1
|
Yu ZC, Fang ZK, Yu Y, Liu SY, Wang KD, Shi ZJ, Jin LM, Huang XK, Lu Y, Shen GL, Liu JW, Huang DS, Zhang CW, Liang L. The Clinical Characteristics, Patterns of Recurrence, and Long-Term Survival Outcomes of Dual-Phenotype Hepatocellular Carcinoma After Curative Liver Resection. J Hepatocell Carcinoma 2025; 12:183-192. [PMID: 39902378 PMCID: PMC11789503 DOI: 10.2147/jhc.s493094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Background & Aims Dual-phenotype hepatocellular carcinoma (DPHCC) is discernible from classical HCC (CHCC) in its morphology and is characterized by the co-expression of both CHCC and cholangiocyte markers. This study aimed to clarify the difference between DPHCC and CHCC after surgery. Methods Patients with HCC after surgery were collected. The clinical characteristics, patterns of recurrence, and survival outcomes of patients with DPHCC and CHCC were compared. Multivariate analyses were used to determine the independent risk factors that influence the prognosis of patients. Results Patients with DPHCC (n = 141) account for 26% of the total patients (n = 541). Compared to patients with CHCC, patients with DPHCC are significantly associated with incomplete capsules, microvascular invasion, and poor differentiation (all P < 0.05). Compared to patients with CHCC, the 5-year overall survival (OS) (56% vs 43%) and recurrence-free survival (RFS) (35% vs 28%) are lower in patients with DPHCC. Meanwhile, among patients with tumor recurrence after surgery, patients with DPHCC have a higher proportion of advanced-stage tumors, and extrahepatic metastasis (all P < 0.05). Moreover, multivariate analysis showed that DPHCC is an independent risk factor for both OS (HR 1.399, 95% CI 1.061-1.845, P = 0.017) and RFS (HR 1.313, 95% CI 1.033-1.669, P = 0.026). Conclusion DPHCC, an aggressive HCC subtype with poor differentiation and high invasiveness, shows inferior RFS and OS post-liver resection compared to CHCC. Clinicians' recognition and addressing of its unique challenges can improve DPHCC patients' prognosis and QoL.
Collapse
Affiliation(s)
- Zi-Chen Yu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zheng-Kang Fang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Si-Yu Liu
- Department of Laboratory Medicine, The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Kai-Di Wang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of the second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhe-Jin Shi
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of the second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li-Ming Jin
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiao-Kun Huang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yi Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Guo-Liang Shen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun-Wei Liu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Dong-Sheng Huang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Cheng-Wu Zhang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Liang
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Liao NQ, Deng ZJ, Wei W, Lu JH, Li MJ, Ma L, Chen QF, Zhong JH. Deep learning of pretreatment multiphase CT images for predicting response to lenvatinib and immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Comput Struct Biotechnol J 2024; 24:247-257. [PMID: 38617891 PMCID: PMC11015163 DOI: 10.1016/j.csbj.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVES Combination therapy of lenvatinib and immune checkpoint inhibitors (CLICI) has emerged as a promising approach for managing unresectable hepatocellular carcinoma (HCC). However, the response to such treatment is observed in only a subset of patients, underscoring the pressing need for reliable methods to identify potential responders. MATERIALS & METHODS This was a retrospective analysis involving 120 patients with unresectable HCC. They were divided into training (n = 72) and validation (n = 48) cohorts. We developed an interpretable deep learning model using multiphase computed tomography (CT) images to predict whether patients will respond or not to CLICI treatment, based on the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). We evaluated the models' performance and analyzed the impact of each CT phase. Critical regions influencing predictions were identified and visualized through heatmaps. RESULTS The multiphase model outperformed the best biphase and uniphase models, achieving an area under the curve (AUC) of 0.802 (95% CI = 0.780-0.824). The portal phase images were found to significantly enhance the model's predictive accuracy. Heatmaps identified six critical features influencing treatment response, offering valuable insights to clinicians. Additionally, we have made this model accessible via a web server at http://uhccnet.com/ for ease of use. CONCLUSIONS The integration of multiphase CT images with deep learning-generated heatmaps for predicting treatment response provides a robust and practical tool for guiding CLICI therapy in patients with unresectable HCC.
Collapse
Affiliation(s)
- Nan-Qing Liao
- School of Medical, Guangxi University, Nanning, China
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei Wei
- Radiology Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia-Hui Lu
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Min-Jun Li
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Schmidt R, Hamm CA, Rueger C, Xu H, He Y, Gottwald LA, Gebauer B, Savic LJ. Decision-Tree Models Indicative of Microvascular Invasion on MRI Predict Survival in Patients with Hepatocellular Carcinoma Following Tumor Ablation. J Hepatocell Carcinoma 2024; 11:1279-1293. [PMID: 38974016 PMCID: PMC11227855 DOI: 10.2147/jhc.s454487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/18/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Histological microvascular invasion (MVI) is a risk factor for poor survival and early recurrence in hepatocellular carcinoma (HCC) after surgery. Its prognostic value in the setting of locoregional therapies (LRT), where no tissue samples are obtained, remains unknown. This study aims to establish CT-derived indices indicative of MVI on liver MRI with superior soft tissue contrast and evaluate their association with patient survival after ablation via interstitial brachytherapy (iBT) versus iBT combined with prior conventional transarterial chemoembolization (cTACE). Patients and Methods Ninety-five consecutive patients, who underwent ablation via iBT alone (n = 47) or combined with cTACE (n = 48), were retrospectively included between 01/2016 and 12/2017. All patients received contrast-enhanced MRI prior to LRT. Overall (OS), progression-free survival (PFS), and time-to-progression (TTP) were assessed. Decision-tree models to determine Radiogenomic Venous Invasion (RVI) and Two-Trait Predictor of Venous Invasion (TTPVI) on baseline MRI were established, validated on an external test set (TCGA-LIHC), and applied in the study cohorts to investigate their prognostic value for patient survival. Statistics included Fisher's exact and t-test, Kaplan-Meier and cox-regression analysis, area under the receiver operating characteristic curve (AUC-ROC) and Pearson's correlation. Results OS, PFS, and TTP were similar in both treatment groups. In the external dataset, RVI showed low sensitivity but relatively high specificity (AUC-ROC = 0.53), and TTPVI high sensitivity but only low specificity (AUC-ROC = 0.61) for histological MVI. In patients following iBT alone, positive RVI and TTPVI traits were associated with poorer OS (RVI: p < 0.01; TTPVI: p = 0.08), PFS (p = 0.04; p = 0.04), and TTP (p = 0.14; p = 0.03), respectively. However, when patients with combined cTACE and iBT were stratified by RVI or TTPVI, no differences in OS (p = 0.75; p = 0.55), PFS (p = 0.70; p = 0.43), or TTP (p = 0.33; p = 0.27) were observed. Conclusion The study underscores the role of non-invasive imaging biomarkers indicative of MVI to identify patients, who would potentially benefit from embolotherapy via cTACE prior to ablation rather than ablation alone.
