming of the Genome-Wide DNA Methylation Landscape in Three-Dimensional Cancer Cell Cultures. Cancers (Basel) 2023; 15:1991. [PMID: 37046652 PMCID: PMC10093594 DOI: 10.3390/cancers15071991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
During the last century, 2D cell cultures have been the tool most widely used to study cancer biology, drug discovery, genomics, and the regulation of gene expression at genetic/epigenetic levels. However, this experimental approach has limitations in faithfully recreating the microenvironment and cellular processes occurring in tumors. For these reasons, 3D cell cultures have recently been implemented to optimize the conditions that better recreate the biological and molecular features of tumors, including cell-cell and cell-extracellular matrix (ECM) interactions, growth kinetics, metabolic activities, and the development of gradients in the cellular microenvironment affecting the availability of oxygen and nutrients. In this sense, tumor cells receive stimuli from the local environment, resulting in significant changes in their signaling pathways, gene expression, and transcriptional and epigenetic patterns. In this review, we discuss how different types of 3D cell culture models can be applied to characterize the epigenetic footprints of cancer cell lines, emphasizing that DNA methylation patterns play an essential role in the emergence and development of cancer. However, how 3D cancer cell cultures remodel the epigenetic programs is poorly understood, with very few studies in this emerging topic. Here, we have summarized the studies on the reprogramming of the epigenetic landscape of DNA methylation during tumorigenesis and discuss how it may be affected by microenvironmental factors, specifically in 3D cell cultures.
Collapse
Affiliation(s)
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia del Valle Sur, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
9
|
Villata S, Canta M, Baruffaldi D, Pavan A, Chiappone A, Pirri CF, Frascella F, Roppolo I. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing. Biomater Sci 2023; 11:2950-2959. [PMID: 36912680 DOI: 10.1039/d3bm00152k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Nowadays, most of the microfluidic devices for biological applications are fabricated with only few well-established materials. Among these, polydimethylsiloxane (PDMS) is the most used and known. However, it has many limitations, like the operator dependent and time-consuming manufacturing technique and the high molecule retention. TEGORad or Acrylate PDMS is an acrylate polydimethylsiloxane copolymer that can be 3D printed through Digital Light Processing (DLP), a technology that can boast reduction of waste products and the possibility of low cost and rapid manufacturing of complex components. Here, we developed 3D printed Acrylate PDMS-based devices for cell culture and drug testing. Our in vitro study shows that Acrylate PDMS can sustain cell growth of lung and skin epithelium, both of great interest for in vitro drug testing, without causing any genotoxic effect. Moreover, flow experiments with a drug-like solution (Rhodamine 6G) show that Acrylate PDMS drug retention is negligible unlike the high signal shown by PDMS. In conclusion, the study demonstrates that this acrylate resin can be an excellent alternative to PDMS to design stretchable platforms for cell culture and drug testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Marta Canta
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Alice Pavan
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Annalisa Chiappone
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy. .,Center for Sustainable Futures @PolitoIstituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| | - Ignazio Roppolo
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.
| |
Collapse
|
10
|
James JR, Curd J, Ashworth JC, Abuhantash M, Grundy M, Seedhouse CH, Arkill KP, Wright AJ, Merry CLR, Thompson A. Hydrogel-Based Pre-Clinical Evaluation of Repurposed FDA-Approved Drugs for AML. Int J Mol Sci 2023; 24:ijms24044235. [PMID: 36835644 PMCID: PMC9966469 DOI: 10.3390/ijms24044235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In vivo models of acute myeloid leukemia (AML) are low throughput, and standard liquid culture models fail to recapitulate the mechanical and biochemical properties of the extracellular matrix-rich protective bone marrow niche that contributes to drug resistance. Candidate drug discovery in AML requires advanced synthetic platforms to improve our understanding of the impact of mechanical cues on drug sensitivity in AML. By use of a synthetic, self-assembling peptide hydrogel (SAPH) of modifiable stiffness and composition, a 3D model of the bone marrow niche to screen repurposed FDA-approved drugs has been developed and utilized. AML cell proliferation was dependent on SAPH stiffness, which was optimized to facilitate colony growth. Three candidate FDA-approved drugs were initially screened against the THP-1 cell line and mAF9 primary cells in liquid culture, and EC50 values were used to inform drug sensitivity assays in the peptide hydrogel models. Salinomycin demonstrated efficacy in both an 'early-stage' model in which treatment was added shortly after initiation of AML cell encapsulation, and an 'established' model in which time-encapsulated cells had started to form colonies. Sensitivity to Vidofludimus treatment was not observed in the hydrogel models, and Atorvastatin demonstrated increased sensitivity in the 'established' compared to the 'early-stage' model. AML patient samples were equally sensitive to Salinomycin in the 3D hydrogels and partially sensitive to Atorvastatin. Together, this confirms that AML cell sensitivity is drug- and context-specific and that advanced synthetic platforms for higher throughput are valuable tools for pre-clinical evaluation of candidate anti-AML drugs.
