1
|
Tang JC, Magalhães R, Wisniowiecki A, Razura D, Walker C, Applegate BE. Optical coherence tomography technology in clinical applications. BIOPHOTONICS AND BIOSENSING 2024:285-346. [DOI: 10.1016/b978-0-44-318840-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
2
|
Bilgin B, Sahin Y. Impact of adherence to gluten-free diet in paediatric celiac patients on optical coherence tomography findings: Ocular imaging based study. Photodiagnosis Photodyn Ther 2023; 42:103502. [PMID: 36907258 DOI: 10.1016/j.pdpdt.2023.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE This study aims to measure choroidal thickness, retinal nerve fiber layer thickness, GCC thickness, and foveal thickness by optical coherence tomography and to investigate whether there is a difference between celiac patients who adhere to the gluten-free diet and who do not. MATERIALS AND METHODS A total of 68 eyes of 34 pediatric patients diagnosed with celiac disease were included in the study. Celiac patients were divided into two groups those who adhere to the gluten-free diet and those who do not. Fourteen patients who adhere to the gluten-free diet and 20 patients who do not adhere to the gluten-free diet were included in the study. Choroidal thickness, GCC, RNFL, and foveal thickness of all subjects were measured and recorded using an optical coherence tomography device. RESULTS The mean choroidal thickness of the dieting and non-diet groups was 249.05 ± 25.60 and 244.18 ± 33.50 µm, respectively. The mean GCC thickness of the dieting and non-diet groups was 96.56 ± 6.26 and 93.83 ± 5.62 µm, respectively. The mean RNFL thickness of the dieting and non-diet groups was 108.83 ± 9.97 and 103.20 ± 9.74 µm, respectively. The mean foveal thickness of the dieting and non-diet groups was 259.25 ± 33.60 and 261.92 ± 32.94 µm, respectively. There was not a statistically significant difference between the dieting group and the non-diet group in terms of choroidal, GCC, RNFL and foveal thicknesses (p = 0.635, p = 0.207, p = 0.117, p = 0.820, respectively). CONCLUSION In conclusion, the present study states that adhering to a gluten-free diet does not make any difference in choroidal, GCC, RNFL, and foveal thicknesses in pediatric celiac patients.
Collapse
Affiliation(s)
- Burak Bilgin
- Kahramanmaras Sutcu Imam University, School of Medicine, Department of Ophthalmology, Kahramanmaras, Turkey.
| | - Yasin Sahin
- Gaziantep Islam Science and Technology University, Medical Faculty, Department of Pediatric Gastroenterology, Dr. Ersin Arslan Training and Research Hosptial, Clinics of Pediatric Gastroenterology, Gaziantep, Turkey
| |
Collapse
|
3
|
Lerner DG, Mencin A, Novak I, Huang C, Ng K, Lirio RA, Khlevner J, Utterson EC, Harris BR, Pitman RT, Mir S, Gugig R, Walsh CM, Fishman D. Advances in Pediatric Diagnostic Endoscopy: A State-of-the-Art Review. JPGN REPORTS 2022; 3:e224. [PMID: 37168622 PMCID: PMC10158303 DOI: 10.1097/pg9.0000000000000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/20/2022] [Indexed: 05/13/2023]
Abstract
Pediatric endoscopy has revolutionized the way we diagnose and treat gastrointestinal disorders in children. Technological advances in computer processing and imaging continue to affect endoscopic equipment and advance diagnostic tools for pediatric endoscopy. Although commonly used by adult gastroenterologists, modalities, such as endomicroscopy, image-enhanced endoscopy, and impedance planimetry, are not routinely used in pediatric gastroenterology. This state-of-the-art review describes advances in diagnostic modalities, including image-enhanced endoscopy, confocal laser endomicroscopy, optical coherence tomography, endo functional luminal imaging probes, wireless motility/pH capsule, wireless colon capsule endoscopy, endoscopic ultrasound, and discusses the basic principles of each technology, including adult indications and pediatric applications, safety cost, and training data.
