1
|
Mackey AI, Fillinger RJ, Hendricks PS, Thomson GJ, Cuomo CA, Bennett RJ, Anderson MZ. Aneuploidy confers a unique transcriptional and phenotypic profile to Candida albicans. Nat Commun 2025; 16:3287. [PMID: 40189588 PMCID: PMC11973194 DOI: 10.1038/s41467-025-58457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Inaccurate chromosome segregation can lead to the formation of aneuploid cells that harbor an imbalanced complement of chromosomes. Several fungal species are not only able to tolerate the detrimental effects of aneuploidy but can use it to adapt to environmental pressures. The fungal pathobiont Candida albicans frequently acquires supernumerary chromosomes that enable growth in the presence of antifungal drugs or in specific host niches, yet the transcriptional changes associated with aneuploidy are not globally defined. Here, a karyotypically diverse set of C. albicans strains revealed that expression generally correlated with gene copy number regardless of the strain karyotype. Unexpectedly, aneuploid strains shared a characteristic transcriptional profile that was distinct from a generalized environmental stress response previously defined in aneuploid yeast cells. This aneuploid transcriptional response led to altered growth and oxidative balances relative to euploid control strains. The increased expression of reactive oxygen species (ROS) mitigating enzymes in aneuploid cells reduced the levels of ROS but caused an acute sensitivity to both internal and external sources of oxidative stress. Taken together, our work demonstrates common transcriptional and phenotypic features of aneuploid C. albicans cells with consequences for infection of different host niches and susceptibility to environmental stimuli.
Collapse
Affiliation(s)
- Anna I Mackey
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert J Fillinger
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - P Shane Hendricks
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Gregory J Thomson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Christina A Cuomo
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02412, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Genomic Science Innovation, University of Wisconsin - Madison, Madison, WI, 53706, USA.
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| |
Collapse
|
2
|
Ibarra-Arellano MA, Caprio LA, Hada A, Stotzem N, Cai LL, Shah SB, Walsh ZH, Melms JC, Wünneman F, Bestak K, Mansaray I, Izar B, Schapiro D. micronuclAI enables automated quantification of micronuclei for assessment of chromosomal instability. Commun Biol 2025; 8:361. [PMID: 40038430 PMCID: PMC11880189 DOI: 10.1038/s42003-025-07796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN may result from chromosome mis-segregation errors and excessive chromatin is frequently packaged in micronuclei (MN), which can be enumerated to quantify CIN. The assessment of CIN remains a predominantly manual and time-consuming task. Here, we present micronuclAI, a pipeline for automated and reliable quantification of MN of varying size and morphology in cells stained only for DNA. micronuclAI can achieve close to human-level performance on various human and murine cancer cell line datasets. The pipeline achieved a Pearson's correlation of 0.9278 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and on several publicly available image datasets where we achieved a Pearson's correlation of 0.9620. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on images that are routinely obtained for research purposes. We release a GUI-implementation for easy access and utilization of the pipeline.
Collapse
Affiliation(s)
- Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Lindsay A Caprio
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aroj Hada
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- AI-Health Innovation Cluster, Heidelberg, Germany
| | - Niklas Stotzem
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of AI for Health, Helmholtz Munich, Neuherberg, Germany
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Luke L Cai
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shivem B Shah
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zachary H Walsh
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Florian Wünneman
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Kresimir Bestak
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ibrahim Mansaray
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University Vagelos College of Physician and Surgeons, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Heidelberg, Germany.
- AI-Health Innovation Cluster, Heidelberg, Germany.
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Spatial Profiling Center (TSPC), Heidelberg, Germany.
| |
Collapse
|
3
|
Goncharov N, Baklanov I, Gulaia V, Shuliak A, Lanskikh D, Zhmenia V, Shmelev M, Shved N, Wu J, Liskovykh M, Larionov V, Kouprina N, Kumeiko V. Therapy enhancing chromosome instability may be advantageous for IDH1 R132H/WT gliomas. NAR Cancer 2025; 7:zcaf003. [PMID: 39949830 PMCID: PMC11822378 DOI: 10.1093/narcan/zcaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Recently revised brain tumor classification suggested a glioma treatment strategy that takes into consideration molecular variants in IDH1 and TP53 marker genes. While pathogenic variants of IDH1 and TP53 can be accompanied by chromosomal instability (CIN), the impact of IDH1 and TP53 mutations on genome stability remains unstudied. Elevated CIN might provide therapeutic targets, based on synergistic effects of chemotherapy with CIN-inducing drugs. Using an assay based on human artificial chromosomes, we investigated the impact of common glioma missense mutations in IDH1 and TP53 on chromosome transmission and demonstrated that IDH1R132H and TP53R248Q variants elevate CIN. We next found enhanced CIN levels and the sensitivity of IDH1 R132H/WT and TP53 R248Q/R248Q genotypes, introduced into U87 MG glioma cells by CRISPR/Cas9, to different drugs, including conventional temozolomide. It was found that U87 MG cells carrying IDH1 R132H/WT exhibit dramatic sensitivity to paclitaxel, which was independently confirmed on cell cultures derived from patients with naturally occurring IDH1 R132H/WT. Overall, our results suggest that the development of CIN-enhancing therapy for glioma tumors with the IDH1 R132H/WT genotype could be advantageous for adjuvant treatment.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Ivan N Baklanov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia S Gulaia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Anastasiia P Shuliak
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Daria V Lanskikh
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia M Zhmenia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Mikhail E Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Nikita A Shved
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Jing Wu
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vadim V Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
4
|
Gonçalves MWA, Maciel TF, Lavareze L, Egal ESA, Altemani A, Sperandio M, Mariano FV. Insights into the use of DNA content in head and neck squamous cell carcinoma as a method for patient stratification and targeted therapy: Revisiting old concepts and exploring new possibilities. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102260. [PMID: 39862962 DOI: 10.1016/j.jormas.2025.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND This review aimed to emphasize the implications of DNA content in head and neck squamous cell carcinoma (HNSCC), focusing on its predictive value, role in patient stratification, and potential as a therapeutic target for this malignancy. METHODS A narrative review of the literature was conducted through electronic database searches. RESULTS In conventional HNSCC, aneuploid tumors are associated with increased lymph node metastasis, locoregional recurrences, poor response to radiotherapy and chemotherapy, and worse prognosis. Few studies specifically address the role of DNA content in young HNSCC patients. These studies reveal that young patients exhibit high DNA content abnormalities, suggesting significant genomic instability and potential genetic differences compared to older patients. Regarding HPV and DNA content, no difference was found between HPV-associated and HPV-independent tumors. More research is needed to understand the role of DNA content in histological subtypes, surgical margins, and targeted therapy. CONCLUSION This review highlights the findings related to DNA content in HNSCC, suggesting its usefulness in patient stratification and outcome prediction.