Collapse
Affiliation(s)
- Jenna R. James
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Johnathan Curd
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer C. Ashworth
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- School of Veterinary Medicine & Science, University of Nottingham, Nottingham NG7 2RD, UK
| | - Mays Abuhantash
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin Grundy
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Claire H. Seedhouse
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kenton P. Arkill
- Endothelial and Vascular Imaging Laboratories, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amanda J. Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catherine L. R. Merry
- Stem Cell Glycobiology Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Blood Cancer and Stem Cell Group, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
11
|
Besanjideh M, Shamloo A, Hannani SK. Evaluating the reliability of tumour spheroid-on-chip models for replicating intratumoural drug delivery: considering the role of microfluidic parameters. J Drug Target 2023; 31:179-193. [PMID: 36036226 DOI: 10.1080/1061186x.2022.2119478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several tumour spheroid-on-chip models have already been proposed in the literature to conduct high throughput drug screening assays. The microfluidic configurations in these models generally depend on the strategies adopted for spheroid formation and entrapment. However, it is not clear how successful they are to mimic in vivo transport mechanisms. In this study, drug transport in different tumour spheroid-on-chip models is numerically investigated under static and dynamic conditions using porous media theory. Moreover, the treatment of a solid tumour at the initial stage of development is modelled using bolus injection and continuous infusion methods. Then, the results of tumour spheroid-on-chip, including drug concentration, cell viability, as well as pressure and fluid shear stress distributions, are compared with those of the solid tumour, assuming identical transport properties in all models. Finally, a new configuration of the microfluidic device along with the optimal drug concentrations is proposed, which can well imitate a given in vivo situation.
Collapse
Affiliation(s)
- Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.,Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
12
|
Semi-Synthetic Click-Gelatin Hydrogels as Tunable Platforms for 3D Cancer Cell Culture. Gels 2022; 8:gels8120821. [PMID: 36547345 PMCID: PMC9778549 DOI: 10.3390/gels8120821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Basement membrane extracts (BME) derived from Engelbreth-Holm-Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity. We demonstrate the successful thiolation of gelatin raw materials to enable rapid covalent crosslinking upon mixing with a synthetic poly(ethylene glycol) (PEG)-based crosslinker. The mechanical properties of the resulting gelatin-based hydrogels were readily tuned by varying precursor material concentrations, with Young's moduli ranging from ~2.5 to 5.8 kPa. All hydrogels of varying stiffnesses supported the viability and proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines for 14 and 21 days of cell culture, respectively. Additionally, the gelatin-based hydrogels supported the growth, viability, and osteogenic differentiation of patient-derived preosteoblasts over 28 days of culture. Collectively, our data demonstrate that gelatin-based biomaterials provide an inexpensive and tunable 3D cell culture platform that may overcome the limitations of traditional BMEs.
Collapse
|
13
|
Hodoň J, Frydrych I, Trhlíková Z, Pokorný J, Borková L, Benická S, Vlk M, Lišková B, Kubíčková A, Medvedíková M, Pisár M, Šarek J, Das V, Ligasová A, Koberna K, Džubák P, Hajdúch M, Urban M. Triterpenoid pyrazines and pyridines - Synthesis, cytotoxicity, mechanism of action, preparation of prodrugs. Eur J Med Chem 2022; 243:114777. [PMID: 36174412 DOI: 10.1016/j.ejmech.2022.114777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
A set of fifteen triterpenoid pyrazines and pyridines was prepared from parent triterpenoid 3-oxoderivatives (betulonic acid, dihydrobetulonic acid, oleanonic acid, moronic acid, ursonic acid, heterobetulonic acid, and allobetulone). Cytotoxicity of all compounds was tested in eight cancer and two non-cancer cell lines. Evaluation of the structure-activity relationships revealed that the triterpenoid core determined whether the final molecule is active or not, while the heterocycle is able to increase the activity and modulate the specificity. Five compounds (1b, 1c, 2b, 2c, and 8) were found to be preferentially and highly cytotoxic (IC50 ≈ 1 μM) against leukemic cancer cell lines (CCRF-CEM, K562, CEM-DNR, or K562-TAX). Surprisingly, compounds 1c, 2b, and 2c are 10-fold more active in multidrug-resistant leukemia cells (CEM-DNR and K562-TAX) than in their non-resistant analogs (CCRF-CEM and K562). Pharmacological parameters were measured for the most promising candidates and two types of prodrugs were synthesized: 1) Sugar-containing conjugates, most of which had improved cell penetration and retained high cytotoxicity in the CCRF-CEM cell line, unfortunately, they lost the selectivity against resistant cells. 2) Medoxomil derivatives, among which compounds 26-28 gained activities of IC50 0.026-0.043 μM against K562 cells. Compounds 1b, 8, 21, 22, 23, and 24 were selected for the evaluation of the mechanism of action based on their highest cytotoxicity against CCRF-CEM cell line. Several experiments showed that the majority of them cause apoptosis via the mitochondrial pathway. Compounds 1b, 8, and 21 inhibit growth and disintegrate spheroid cultures of HCT116 and HeLa cells, which would be important for the treatment of solid tumors. In summary, compounds 1b, 1c, 2b, 2c, 24, and 26-28 are highly and selectively cytotoxic against cancer cell lines and were selected for future in vivo tests and further development of anticancer drugs.
Collapse
Affiliation(s)
- Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Zdeňka Trhlíková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Pokorný
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Borková
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Sandra Benická
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19, Prague 1, Czech Republic
| | - Barbora Lišková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Agáta Kubíčková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Martina Medvedíková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Martin Pisár
- Department of Organic Chemistry, Faculty of Science, Palacký University Olomouc, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Šarek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic; Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Anna Ligasová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Karel Koberna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
15
|
Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. SENSORS (BASEL, SWITZERLAND) 2022; 22:1517. [PMID: 35214418 PMCID: PMC8879987 DOI: 10.3390/s22041517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.