Collapse
Affiliation(s)
- Diana G. Lerner
- From the Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - Ali Mencin
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Inna Novak
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital at Montefiore, Bronx, NY
| | - Clifton Huang
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cook Children’s Medical Center, Fort Worth, TX
| | - Kenneth Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Lirio
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UMASS Memorial Children’s Medical Center/UMASS Medical School, Worcester, MA
| | - Julie Khlevner
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Elizabeth C. Utterson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Brendan R. Harris
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Ryan T. Pitman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Sabina Mir
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UNC School of Medicine, Chapel Hill, NC
| | - Roberto Gugig
- Lucile Packard Children’s Hospital at Stanford, Palo Alto, CA
| | - Catharine M. Walsh
- Department of Paediatrics and the Wilson Centre, Division of Gastroenterology, Hepatology and Nutrition and the Research and Learning Institutes, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Doug Fishman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX
| |
Collapse
|
4
|
Ryabkov MG, Kiseleva EB, Baleev MS, Bederina EL, Sizov MA, Vorobyov AN, Moiseev AA, Karabut MM, Plekhanova MA, Gladkova ND. Trans-Serosal Multimodal Optical Coherence Tomography for Visualization of Microstructure and Blood Circulation of the Small Intestine Wall. Sovrem Tekhnologii Med 2020; 12:56-64. [PMID: 34513054 PMCID: PMC8353680 DOI: 10.17691/stm2020.12.2.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to evaluate the performance of trans-serosal multimodal OCT (MM OCT) in in vivo detecting of changes in microstructure and blood circulation of the small intestine wall caused by arteriovenous ischemia resulted from intestine strangulation.
Collapse
Affiliation(s)
- M G Ryabkov
- Associate Professor, Leading Researcher, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E B Kiseleva
- Senior Researcher, Scientific Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M S Baleev
- Surgeon, City Clinical Hospital No.30, 85A Berezovskaya St., Nizhny Novgorod, 605157, Russia
| | - E L Bederina
- Pathologist, Junior Researcher, University Clinic, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M A Sizov
- Surgeon, City Clinical Hospital No.30, 85A Berezovskaya St., Nizhny Novgorod, 605157, Russia
| | - A N Vorobyov
- Surgeon, City Clinical Hospital No.30, 85A Berezovskaya St., Nizhny Novgorod, 605157, Russia
| | - A A Moiseev
- Senior Researcher, Laboratory of Highly Sensitive Optical Measurements, Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanova St., Nizhny Novgorod, 603950, Russia
| | - M M Karabut
- Researcher, Genomics Adaptive Antitumor Immunity Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M A Plekhanova
- Student, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N D Gladkova
- Professor, Head of the Scientific Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
5
|
Cummins G, Cox BF, Ciuti G, Anbarasan T, Desmulliez MPY, Cochran S, Steele R, Plevris JN, Koulaouzidis A. Gastrointestinal diagnosis using non-white light imaging capsule endoscopy. Nat Rev Gastroenterol Hepatol 2019; 16:429-447. [PMID: 30988520 DOI: 10.1038/s41575-019-0140-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsule endoscopy (CE) has proved to be a powerful tool in the diagnosis and management of small bowel disorders since its introduction in 2001. However, white light imaging (WLI) is the principal technology used in clinical CE at present, and therefore, CE is limited to mucosal inspection, with diagnosis remaining reliant on visible manifestations of disease. The introduction of WLI CE has motivated a wide range of research to improve its diagnostic capabilities through integration with other sensing modalities. These developments have the potential to overcome the limitations of WLI through enhanced detection of subtle mucosal microlesions and submucosal and/or transmural pathology, providing novel diagnostic avenues. Other research aims to utilize a range of sensors to measure physiological parameters or to discover new biomarkers to improve the sensitivity, specificity and thus the clinical utility of CE. This multidisciplinary Review summarizes research into non-WLI CE devices by organizing them into a taxonomic structure on the basis of their sensing modality. The potential of these capsules to realize clinically useful virtual biopsy and computer-aided diagnosis (CADx) is also reported.