Collapse
Affiliation(s)
- Moisés Willian Aparecido Gonçalves
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Tayná Figueiredo Maciel
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, Utah, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Sperandio
- Department of Oral Medicine and Pathology, Faculdade São Leopoldo Mandic, Research Institute, Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Yoon JH, Kim JK, Eun JW, Ashktorab H, Smoot DT, Nam SW, Park WS. NKX6.3 modulation of mitotic dynamics and genomic stability in gastric carcinogenesis. Cell Commun Signal 2025; 23:35. [PMID: 39833908 PMCID: PMC11748348 DOI: 10.1186/s12964-025-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Gastric cancer remains a significant global health challenge, characterized by poor prognosis and high mortality rates. Mitotic integrity and genomic stability are crucial in maintaining cellular homeostasis and preventing tumorigenesis. The transcription factor NKX6.3 has emerged as a potential regulator of these processes in gastric epithelial cells, prompting an investigation into its role in gastric cancer development. METHODS We employed a combination of in vitro and in vivo techniques to elucidate the impact of NKX6.3 depletion on mitotic dynamics and genomic stability in gastric epithelial cells. Quantitative real-time PCR and Western blot analyses were conducted to assess the expression of mitosis-related genes and proteins. Flow cytometry was utilized to evaluate cell cycle distribution, while immunofluorescence microscopy enabled the visualization of mitotic abnormalities. Statistical analyses, including Student's t-test and ANOVA, were performed to determine the significance of our findings. RESULTS Our results demonstrate that NKX6.3 depletion leads to significant mitotic defects, characterized by increased chromosome misalignment and lagging chromosomes during anaphase. These abnormalities corresponded with elevated levels of genomic instability markers, indicating compromised genomic integrity. Furthermore, the loss of NKX6.3 resulted in altered expression of key regulatory proteins involved in mitosis and DNA repair pathways, suggesting a mechanistic link between NKX6.3 and the maintenance of genomic stability in gastric epithelial cells. Depletion of NKX6.3 resulted in accelerated cell cycle progression and the formation of abnormal mitotic figures, leading to genomic instability characterized by increased DNA content and structural abnormalities. In both in vitro and xenograft models, the depletion of NKX6.3 significantly upregulated AurkA and TPX2, which correlated with gains in DNA copy number. An inverse relationship was observed between NKX6.3 expression and the levels of AurkA and TPX2 in human gastric cancer tissues. CONCLUSIONS This study highlights the essential role of NKX6.3 in regulating mitotic integrity and genomic stability in gastric carcinogenesis. The findings suggest that targeting NKX6.3 may offer a novel therapeutic strategy for improving treatment outcomes in gastric cancer by restoring mitotic fidelity and genomic stability. TRIAL REGISTRATION This study was not registered.
Collapse
Affiliation(s)
- Jung Hwan Yoon
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Jeong-Kyu Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, District of Columbia, Washington, 20060, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN, 37208, USA
| | - Suk Woo Nam
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea
| | - Won Sang Park
- Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
6
|
Mukhwana N, Garg R, Azad A, Mitchell AR, Williamson M. B-type Plexins Regulate Mitosis via RanGTPase. Mol Cancer Res 2025; 23:8-19. [PMID: 39136653 DOI: 10.1158/1541-7786.mcr-23-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 01/03/2025]
Abstract
Aberrant mitosis can result in aneuploidy and cancer. The small GTPase, Ras-related nuclear protein (Ran), is a key regulator of mitosis. B-type plexins regulate Ran activity by acting as RanGTPase-activating proteins and have been implicated in cancer progression. However, whether B-type plexins have a role in mitosis has not so far been investigated. We show here that Plexin B1 functions in the control of mitosis. Depletion of Plexin B1 affects mitotic spindle assembly, significantly delaying anaphase. This leads to mitotic catastrophe in some cells and prolonged application of the spindle assembly checkpoint. Plexin B1 depletion also promoted acentrosomal microtubule nucleation and defects in spindle pole refocusing and increased the number of cells with multipolar or aberrant mitotic spindles. An increase in lagging chromosomes or chromosomal bridges at anaphase was also found upon Plexin B1 depletion. Plexin B1 localizes to the mitotic spindle in dividing cells. The mitotic defects observed upon Plexin B1 depletion were rescued by an RCC1 inhibitor, indicating that Plexin B1 signals, via Ran, to affect mitosis. These errors in mitosis generated multinucleate cells and nuclei of altered morphology and abnormal karyotype. Furthermore, semaphorin 4D treatment increased the percentage of cells with micronuclei, precursors of chromothripsis. Implications: Defects in B-type plexins may contribute to the well-established role of plexins in cancer progression by inducing chromosomal instability.
Collapse
Affiliation(s)
- Nicholus Mukhwana
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ritu Garg
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Abul Azad
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexandria R Mitchell
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Magali Williamson
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Chen X, Agustinus AS, Li J, DiBona M, Bakhoum SF. Chromosomal instability as a driver of cancer progression. Nat Rev Genet 2025; 26:31-46. [PMID: 39075192 DOI: 10.1038/s41576-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Chromosomal instability (CIN) refers to an increased propensity of cells to acquire structural and numerical chromosomal abnormalities during cell division, which contributes to tumour genetic heterogeneity. CIN has long been recognized as a hallmark of cancer, and evidence over the past decade has strongly linked CIN to tumour evolution, metastasis, immune evasion and treatment resistance. Until recently, the mechanisms by which CIN propels cancer progression have remained elusive. Beyond the generation of genomic copy number heterogeneity, recent work has unveiled additional tumour-promoting consequences of abnormal chromosome segregation. These mechanisms include complex chromosomal rearrangements, epigenetic reprogramming and the induction of cancer cell-intrinsic inflammation, emphasizing the multifaceted role of CIN in cancer.
Collapse
Affiliation(s)
- Xuelan Chen
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert S Agustinus
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Prost-Boxoen L, Bafort Q, Van de Vloet A, Almeida-Silva F, Paing YT, Casteleyn G, D’hondt S, De Clerck O, de Peer YV. Asymmetric genome merging leads to gene expression novelty through nucleo-cytoplasmic disruptions and transcriptomic shock in Chlamydomonas triploids. THE NEW PHYTOLOGIST 2025; 245:869-884. [PMID: 39501615 PMCID: PMC7616817 DOI: 10.1111/nph.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Genome merging is a common phenomenon causing a wide range of consequences on phenotype, adaptation, and gene expression, yet its broader implications are not well-understood. Two consequences of genome merging on gene expression remain particularly poorly understood: dosage effects and evolution of expression. We employed Chlamydomonas reinhardtii as a model to investigate the effects of asymmetric genome merging by crossing a diploid with a haploid strain to create a novel triploid line. Five independent clonal lineages derived from this triploid line were evolved for 425 asexual generations in a laboratory natural selection experiment. Utilizing fitness assays, flow cytometry, and RNA-Seq, we assessed the immediate consequences of genome merging and subsequent evolution. Our findings reveal substantial alterations in genome size, gene expression, protein homeostasis, and cytonuclear stoichiometry. Gene expression exhibited expression-level dominance and transgressivity (i.e. expression level higher or lower than either parent). Ongoing expression-level dominance and a pattern of 'functional dominance' from the haploid parent was observed. Despite major genomic and nucleo-cytoplasmic disruptions, enhanced fitness was detected in the triploid strain. By comparing gene expression across generations, our results indicate that proteostasis restoration is a critical component of rapid adaptation following genome merging in Chlamydomonas reinhardtii and possibly other systems.