Collapse
Affiliation(s)
- Arianna Fedi
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, 16126 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France;
- INSERM UMR 1045, Cardiothoracic Research Center of Bordeaux, University of Bordeaux, 33600 Pessac, France
| | - Alessandra Marrella
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
| |
Collapse
|
16
|
Danielpour D, Corum S, Welford SM, Shankar E. Hypoxia represses early responses of prostate and renal cancer cells to YM155 independent of HIF-1α and HIF-2α. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100076. [PMID: 35005610 PMCID: PMC8717246 DOI: 10.1016/j.crphar.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023] Open
Abstract
The imidazolium compound Sepantronium Bromide (YM155) successfully promotes tumor regression in various pre-clinical models but has shown modest responses in human clinical trials. We provide evidence to support that the hypoxic milieu of tumors may limit the clinical usefulness of YM155. Hypoxia (1% O2) strongly (>16-fold) represses the cytotoxic activity of YM155 on prostate and renal cancer cells in vitro. Hypoxia also represses all early signaling responses associated with YM155, including activation of AMPK and retinoblastoma protein (Rb), inactivation of the mechanistic target of rapamycin complex 1 (mTORC1), inhibition of phospho-ribosomal protein S6 (rS6), and suppression of the expression of Cyclin Ds, Mcl-1 and Survivin. Cells pre-incubated with hypoxia for 24 h are desensitized to YM155 even when they are treated with YM155 under atmospheric oxygen conditions, supporting that cells at least temporarily retain hypoxia-induced resistance to YM155. We tested the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the hypoxia-induced resistance to YM155 by comparing responses of YM155 in VHL-proficient versus VHL-deficient RCC4 and 786-O renal cancer cells and silencing HIF expression in PC-3 prostate cancer cells. Those studies suggested that hypoxia-induced resistance to YM155 occurs independent of HIF-1α and HIF-2α. Moreover, the hypoxia mimetics deferoxamine and dimethyloxalylglycine, which robustly induce HIF-1α levels in PC-3 cells under atmospheric oxygen, did not diminish their early cellular responses to YM155. Collectively, our data support that hypoxia induces resistance of cells to YM155 through a HIF-1α and HIF-2α-independent mechanism. We hypothesize that a hypothetical hypoxia-inducer factor (HIF-X) represses early signaling responses to YM155.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Urology, University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | - Sarah Corum
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Scott M. Welford
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Radiation Oncology, University of Miami, FL, 33136, USA
| | - Eswar Shankar
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
17
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
18
|
Yang N, Hui W, Dong S, Zhang X, Shao L, Jia Y, Mak PI, Paulo da Silva Martins R. Temperature Tolerance Electric Cell-Substrate Impedance Sensing for Joint Assessment of Cell Viability and Vitality. ACS Sens 2021; 6:3640-3649. [PMID: 34449212 DOI: 10.1021/acssensors.1c01211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Evaluation of the cell health status is critical for drug screening and cell physiological activity investigations. The existing cell health assessment methods are solely devoted to the study of cell vitality or viability, leading to an incomplete evaluation. Herein, we report a convenient and robust method for the joint assessment of cell viability and vitality based on electric cell-substrate impedance sensing (ECIS) supplied with an environmental temperature control. The static value of electric cell-substrate impedance reflects the survival rate of cells, while the temperature tolerance of cells demonstrates the cell vitality. It was found that the cell vitality evaluated by the temperature tolerance of cells was independent of the initial cell numbers, rendering the proposed method easy to utilize in various applications. We compared the temperature tolerance ECIS method with the traditional trypan blue staining method, the methyl thiazolyl tetrazolium assay, and the direct impedance sensing method for joint evaluation of cell viability and vitality in drug screening. The temperature tolerance ECIS method showed comparable results but with a simpler protocol, faster results, and less dependence on the sample conditions. By providing both information on cell viability and cell vitality, the proposed temperature tolerance ECIS method would pave the way in building a simple and robust sensing system for cell health evaluation.
Collapse
Affiliation(s)
- Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Jiangsu 212013, China
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Wenhao Hui
- School of Electrical and Information Engineering, Jiangsu University, Jiangsu 212013, China
| | - Sizhe Dong
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Faculty of Science and Technology—ECE, University of Macau, Macau 999078, China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liyang Shao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Faculty of Science and Technology—ECE, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Faculty of Science and Technology—ECE, University of Macau, Macau 999078, China
| | - Rui Paulo da Silva Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Faculty of Science and Technology—ECE, University of Macau, Macau 999078, China
- On Leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1000-001, Portugal
| |
Collapse
|
19
|
Jia L, Liu Y, Li M, Wang Y, He Z. Direct comparison of two kinds of linoleic acid-docetaxel derivatives: in vitro cytotoxicity and in vivo antitumor activity. Drug Deliv Transl Res 2021; 12:1209-1218. [PMID: 34309802 DOI: 10.1007/s13346-021-01010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Rational designed lipid-drug derivatives provide a favorable approach to improve the druggability of highly hydrophobic prototypes. It has been regarded as common sense that good cytotoxicity is the guarantee of superior anticancer efficacy for candidate derivatives screening. However, does it apply to lipid-drug conjugate-based self-assembled nanoparticles? Here, we established the above two derivatives and a non-correlation between the cytotoxic activity in vitro and drug efficacy in vivo was found. The IC50 of DSL NPs (DTX-S-LA nanoparticles) and DL NPs (DTX-LA nanoparticles) were 4.02 and 209.6 ng/mL (DTX equivalent concentration), respectively. However, DL NPs unexpectedly showed stronger tumor inhibition abilities than DSL NPs. To explain the non-positive correlation between cytotoxicity and anticancer efficacy, more experiments were carried out in depth. Remarkably, the drug release studies in blood and PK study both suggested that the DL NPs were more stable to remain the structural integrity in circulation, which resulted in more accumulation in tumor sites. As verified by the bio-distribution study, DL NPs performed a superior target effect than DSL NPs in tumors. Our data indicated that the biological fates of so-called smart bond inserted derivatives in vivo are complicated; thus, simple cytotoxicity is not enough for derivatives screening, and the comprehensive understanding of both in vitro and in vivo behaviors is essential.