Collapse
Affiliation(s)
- Robin Schmidt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
- Experimental Clinical Research Center (ECRC) at Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, 13125, Germany
| | - Charlie Alexander Hamm
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Christopher Rueger
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
| | - Han Xu
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
| | - Yubei He
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
- Experimental Clinical Research Center (ECRC) at Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, 13125, Germany
| | | | - Bernhard Gebauer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
| | - Lynn Jeanette Savic
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, 13353, Germany
- Experimental Clinical Research Center (ECRC) at Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, 13125, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, 10117, Germany
| |
Collapse
|
4
|
Baek S, Ha HS, Park JS, Cho MJ, Kim HS, Yu SE, Chung S, Kim C, Kim J, Lee JY, Lee Y, Kim H, Nam Y, Cho S, Lee K, Yoon JK, Choi JS, Han DH, Sung HJ. Chip collection of hepatocellular carcinoma based on O 2 heterogeneity from patient tissue. Nat Commun 2024; 15:5117. [PMID: 38879551 PMCID: PMC11180182 DOI: 10.1038/s41467-024-49386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Hepatocellular carcinoma frequently recurs after surgery, necessitating personalized clinical approaches based on tumor avatar models. However, location-dependent oxygen concentrations resulting from the dual hepatic vascular supply drive the inherent heterogeneity of the tumor microenvironment, which presents challenges in developing an avatar model. In this study, tissue samples from 12 patients with hepatocellular carcinoma are cultured directly on a chip and separated based on preference of oxygen concentration. Establishing a dual gradient system with drug perfusion perpendicular to the oxygen gradient enables the simultaneous separation of cells and evaluation of drug responsiveness. The results are further cross-validated by implanting the chips into mice at various oxygen levels using a patient-derived xenograft model. Hepatocellular carcinoma cells exposed to hypoxia exhibit invasive and recurrent characteristics that mirror clinical outcomes. This chip provides valuable insights into treatment prognosis by identifying the dominant hepatocellular carcinoma type in each patient, potentially guiding personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Su Ha
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong Su Park
- Department of Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Jeong Cho
- Department of Clinical Pharmacology & Therapeutics, Catholic University of Korea, Seoul St. Mary's Hospital, 222, BanpoDaero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hye-Seon Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chansik Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jueun Kim
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Youn Lee
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yerin Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunjae Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yujin Nam
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwoo Cho
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Ja Kyung Yoon
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Sub Choi
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Division of Hepato-biliary and Pancreatic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Hak-Joon Sung
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Dzakovich MP, Goggans ML, Thomas-Ahner JM, Moran NE, Clinton SK, Francis DM, Cooperstone JL. Transcriptomics and Metabolomics Reveal Tomato Consumption Alters Hepatic Xenobiotic Metabolism and Induces Steroidal Alkaloid Metabolite Accumulation in Mice. Mol Nutr Food Res 2024; 68:e2300239. [PMID: 38212250 DOI: 10.1002/mnfr.202300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/18/2023] [Indexed: 01/13/2024]
Abstract
SCOPE Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.
Collapse
Affiliation(s)
- Michael P Dzakovich
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Mallory L Goggans
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Nancy E Moran
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - David M Francis
- Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Jessica L Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Zhang Q, Huang Y, Xia Y, Liu Y, Gan J. Cuproptosis-related lncRNAs predict the prognosis and immune response in hepatocellular carcinoma. Clin Exp Med 2023; 23:2051-2064. [PMID: 36153416 DOI: 10.1007/s10238-022-00892-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Cuproptosis has been recently used to indicate unique biological processes triggered by Cu action as a new term. This study aimed to explore the relationship between cuproptosis-related lncRNA and hepatocellular carcinoma (HCC) with regard to immunity and prognosis. RNA sequencing and the clinical data were downloaded from the TCGA database. The cuproptosis-related genes were sorted out through literature study. The cuproptosis-related IncRNA signature was identified by Cox regression analysis and the least absolute shrinkage and selection operator analysis. The K-M survival analysis, receiver operating characteristic analysis, and C-index analysis were adopted to evaluate the prognostic prediction performance of the signature. The functional enrichment, immune infiltration and tumor mutation analysis were further analyzed. Subsequently, we predicted the differences in chemosensitivity from tumor gene expression levels for some chemotherapy drugs. The prognostic signature consisting of 5 overall survival-related CUPlncRNAs. It showed an extraordinary ability to predict the prognoses of patients with HCC. The signature can predict the abundance of immune cell infiltration, immune functions, expression of immune checkpoint inhibitors, m6A genes, which was supported by the GO biological process and KEGG analysis. And it may also have a guiding effect in the sensitivity of different chemotherapeutic drugs and tumor mutation burden. We constructed a new cuproptosis-related lncRNA signature for HCC patients. The model can be used for prognostic prediction and immune evaluation, providing a reference for immunotherapies and targeted therapies.
Collapse
Affiliation(s)
- Qiongyue Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Yu Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yumeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Gu X, Li S, Ma X, Huang D, Li P. Heterogeneity characterization of hepatocellular carcinoma based on the sensitivity to 5-fluorouracil and development of a prognostic regression model. Front Pharmacol 2023; 14:1252805. [PMID: 37745063 PMCID: PMC10512943 DOI: 10.3389/fphar.2023.1252805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: 5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in clinical cancer treatment, including hepatocellular carcinoma (HCC). A correct understanding of the mechanisms leading to a low or lack of sensitivity of HCC to 5-FU-based treatment is a key element in the current personalized medical treatment. Methods: Weighted gene co-expression network analysis (WGCNA) was used to analyze the expression profiles of the cancer cell line from GDSC2 to identify 5-FU-related modules and hub genes. According to hub genes, HCC was classified and the machine learning model was developed by ConsensusClusterPlus and five different machine learning algorithms. Furthermore, we performed quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis on the genes in our model. Results: A total of 19 modules of the cancer cell line were divided by WGCNA, and the most negative correlation with 5-FU was the midnight blue module, from which 45 hub genes were identified. HCC was divided into three subgroups (C1, C2, and C3) with significant overall survival (OS) differences. OS of C1 was the shortest, which was characterized by a high clinical grade and later T stage and stage. OS of C3 was the longest. OS of C2 was between the two subtypes, and its immune infiltration was the lowest. Five out of 45 hub genes, namely, TOMM40L, SNRPA, ILF3, CPSF6, and NUP205, were filtered to develop a risk regression model as an independent prognostic indicator for HCC. The qRT-PCR results showed that TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were remarkably highly expressed in hepatocellular carcinoma. Conclusion: The HCC classification based on the sensitivity to 5-FU was in line with the prognostic differences observed in HCC and most of the genomic variation, immune infiltration, and heterogeneity of pathological pathways. The regression model related to 5-FU sensitivity may be of significance in individualized prognostic monitoring of HCC.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shuang Li
- Hematology Department, Traditional Chinese Hospital of Luan, Lu’an, China
| | - Xiao Ma
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Li
- The Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Sheng R, Jin K, Sun W, Gao S, Zhang Y, Wu D, Zeng M. Prediction of therapeutic response of advanced hepatocellular carcinoma to combined targeted immunotherapy by MRI. Magn Reson Imaging 2023; 96:1-7. [PMID: 36270416 DOI: 10.1016/j.mri.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To assess the value of pre-treatment MRI in predicting treatment response to combined targeted immunotherapy in advanced hepatocellular carcinoma (HCC). METHODS Totally 35 HCC participants who underwent pre-treatment contrast-enhanced MRI and received combined tyrosine kinase inhibitor (TKI) and anti-PD-1 antibody treatment were enrolled. Univariable and multivariable logistic regression analyses were carried out for comparing clinical and MRI characteristics between patients with therapeutic response and those without. A predictive model based on MRI data and the corresponding nomogram were developed using data generated by multivariate analysis, and the diagnostic performance was evaluated. A cutoff for the combined index was measured by receiver operating characteristic curve analysis, and progression-free survival (PFS) rates were compared between cases with high and low combined index values. RESULTS Fifteen (42.86%) cases achieved overall response during treatment. Multivariable analysis revealed that homogeneous signal (odds ratio [OR] = 13.51, P = 0.010) and no arterial peritumoral enhancement (APE; OR = 10.29, P = 0.024) independently predicted treatment response. The combined model including both significant MRI parameters showed a satisfactory predictive performance with the largest area under the curve of 0.837 (95%CI 0.673-0.939), and both sensitivity and specificity of 80.0%. HCCs with high-combined index had higher PFS rate compared with those showing a low value (P = 0.034). CONCLUSION The combination of pre-treatment MRI features of homogeneous signal and no APE could be used for predicting treatment response to combined targeted immunotherapy in advanced HCC.
Collapse
Affiliation(s)
- Ruofan Sheng
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Fujian 361006, China; Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kaipu Jin
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Central Research Institute, United Imaging Healthcare, 201807 Shanghai, China
| | - Dong Wu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China.