Collapse
Affiliation(s)
- Lucas Prost-Boxoen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Antoine Van de Vloet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yunn Thet Paing
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Griet Casteleyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Department of Biology, Ghent University, Ghent, Belgium
| | | | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Qi H, Cao M, Chen Y, Li X, Wang Y, Dai X, Duan X, Lu J. KNTC1 functions as a potential biomarker and oncogene regulating proliferation, migration and apoptosis in gastric cancer. Int Immunopharmacol 2024; 143:113257. [PMID: 39362011 DOI: 10.1016/j.intimp.2024.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND As one of the most prevalent cancers, gastric cancer (GC) exhibits a remarkably high morbidity and mortality rate. To date, effective diagnostic and prognostic markers and therapeutic targets for GC are still lacking. Kinetochore associated 1 (KNTC1) is one of the proteins involved in chromosome segregation. However, the diagnostic and prognostic value of KNTC1 and its biological function in GC remain unknown. METHODS In this study, Gene Expression Omnibus (GEO) datasets were utilized to identify differentially expressed genes (DEGs). Prognostic and diagnostic value were assessed by Kaplan-Meier plotter and receiver operating characteristic (ROC) curve. The expression of KNTC1 was verified by q-PCR, immunohistochemistry (IHC) and Western blotting. Subsequently, KNTC1 knockdown was employed to investigate its effect on GC cells. Gene set enrichment analysis (GSEA) revealed a pathway regulated by KNTC1, which was further verified by Western blotting. RESULTS Four highly expressed genes (ESPL1, RAD54L, KNTC1, TACC3) were identified as biomarkers for GC diagnosis and prognosis. Notably, the value of KNTC1 as a biomarker for GC was newly revealed. Single-cell and immune analyses revealed that KNTC1 contributed to the suppression of the GC immune microenvironment. In clinical samples, we demonstrated high expression of KNTC1 in GC tissues. KNTC1 knockdown suppressed proliferation and migration while promoting apoptosis of GC cells. Additionally, KNTC1 may affect GC cells by regulating the PI3K/Akt/mTOR pathway. CONCLUSIONS KNTC1 acts as a potential diagnostic and prognostic marker for GC. It may promote proliferation and migration while inhibiting apoptosis of GC cells via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yanan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoya Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yingfei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
10
|
Patkar S, Mannheimer J, Harmon SA, Ramirez CJ, Mazcko CN, Choyke PL, Brown GT, Turkbey B, LeBlanc AK, Beck JA. Large-Scale Comparative Analysis of Canine and Human Osteosarcomas Uncovers Conserved Clinically Relevant Tumor Microenvironment Subtypes. Clin Cancer Res 2024; 30:5630-5642. [PMID: 39412757 DOI: 10.1158/1078-0432.ccr-24-1854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE Osteosarcoma is an aggressive bone cancer lacking robust biomarkers for personalized treatment. Despite its scarcity in humans, it is relatively common in adult pet dogs. This study aimed to analyze clinically annotated bulk tumor transcriptomic datasets of canine and patients with human osteosarcoma to identify potentially conserved patterns of disease progression. EXPERIMENTAL DESIGN Bulk transcriptomic data from 245 pet dogs with treatment-naïve appendicular osteosarcoma were analyzed using deconvolution to characterize the tumor microenvironment (TME). The TME of both primary and metastatic tumors derived from the same dog was compared, and its impact on canine survival was assessed. A machine learning model was developed to classify the TME based on its inferred composition using canine tumor data. This model was applied to eight independent human osteosarcoma datasets to assess its generalizability and prognostic value. RESULTS This study found three distinct TME subtypes of canine osteosarcoma based on cell type composition of bulk tumor samples: immune enriched, immune enriched dense extracellular matrix-like, and immune desert. These three TME-based subtypes of canine osteosarcomas were conserved in humans and could predict progression-free survival outcomes of human patients, independent of conventional prognostic factors such as percent tumor necrosis post standard of care chemotherapy treatment and disease stage at diagnosis. CONCLUSIONS These findings demonstrate the potential of leveraging data from naturally occurring cancers in canines to model the complexity of the human osteosarcoma TME, offering a promising avenue for the discovery of novel biomarkers and developing more effective precision oncology treatments.
Collapse
Affiliation(s)
- Sushant Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Christina J Ramirez
- Molecular Histopathology Laboratory, Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina N Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Gregory Thomas Brown
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jessica A Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
11
|
Zhao J, Zhang H, Pan C, He Q, Zheng K, Tang Y. Advances in research on the relationship between the LMNA gene and human diseases (Review). Mol Med Rep 2024; 30:236. [PMID: 39422026 PMCID: PMC11529173 DOI: 10.3892/mmr.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA‑related diseases and additional theoretical insights for basic and clinical translational research in this field.
Collapse
Affiliation(s)
- Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Huijuan Zhang
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chenglong Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian He
- School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
12
|
Leem J, Gowett M, Bolarinwa S, Mogessie B. On the origin of mitosis-derived human embryo aneuploidy. Nat Commun 2024; 15:10391. [PMID: 39613785 DOI: 10.1038/s41467-024-54953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Affiliation(s)
- Jiyeon Leem
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Madison Gowett
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sarah Bolarinwa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Risteski P, Martinčić J, Jagrić M, Tintor E, Petelinec A, Tolić IM. Microtubule poleward flux as a target for modifying chromosome segregation errors. Proc Natl Acad Sci U S A 2024; 121:e2405015121. [PMID: 39541344 PMCID: PMC11588092 DOI: 10.1073/pnas.2405015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or codepletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubule growth rates. Instead, speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue certain mitotic errors in cancer cells.
Collapse
Affiliation(s)
- Patrik Risteski
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Jelena Martinčić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Mihaela Jagrić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Erna Tintor
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Ana Petelinec
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Iva M. Tolić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| |
Collapse
|
14
|
Joo YK, Ramirez C, Kabeche L. A TRilogy of ATR's Non-Canonical Roles Throughout the Cell Cycle and Its Relation to Cancer. Cancers (Basel) 2024; 16:3536. [PMID: 39456630 PMCID: PMC11506335 DOI: 10.3390/cancers16203536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Ataxia Telangiectasia and Rad3-related protein (ATR) is an apical kinase of the DNA Damage Response (DDR) pathway responsible for detecting and resolving damaged DNA. Because cancer cells depend heavily on the DNA damage checkpoint for their unchecked proliferation and propagation, ATR has gained enormous popularity as a cancer therapy target in recent decades. Yet, ATR inhibitors have not been the silver bullets as anticipated, with clinical trials demonstrating toxicity and mixed efficacy. To investigate whether the toxicity and mixed efficacy of ATR inhibitors arise from their off-target effects related to ATR's multiple roles within and outside the DDR pathway, we have analyzed recently published studies on ATR's non-canonical roles. Recent studies have elucidated that ATR plays a wide role throughout the cell cycle that is separate from its function in the DDR. This includes maintaining nuclear membrane integrity, detecting mechanical forces, and promoting faithful chromosome segregation during mitosis. In this review, we summarize the canonical, DDR-related roles of ATR and also focus on the non-canonical, multifaceted roles of ATR throughout the cell cycle and their clinical relevance. Through this summary, we also address the need for re-assessing clinical strategies targeting ATR as a cancer therapy based on these newly discovered roles for ATR.