Collapse
Affiliation(s)
- Lirui Jia
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ying Liu
- National Institute for Food and Drug Control, Beijing, 100050, People's Republic of China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
20
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
21
|
Sulfonamido carboranes as highly selective inhibitors of cancer-specific carbonic anhydrase IX. Eur J Med Chem 2020; 200:112460. [PMID: 32505851 DOI: 10.1016/j.ejmech.2020.112460] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane enzyme overexpressed in hypoxic tumors, where it plays an important role in tumor progression. Specific CA IX inhibitors potentially could serve as anti-cancer drugs. We designed a series of sulfonamide inhibitors containing carborane clusters based on prior structural knowledge of carborane binding into the enzyme active site. Two types of carborane clusters, 12-vertex dicarba-closo-dodecaborane and 11-vertex 7,8-dicarba-nido-undecaborate (dicarbollide), were connected to a sulfonamide moiety via aliphatic linkers of varying lengths (1-4 carbon atoms; n = 1-4). In vitro testing of CA inhibitory potencies revealed that the optimal linker length for selective inhibition of CA IX was n = 3. A 1-sulfamidopropyl-1,2-dicarba-closo-dodecaborane (3) emerged as the strongest CA IX inhibitor from this series, with a Ki value of 0.5 nM and roughly 1230-fold selectivity towards CA IX over CA II. X-ray studies of 3 yielded structural insights into their binding modes within the CA IX active site. Compound 3 exhibited moderate cytotoxicity against cancer cell lines and primary cell lines in 2D cultures. Cytotoxicity towards multicellular spheroids was also observed. Moreover, 3 significantly lowered the amount of CA IX on the cell surface both in 2D cultures and spheroids and facilitated penetration of doxorubicin. Although 3 had only a moderate effect on tumor size in mice, we observed favorable ADME properties and pharmacokinetics in mice, and preferential presence in brain over serum.
Collapse
|
22
|
Concentration Gradient Constructions Using Inertial Microfluidics for Studying Tumor Cell-Drug Interactions. MICROMACHINES 2020; 11:mi11050493. [PMID: 32408585 PMCID: PMC7281261 DOI: 10.3390/mi11050493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
With the continuous development of cancer therapy, conventional animal models have exposed a series of shortcomings such as ethical issues, being time consuming and having an expensive cost. As an alternative method, microfluidic devices have shown advantages in drug screening, which can effectively shorten experimental time, reduce costs, improve efficiency, and achieve a large-scale, high-throughput and accurate analysis. However, most of these microfluidic technologies are established for narrow-range drug-concentration screening based on sensitive but limited flow rates. More simple, easy-to operate and wide-ranging concentration-gradient constructions for studying tumor cell–drug interactions in real-time have remained largely out of reach. Here, we proposed a simple and compact device that can quickly construct efficient and reliable drug-concentration gradients with a wide range of flow rates. The dynamic study of concentration-gradient formation based on successive spiral mixer regulations was investigated systematically and quantitatively. Accurate, stable, and controllable dual drug-concentration gradients were produced to evaluate simultaneously the efficacy of the anticancer drug against two tumor cell lines (human breast adenocarcinoma cells and human cervical carcinoma cells). Results showed that paclitaxel had dose-dependent effects on the two tumor cell lines under the same conditions, respectively. We expect this device to contribute to the development of microfluidic chips as a portable and economical product in terms of the potential of concentration gradient-related biochemical research.
Collapse
|
23
|
Nürnberg E, Vitacolonna M, Klicks J, von Molitor E, Cesetti T, Keller F, Bruch R, Ertongur-Fauth T, Riedel K, Scholz P, Lau T, Schneider R, Meier J, Hafner M, Rudolf R. Routine Optical Clearing of 3D-Cell Cultures: Simplicity Forward. Front Mol Biosci 2020; 7:20. [PMID: 32154265 PMCID: PMC7046628 DOI: 10.3389/fmolb.2020.00020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional cell cultures, such as spheroids and organoids, serve as increasingly important models in fundamental and applied research and start to be used for drug screening purposes. Optical tissue clearing procedures are employed to enhance visualization of fluorescence-stained organs, tissues, and three-dimensional cell cultures. To get a more systematic overview about the effects and applicability of optical tissue clearing on three-dimensional cell cultures, we compared six different clearing/embedding protocols on seven types of spheroid- and chip-based three-dimensional cell cultures of approximately 300 μm in size that were stained with nuclear dyes, immunofluorescence, cell trackers, and cyan fluorescent protein. Subsequent whole mount confocal microscopy and semi-automated image analysis were performed to quantify the effects. Quantitative analysis included fluorescence signal intensity and signal-to-noise ratio as a function of z-depth as well as segmentation and counting of nuclei and immunopositive cells. In general, these analyses revealed five key points, which largely confirmed current knowledge and were quantified in this study. First, there was a massive variability of effects of different clearing protocols on sample transparency and shrinkage as well as on dye quenching. Second, all tested clearing protocols worked more efficiently on samples prepared with one cell type than on co-cultures. Third, z-compensation was imperative to minimize variations in signal-to-noise ratio. Fourth, a combination of sample-inherent cell density, sample shrinkage, uniformity of signal-to-noise ratio, and image resolution had a strong impact on data segmentation, cell counts, and relative numbers of immunofluorescence-positive cells. Finally, considering all mentioned aspects and including a wish for simplicity and speed of protocols - in particular, for screening purposes - clearing with 88% Glycerol appeared to be the most promising option amongst the ones tested.