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, 200032 Shanghai, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
9
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
10
|
Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, Li Y, Chen S, Dong R, Wu H, Liu C, Liu G. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Front Genet 2022; 13:959832. [PMID: 36299588 PMCID: PMC9589486 DOI: 10.3389/fgene.2022.959832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Transcription elongation factor 1 (TCERG1) is a nuclear protein consisted of multiple protein structural domains that plays an important role in regulating the transcription, extension, and splicing regulation of RNA polymerase II. However, the prognostic and immunological role of TCERG1 in human cancer remains unknown. In this study, we analyzed the expression of TCERG1 gene in hepatocellular carcinoma (HCC) patients, its clinical significance, and its possible prognostic value by bioinformatics. Methods: RNA sequencing data and clinicopathological characteristics of patients with HCC were collected from TCGA and CCLE databases. The Wilcoxon rank-sum test was used to analyze the expression of TCERG1 in HCC tissues and normal tissues. The protein levels of TCERG1 between normal and liver cancer tissues were analyzed by the Human Protein Atlas Database (HPA) (www.proteinatlas.org). Validation was performed using the Gene Expression Omnibus (GEO) dataset of 167 samples. The expression of TCERG1 in HCC cells were verified by qRT-PCR, and CCK-8, scratch assay and Transwell assay were performed to detect cell proliferation, migration and invasion ability. According to the median value of TCERG1 expression, patients were divided into high and low subgroups. Logistic regression, GSEA enrichment, TME, and single-sample set gene enrichment analysis (ssGSEA) were performed to explore the effects of TCERG1 on liver cancer biological function and immune infiltrates. TCERG1 co-expression networks were studied through the CCLE database and the LinkedOmics database to analyze genes that interact with TCERG1. Results: The expression levels of TCERG1 in HCC patient tissues were significantly higher than in normal tissues. Survival analysis showed that high levels of TCERG1 expression were significantly associated with low survival rates in HCC patients. Multifactorial analysis showed that high TCERG1 expression was an independent risk factor affecting tumor prognosis. This result was also verified in the GEO database. Cellular experiments demonstrated that cell proliferation, migration and invasion were inhibited after silencing of TCERG1 gene expression. Co-expression analysis revealed that CPSF6 and MAML1 expression were positively correlated with TCERG1. GSEA showed that in samples with high TCERG1 expression, relevant signaling pathways associated with cell cycle, apoptosis, pathways in cancer and enriched in known tumors included Wnt signaling pathway, Vegf signaling pathway, Notch signaling pathway, MAPK signaling pathway and MTOR pathways. The expression of TCERG1 was positively correlated with tumor immune infiltrating cells (T helper two cells, T helper cells). Conclusion:TCERG1 gene is highly expressed in hepatocellular carcinoma tissues, which is associated with the poor prognosis of liver cancer, and may be one of the markers for the diagnosis and screening of liver cancer and the prediction of prognosis effect. At the same time, TCERG1 may also become a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Huaifeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qunwei Gao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xin Chen
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Junyan Chang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yangyang Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Changqing Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
11
|
Kahraman DC, Bilget Guven E, Aytac PS, Aykut G, Tozkoparan B, Cetin Atalay R. A new triazolothiadiazine derivative inhibits stemness and induces cell death in HCC by oxidative stress dependent JNK pathway activation. Sci Rep 2022; 12:15139. [PMID: 36071119 PMCID: PMC9452548 DOI: 10.1038/s41598-022-17444-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually.
Collapse
Affiliation(s)
- Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, 06800, Ankara, Turkey.
| | - Ebru Bilget Guven
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey.,Department of Molecular Biology and Genetics, Kadir Has University, 34083, Istanbul, Turkey
| | - Peri S Aytac
- Department of Pharmaceutical Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Gamze Aykut
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | - Birsen Tozkoparan
- Department of Pharmaceutical Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Rengul Cetin Atalay
- Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
The Association between Immune Subgroups and Gene Modules for the Clinical, Cellular, and Molecular Characteristic of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7253876. [PMID: 36090895 PMCID: PMC9452932 DOI: 10.1155/2022/7253876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
The heterogeneity of hepatocellular carcinoma (HCC) is related to immune cell infiltration and genetic aberrations in the tumor microenvironment. This study aimed to identify the novel molecular typing of HCC according to the genetic and immune characteristics, to obtain accurate clinical management of this disease. We performed consensus clustering to divide 424 patients into different immune subgroups and assessed the reproducibility and efficiency in two independent cohorts with 921 patients. The associations between molecular typing and molecular, cellular, and clinical characteristics were investigated by a multidimensional bioinformatics approach. Furthermore, we conducted graph structure learning-based dimensionality reduction to depict the immune landscape to reveal the interrelation between the immune and gene systems in molecular typing. We revealed and validated that HCC patients could be segregated into 5 immune subgroups (IS1-5) and 7 gene modules with significantly different molecular, cellular, and clinical characteristics. IS5 had the worst prognosis and lowest enrichment of immune characteristics and was considered the immune cold type. IS4 had the longest overall survival, high immune activity, and antitumorigenesis, which were defined as the immune hot and antitumorigenesis types. In addition, immune landscape analysis further revealed significant intraclass heterogeneity within each IS, and each IS represented distinct clinical, cellular, and molecular characteristics. Our study provided 5 immune subgroups with distinct clinical, cellular, and molecular characteristics of HCC and may have clinical implications for precise therapeutic strategies and facilitate the investigation of immune mechanisms in HCC.
Collapse
|
13
|
Guo Y, Yang J, Gao H, Tian X, Zhang X, Kan Q. Development and Verification of a Combined Immune- and Metabolism-Related Prognostic Signature for Hepatocellular Carcinoma. Front Immunol 2022; 13:927635. [PMID: 35874741 PMCID: PMC9304746 DOI: 10.3389/fimmu.2022.927635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/09/2022] Open
Abstract
Immune escape and metabolic reprogramming are becoming important characteristics of tumor biology, which play critical roles in tumor initiation and progression. However, the integrative analysis of immune and metabolic characteristics for the tumor microenvironment in hepatocellular carcinoma (HCC) remains unclear. Herein, by univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, a prognostic signature associated with tumor microenvironment was established based on five immune- and metabolism-related genes (IMRGs), which was fully verified and evaluated in both internal and external cohorts. The C-index was superior to previously published HCC signatures, indicating the robustness and reliability of IMRGs prognostic signature. A nomogram was built based on IMRGs prognostic signature and various clinical parameters, such as age and T stage. The AUCs of nomogram at 1-, 3-, and 5-year (AUC = 0.829, 0.749, 0.749) were slightly better than that of IMRGs signature (AUC = 0.809, 0.734, 0.711). The relationship of risk score (RS) with immune checkpoint expressions, immunophenoscore (IPS), as well as microsatellite instability (MSI) together accurately predicted the treatment efficacy. Collectively, the IMRGs signature might have the potential to better predict prognostic risk, evaluate immunotherapy efficacy, and help personalize immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
- *Correspondence: Xin Tian, ; Xiaojian Zhang, ; Quancheng Kan,
| |
Collapse
|
14
|
Sheng R, Zeng M, Jin K, Zhang Y, Wu D, Sun H. MRI-based Nomogram Predicts the Risk of Progression of Unresectable Hepatocellular Carcinoma After Combined Lenvatinib and anti-PD-1 Antibody Therapy. Acad Radiol 2022; 29:819-829. [PMID: 34649778 DOI: 10.1016/j.acra.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/01/2022]
Abstract
RATIONALE AND OBJECTIVES Combined immune and anti-angiogenic treatment has shown promising results for unresectable hepatocellular carcinoma (HCC), but with a high risk of early progression. In this study, we aimed to investigate whether pre-treatment magnetic resonance imaging (MRI) features and MRI-based nomogram could predict the risk of disease progression of unresectable HCC after first-line lenvatinib/anti-PD-1 antibody therapy. MATERIALS AND METHODS Thirty-seven HCC participants with qualified pre-treatment contrast-enhanced MRI were enrolled. All patients received combined lenvatinib and anti-PD-1 antibody treatment. Progression free survival rate was analyzed using the Kaplan-Meier method. Potential clinical-radiological risk factors for progression were analyzed using the log-rank tests and Cox regression model. The performance of MRI-based nomogram was evaluated based on C-index, calibration, and decision curve analyses. RESULTS The 6-month and 12-month cumulative progression free survival rates were 59.5% (95% confidence interval (CI), 43.6%-75.4%) and 48.0% (95% CI, 31.7%-64.3%). On multivariate analysis, no or incomplete tumor capsule (hazard ratio (HR) = 15.215 [95% CI 2.707-85.529], p = 0.002), heterogeneous signal on T2-weighted imaging (HR = 28.179 [95% CI 2.437-325.838]; p = 0.008) and arterial contrast-to-noise ratio ≤95.45 (HR = 5.113 [95% CI 1.538-17.00]; p = 0.008) were independent risk factors for disease progression. Satisfactory predictive performance of the nomogram incorporating the three independent imaging features was obtained with a C-index value of 0.880 (95% CI 0.824-0.937), and the combined nomogram had more favorable clinical prediction performance than any single feature. CONCLUSION MRI features can be considered effective predictors of disease progression for unresectable HCC with first-line lenvatinib plus anti-PD-1 antibody therapy, and the combined MRI-based nomogram achieved a superior prognostic model, which may help to identify appropriate candidates for the therapy.