Collapse
Affiliation(s)
- Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Carlos Ramirez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
15
|
Requesens M, Foijer F, Nijman HW, de Bruyn M. Genomic instability as a driver and suppressor of anti-tumor immunity. Front Immunol 2024; 15:1462496. [PMID: 39544936 PMCID: PMC11562473 DOI: 10.3389/fimmu.2024.1462496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Genomic instability is a driver and accelerator of tumorigenesis and influences disease outcomes across cancer types. Although genomic instability has been associated with immune evasion and worsened disease prognosis, emerging evidence shows that genomic instability instigates pro-inflammatory signaling and enhances the immunogenicity of tumor cells, making them more susceptible to immune recognition. While this paradoxical role of genomic instability in cancer is complex and likely context-dependent, understanding it is essential for improving the success rates of cancer immunotherapy. In this review, we provide an overview of the underlying mechanisms that link genomic instability to pro-inflammatory signaling and increased immune surveillance in the context of cancer, as well as discuss how genomically unstable tumors evade the immune system. A better understanding of the molecular crosstalk between genomic instability, inflammatory signaling, and immune surveillance could guide the exploitation of immunotherapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Marta Requesens
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hans W. Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
17
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Sako K, Furukawa A, Nozawa RS, Kurita JI, Nishimura Y, Hirota T. Bipartite binding interface recruiting HP1 to chromosomal passenger complex at inner centromeres. J Cell Biol 2024; 223:e202312021. [PMID: 38781028 PMCID: PMC11116813 DOI: 10.1083/jcb.202312021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Maintenance of ploidy depends on the mitotic kinase Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC) whose proficient activity is supported by HP1 enriched at inner centromeres. HP1 is known to associate with INCENP of the CPC in a manner that depends on the PVI motif conserved across HP1 interactors. Here, we found that the interaction of INCENP with HP1 requires not only the PVI motif but also its C-terminally juxtaposed domain. Remarkably, these domains conditionally fold the β-strand (PVI motif) and the α-helix from a disordered sequence upon HP1 binding and render INCENP with high affinity to HP1. This bipartite binding domain termed SSH domain (Structure composed of Strand and Helix) is necessary and sufficient to attain a predominant interaction of HP1 with INCENP. These results identify a unique HP1-binding module in INCENP that ensures enrichment of HP1 at inner centromeres, Aurora B activity, and thereby mitotic fidelity.
Collapse
Affiliation(s)
- Kosuke Sako
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun-ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
19
|
Sun M, Yang B, Xin G, Wang Y, Luo J, Jiang Q, Zhang C. TIP60 acetylation of Bub1 regulates centromeric H2AT120 phosphorylation for faithful chromosome segregation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1957-1969. [PMID: 38763998 DOI: 10.1007/s11427-023-2604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Proper function of the centromeres ensures correct attachment of kinetochores to spindle microtubules and faithful chromosome segregation in mitosis. Defects in the integrity and function of centromeres can result in chromosome missegregation and genomic instability. Bub1 is essential for the mitotic centromere dynamics, yet the underlying molecular mechanisms remain largely unclear. Here, we demonstrate that TIP60 acetylates Bub1 at K424 and K431 on kinetochores in early mitosis. This acetylation increases the kinase activity of Bub1 to phosphorylate centromeric histone H2A at T120 (H2ApT120), which recruits Aurora B and Shugoshin 1 (Sgo1) to regulate centromere integrity, protect centromeric cohesion, and ensure the subsequent faithful chromosome segregation. Expression of the non-acetylated Bub1 mutant reduces its kinase activity, decreases the level of H2ApT120, and disrupts the recruitment of centromere proteins and chromosome congression, leading to genomic instability of daughter cells. When cells exit mitosis, HDAC1-regulated deacetylation of Bub1 decreases H2ApT120 levels and thereby promotes the departure of centromeric CPC and Sgo1, ensuring timely centromeres disassembly. Collectively, our results reveal a molecular mechanism by which the acetylation and deacetylation cycle of Bub1 modulates the phosphorylation of H2A at T120 for recruitment of Aurora B and Sgo1 to the centromeres, ensuring faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mengjie Sun
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Biying Yang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yao Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jia Luo
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chuanmao Zhang
- The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Lee J, Kida K, Koh J, Liu H, Manyam GC, Gi YJ, Rampa DR, Multani AS, Wang J, Jayachandran G, Lee DW, Reuben JM, Sahin A, Huo L, Tripathy D, Im SA, Ueno NT. The DNA repair pathway as a therapeutic target to synergize with trastuzumab deruxtecan in HER2-targeted antibody-drug conjugate-resistant HER2-overexpressing breast cancer. J Exp Clin Cancer Res 2024; 43:236. [PMID: 39164784 PMCID: PMC11337831 DOI: 10.1186/s13046-024-03143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Anti-HER2 therapies, including the HER2 antibody-drug conjugates (ADCs) trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), have led to improved survival outcomes in patients with HER2-overexpressing (HER2+) metastatic breast cancer. However, intrinsic or acquired resistance to anti-HER2-based therapies remains a clinical challenge in these patients, as there is no standard of care following disease progression. The purpose of this study was to elucidate the mechanisms of resistance to T-DM1 and T-DXd in HER2+ BC patients and preclinical models and identify targets whose inhibition enhances the antitumor activity of T-DXd in HER2-directed ADC-resistant HER2+ breast cancer in vitro and in vivo. METHODS Targeted DNA and whole transcriptome sequencing were performed in breast cancer patient tissue samples to investigate genetic aberrations that arose after anti-HER2 therapy. We generated T-DM1 and T-DXd-resistant HER2+ breast cancer cell lines. To elucidate their resistance mechanisms and to identify potential synergistic kinase targets for enhancing the efficacy of T-DXd, we used fluorescence in situ hybridization, droplet digital PCR, Western blotting, whole-genome sequencing, cDNA microarray, and synthetic lethal kinome RNA interference screening. In addition, cell viability, colony formation, and xenograft assays were used to determine the synergistic antitumor effect of T-DXd combinations. RESULTS We found reduced HER2 expression in patients and amplified DNA repair-related genes in patients after anti-HER2 therapy. Reduced ERBB2 gene amplification in HER2-directed ADC-resistant HER2+ breast cancer cell lines was through DNA damage and epigenetic mechanisms. In HER2-directed ADC-resistant HER2+ breast cancer cell lines, our non-biased RNA interference screening identified the DNA repair pathway as a potential target within the canonical pathways to enhance the efficacy of T-DXd. We validated that the combination of T-DXd with ataxia telangiectasia and Rad3-related inhibitor, elimusertib, led to significant breast cancer cell death in vitro (P < 0.01) and in vivo (P < 0.01) compared to single agents. CONCLUSIONS The DNA repair pathways contribute to HER2-directed ADC resistance. Our data justify exploring the combination treatment of T-DXd with DNA repair-targeting drugs to treat HER2-directed ADC-resistant HER2+ breast cancer in clinical trials.
Collapse
Affiliation(s)
- Jangsoon Lee
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA.