Collapse
Affiliation(s)
- Elina Nürnberg
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mario Vitacolonna
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Julia Klicks
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elena von Molitor
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tiziana Cesetti
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Florian Keller
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Roman Bruch
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | | | | | | | - Thorsten Lau
- Zentralinstitut für Seelische Gesundheit, Department of Translational Brain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Julia Meier
- TIP Oncology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Faculty of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
24
|
Zhang D, Chu Y, Qian H, Qian L, Shao J, Xu Q, Yu L, Li R, Zhang Q, Wu F, Liu B, Liu Q. Antitumor Activity of Thermosensitive Hydrogels Packaging Gambogic Acid Nanoparticles and Tumor-Penetrating Peptide iRGD Against Gastric Cancer. Int J Nanomedicine 2020; 15:735-747. [PMID: 32099362 PMCID: PMC6999774 DOI: 10.2147/ijn.s231448] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Gambogic acid (GA) is proved to have anti-tumor effects on gastric cancer. Due to poor solubility, non-specific biological distribution, toxicity to normal tissues and short half-life, it is hard to be applied into the clinic. To overcome these issues, we developed a thermosensitive and injectable hydrogel composed of hydroxypropyl cellulose, silk fibroin and glycerol, with short gelling time, good compatibility and sustained release, and demonstrated that the hydrogel packaged with gambogic acid nanoparticles (GA-NPs) and tumor-penetrating peptide iRGD could improve the anti-tumor activity. Methods The Gelling time and micropore size of the hydrogels were regulated through different concentrations of glycerol. Controlled release characteristics of the hydrogels were evaluated with a real-time near-infrared fluorescence imaging system. Location of nanoparticles from different carriers was traced by confocal laser scanning microscopy. The in vivo antitumor activity of the hydrogels packaging GA-NPs and iRGD was evaluated by investigating tumor volume and tumor size. Results The thermo-sensitive properties of hydrogels were characterized by 3-4 min, 37°C, when glycerol concentration was 20%. The hydrogels physically packaged with GA-NPs and iRGD showed higher fluorescence intensity than other groups. The in vivo study indicated that the co-administration of GA-NPs and iRGD by hydrogels had higher antitumor activity than the GA-loaded hydrogels and free GA combining with iRGD. Free GA group showed few antitumor effects. Compared with the control group, the body weight in other groups had no obvious change, and the count of leukocytes and hemoglobin was slightly decreased. Discussion The hydrogel constructed iRGD and GA-NPs exerted an effective anti-tumor effect possibly due to retention effect, local administration and continuous sustained release of iRGD promoting the penetration of nanoparticles into a deep part of tumors. The delivery system showed little systemic toxicity and would provide a promising strategy to improve anti-gastric cancer efficacy.
Collapse
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lingyu Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Quanan Zhang
- Department of Oncology, Jiangning Hospital, Nanjing, People's Republic of China
| | - Fenglei Wu
- Department of Oncology, Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol Ther 2019; 203:107395. [DOI: 10.1016/j.pharmthera.2019.107395] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
|
26
|
Neureiter D, Stintzing S, Kiesslich T, Ocker M. Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 2019; 25:3136-3150. [PMID: 31333307 PMCID: PMC6626722 DOI: 10.3748/wjg.v25.i25.3136] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global medical burden with rising incidence due to chronic viral hepatitis and non-alcoholic fatty liver diseases. Treatment of advanced disease stages is still unsatisfying. Besides first and second generation tyrosine kinase inhibitors, immune checkpoint inhibitors have become central for the treatment of HCC. New modalities like epigenetic therapy using histone deacetylase inhibitors (HDACi) and cell therapy approaches with chimeric antigen receptor T cells (CAR-T cells) are currently under investigation in clinical trials. Development of such novel drugs is closely linked to the availability and improvement of novel preclinical and animal models and the identification of predictive biomarkers. The current status of treatment options for advanced HCC, emerging novel therapeutic approaches and different preclinical models for HCC drug discovery and development are reviewed here.