Collapse
|
15
|
Comprehensive Analysis of RAPGEF2 for Predicting Prognosis and Immunotherapy Response in Patients with Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:6560154. [PMID: 35518785 PMCID: PMC9064514 DOI: 10.1155/2022/6560154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the sixth most common tumor worldwide. Additionally, deletion of RAPGEF2 plays a critical role in CNV and related to tumor immune microenvironment, whereas the prognostic potential of RAPGEF2 in HCC patient needs to be explored. Methods We looked for prognostic potential genes in HCC using a variety of R programs. Then, using the LASSO Cox regression, we thoroughly evaluated and integrated the RAPGEF2-related genes from TCGA database. Meanwhile, utilizing TCGA and ICGA databases, the link between RAPGEF2 and immunotherapy response in HCC was studied. In vivo, the effect of RAPGEF2 on tumor development and the capacity of natural killer (NK) cells to recruit were confirmed. To ascertain the connection between RAPGEF2-related genes and the prognosis of HCC, a prognostic model was created and validated. Result We demonstrated RAPGEF2 has a differential expression, and patients with deletion of RAPGEF2 gene get shorter survival in HCC. Additionally, the tissues without RAPGEF2 have a weaker ability to recruit the NK cells and response to immunotherapy. After that, we scoured the database for eight RAPGEF2-related genes linked with a better prognosis in HCC patients. Additionally, silencing RAPGEF2 accelerated tumor development in the HCC mouse model and decreased CD56+ NK cell recruitment in HCC tissues. TCGA database was used to classify patients into low- and high-risk categories based on the expression of related genes. Patients in the low-risk group had a significantly greater overall survival than those in the high-risk group (P < 0.001). Meanwhile, the low-risk group demonstrated connections with the NK cell and immunotherapy response. Finally, the prognostic nomogram showed a high sensitivity and specificity for predicting the survival of HCC patients at 1, 2, and 3 years. Conclusion The prognostic model based on RAPGEF2 and RAPGEF2-related genes showed an excellent predictive performance in terms of prognosis and immunotherapy response in HCC, therefore establishing a unique prognostic model for clinical assessment of HCC patients.
Collapse
|
16
|
Wang G, Ding B, Sun L, Guo J, Wang S, Li W, Zhang Y, Lv J, Qiu W. Construction and Validation of a Necroptosis-Related Signature Associated With the Immune Microenvironment in Liver Hepatocellular Carcinoma. Front Genet 2022; 13:859544. [PMID: 35480307 PMCID: PMC9037783 DOI: 10.3389/fgene.2022.859544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Liver hepatocellular carcinoma (LIHC) is a widespread and often deadly neoplasm. There is increasing evidence that necroptosis mediates numerous tumor-associated behaviors, as well as the regulation of the tumor microenvironment, suggesting its use as a biomarker for tumor prognosis. Methods: Data on mRNA expression and necroptosis regulators were acquired from the TCGA and KEGG databases, respectively. Clinical liver hepatocellular carcinoma (LIHC) patient data and information on the expression of necroptosis regulators were processed by unsupervised cluster analysis was performed on LIHC patients together with necroptotic regulator expression and, differentially expressed necroptosis-related genes (DENRGs) were identified by comparing the two clusters. A signature based on eight DENRGs was constructed and verified through independent data sets, and its relationship with the tumor microenvironment was investigated. Results: Unsupervised cluster analysis demonstrated inherent immune differences among LIHC patients. In all, 1,516 DENRGs were obtained by comparison between the two clusters. In the training set, the final eight genes obtained by univariate, LASSO, and multivariate Cox regression were utilized for constructing the signature. The survival and receiver operating characteristic (ROC) curve achieved satisfactory results in both sets. The high-risk group was characterized by greater immune infiltration and poor prognosis. The results of survival analysis based on the expression of eight DENRGs further confirmed the signature. Conclusion: We established and validated a risk signature based on eight DERNGs related to the tumor microenvironment. This provides a possible explanation for the different clinical effects of immunotherapy and provides a novel perspective for predicting tumor prognosis in LIHC.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baoning Ding
- School of Statistics, Shandong University of Finance and Economics, Jinan, China
| | | | - Jing Guo
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| | - Wensheng Qiu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wensheng Qiu, Jing Lv,
| |
Collapse
|
17
|
Tang H, You T, Sun Z, Bai C, Wang Y. Extracellular Matrix-Based Gene Expression Signature Defines Two Prognostic Subtypes of Hepatocellular Carcinoma With Different Immune Microenvironment Characteristics. Front Mol Biosci 2022; 9:839806. [PMID: 35402515 PMCID: PMC8990864 DOI: 10.3389/fmolb.2022.839806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence has suggested that the extracellular matrix (ECM) plays a vital role in the development and progression of cancer, and could be recognized as a biomarker of the response to immunotherapy. However, the effect of the ECM signature in hepatocellular carcinoma (HCC) is not well understood. Methods: HCC patients derived from the TCGA-LIHC dataset were clustered according to the ECM signature. The differences in prognosis, functional enrichment, immune infiltration, and mutation characteristics between distinct molecular clusters were examined, and its predictive value on the sensitivities to chemotherapy and immunotherapy was further analyzed. Then, a prognostic model was built based on the ECM-related gene expression pattern. Results: HCC patients were assigned into two molecular subtypes. Approximately 80% of HCC patients were classified into cluster A with poor prognosis, more frequent TP53 mutation, and lower response rate to immunotherapy. In contrast, patients in cluster B had better survival outcomes and higher infiltration levels of dendritic cells, macrophages, and regulatory T cells. The prognostic risk score model based on the expression profiles of six ECM-related genes (SPP1, ADAMTS5, MMP1, BSG, LAMA2, and CDH1) demonstrated a significant association with higher histologic grade and advanced TNM stage. Moreover, the prognostic risk score showed good performance in both the training dataset and validation dataset, as well as improved prognostic capacity compared with TNM stage. Conclusions: We characterized two HCC subtypes with distinct clinical outcomes, immune infiltration, and mutation characteristics. A novel prognostic model based on the ECM signature was further developed, which may contribute to individualized prognostic prediction and aid in clinical decision-making.