- Present address: Cancer Biology Program, University of Hawai'I Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Kumiko Kida
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Present address: Department of Breast Surgical Oncology, St. Luke's International Hospital, 9-1, Akashicho, Chuouku, Tokyo, 104-8560, Japan
| | - Jiwon Koh
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Huey Liu
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Young Jin Gi
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA
| | - Dileep R Rampa
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA
| | - Asha S Multani
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dae-Won Lee
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro Jongro-Gu, Seoul, 03080, Republic of Korea
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro Jongro-Gu, Seoul, 03080, Republic of Korea.
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research and Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Biology and Therapeutics, University of Hawai'I Cancer Center, 701 Ilalo Street, Room 622, Honolulu, HI, 96813, USA.
| |
Collapse
|
22
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. Involvement of multiple epigenetic mechanisms by altered DNA methylation from the early stage of renal carcinogenesis before proliferative lesion formation upon repeated administration of ochratoxin A. Toxicology 2024; 506:153875. [PMID: 38945198 DOI: 10.1016/j.tox.2024.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a rat renal carcinogen that induces karyomegaly and micronuclei in proximal tubular epithelial cells (PTECs). We previously performed comprehensive gene profiling of alterations in promoter-region methylation and gene expression in PTECs of rats treated with OTA for 13 weeks. The OTA-specific gene profile was obtained by excluding genes showing expression changes similar to those upon treatment with 3-chloro-1,2-propanediol, a renal carcinogen not inducing karyomegaly. In this study, we validated the candidate genes using methylated DNA enrichment PCR and real-time RT-PCR, and identified Gen1, Anxa3, Cdkn1a, and Osm as genes showing OTA-specific epigenetic changes. These genes and related molecules were subjected to gene expression and immunohistochemical analyses in the PTECs of rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. Cdkn1a upregulation and increase of p21WAF1/CIP1+ karyomegalic PTECs were observed with OTA, matching the findings associated with micronucleus-inducing carcinogens. This suggested that the increase of p21WAF1/CIP1+ karyomegalic PTECs is linked to micronucleus formation, which in turn accelerates chromosomal instability. The upregulation of Cdkn1a-related genes with OTA suggests the acquisition of a senescence-associated secretory phenotype, which promotes the establishment of a carcinogenic environment. Meanwhile, OTA specifically caused a decrease of GEN1+ PTECs reflecting Gen1 downregulation and an increase of ANXA3+ PTECs reflecting Anxa3 upregulation, as well as Osm upregulation. OTA may efficiently disrupt pathways for repairing the DNA double-strand breaks that it itself causes, via Gen1 downregulation, and enhance cell proliferation through the upregulation of Anxa3 and Osm. This may exacerbate the chromosomal instability from the early stage of OTA-induced renal carcinogenesis before proliferative lesions form. OTA may cause renal carcinogenesis involving multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
23
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
24
|
Goulart MB, Vieira Neto E, Garcia DRN, Guimarães MM, de Paiva IS, de Ferran K, dos Santos NCK, Barbosa LS, de Figueiredo AF, Ribeiro MCM, Ribeiro MG. Cell Cycle Kinetics and Sister Chromatid Exchange in Mosaic Turner Syndrome. Life (Basel) 2024; 14:848. [PMID: 39063601 PMCID: PMC11278208 DOI: 10.3390/life14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Turner syndrome (TS) is caused by a complete or partial absence of an X or Y chromosome, including chromosomal mosaicism, affecting 1 in 2500 female live births. Sister chromatid exchange (SCE) is used as a sensitive indicator of spontaneous chromosome instability. Cells from mosaic patients constitute useful material for SCE evaluations as they grow under the influence of the same genetic background and endogenous and exogenous factors. We evaluated the proliferation dynamics and SCE frequencies of 45,X and 46,XN cells of 17 mosaic TS patients. In two participants, the 45,X cells exhibited a proliferative disadvantage in relation to 46,XN cells after 72 h of cultivation. The analysis of the mean proliferation index (PI) showed a trend for a significant difference between the 45,X and 46,X+der(X)/der(Y) cell lineages; however, there were no intra-individual differences. On the other hand, mean SCE frequencies showed that 46,X+der(X) had the highest mean value and 46,XX the lowest, with 45,X occupying an intermediate position among the lineages found in at least three participants; moreover, there were intra-individual differences in five patients. Although 46,X+der(X)/der(Y) cell lineages, found in more than 70% of participants, were the most unstable, they had a slightly higher mean PI than the 45,X cell lineages in younger (≤17 years) mosaic TS participants. This suggests that cells with a karyotype distinct from 45,X may increase with time in mosaic TS children and adolescents.
Collapse
Affiliation(s)
- Miriam Beatriz Goulart
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Daniela R. Ney Garcia
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Marília Martins Guimarães
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | - Isaías Soares de Paiva
- Faculty of Medicine, University of Grande Rio (Unigranrio), Duque de Caxias 25071-202, RJ, Brazil;
- Faculty of Medicine, Serra dos Órgãos Educational Center (UNIFESO), Teresópolis 25964-004, RJ, Brazil
| | - Karina de Ferran
- Pediatric Endocrinology Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil; (M.M.G.); (K.d.F.); (N.C.K.d.S.)
| | | | - Luciana Santos Barbosa
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Amanda F. de Figueiredo
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
| | - Maria Cecília Menks Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- NUMPEX-BIO Laboratory, Campus Duque de Caxias, UFRJ, Duque de Caxias 25240-005, RJ, Brazil
| | - Márcia Gonçalves Ribeiro
- Laboratory of Genetics, Institute of Childcare and Pediatrics Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-912, RJ, Brazil; (M.B.G.); (D.R.N.G.); (A.F.d.F.); (M.C.M.R.); (M.G.R.)
- Medical Genetics Service, IPPMG, UFRJ, Rio de Janeiro 21941-912, RJ, Brazil
| |
Collapse
|
25
|
Klockner TC, Campbell CS. Selection forces underlying aneuploidy patterns in cancer. Mol Cell Oncol 2024; 11:2369388. [PMID: 38919375 PMCID: PMC11197905 DOI: 10.1080/23723556.2024.2369388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Aneuploidy, the presence of an aberrant number of chromosomes, has been associated with tumorigenesis for over a century. More recently, advances in karyotyping techniques have revealed its high prevalence in cancer: About 90% of solid tumors and 50-70% of hematopoietic cancers exhibit chromosome gains or losses. When analyzed at the level of specific chromosomes, there are strong patterns that are observed in cancer karyotypes both pan-cancer and for specific cancer types. These specific aneuploidy patterns correlate strongly with outcomes for tumor initiation, progression, metastasis formation, immune evasion and resistance to therapeutic treatment. Despite their prominence, understanding the basis underlying aneuploidy patterns in cancer has been challenging. Advances in genetic engineering and bioinformatic analyses now offer insights into the genetic determinants of aneuploidy pattern selection. Overall, there is substantial evidence that expression changes of particular genes can act as the positive selective forces for adaptation through aneuploidy. Recent findings suggest that multiple genes contribute to the selection of specific aneuploid chromosomes in cancer; however, further research is necessary to identify the most impactful driver genes. Determining the genetic basis and accompanying vulnerabilities of specific aneuploidy patterns is an essential step in selectively targeting these hallmarks of tumors.