Collapse
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Cancer Cluster Salzburg, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Oncology and Hematology, Campus Charité Mitte, Charité University Medicine Berlin, Berlin 10117, Germany
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK) and Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg 5020, Austria
| | - Matthias Ocker
- Translational Medicine Oncology, Bayer AG, Berlin 13353, Germany
- Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|
27
|
Flørenes VA, Flem-Karlsen K, McFadden E, Bergheim IR, Nygaard V, Nygård V, Farstad IN, Øy GF, Emilsen E, Giller-Fleten K, Ree AH, Flatmark K, Gullestad HP, Hermann R, Ryder T, Wernhoff P, Mælandsmo GM. A Three-dimensional Ex Vivo Viability Assay Reveals a Strong Correlation Between Response to Targeted Inhibitors and Mutation Status in Melanoma Lymph Node Metastases. Transl Oncol 2019; 12:951-958. [PMID: 31096111 PMCID: PMC6520638 DOI: 10.1016/j.tranon.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Although clinical management of melanoma has changed considerably in recent years, intrinsic treatment resistance remains a severe problem and strategies to design personal treatment regimens are highly warranted. We have applied a three-dimensional (3D) ex vivo drug efficacy assay, exposing disaggregated cells from 38 freshly harvested melanoma lymph node metastases and 21 patient derived xenografts (PDXs) to clinical relevant drugs for 7 days, and examined its potential to evaluate therapy response. A strong association between Vemurafenib response and BRAF mutation status was achieved (P < .0001), while enhanced viability was seen in some NRAS mutated tumors. BRAF and NRAS mutated tumors responded comparably to the MEK inhibitor Cobimetinib. Based on the ex vivo results, two tumors diagnosed as BRAF wild-type by routine pathology examinations had to be re-evaluated; one was subsequently found to have a complex V600E mutation, the other a double BRAF mutation (V600E/K601 N). No BRAF inhibitor resistance mechanisms were identified, but PIK3CA and NF1 mutations were identified in two highly responsive tumors. Concordance between ex vivo drug responses using tissue from PDXs and corresponding patient tumors demonstrate that PDX models represent an indefinite source of tumor material that may allow ex vivo evaluation of numerous drugs and combinations, as well as studies of underlying molecular mechanisms. In conclusion, we have established a rapid and low cost ex vivo drug efficacy assay applicable on tumor tissue from patient biopsies. The 3D/spheroid format, limiting the influence from normal adjacent cells and allowing assessment of drug sensitivity to numerous drugs in one week, confirms its potential as a supplement to guide clinical decision, in particular in identifying non-responding patients.
Collapse
Affiliation(s)
- Vivi Ann Flørenes
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karine Flem-Karlsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Erin McFadden
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Riise Bergheim
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vegard Nygård
- Department of Core Facilities, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Inger Nina Farstad
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Elisabeth Emilsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Karianne Giller-Fleten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, N-1478 Lørenskog, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Kjersti Flatmark
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway; Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Hans Petter Gullestad
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Robert Hermann
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Truls Ryder
- Department of Plastic and Reconstructive Surgery, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Patrik Wernhoff
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; Institute of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
28
|
Assessment of Potential Cytotoxicity During Vital Observation at the BioStation CT. ACTA BIOMEDICA SCIENTIFICA 2019. [DOI: 10.29413/abs.2018-3.6.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent decades, the methods based on the cell technologies have become more relevant for medical and pharmaceutical research. In this paper, weconsidered the BioStation CT using for continuous in vivo observation of Ehrlich ascitic carcinoma cell culture under the influence of two active substances in different concentrations (from 1.25 to 20 mg/l). As a result of the carcinoma cells condition monitoring for 4.5 days it was shown that substance No 2 does not affect the cell viability while substance No 1 causes the carcinoma cell death, and this active substance effect is dose-dependent. Photodocumentation at two-hour intervals allowed us to research differences in the rate of cell destruction (intensive disintegration in the first day with further stabilization of the living cells number or gradual cell death throughout the experiment), as well as differences in the time of 50 % mortality reaching. Thus in the study it was demonstrated that due to the fact that the BioStation CT combines the properties of a CO2 -incubator and a microscope this device is promising for toxicological studies and significantly expands the detection possibilities of processes occurring with living cells for a sufficiently long time period making possible further analysis of the cell behavior characteristics throughout the experiment, and that is fundamentally different from the systems allowing only the final result fixation of long-term active substance exposure.
Collapse
|
29
|
Kochanek SJ, Close DA, Johnston PA. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Assay Drug Dev Technol 2018; 17:17-36. [PMID: 30592624 DOI: 10.1089/adt.2018.896] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.
Collapse
Affiliation(s)
- Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,2 University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Seidel D, Rothe R, Kirsten M, Jahnke HG, Dumann K, Ziemer M, Simon JC, Robitzki AA. A multidimensional impedance platform for the real-time analysis of single and combination drug pharmacology in patient-derived viable melanoma models. Biosens Bioelectron 2018; 123:185-194. [PMID: 30201332 DOI: 10.1016/j.bios.2018.08.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
In today's development of anticancer drugs, there is an enormous demand for sensitive, non-invasive real-time screening technologies to identify pharmacodynamics/-kinetics of single and combined drugs with high precision. The combination of sophisticated drug sensitivity testing with advanced in vitro tumor models reflecting heterogeneous tumor behavior in vivo is needed to more reasonably predict therapeutic outcome in vivo. In this study, the benefits of our real-time, non-invasive multidimensional impedance platform over standard in vitro drug sensitivity assays were demonstrated quantitatively using an advanced melanoma model. Detailed pharmacological profiles of clinically established targeted therapeutics in single and combination treatment have been identified in patient tissue and isolated 2D/3D cell line cultures. Impedance spectroscopy revealed significant differences in tissue structure responsible for BRAF inhibitor pharmacokinetics in BRAFV600E tumor microfragments and cell lines. Remarkably, BRAF-/MEK inhibitor combination treatment of direct patient-derived tissue, but not melanoma cell lines, resulted in short-term antagonistic effects consistent with in vivo findings. In contrast, the clinically validated resistance delay and thus long-term synergy of targeted therapeutics in advanced melanoma models has been demonstrated using impedance technology. The results demonstrate limited clinical transferability of 2D/3D cancer cell line-based chemosensitivity data and underline the importance of in vivo-like direct patient-derived tissue for predictive drug studies. Our non-invasive and highly sensitive multidimensional impedance platform offers great potential for quantifying short- and long-term drug kinetics and synergies to identify the most effective drug combinations in advanced cancer models, thereby improving personalized drug development and treatment planning and ultimately, overall patient outcomes.