Collapse
|
18
|
Jiang T, Yang J, Yang H, Chen W, Ji K, Xu Y, Yu L. SLC35B4 Stabilizes c-MYC Protein by O-GlcNAcylation in HCC. Front Pharmacol 2022; 13:851089. [PMID: 35308201 PMCID: PMC8924407 DOI: 10.3389/fphar.2022.851089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
UDP-GlcNAc is a sugar substrate necessary for the O-GlcNAcylation of proteins. SLC35B4 is one of the nucleotide sugar transporters that transport UDP-GlcNAc and UDP-xylose into the endoplasmic reticulum and Golgi apparatus for glycosylation. The roles of SLC35B4 in hepatocellular carcinoma (HCC) tumorigenesis remain unknown. We find that the expression levels of SLC35B4 are higher in HCC tissues than adjacent non-tumor tissues. SLC35B4 is important for the proliferation and tumorigenesis of HCC cells. Mechanistically, SLC35B4 is important for the O-GlcNAc modification of c-Myc and thus the stabilization of c-Myc, which is required for HCC tumorigenesis. Therefore, SLC35B4 is a promising therapeutic target for treating HCC.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghong Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huohong Yang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wancheng Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaiyuan Ji
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Yu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Takeda H, Takai A, Eso Y, Takahashi K, Marusawa H, Seno H. Genetic Landscape of Multistep Hepatocarcinogenesis. Cancers (Basel) 2022; 14:568. [PMID: 35158835 PMCID: PMC8833551 DOI: 10.3390/cancers14030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although several targeted therapy agents are available for advanced HCC, their antitumor efficacy remains limited. As the complex genetic landscape of HCC would compromise the antitumor efficacy of targeted therapy, a deeper understanding of the genetic landscape of hepatocarcinogenesis is necessary. Recent comprehensive genetic analyses have revealed the driver genes of HCC, which accumulate during the multistage process of hepatocarcinogenesis, facilitating HCC genetic heterogeneity. In addition, as early genetic changes may represent key therapeutic targets, the genetic landscapes of early HCC and precancerous liver tissues have been characterized in recent years, in parallel with the advancement of next-generation sequencing analysis. In this review article, we first summarize the landscape of the liver cancer genome and its intratumor heterogeneity. We then introduce recent insight on early genetic alterations in hepatocarcinogenesis, especially those in early HCC and noncancerous liver tissues. Finally, we summarize the multistep accumulation of genetic aberrations throughout cancer progression and discuss the future perspective towards the clinical application of this genetic information.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| |
Collapse
|
20
|
Hydroxysteroid 17-Beta Dehydrogenase 6 Is a Prognostic Biomarker and Correlates with Immune Infiltrates in Hepatocellular Carcinoma. Dig Dis Sci 2022; 67:146-158. [PMID: 33495920 PMCID: PMC7835108 DOI: 10.1007/s10620-021-06832-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 01/07/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common malignancy worldwide with poor outcomes. Therefore, it is important to identify a valuable prognostic biomarker for HCC. The present study aimed to identify novel prognostic biomarkers for HCC and evaluate the potential role of hub genes in HCC. METHODS Weighted gene co-expression network analysis and protein-protein interaction analysis were performed to identify important potential prognostic genes. The expression of hub genes was confirmed by the GEPIA, Oncomine, UALCAN, and HPA database. Furthermore, survival analysis of hub genes was performed using the Kaplan-Meier plotter database. Finally, we investigated the association between hub genes and immune factors in HCC through GSEA, the TIMER, and TISIDB database. RESULTS HSD17B6 expression was significantly lower in HCC than in normal tissues. Low HSD17B6 expression is associated with poorer overall survival and progression-free survival in HCC patients, particularly at medium disease stages (stage II and III or grade III). HSD17B6 showed a strong correlation with tumor-infiltrating B cells, CD4 + and CD8 + T cells, macrophages, neutrophils, and dendritic cells. Somatic copy number alteration might be the main cause of the negative correlation between HSD17B6 expression and immune infiltration. HSD17B6 expression in HCC negatively correlated with the expression of several immune cell markers, including exhausted T cell markers, PD-1 and CTLA-4, suggesting its role in regulating tumor immunity. CONCLUSIONS HSD17B6 is a potential prognostic biomarker that determines cancer progression and is correlated with tumor immune cells infiltration in HCC.
Collapse
|
21
|
Kazmi I, Al-Abbasi FA, Afzal M, Altayb HN, Nadeem MS, Gupta G. Formulation and Evaluation of Kaempferol Loaded Nanoparticles against Experimentally Induced Hepatocellular Carcinoma: In Vitro and In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13122086. [PMID: 34959368 PMCID: PMC8707119 DOI: 10.3390/pharmaceutics13122086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The present study was designed to prepare Kaempferol loaded nanoparticles (KFP-Np) and evaluate hepatoprotective and antioxidant effects in hepatocellular carcinoma models. KFP was encapsulated with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Kollicoat MAE 30 DP polymers to prepare nanoparticles (Nps) by quasi-emulsion solvent diffusion technique (QESD). The prepared Nps were evaluated for different pharmaceutical characterization to select the optimum composition for the in vivo assessment. An animal model of cadmium chloride (CdCl2)-induced hepatocellular carcinoma in Male Sprague Dawley rats was used in vivo to test the antioxidant and hepatoprotective capacity of free and encapsulated KFP. The prepared Npsshowed nanometric size, low PDI, high drug load as well as encapsulation with a better drug release profile. There was a significant decrease in the increased serum levels of alanine transaminase (ALT), total bilirubin (TBiL), and aspartate transaminase (AST), and the lipid peroxidation’s (MDA) level was attenuated, and levels of markers of the cell antioxidant defence system were restored including Glutathione S-transferase (GST), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) via oral pre-treatment with KFP-Np (50 mg/kg b.w. (body weight), 6 weeks). KFP-Np significantly declines an mRNA expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) as well as decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression. It also upregulated the mRNA expression and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). While comparing the protective effects of KFP encapsulated in Kollicoat MAE 30 DP and HPMC-AS, Nps was found to be betterthan free KFP. Insummary, result indicate that encapsulation of KFP in NPs provides a potential platform for oxidative stress induce liver injury.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (H.N.A.); (M.S.N.)
- Correspondence: ; Tel.: +966-5439-70731
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (H.N.A.); (M.S.N.)
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (H.N.A.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (H.N.A.); (M.S.N.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai 600077, India
| |
Collapse
|
22
|
Wang T, Liu X, Qu X, Li Y, Liang X, Wu J. Lipid response of hepatocellular carcinoma cells to anticancer drug detected on nanostructure-assisted LDI-MS platform. Talanta 2021; 235:122817. [PMID: 34517673 DOI: 10.1016/j.talanta.2021.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
High heterogeneity of hepatocellular carcinoma (HCC) tumor has become an obstacle to select effective therapy for the treatment of HCC patients. Methods that can guide the decision on therapy choice for HCC treatment are highly demanded. Evaluating the drug response of heterogeneous tumor cells at the molecular level can help to reveal the toxicity mechanism of anticancer drugs and provide more information than current cell-based chemosensitivity assays. In the present work, nanostructure-assisted laser desorption/ionization mass spectrometry (NALDI-MS) was used to investigate the lipid response of HCC cells to anticancer drugs. Three types of HCC cells (LM3, Hep G2, Huh7) were treated with sorafenib, doxorubicin hydro-chloride, and cisplatin. We found that the lipid profiles of HCC cells changed a lot after the drug treatment, and the degree of lipid changes was related to the cell viability. Two pairs of fatty acids C16:1/C16:0 and C18:1/C18:0 were found to be strongly related to the viability of HCC cells after drug treatment, and were more sensitive than Methyl-thiazolyl tetrazolium (MTT) assay. Accordingly, they can act as sensitive and comprehensive indexes to evaluate the drug susceptibility of HCC cells. In addition, the peak ratio of several neighboring phospholipids displayed high correlation with drug response of specific cell subtype to specific drug. The ratio of neighboring lipids may be traced back to the activity of enzyme and gene expression which regulate the lipidomic pathway. This method provides drug response of heterogenous tumor cells at molecular level and could be a potential candidate to precise tumor chemosensitivity assay.