Collapse
Affiliation(s)
- Gerard Cummins
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | | | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Robert Steele
- School of Medicine, University of Dundee, Dundee, UK
| | - John N Plevris
- Centre for Liver and Digestive Disorders, The Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
6
|
Wang Y, Liu S, Lou S, Zhang W, Cai H, Chen X. Application of optical coherence tomography in clinical diagnosis. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:995-1006. [PMID: 31594279 PMCID: PMC7029333 DOI: 10.3233/xst-190559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND Optical coherence tomography (OCT) is a non-invasive diagnosing tool used in clinics. Due to its high resolution (<10um), it is appropriate for the early detection of tiny infections. It has been widely used in diagnosis and treatment of diseases, evaluation of therapeutic efficacy, and monitoring of various physiological and pathological processes. OBJECTIVE To systemically review literature to summarize the clinic application of OCT in recent years. METHODS For clinic applications that OCT has been applied, we selected studies that describe the most relevant works. The discussion included: 1) which tissue could be used in the OCT detection, 2) which character of different tissue could be used as diagnosing criteria, 3) which diseases and pathological process have been diagnosed or monitored using OCT imaging, and 4) the recent development of clinic OCT diagnosing. RESULTS The literature showed that the OCT had been listed as a routine test choice for ophthalmic diseases, while the first commercial product for cardiovascular OCT detection had gotten clearance. Meanwhile, as the development of commercial benchtop OCT equipment and tiny fiber probe, the commercial application of OCT in dermatology, dentistry, gastroenterology and urology also had great potential in the near future. CONCLUSIONS The analysis and discussions showed that OCT, as an optical diagnosing method, has been used successfully in many clinical fields, and has the potential to be a standard inspection method in several clinic fields, such as dermatology, dentistry and cardiovascular.
Collapse
Affiliation(s)
- Yi Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
- Corresponding author: Yi Wang, School of Precision Instrument and Opto-Electronics Engineering, Tianjin
University, China, Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Ministry of
Education, Tianjin, 300072, China. Tel./Fax: +86 22 27404535; E-mail:
| | - Shanshan Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
| | - Shiliang Lou
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
| | - Weiqian Zhang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
| | - Huaiyu Cai
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
| | - Xiaodong Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Opto-Electronics Information Technology, Tianjin University, Tianjin, China
- Ministry of Education, China
| |
Collapse
|
7
|
Gora MJ, Quénéhervé L, Carruth RW, Lu W, Rosenberg M, Sauk JS, Fasano A, Lauwers GY, Nishioka NS, Tearney GJ. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc 2018; 88:830-840.e3. [PMID: 30031805 PMCID: PMC8176642 DOI: 10.1016/j.gie.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Patients with many different digestive diseases undergo repeated EGDs throughout their lives. Tethered capsule endomicroscopy (TCE) is a less-invasive method for obtaining high-resolution images of the GI mucosa for diagnosis and treatment planning of GI tract diseases. In this article, we present our results from a single-center study aimed at testing the safety and feasibility of TCE for imaging the esophagus, stomach, and duodenum. METHODS After being swallowed by a participant without sedation, the tethered capsule obtains cross-sectional, 10 μm-resolution, optical coherence tomography images as the device traverses the alimentary tract. After imaging, the device is withdrawn through the mouth, disinfected, and reused. Safety and feasibility of TCE were tested, focusing on imaging the esophagus of healthy volunteers and patients with Barrett's esophagus (BE) and the duodenum of healthy volunteers. Images were compared with endoscopy and histopathology findings when available. RESULTS Thirty-eight patients were enrolled. No adverse effects were reported. The TCE device swallowing rate was 34 of 38 (89%). The appearance of a physiologic upper GI wall, including its microscopic pathology, was visualized with a tissue coverage of 85.4% ± 14.9% and 90.3% ± 6.8% in the esophagus of BE patients with and without endoscopic evidence of a hiatal hernia, respectively, as well as 84.8% ± 7.4% in the duodenum. A blinded comparison of TCE and endoscopic BE measurements showed a strong to very strong correlation (r = 0.7-0.83; P < .05) for circumferential extent and a strong correlation (r = 0.77-0.78; P < .01) for maximum extent (Prague classification). TCE interobserver correlation was very strong, at r = 0.92 and r = 0.84 (P < .01), for Prague classification circumferential (C) and maximal (M) length measurements, respectively. CONCLUSIONS TCE is a safe and feasible procedure for obtaining high-resolution microscopic images of the upper GI tract without endoscopic assistance or sedation.