Collapse
Affiliation(s)
- Diana Seidel
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Rebecca Rothe
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Mandy Kirsten
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Konstantin Dumann
- Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Mirjana Ziemer
- Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Jan-Christoph Simon
- Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | - Andrea A Robitzki
- Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
31
|
3D cellular spheroids as tools for understanding carboxylated quantum dot behavior in tumors. Biochim Biophys Acta Gen Subj 2018; 1862:914-923. [DOI: 10.1016/j.bbagen.2017.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/23/2017] [Indexed: 02/06/2023]
|
32
|
Kulkarni V, Bodas D, Paknikar K. Assessment of an Integrative Anticancer Treatment Using an in Vitro Perfusion-Enabled 3D Breast Tumor Model. ACS Biomater Sci Eng 2018; 4:1407-1417. [PMID: 33418670 DOI: 10.1021/acsbiomaterials.8b00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study presents observations on anticancer therapeutic efficacy of magnetic fluid hyperthermia and a combination of hyperthermia and chemotherapy (i.e., integrative treatment) using an in vitro perfused and non-perfused 3D breast tumor model. The 3D in vitro breast tumor models were simulated using Comsol multiphysics, fabricated using specially designed chips, and treated with doxorubicin-loaded chitosan-coated La0.7Sr0.3MnO3 (DC-LSMO) nanoparticles for hyperthermia and combination therapy in both perfused and non-perfused conditions. Computation confirmed uniform heat distribution throughout the scaffold for both the models. The findings indicate that both hyperthermia and combination treatment could trigger apoptotic cell death in the perfused and non-perfused models in varying degrees. Specifically, the perfused tumors were more resistant to therapy than the non-perfused ones. The efficacy of anticancer treatment decreased with increasing physiological complexity of the tumor model. The combination (hyperthermia and chemotherapy) treatment showed enhanced efficacy over hyperthermia alone. This is a pilot study to investigate the effects of magnetic fluid hyperthermia-chemotherapy treatment using perfused and non-perfused 3D in vitro models of tumor. The feasibility of using 3D cell culture models for contributing to our understanding of cancer and its treatment was also determined as a part of this work.
Collapse
Affiliation(s)
- Vaishnavi Kulkarni
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| | - Kishore Paknikar
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411 004, India
| |
Collapse
|
33
|
Delgado-SanMartin JA, Hare JI, Davies EJ, Yates JWT. Multiscalar cellular automaton simulates in-vivo tumour-stroma patterns calibrated from in-vitro assay data. BMC Med Inform Decis Mak 2017; 17:70. [PMID: 28558757 PMCID: PMC5450227 DOI: 10.1186/s12911-017-0461-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/11/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The tumour stroma -or tumour microenvironment- is an important constituent of solid cancers and it is thought to be one of the main obstacles to quantitative translation of drug activity between the preclinical and clinical phases of drug development. The tumour-stroma relationship has been described as being both pro- and antitumour in multiple studies. However, the causality of this complex biological relationship between the tumour and stroma has not yet been explored in a quantitative manner in complex tumour morphologies. METHODS To understand how these stromal and microenvironmental factors contribute to tumour physiology and how oxygen distributes within them, we have developed a lattice-based multiscalar cellular automaton model. This model uses principles of cytokine and oxygen diffusion as well as cell motility and plasticity to describe tumour-stroma landscapes. Furthermore, to calibrate the model, we propose an innovative modelling platform to extract model parameters from multiple in-vitro assays. This platform provides a novel way to extract meta-data that can be used to complement in-vivo studies and can be further applied in other contexts. RESULTS Here we show the necessity of the tumour-stroma opposing relationship for the model simulations to successfully describe the in-vivo stromal patterns of the human lung cancer cell lines Calu3 and Calu6, as models of clinical and preclinical tumour-stromal topologies. This is especially relevant to drugs that target the tumour microenvironment, such as antiangiogenics, compounds targeting the hedgehog pathway or immune checkpoint inhibitors, and is potentially a key platform to understand the mechanistic drivers for these drugs. CONCLUSION The tumour-stroma automaton model presented here enables the interpretation of complex in-vitro data and uses it to parametrise a model for in-vivo tumour-stromal relationships.
Collapse
Affiliation(s)
- J A Delgado-SanMartin
- Modelling and Simulation, Oncology IMED DMPK, AstraZeneca, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK. .,Physics Department, University of Aberdeen, Aberdeen, UK. .,GSK R&D Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | - J I Hare
- Bioscience, Oncology IMED, AstraZeneca, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - E J Davies
- Bioscience, Oncology IMED, AstraZeneca, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - J W T Yates
- Modelling and Simulation, Oncology IMED DMPK, AstraZeneca, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
34
|
Das V, Fürst T, Gurská S, Džubák P, Hajdúch M. Evaporation-reducing Culture Condition Increases the Reproducibility of Multicellular Spheroid Formation in Microtiter Plates. J Vis Exp 2017. [PMID: 28362402 DOI: 10.3791/55403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tumor models that closely imitate in vivo conditions are becoming increasingly popular in drug discovery and development for the screening of potential anti-cancer drugs. Multicellular tumor spheroids (MCTSes) effectively mimic the physiological conditions of solid tumors, making them excellent in vitro models for lead optimization and target validation. Out of the various techniques available for MCTS culture, the liquid-overlay method on agarose is one of the most inexpensive methods for MCTS generation. However, the reliable transfer of MCTS cultures using liquid-overlay for high-throughput screening may be compromised by a number of limitations, including the coating of microtiter plates (MPs) with agarose and the irreproducibility of uniform MCTS formation across wells. MPs are significantly prone to edge effects that result from excessive evaporation of medium from the exterior of the plate, preventing the use of the entire plate for drug tests. This manuscript provides detailed technical improvements to the liquid-overlay technique to increase the scalability and reproducibility of uniform MCTS formation. Additionally, details on a simple, semi-automatic, and universally applicable software tool for the evaluation of MCTS features after drug treatment is presented.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Tomáš Fürst
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University in Olomouc;
| |
Collapse
|
35
|
Santo VE, Rebelo SP, Estrada MF, Alves PM, Boghaert E, Brito C. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs. Biotechnol J 2016; 12. [PMID: 27966285 DOI: 10.1002/biot.201600505] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy.