Collapse
Affiliation(s)
- Tao Wang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuexin Li
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
System Analysis of ROS-Related Genes in the Prognosis, Immune Infiltration, and Drug Sensitivity in Hepatocellular Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6485871. [PMID: 34795841 PMCID: PMC8593590 DOI: 10.1155/2021/6485871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignant tumor with a poor prognosis. Reactive oxygen species (ROS) play an important role in tumors; however, the role of ROS-related genes is still unclear in HCC. Therefore, we analyzed the role of ROS-related genes in HCC via bioinformatics methods. Firstly, a prognosis model was constructed using LASSO Cox regression and multivariate analyses. We also investigated the potential function of the ROS-related genes and the correlation with immune infiltration, tumor stemness, and drug sensitivity. ICGC database was used for validation. Secondly, we further analyzed the role of 11 ROS-related genes in HCC. As a member of ROS gene family, the role of STK25 has remained unclear in HCC. We explored the biological function of STK25 using in vitro experiments. The present study was the first to construct a ROS-related prognostic model in HCC. The correlation of ROS-related genes with immune infiltration, tumor stemness, and drug sensitivity was dissected. Furthermore, we demonstrated that STK25 knockdown could increase the proliferation, migration, and invasion capacity of HCC cells.
Collapse
|
24
|
Zhao Q, Wongpoomchai R, Chariyakornkul A, Xiao Z, Pilapong C. Identification of Gene-Set Signature in Early-Stage Hepatocellular Carcinoma and Relevant Immune Characteristics. Front Oncol 2021; 11:740484. [PMID: 34745960 PMCID: PMC8570321 DOI: 10.3389/fonc.2021.740484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of hepatocellular carcinoma (HCC) is rising worldwide, and there is limited therapeutic efficacy due to tumor microenvironment heterogeneity and difficulty in early-stage screening. This study aimed to develop and validate a gene set-based signature for early-stage HCC (eHCC) patients and further explored specific marker dysregulation mechanisms as well as immune characteristics. Methods We performed an integrated bioinformatics analysis of genomic, transcriptomic, and clinical data with three independent cohorts. We systematically reviewed the crosstalk between specific genes, tumor prognosis, immune characteristics, and biological function in the different pathological stage samples. Univariate and multivariate survival analyses were performed in The Cancer Genome Atlas (TCGA) patients with survival data. Diethylnitrosamine (DEN)-induced HCC in Wistar rats was employed to verify the reliability of the predictions. Results We identified a Cluster gene that potentially segregates patients with eHCC from non-tumor, through integrated analysis of expression, overall survival, immune cell characteristics, and biology function landscapes. Immune infiltration analysis showed that lower infiltration of specific immune cells may be responsible for significantly worse prognosis in HCC (hazard ratio, 1.691; 95% CI: 1.171–2.441; p = 0.012), such as CD8 Tem and cytotoxic T cells (CTLs) in eHCC. Our results identified that Cluster C1 signature presented a high accuracy in predicting CD8 Tem and CTL immune cells (receiver operating characteristic (ROC) = 0.647) and cancerization (ROC = 0.946) in liver. As a central member of Cluster C1, overexpressed PRKDC was associated with the higher genetic alteration in eHCC than advanced-stage HCC (aHCC), which was also connected to immune cell-related poor prognosis. Finally, the predictive outcome of Cluster C1 and PRKDC alteration in DEN-induced eHCC rats was also confirmed. Conclusions As a tumor prognosis-relevant gene set-based signature, Cluster C1 showed an effective approach to predict cancerization of eHCC and its related immune characteristics with considerable clinical value.
Collapse
Affiliation(s)
- Qijie Zhao
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Southwest Medical University, Luzhou, China
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
26
|
Guo C, Zhou J, Ma B, Wang R, Ge Y, Wang Z, Ji B, Wang W, Zhang J, Wang Z. A Somatic Mutation-Derived LncRNA Signature of Genomic Instability Predicts Prognosis for Patients With Liver Cancer. Front Surg 2021; 8:724792. [PMID: 34504866 PMCID: PMC8421795 DOI: 10.3389/fsurg.2021.724792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Genomic instability is considered as one of the hallmarks of hepatocellular carcinoma (HCC) and poses a significant challenge to the clinical treatment. The emerging evidence has revealed the roles of long non-coding RNAs (lncRNAs) in the maintenance of genomic instability. This study is aimed to develop a genomic instability-related lncRNA signature for determining HCC prognosis and the suitability of patients for immunotherapy. Methods: In this study, data related to transcriptome profiling, clinical features, and the somatic mutations of patients with HCC were downloaded from The Cancer Genomic Atlas (TCGA). Bioinformatics analysis was performed to identify and construct a somatic mutation-derived genomic instability-associated lncRNA signature (GILncSig). Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate the levels of immune cell infiltration. A nomogram was constructed, and calibration was performed to assess the effectiveness of the model. Results: In the study, seven genomic instability-related lncRNAs were identified and used to define a prognostic signature. Patients with HCC were stratified into high- and low-risk groups with significant differences in the survival (median survival time = 1.489, 1.748 year; p = 0.006) based on the optimal cutoff value (risk score = 1.010) of the risk score in the training group. In addition, GILncSig was demonstrated to be an independent risk factor for the patients with HCC when compared to the clinical parameters (p < 0.001). According to the receiver operating characteristic (ROC) curve, nomogram, and calibration plot, the signature could predict the survival rate for the patients with HCC in the 1st, 3rd, and 5th years. Furthermore, ssGSEA revealed the potential of the signature in guiding decisions for administering clinical treatment. Conclusions: In this study, we developed a novel prognostic model based on the somatic mutation-derived lncRNAs and validated it using an internal dataset. The independence of the GILncSig was estimated using univariate and follow-up multivariate analyses. Immunologic analysis was used to evaluate the complex factors involved in the HCC progression.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhou
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Ji
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Gao TM, Bai DS, Qian JJ, Zhang C, Jin SJ, Jiang GQ. The growth rate of hepatocellular carcinoma is different with different TNM stages at diagnosis. Hepatobiliary Pancreat Dis Int 2021; 20:330-336. [PMID: 33637452 DOI: 10.1016/j.hbpd.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) progresses fast and has a poor prognosis, but the growth rate in different TNM stages is not clear. The present study was to estimate the growth rate of HCC with different TNM stages at diagnosis. METHODS Baseline demographics and tumor characteristics were analyzed for 10145 patients in Surveillance, Epidemiology, and End Results (SEER) Program-registered HCC. Multiple linear regression models were used for age adjustment with patient race, sex, marital status, and HCC grade. RESULTS The age at diagnosis was younger in Caucasians and males. The adjusted average age of patients with stage I HCC was 65.26 years. The adjusted age of patients with stage II, IIIA, IIIB, and IIIC was -0.17, -0.25, -0.29, and -0.55 adjusted-year younger compared with patients with stage I HCC (all P < 0.001). The adjusted average age of patients with T1 was 65.26 years. The age adjustment was -0.17, -0.26, and -0.55 respectively (all P < 0.001) for T2, T3 or T4 tumors without distant metastases. CONCLUSIONS These findings demonstrated that the more advanced the HCC stage at diagnosis, the younger the age at diagnosis and the faster the HCC growth from tumor occurrence.