Collapse
Affiliation(s)
- Michalina J. Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucille Quénéhervé
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Institut des Maladies de l’Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - Robert W. Carruth
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weina Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mireille Rosenberg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jenny S. Sauk
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory Y. Lauwers
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Norman S. Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA
| |
Collapse
|
8
|
Raju SA, White WL, Lau MS, Mooney PD, Rees MA, Burden M, Ciacci C, Sanders DS. A comparison study between Magniview and high definition white light endoscopy in detecting villous atrophy and coeliac disease: A single centre pilot study. Dig Liver Dis 2018; 50:920-924. [PMID: 29807874 DOI: 10.1016/j.dld.2018.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Coeliac disease may be missed at gastroscopy. We aimed to assess the sensitivity of Pentax optical zoom technology endoscopes in detecting duodenal villous atrophy and the ease of image interpretation by non-coeliac specialists. METHOD All patients attending for a gastroscopy were assessed for endoscopic villous atrophy in part one and two of the duodenum with high definition white light endoscopy and magnification endoscopy. Endoscopic findings of the duodenum were compared to histology as the reference standard. A short training video of varying degrees of villous atrophy seen by magnification endoscopy was used to train individuals. They were then assessed for the ability to differentiate between normal duodenum and villous atrophy. RESULTS Two hundred and fifty patients were prospectively recruited (145 females, 58%; age range 16-84, median age 50.5). Ninety-six patients had villous atrophy on histology (38.4%) 154 were controls. Magnification endoscopy had a higher sensitivity in detecting villous atrophy compared to high definition white light endoscopy (86.4% versus 78.4%, p = .0005). 9/10 individuals undertaking magnification endoscopy training correctly identified all cases of villous atrophy. CONCLUSION Magnification endoscopy has superior diagnostic sensitivity in detecting villous atrophy compared to high definition white light endoscopy and the potential to be easily adopted by all endoscopists.
Collapse
Affiliation(s)
- Suneil A Raju
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom.
| | - William L White
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Michelle S Lau
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Peter D Mooney
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Michael A Rees
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Mitchell Burden
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Carolina Ciacci
- Unit of Gastronterology, AOU San Giovannidi Dio e Ruggi D'Aragona, Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, Italy
| | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
9
|
Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat Rev Gastroenterol Hepatol 2017; 14:727-738. [PMID: 29139480 DOI: 10.1038/nrgastro.2017.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques - which can provide minimally invasive or noninvasive alternatives to biopsy - could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care.
Collapse
|
10
|
Tsai TH, Leggett CL, Trindade AJ, Sethi A, Swager AF, Joshi V, Bergman JJ, Mashimo H, Nishioka NS, Namati E. Optical coherence tomography in gastroenterology: a review and future outlook. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-17. [PMID: 29260538 DOI: 10.1117/1.jbo.22.12.121716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.