Collapse
Affiliation(s)
- Tamara C. Klockner
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
- A Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Christopher S. Campbell
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
27
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
28
|
Ibarra-Arellano MA, Caprio LA, Hada A, Stotzem N, Cai L, Shah S, Melms JC, Wünneman F, Izar B, Schapiro D. micronuclAI: Automated quantification of micronuclei for assessment of chromosomal instability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595722. [PMID: 38854106 PMCID: PMC11160592 DOI: 10.1101/2024.05.24.595722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.
Collapse
|
29
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Huang H, Kung FL, Huang YW, Hsu CC, Guh JH, Hsu LC. Sensitization of cancer cells to paclitaxel-induced apoptosis by canagliflozin. Biochem Pharmacol 2024; 223:116140. [PMID: 38513740 DOI: 10.1016/j.bcp.2024.116140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.
Collapse
Affiliation(s)
- Haoning Huang
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan
| | - Fan-Lu Kung
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan
| | - Yu-Wen Huang
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan
| | - Chun-Chien Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Taipei 10050, Taiwan.
| |
Collapse
|
31
|
Saraceno C, Timoshevskiy VA, Smith JJ. Functional analyses of the polycomb-group genes in sea lamprey embryos undergoing programmed DNA loss. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:260-270. [PMID: 37902302 DOI: 10.1002/jez.b.23225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
During early development, sea lamprey embryos undergo programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline-specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact of gene knockouts on early development and the progression through stages of DNA elimination. Analysis of knockout embryos for the core PRC2 subunits EZH, SUZ12, and EED show that disruption of all three genes results in an increase in micronucleus number, altered distribution of micronuclei within embryos, and an increase in micronucleus volume in mutant embryos. While the upstream events of DNA elimination are not strongly impacted by loss of PRC2 components, this study suggests that PRC2 plays a role in the later stages of elimination related to micronucleus condensation and degradation. These findings also suggest that other genes/epigenetic pathways may work in parallel during DNA elimination to mediate chromatin structure, accessibility, and the ultimate loss of germline-specific DNA.
Collapse
Affiliation(s)
- Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Kuzmin E, Baker TM, Van Loo P, Glass L. Dynamics of karyotype evolution. CHAOS (WOODBURY, N.Y.) 2024; 34:051502. [PMID: 38717409 PMCID: PMC11068413 DOI: 10.1063/5.0206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.
Collapse
Affiliation(s)
| | - Toby M. Baker
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
33
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
34
|
Aldana-Salazar F, Rangel N, Rodríguez MJ, Baracaldo C, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Damage, Chromosome Instability, and Polymorphisms in GSTP1 and XRCC1 as Biomarkers of Effect and Susceptibility in Farmers Exposed to Pesticides. Int J Mol Sci 2024; 25:4167. [PMID: 38673753 PMCID: PMC11050655 DOI: 10.3390/ijms25084167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the GSTP1 and XRCC1 genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous GSTP1 AG and XRCC1 (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the GSTP1 and XRCC1 genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.
Collapse
Affiliation(s)
- Fernando Aldana-Salazar
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María José Rodríguez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| | - César Baracaldo
- Doctoral Program in Biological and Environmental Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia;
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia;
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| |
Collapse
|
35
|
Dvorkin S, Cambier S, Volkman HE, Stetson DB. New frontiers in the cGAS-STING intracellular DNA-sensing pathway. Immunity 2024; 57:718-730. [PMID: 38599167 PMCID: PMC11013568 DOI: 10.1016/j.immuni.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.
Collapse
Affiliation(s)
- Steve Dvorkin
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Stephanie Cambier
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hannah E Volkman
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Daniel B Stetson
- Departments of Immunology and Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Mallick S, Choi Y, Taylor AM, Cosper PF. Human Papillomavirus-Induced Chromosomal Instability and Aneuploidy in Squamous Cell Cancers. Viruses 2024; 16:501. [PMID: 38675844 PMCID: PMC11053578 DOI: 10.3390/v16040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.
Collapse
Affiliation(s)
- Samyukta Mallick
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Yeseo Choi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alison M. Taylor
- Department of Pathology and Cell Biology at the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
37
|
Giulietti M, Piva F, Cecati M, Maggio S, Guescini M, Saladino T, Scortichini L, Crocetti S, Caramanti M, Battelli N, Romagnoli E. Effects of Eribulin on the RNA Content of Extracellular Vesicles Released by Metastatic Breast Cancer Cells. Cells 2024; 13:479. [PMID: 38534323 PMCID: PMC10969587 DOI: 10.3390/cells13060479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs) are small lipid particles secreted by almost all human cells into the extracellular space. They perform the essential function of cell-to-cell communication, and their role in promoting breast cancer progression has been well demonstrated. It is known that EVs released by triple-negative and highly aggressive MDA-MB-231 breast cancer cells treated with paclitaxel, a microtubule-targeting agent (MTA), promoted chemoresistance in EV-recipient cells. Here, we studied the RNA content of EVs produced by the same MDA-MB-231 breast cancer cells treated with another MTA, eribulin mesylate. In particular, we analyzed the expression of different RNA species, including mRNAs, lncRNAs, miRNAs, snoRNAs, piRNAs and tRNA fragments by RNA-seq. Then, we performed differential expression analysis, weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and miRNA-target identification. Our findings demonstrate the possible involvement of EVs from eribulin-treated cells in the spread of chemoresistance, prompting the design of strategies that selectively target tumor EVs.
Collapse
Affiliation(s)
- Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Tiziana Saladino
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Laura Scortichini
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Sonia Crocetti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Miriam Caramanti
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Nicola Battelli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| | - Emanuela Romagnoli
- Oncology Unit AST3, Macerata Hospital, Via Santa Lucia 2, 62100 Macerata, Italy
| |
Collapse
|
38
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. In vitro and in vivo induction of ochratoxin A exposure-related micronucleus formation in rat proximal tubular epithelial cells and expression profiling of chromosomal instability-related genes. Food Chem Toxicol 2024; 185:114486. [PMID: 38301995 DOI: 10.1016/j.fct.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
39
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Packiaraj J, Thakur J. DNA satellite and chromatin organization at mouse centromeres and pericentromeres. Genome Biol 2024; 25:52. [PMID: 38378611 PMCID: PMC10880262 DOI: 10.1186/s13059-024-03184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Centromeres are essential for faithful chromosome segregation during mitosis and meiosis. However, the organization of satellite DNA and chromatin at mouse centromeres and pericentromeres is poorly understood due to the challenges of assembling repetitive genomic regions. RESULTS Using recently available PacBio long-read sequencing data from the C57BL/6 strain, we find that contrary to the previous reports of their homogeneous nature, both centromeric minor satellites and pericentromeric major satellites exhibit a high degree of variation in sequence and organization within and between arrays. While most arrays are continuous, a significant fraction is interspersed with non-satellite sequences, including transposable elements. Using chromatin immunoprecipitation sequencing (ChIP-seq), we find that the occupancy of CENP-A and H3K9me3 chromatin at centromeric and pericentric regions, respectively, is associated with increased sequence enrichment and homogeneity at these regions. The transposable elements at centromeric regions are not part of functional centromeres as they lack significant CENP-A enrichment. Furthermore, both CENP-A and H3K9me3 nucleosomes occupy minor and major satellites spanning centromeric-pericentric junctions and a low yet significant amount of CENP-A spreads locally at centromere junctions on both pericentric and telocentric sides. Finally, while H3K9me3 nucleosomes display a well-phased organization on major satellite arrays, CENP-A nucleosomes on minor satellite arrays are poorly phased. Interestingly, the homogeneous class of major satellites also phase CENP-A and H3K27me3 nucleosomes, indicating that the nucleosome phasing is an inherent property of homogeneous major satellites. CONCLUSIONS Our findings reveal that mouse centromeres and pericentromeres display a high diversity in satellite sequence, organization, and chromatin structure.