Collapse
Affiliation(s)
- Tian-Ming Gao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China; Department of Hepatobiliary Surgery, The Second Clinical College, Dalian Medical University, Dalian 116023, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jian-Jun Qian
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
28
|
Cell-Free DNA Analysis by Whole-Exome Sequencing for Hepatocellular Carcinoma: A Pilot Study in Thailand. Cancers (Basel) 2021; 13:cancers13092229. [PMID: 34066484 PMCID: PMC8125351 DOI: 10.3390/cancers13092229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Liquid biopsy for cell-free DNA (cfDNA) is a non-invasive technique to characterize the genetic profile of a tumor. Despite being a valuable tool, there is no mutational profile of cfDNA from hepatocellular carcinoma (HCC) in patients from Thailand, where HCC is prevalent. The present study aimed to demonstrate the utility of using whole-exome sequencing of cfDNA to define the somatic mutation profiles of HCC in Thai patients who underwent nonoperative therapies. The level of cfDNA was higher in HCC patients than in chronic hepatitis patients. Single nucleotide variations were present in somatic genes in cfDNA, including in ZNF814, HRNR, ZNF492, ADAMTS12, FLG, OBSCN, TP53, and TTN. The co-occurrence of HRNR and TTN mutations in cfDNA was associated with shorter overall survival. These findings indicate that the mutational profiles of cfDNA reflected those of HCC tissue, and cfDNA could serve as a useful biomarker for diagnosis and prognosis in HCC patients. Abstract Cell-free DNA (cfDNA) has been used as a non-invasive biomarker for detecting cancer-specific mutations. However, the mutational profile of cfDNA in Thai patients with hepatocellular carcinoma (HCC) has not been investigated. Here, we demonstrated the utility of using whole-exome sequencing (WES) of cfDNA to define the somatic mutation profiles of HCC in Thai patients. The comprehensive profile of cfDNA was determined with WES to identify variants in matched cfDNA and germline DNA from 30 HCC patients in Thailand who underwent nonoperative therapies. The level of cfDNA was higher in HCC patients compared with chronic hepatitis patients (p-value < 0.001). Single nucleotide variants were present in somatic genes in cfDNA, including in ZNF814 (27%), HRNR (20%), ZNF492 (20%), ADAMTS12 (17%), FLG (17%), OBSCN (17%), TP53 (17%), and TTN (17%). These same mutations were matched to HCC mutation data from The Cancer Genome Atlas (TCGA) and a previous Thai HCC study. The co-occurrence of HRNR and TTN mutations in cfDNA was associated with shorter overall survival in HCC patients (hazard ratio = 1.60, p-value = 0.0196). These findings indicate that the mutational profile of cfDNA accurately reflected that of HCC tissue and suggest that cfDNA could serve as a useful biomarker for diagnosis and prognosis in Thai HCC patients. In addition, we demonstrated the use of the pocket-sized sequencer of Oxford Nanopore Technology to detect copy-number variants in HCC tissues that could be applied for onsite clinical detection/monitoring of HCC.
Collapse
|
29
|
Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2020; 112:641-654. [PMID: 33222332 PMCID: PMC7894015 DOI: 10.1111/cas.14744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with hepatocellular carcinoma (HCC) are usually diagnosed at the later stages and have poor survival outcomes. New molecules are urgently needed for the prognostic predication and individual treatment. Our study showed that high levels of NQO1 expression frequently exist in HCC with an obvious cancer‐specific pattern. Patients with NQO1‐high tumors are significantly associated with poor survival outcomes and serve as independent predictors. Functional experiments showed that NQO1 promotes the growth and aggressiveness of HCC in both in vitro and in vivo models, and the underlying mechanism involved NQO1‐derived amplification of ERK/p38‐NRF2 signaling. Combined block of ERK and NRF2 signaling generated stronger growth inhibition compared with any single block, especially for HCC with high‐NQO1. Therefore, NQO1 is a potential biomarker for HCC early diagnosis and prognosis prediction, and also attractive for cancer‐specific targets for HCC treatment.
Collapse
Affiliation(s)
- Yun Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jie Zheng
- Department of Intervention, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Mengchao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,The Center for Liver Disease and Transplantation, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Tao Tian
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiheng Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Peng Zhu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Fangming Gu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Siyuan Fu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zeya Pan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai, China
| |
Collapse
|
30
|
Yang L, Zhang Z, Sun Y, Pang S, Yao Q, Lin P, Cheng J, Li J, Ding G, Hui L, Li Y, Li H. Integrative analysis reveals novel driver genes and molecular subclasses of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:23849-23871. [PMID: 33221766 PMCID: PMC7762459 DOI: 10.18632/aging.104047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with various genetic and epigenetic abnormalities. Previous studies of HCC driver genes were primarily based on frequency of mutations and copy number alterations. Here, we performed an integrative analysis of genomic and epigenomic data from 377 HCC patients to identify driver genes that regulate gene expression in HCC. This integrative approach has significant advantages over single-platform analyses for identifying cancer drivers. Using this approach, HCC tissues were divided into four subgroups, based on expression of the transcription factor E2F and the mutation status of TP53. HCC tissues with E2F overexpression and TP53 mutation had the highest cell cycle activity, indicating a synergistic effect of E2F and TP53. We found that overexpression of the identified driver genes, stratifin (SFN) and SPP1, correlates with tumor grade and poor survival in HCC and promotes HCC cell proliferation. These findings indicate SFN and SPP1 function as oncogenes in HCC and highlight the important role of enhancers in the regulation of gene expression in HCC.
Collapse
Affiliation(s)
- Liguang Yang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengtao Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichao Pang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Lin
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinming Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Ding
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Anhui Engineering Laboratory for Big Data of Precision Medicine, Anhui 234000, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Hong Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
32
|
He H, Chen D, Cui S, Wu G, Piao H, Wang X, Ye P, Jin S. HDNA methylation data-based molecular subtype classification related to the prognosis of patients with hepatocellular carcinoma. BMC Med Genomics 2020; 13:118. [PMID: 32831081 PMCID: PMC7447581 DOI: 10.1186/s12920-020-00770-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background DNA methylation is a common chemical modification of DNA in the carcinogenesis of hepatocellular carcinoma (HCC). Methods In this bioinformatics analysis, 348 liver cancer samples were collected from the Cancer Genome Atlas (TCGA) database to analyse specific DNA methylation sites that affect the prognosis of HCC patients. Results 10,699 CpG sites (CpGs) that were significantly related to the prognosis of patients were clustered into 7 subgroups, and the samples of each subgroup were significantly different in various clinical pathological data. In addition, by calculating the level of methylation sites in each subgroup, 119 methylation sites (corresponding to 105 genes) were selected as specific methylation sites within the subgroups. Moreover, genes in the corresponding promoter regions in which the above specific methylation sites were located were subjected to signalling pathway enrichment analysis, and it was discovered that these genes were enriched in the biological pathways that were reported to be closely correlated with HCC. Additionally, the transcription factor enrichment analysis revealed that these genes were mainly enriched in the transcription factor KROX. A naive Bayesian classification model was used to construct a prognostic model for HCC, and the training and test data sets were used for independent verification and testing. Conclusion This classification method can well reflect the heterogeneity of HCC samples and help to develop personalized treatment and accurately predict the prognosis of patients.
Collapse
Affiliation(s)
- Hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian, 116023, China
| | - Shimeng Cui
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Gang Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd, Dalian, 116023, China
| | - Xun Wang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China
| | - Peng Ye
- Department of Urological Surgery, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Lianhe Road 193#, Shahekou District, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
33
|
Jeng KS, Lu SJ, Wang CH, Chang CF. Liver Fibrosis and Inflammation under the Control of ERK2. Int J Mol Sci 2020; 21:ijms21113796. [PMID: 32471201 PMCID: PMC7312875 DOI: 10.3390/ijms21113796] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic liver injury could lead the formation of liver fibrosis, eventually some would develop to hepatocellular carcinoma (HCC), one of the leading malignancies worldwide. The aim of the study is to dissect the role of extracellular signal-regulated kinase 2 (ERK2) signaling in liver fibrosis and inflammation. The choline-deficient, ethionine-supplemented (CDE) diet could lead to fatty livers and generate oval cells, activate hepatocyte stellate cell (HSC) and recruit immune cells as the liver fibrosis model mice. WT and ERK2 deficient (ERK2−/−) mice were compared in terms of liver weight/body weight, liver function, liver fibrosis markers and the differential gene expression in hepatotoxicity. ERK2−/− mice display the less degree of liver fibrosis when compared to WT mice. The protein level of alpha smooth muscle (α-SMA) was reduced and several hepatocellular carcinoma-related genes such as MMP9, FoxM1 were down-regulated. In addition, the cell proliferation and the percentages of activated T cells were reduced in ERK2−/− mice upon liver injury. Therefore, ERK2 plays an important role in regulating liver cirrhosis and inflammation.