Collapse
Affiliation(s)
- Vítor E Santo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia P Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marta F Estrada
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
36
|
Agrawal K, Das V, Otmar M, Krečmerová M, Džubák P, Hajdúch M. Cell-based DNA demethylation detection system for screening of epigenetic drugs in 2D, 3D, and xenograft models. Cytometry A 2016; 91:133-143. [DOI: 10.1002/cyto.a.23004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/01/2016] [Accepted: 10/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Khushboo Agrawal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University; Hněvotínská 5 77900 Olomouc Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University; Hněvotínská 5 77900 Olomouc Czech Republic
| | - Miroslav Otmar
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i, Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; v.v.i, Flemingovo náměstí 2 16610 Prague 6 Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University; Hněvotínská 5 77900 Olomouc Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University; Hněvotínská 5 77900 Olomouc Czech Republic
| |
Collapse
|
37
|
Gaspar D, Zeugolis DI. Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discov Today 2016; 21:1341-1344. [DOI: 10.1016/j.drudis.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Côté MF, Turcotte A, Doillon C, Gobeil S. Three-Dimensional Culture Assay to Explore Cancer Cell Invasiveness and Satellite Tumor Formation. J Vis Exp 2016. [PMID: 27585303 DOI: 10.3791/54322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mammalian cell culture in monolayers is widely used to study various physiological and molecular processes. However, this approach to study growing cells often generates unwanted artifacts. Therefore, cell culture in a three-dimensional (3D) environment, often using extracellular matrix components, emerged as an interesting alternative due to its close similarity to the native in vivo tissue or organ. We developed a 3D cell culture system using two compartments, namely (i) a central compartment containing cancer cells embedded in a collagen gel acting as a pseudo-primary macrospherical tumor and (ii) a peripheral cell-free compartment made of a fibrin gel, i.e. an extracellular matrix component different from that used in the center, in which cancer cells can migrate (invasion front) and/or form microspherical tumors representing secondary or satellite tumors. The formation of satellite tumors in the peripheral compartment is remarkably correlated to the known aggressiveness or metastatic origin of the native tumor cells, which makes this 3D culture system unique. This cell culture approach might be considered to assess cancer cell invasiveness and motility, cell-extracellular matrix interactions and as a method to evaluate anti-cancer drug properties.
Collapse
Affiliation(s)
| | - Audrey Turcotte
- CHU de Québec Research Centre; Department of Molecular Medicine, Laval University
| | - Charles Doillon
- CHU de Québec Research Centre; Department of Surgery, Laval University
| | - Stephane Gobeil
- CHU de Québec Research Centre; Department of Molecular Medicine, Laval University;
| |
Collapse
|
39
|
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016; 21:1835-1849. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Citation(s) in RCA: 341] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023]
Abstract
Common chemotherapy is often associated with adverse effects in normal cells and tissues. As an alternative approach, localized chemotherapy can diminish the toxicity of systemic chemotherapy while providing a sustained release of the chemotherapeutics at the target tumor site. Therefore, injectable biodegradable hydrogels as drug delivery systems for chemotherapeutics have become a matter of importance. Here, we review the application of a variety of injectable hydrogel-based drug delivery systems, including thermosensitive, pH-sensitive, photosensitive, dual-sensitive, as well as active targeting hydrogels, for the treatment of different types of cancer. Generally, injectable hydrogel-based drug delivery systems are found to be more efficacious than the conventional systemic chemotherapy in terms of cancer treatment.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
40
|
Reproducibility of Uniform Spheroid Formation in 384-Well Plates. ACTA ACUST UNITED AC 2016; 21:923-30. [DOI: 10.1177/1087057116651867] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
Spheroid cultures of cancer cells reproduce the spatial dimension–induced in vivo tumor traits more effectively than the conventional two-dimensional cell cultures. With growing interest in spheroids for high-throughput screening (HTS) assays, there is an increasing demand for cost-effective miniaturization of reproducible spheroids in microtiter plates (MPs). However, well-to-well variability in spheroid size, shape, and growth is a frequently encountered problem with almost every culture method that has prevented the transfer of spheroids to the HTS platform. This variability partly arises due to increased susceptibility of MPs to edge effects and evaporation-induced changes in the growth of spheroids. In this study, we examined the effect of evaporation on the reproducibility of spheroids of tumor and nontumor cell lines in 384-well plates, and show that culture conditions that prevent evaporation-induced medium loss result in the formation of uniform spheroids across the plate. Additionally, we also present a few technical improvements to increase the scalability of the liquid-overlay spheroid culturing technique in MPs, together with a simple software routine for the quantification of spheroid size. We believe that these cost-effective improvements will aid in further improvement of spheroid cultures for HTS drug discovery.
Collapse
|