Collapse
Affiliation(s)
- Tsung-Han Tsai
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| | - Cadman L Leggett
- Mayo Clinics, Division of Gastroenterology and Hepatology, Rochester, Minnesota, United States
| | - Arvind J Trindade
- North Shore University Hospital and Hofstra Northwell School of Medicine, Division of Gastroenterolo, United States
| | - Amrita Sethi
- Columbia University Medical Center, Department of Gastroenterology, New York City, New York, United States
| | - Anne-Fré Swager
- Spaarne Gasthuis and Free University Medical Center, Amsterdam, The Netherlands
| | - Virendra Joshi
- Ochsner Clinic Foundation, Department of Gastroenterology, New Orleans, Louisiana, United States
| | - Jacques J Bergman
- Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System and Harvard Medical School, Department of Gastroenterology, United States
| | - Norman S Nishioka
- Massachusetts General Hospital, Gastrointestinal Unit, Boston, Massachusetts, United States
| | - Eman Namati
- NinePoint Medical, Inc., Bedford, Massachusetts, United States
| |
Collapse
|
11
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Ianiro G, Bibbò S, Pecere S, Gasbarrini A, Cammarota G. Current technologies for the endoscopic assessment of duodenal villous pattern in celiac disease. Comput Biol Med 2015; 65:308-14. [DOI: 10.1016/j.compbiomed.2015.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/08/2023]
|
13
|
Ianiro G, Gasbarrini A, Cammarota G. Endoscopic tools for the diagnosis and evaluation of celiac disease. World J Gastroenterol 2013; 19:8562-8570. [PMID: 24379573 PMCID: PMC3870501 DOI: 10.3748/wjg.v19.i46.8562] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is an autoimmune disease of the small bowel induced by ingestion of wheat, rye and barley. Current guidelines indicate histological analysis on at least four duodenal biopsies as the only way to diagnose CD. These indications are based on the conception of the inability of standard endoscopy to make diagnosis of CD and/or to drive biopsy sampling. Over the last years, technology development of endoscopic devices has greatly ameliorated the accuracy of macroscopic evaluation of duodenal villous pattern, increasing the diagnostic power of endoscopy of CD. The aim of this paper is to review the new endoscopic tools and procedures proved to be useful in the diagnosis of CD, such as chromoendoscopy, Fujinon Intelligent Chromo Endoscopy, Narrow Band Imaging, Optical Coherence Tomography, Water-Immersion Technique, confocal laser endomicroscopy, high-resolution magnification endoscopy, capsule endoscopy and I-Scan technology.
Collapse
|
14
|
Scanlon SA, Murray JA. Update on celiac disease - etiology, differential diagnosis, drug targets, and management advances. Clin Exp Gastroenterol 2011; 4:297-311. [PMID: 22235174 PMCID: PMC3254208 DOI: 10.2147/ceg.s8315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered by exposure to wheat gluten and similar proteins found in rye and barley that affects genetically susceptible persons. This immune-mediated enteropathy is characterized by villous atrophy, intraepithelial lymphocytosis, and crypt hyperplasia. Once thought a disease that largely presented with malnourished children, the wide spectrum of disease activity is now better recognized and this has resulted in a shift in the presenting symptoms of most patients with CD. New advances in testing, both serologic and endoscopic, have dramatically increased the detection and diagnosis of CD. While the gluten-free diet is still the only treatment for CD, recent investigations have explored alternative approaches, including the use of altered nonimmunogenic wheat variants, enzymatic degradation of gluten, tissue transglutaminase inhibitors, induction of tolerance, and peptides to restore integrity to intestinal tight junctions.
Collapse
|
15
|
Napp J, Mathejczyk JE, Alves F. Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatr Radiol 2011; 41:161-75. [PMID: 21221568 PMCID: PMC3032188 DOI: 10.1007/s00247-010-1907-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/20/2010] [Accepted: 10/10/2010] [Indexed: 12/30/2022]
Abstract
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue.
Collapse
Affiliation(s)
- Joanna Napp
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Julia E. Mathejczyk
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
16
|
The combined application of advanced endoscopic imaging techniques may increase the duodenal villous morphology definition in suspected celiac disease. Dig Liver Dis 2010; 42:595-6. [PMID: 20022569 DOI: 10.1016/j.dld.2009.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/15/2009] [Indexed: 12/11/2022]
|
17
|
Masci E, Mangiavillano B, Parma B, Mariani A. Avoiding duodenal endoscopic biopsies in celiac disease: Are we going forward or looking to the past? Dig Liver Dis 2010; 42:154-155. [DOI: 10.1016/j.dld.2009.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
18
|
Cucchiara S, Di Nardo G. Optical coherence tomography in children with coeliac disease. Dig Liver Dis 2009; 41:630-631. [PMID: 19576862 DOI: 10.1016/j.dld.2009.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Affiliation(s)
- S Cucchiara
- Pediatric Gastroenterology Endoscopy and Liver Unit, Department of Pediatrics, "Sapienza" University of Rome, University Hospital Umberto I, Rome, Italy.
| | | |
Collapse
|