Collapse
Affiliation(s)
- Jenika Packiaraj
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Schutt KL, Queen KA, Fisher K, Budington O, Mao W, Liu W, Gu X, Xiao Y, Aswad F, Joseph J, Stumpff J. Identification of the KIF18A alpha-4 helix as a therapeutic target for chromosomally unstable tumor cells. Front Mol Biosci 2024; 11:1328077. [PMID: 38410188 PMCID: PMC10896213 DOI: 10.3389/fmolb.2024.1328077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Background: The mitotic kinesin, KIF18A, is required for proliferation of cancer cells that exhibit chromosome instability (CIN), implicating it as a promising target for treatment of a subset of aggressive tumor types. Determining regions of the KIF18A protein to target for inhibition will be important for the design and optimization of effective small molecule inhibitors. Methods: In this study, we used cultured cell models to investigate the effects of mutating S284 within the alpha-4 helix of KIF18A, which was previously identified as a phosphorylated residue. Results: Mutations in S284 cause relocalization of KIF18A from the plus-ends of spindle microtubules to the spindle poles. Furthermore, KIF18A S284 mutants display loss of KIF18A function and fail to support proliferation in CIN tumor cells. Interestingly, similar effects on KIF18A localization and function were seen after treatment of CIN cells with KIF18A inhibitory compounds that are predicted to interact with residues within the alpha-4 helix. Conclusion: These data implicate the KIF18A alpha-4 helix as an effective target for inhibition and demonstrate that small molecules targeting KIF18A selectively limit CIN tumor cell proliferation and result in phenotypically similar effects on mitosis at the single cell level compared to genetic perturbations.
Collapse
Affiliation(s)
- Katherine L Schutt
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Katelyn A Queen
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Kira Fisher
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | - Olivia Budington
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| | | | - Wei Liu
- Apeiron Therapeutics, Shanghai, China
| | | | | | - Fred Aswad
- Apeiron Therapeutics, Burlingame, CA, United States
| | - James Joseph
- Apeiron Therapeutics, Burlingame, CA, United States
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, United States
| |
Collapse
|
42
|
Li RQ, Yang Y, Qiao L, Yang L, Shen DD, Zhao XJ. KIF2C: An important factor involved in signaling pathways, immune infiltration, and DNA damage repair in tumorigenesis. Biomed Pharmacother 2024; 171:116173. [PMID: 38237349 DOI: 10.1016/j.biopha.2024.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUNDS Poorly regulated mitosis and chromosomal instability are common characteristics in malignant tumor cells. Kinesin family member 2 C (KIF2C), also known as mitotic centromere-associated kinesin (MCAK) is an essential component during mitotic regulation. In recent years, KIF2C was shown to be dysregulated in several tumors and was involved in many aspects of tumor self-regulation. Research on KIF2C may be a new direction and target for anti-tumor therapy. OBJECT The article aims at reviewing current literatures and summarizing the research status of KIF2C in malignant tumors as well as the oncogenic signaling pathways associated with KIF2C and its role in immune infiltration. RESULT In this review, we summarize the KIF2C mechanisms and signaling pathways in different malignant tumors, and briefly describe its involvement in pathways related to classical chemotherapeutic drug resistance, such as MEK/ERK, mTOR, Wnt/β-catenin, P53 and TGF-β1/Smad pathways. KIF2C upregulation was shown to promote tumor cell migration, invasion, chemotherapy resistance and inhibit DNA damage repair. It was also highly correlated with microRNAs, and CD4 +T cell and CD8 +T cell tumor immune infiltration. CONCLUSION This review shows that KIF2C may function as a new anticancer drug target with great potential for malignant tumor treatment and the mitigation of chemotherapy resistance.
Collapse
Affiliation(s)
- Rui-Qing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin Qiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Jing Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
43
|
Bournaka S, Badra-Fajardo N, Arbi M, Taraviras S, Lygerou Z. The cell cycle revisited: DNA replication past S phase preserves genome integrity. Semin Cancer Biol 2024; 99:45-55. [PMID: 38346544 DOI: 10.1016/j.semcancer.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Spyridoula Bournaka
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Nibal Badra-Fajardo
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras 26504, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, Patras 26504, Greece.
| |
Collapse
|
44
|
Longo LVG, Hughes T, McNeil-Laidley B, Cottini F, Hilinski G, Merritt E, Benson DM. TTK/MPS1 inhibitor OSU-13 targets the mitotic checkpoint and is a potential therapeutic strategy for myeloma. Haematologica 2024; 109:578-590. [PMID: 37496433 PMCID: PMC10828771 DOI: 10.3324/haematol.2023.282838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Despite substantial recent advances in treatment, multiple myeloma (MM) remains an incurable disease, with a shortage of treatment options for patients with high-risk disease, warranting the need for novel therapeutic targets and treatment approaches. Threonine and tyrosine kinase (TTK), also known as monopolar spindle 1 (MPS1), is a kinase essential for the mitotic spindle checkpoint whose expression correlates to unfavorable prognosis in several cancers. Here, we report the importance of TTK in MM, and the effects of the TTK inhibitor OSU-13. Elevated TTK expression correlated with amplification/ gain of 1q21 and decreased overall and event-free survival in MM. Treatment with OSU-13 inhibited TTK activity efficiently and selectively at a similar concentration range to other TTK inhibitor clinical candidates. OSU-13 reduced proliferation and viability of primary human MM cells and cell lines, especially those with high 1q21 copy numbers, and triggered apoptosis through caspase 3 and 7 activation. In addition, OSU-13 induced DNA damage and severe defects in chromosome alignment and segregation, generating aneuploidy. In vivo, OSU-13 decreased tumor growth in mice with NCI-H929 xenografts. Collectively, our findings reveal that inhibiting TTK with OSU-13 is a potential therapeutic strategy for MM, particularly for a subset of high-risk patients with poor outcome.
Collapse
Affiliation(s)
- Larissa Valle Guilhen Longo
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Betina McNeil-Laidley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Elizabeth Merritt
- Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH
| | - Don M Benson
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, Columbus, OH.
| |
Collapse
|
45
|
Yadav V, Fuentes JL, Krishnan A, Singh N, Vohora D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci 2024; 337:122341. [PMID: 38101613 DOI: 10.1016/j.lfs.2023.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Since DNA damage can occur spontaneously or be produced by the environmental genotoxins in living cells, it is important to investigate compounds that can reverse or protect DNA damage. An appropriate methodology is essential for the responsive identification of protection offered against DNA damage. This review includes information on the current state of knowledge on prokaryotic cell-based assays (SOS chromotest, umu test, vitotox assay) and cytogenetic techniques (micronucleus assay, chromosome aberration test and sister chromatid exchange assay) with an emphasis on the possibility to explore genoprotective compounds. Throughout the last decade, studies have extrapolated the scientific methodologies utilized for genotoxicity to assess genoprotective compounds. Therefore, shortcomings of genotoxicity studies are also mirrored in antigenotoxicity studies. While regulatory authorities around the world (OECD, US-EPA and ICH) continue to update diverse genotoxic assay strategies, there are still no clear guidelines/approaches for efficient experimental design to screen genoprotective compounds. As a consequence, non-synergetic and inconsistent implementation of the test method by the researchers to execute such simulations has been adopted, which inevitably results in unreliable findings. The review has made the first attempt to collect various facets of experimentally verified approaches for evaluating genoprotective compounds, as well as to acknowledge potential significance and constraints, and further focus on the assessment of end points which are required to validate such action. Henceforth, the review makes an incredible commitment by permitting readers to equate several components of their test arrangement with the provided simplified information, allowing the selection of convenient technique for the predefined compound from a central repository.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jorge L Fuentes
- School of Biology, Science Faculty, Industrial University of Santander, Bucaramanga 680002, Santander, Colombia
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
46
|
He Q, Sun C, Pan Y. Whole‑exome sequencing reveals Lewis lung carcinoma is a hypermutated Kras/Nras-mutant cancer with extensive regional mutation clusters in its genome. Sci Rep 2024; 14:100. [PMID: 38167599 PMCID: PMC10762126 DOI: 10.1038/s41598-023-50703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lewis lung carcinoma (LLC), as a widely used preclinical cancer model, has still not been genetically and genomically characterized. Here, we performed a whole-exome sequencing analysis on the LLC cell line to elucidate its molecular characteristics and etiologies. Our data showed that LLC originated from a male mouse belonging to C57BL/6L (a transitional strain between C57BL/6J and C57BL/6N) and contains substantial somatic SNV and InDel mutations (> 20,000). Extensive regional mutation clusters are present in its genome, which were caused mainly by the mutational processes underlying the SBS1, SBS5, SBS15, SBS17a, and SBS21 signatures during frequent structural rearrangements. Thirty three deleterious mutations are present in 30 cancer genes including Kras, Nras, Trp53, Dcc, and Cacna1d. Cdkn2a and Cdkn2b are biallelically deleted from the genome. Five pathways (RTK/RAS, p53, cell cycle, TGFB, and Hippo) are oncogenically deregulated or affected. The major mutational processes in LLC include chromosomal instability, exposure to metabolic mutagens, spontaneous 5-methylcytosine deamination, defective DNA mismatch repair, and reactive oxygen species. Our data also suggest that LLC is a lung cancer similar to human lung adenocarcinoma. This study lays a molecular basis for the more targeted application of LLC in preclinical research.
Collapse
Affiliation(s)
- Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
47
|
Zhang X, Kschischo M. Profiling Numerical and Structural Chromosomal Instability in Different Cancer Types. Methods Mol Biol 2024; 2825:345-360. [PMID: 38913320 DOI: 10.1007/978-1-0716-3946-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Many cancers display whole chromosome instability (W-CIN) and structural chromosomal instability (S-CIN), referring to increased rates of acquiring numerically and structurally abnormal chromosome changes. This protocol provides detailed steps to analyze the W-CIN and S-CIN across cancer types, intending to leverage large-scale bulk sequencing and SNP array data complemented with the computational models to gain a better understanding of W-CIN and S-CIN.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany.
- Institute for Computer Science, University of Koblenz, Koblenz, Germany.
| |
Collapse
|
48
|
Iourov IY, Vorsanova SG, Yurov YB. A Paradoxical Role for Somatic Chromosomal Mosaicism and Chromosome Instability in Cancer: Theoretical and Technological Aspects. Methods Mol Biol 2024; 2825:67-78. [PMID: 38913303 DOI: 10.1007/978-1-0716-3946-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Vorsanova's Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russia
| |
Collapse
|
49
|
Payton M, Belmontes B, Hanestad K, Moriguchi J, Chen K, McCarter JD, Chung G, Ninniri MS, Sun J, Manoukian R, Chambers S, Ho SM, Kurzeja RJM, Edson KZ, Dahal UP, Wu T, Wannberg S, Beltran PJ, Canon J, Boghossian AS, Rees MG, Ronan MM, Roth JA, Minocherhomji S, Bourbeau MP, Allen JR, Coxon A, Tamayo NA, Hughes PE. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. NATURE CANCER 2024; 5:66-84. [PMID: 38151625 PMCID: PMC10824666 DOI: 10.1038/s43018-023-00699-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.
Collapse
Affiliation(s)
- Marc Payton
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA.
| | | | - Kelly Hanestad
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Jodi Moriguchi
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Kui Chen
- Lead Discovery and Characterization, Amgen Research, Thousand Oaks, CA, USA
| | - John D McCarter
- Lead Discovery and Characterization, Amgen Research, Thousand Oaks, CA, USA
| | - Grace Chung
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | - Jan Sun
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | | | - Seok-Man Ho
- Research Biomics, Amgen Research, San Francisco, CA, USA
| | | | | | | | - Tian Wu
- Pre-Pivotal Drug Product, Amgen Process Development, Thousand Oaks, CA, USA
| | | | | | - Jude Canon
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | | | | | | | | | - Sheroy Minocherhomji
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | | | | | - Angela Coxon
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| | - Nuria A Tamayo
- Medicinal Chemistry, Amgen Research, Thousand Oaks, CA, USA
| | - Paul E Hughes
- Oncology Research, Amgen Research, Thousand Oaks, CA, USA
| |
Collapse
|
50
|
Syddall KL, Fernandez-Martell A, Cartwright JF, Alexandru-Crivac CN, Hodgson A, Racher AJ, Young RJ, James DC. Directed evolution of biomass intensive CHO cells by adaptation to sub-physiological temperature. Metab Eng 2024; 81:53-69. [PMID: 38007176 DOI: 10.1016/j.ymben.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
We report a simple and effective means to increase the biosynthetic capacity of host CHO cells. Lonza proprietary CHOK1SV® cells were evolved by serial sub-culture for over 150 generations at 32 °C. During this period the specific proliferation rate of hypothermic cells gradually recovered to become comparable to that of cells routinely maintained at 37 °C. Cold-adapted cell populations exhibited (1) a significantly increased volume and biomass content (exemplified by total RNA and protein), (2) increased mitochondrial function, (3) an increased antioxidant capacity, (4) altered central metabolism, (5) increased transient and stable productivity of a model IgG4 monoclonal antibody and Fc-fusion protein, and (6) unaffected recombinant protein N-glycan processing. This phenotypic transformation was associated with significant genome-scale changes in both karyotype and the relative abundance of thousands of cellular mRNAs across numerous functional groups. Taken together, these observations provide evidence of coordinated cellular adaptations to sub-physiological temperature. These data reveal the extreme genomic/functional plasticity of CHO cells, and that directed evolution is a viable genome-scale cell engineering strategy that can be exploited to create host cells with an increased cellular capacity for recombinant protein production.
Collapse
Affiliation(s)
- Katie L Syddall
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Alejandro Fernandez-Martell
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Joseph F Cartwright
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Cristina N Alexandru-Crivac
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Adam Hodgson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK.
| |
Collapse
|