Collapse
|
34
|
A Novel Function for KLF4 in Modulating the De-differentiation of EpCAM -/CD133 - nonStem Cells into EpCAM +/CD133 + Liver Cancer Stem Cells in HCC Cell Line HuH7. Cells 2020; 9:cells9051198. [PMID: 32408542 PMCID: PMC7290717 DOI: 10.3390/cells9051198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The complex and heterogeneous nature of hepatocellular carcinoma (HCC) hampers the identification of effective therapeutic strategies. Cancer stem cells (CSCs) represent a fraction of cells within tumors with the ability to self-renew and differentiate, and thus significantly contribute to the formation and maintenance of heterogeneous tumor mass. Increasing evidence indicates high plasticity in tumor cells, suggesting that non-CSCs could acquire stem cell properties through de-differentiation or reprogramming processes. In this paper, we reveal KLF4 as a transcription factor that can induce a CSC-like phenotype in non-CSCs through upregulating the EpCAM and E-CAD expression. Our studies indicated that KLF4 could directly bind to the promoter of EpCAM and increase the number of EpCAM+/CD133+ liver cancer stem cells (LCSCs) in the HuH7 HCC cell line. When KLF4 was overexpressed in EpCAM−/CD133− non-stem cells, the expressions of hepatic stem/progenitor cell genes such as CK19, EpCAM and LGR5 were significantly increased. KLF4 overexpressing non-stem cells exhibited greater cell viability upon sorafenib treatment, while the cell migration and invasion capabilities of these cells were suppressed. Importantly, we detected an increased membranous expression and colocalization of β-CAT, E-CAD and EpCAM in the KLF4-overexpressing EpCAM−/CD133− non-stem cells, suggesting that this complex might be required for the cancer stem cell phenotype. Moreover, our in vivo xenograft studies demonstrated that with a KLF4 overexpression, EpCAM−/CD133− non-stem cells attained an in vivo tumor forming ability comparable to EpCAM+/CD133+ LCSCs, and the tumor specimens from KLF4-overexpressing xenografts had increased levels of both the KLF4 and EpCAM proteins. Additionally, we identified a correlation between the KLF4 and EpCAM protein expressions in human HCC tissues independent of the tumor stage and differentiation status. Collectively, our data suggest a novel function for KLF4 in modulating the de-differentiation of tumor cells and the induction of EpCAM+/CD133+ LCSCs in HuH7 HCC cells.
Collapse
|
35
|
Fu R, Jiang S, Li J, Chen H, Zhang X. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression. Med Oncol 2020; 37:24. [PMID: 32166604 DOI: 10.1007/s12032-020-01350-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Lenvatinib is a long-awaited alternative to sorafenib for the first-line targeted therapy of patients with advanced hepatocellular carcinoma (HCC). However, resistance to lenvatinib has also become a major obstacle to improving the prognosis of HCC patients. The underlying molecular mechanisms contributing to lenvatinib resistance in HCC are largely unknown. HGF/c-MET axis activation is related to tumor progression and several hallmarks of cancer and is considered as the key contributor to drug resistance. In the present study, we focused on the role of the HGF/c-MET axis in mediating lenvatinib resistance in HCC cells. We showed that HGF reduced the antiproliferative, proapoptotic, and anti-invasive effects of lenvatinib on HCC cells with high c-MET expression but did not significantly affect HCC cells with low c-MET expression. The c-MET inhibitor PHA-665752 rescued HCC cells from HGF-induced lenvatinib resistance. Furthermore, HGF/c-MET activated the downstream PI3K/AKT and MAPK/ERK pathways and promoted epithelial-mesenchymal transition (EMT) in HCC cells. Collectively, our results suggested that combining lenvatinib treatment with a c-MET inhibitor may improve its systemic therapeutic efficacy in HCC patients with high c-MET expression.
Collapse
Affiliation(s)
- Rongdang Fu
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China
- Department of Hepatic Surgery, The Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, 528000, China
| | - Shaotao Jiang
- Department of HBP Surgery II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Jieyuan Li
- Department of Hepatic Surgery, The Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, 528000, China
| | - Huanwei Chen
- Department of Hepatic Surgery, The Affiliated Foshan Hospital of Sun Yat-Sen University, Foshan, 528000, China.
| | - Xiaohong Zhang
- Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-Sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
36
|
Parks SK, Mueller-Klieser W, Pouysségur J. Lactate and Acidity in the Cancer Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033556] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.
Collapse
Affiliation(s)
- Scott K. Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Pouysségur
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre A. Lacassagne, University Côte d'Azur, 06189 Nice, France
| |
Collapse
|
37
|
Comparison of clinical features and outcomes between HBV-related and non-B non-C hepatocellular carcinoma. Infect Agent Cancer 2020; 15:11. [PMID: 32082414 PMCID: PMC7023697 DOI: 10.1186/s13027-020-0273-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/12/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To evaluate the difference between hepatitis B virus related hepatocellular carcinoma (HBV-HCC) and non-HBV non-HCV hepatocellular carcinoma (NBNC-HCC) patients based on clinical features and prognosis. Methods A total of 175 patients with HCC were enrolled. Patients’ characteristics were extracted from medical records. Among them, 107 patients were positive for HBsAg and negative for HCV-Ab while 68 patients were negative for HBsAg and HCV-Ab. Results The patients in the NBNC-HCC group were significantly older than those in the HBV-HCC group (P = 0.045). Moreover, vascular invasion was found in 23.4% of HBV-HCC patients, which was significantly higher than that in the NBNC-HCC patients with 10.3% (P = 0.029). Kaplan-Meier analysis revealed that HBV-HCC patients had significantly worse outcomes in terms of overall survival (P = 0.036). Compared with the NBNC-HCC patients, the HBV-HCC patients had a significantly worse disease-free survival (P = 0.0018). The multivariate analysis results indicated that TNM stage (HR = 1.541, 95%CI 1.072–2.412, P = 0.002) and HBV infection (HR = 1.087, 95%CI 1.012–1.655, P = 0.042) were independent risk variables for overall survival. While vascular invasion (HR = 1.562, 95%CI 1.013–2.815, P = 0.042) and HBV infection (HR = 1.650, 95%CI 1.017–2.676, P = 0.037) were independent risk factors associated with disease-free survival. Conclusion Our data revealed that HBV-HCC is more common in young males with vascular invasion, while NBNC-HCC occurs mostly in elderly patients, and overall survival rate is significantly better than that of HBV-HCC. Our study therefore provides evidence that patients with HBV-HCC require closer follow-up due to their poor prognosis.
Collapse
|
38
|
Identification of Potentially Therapeutic Target Genes of Hepatocellular Carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031053. [PMID: 32046048 PMCID: PMC7037431 DOI: 10.3390/ijerph17031053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major threat to public health. However, few effective therapeutic strategies exist. We aimed to identify potentially therapeutic target genes of HCC by analyzing three gene expression profiles. METHODS The gene expression profiles were analyzed with GEO2R, an interactive web tool for gene differential expression analysis, to identify common differentially expressed genes (DEGs). Functional enrichment analyses were then conducted followed by a protein-protein interaction (PPI) network construction with the common DEGs. The PPI network was employed to identify hub genes, and the expression level of the hub genes was validated via data mining the Oncomine database. Survival analysis was carried out to assess the prognosis of hub genes in HCC patients. RESULTS A total of 51 common up-regulated DEGs and 201 down-regulated DEGs were obtained after gene differential expression analysis of the profiles. Functional enrichment analyses indicated that these common DEGs are linked to a series of cancer events. We finally identified 10 hub genes, six of which (OIP5, ASPM, NUSAP1, UBE2C, CCNA2, and KIF20A) are reported as novel HCC hub genes. Data mining the Oncomine database validated that the hub genes have a significant high level of expression in HCC samples compared normal samples (t-test, p < 0.05). Survival analysis indicated that overexpression of the hub genes is associated with a significant reduction (p < 0.05) in survival time in HCC patients. CONCLUSIONS We identified six novel HCC hub genes that might be therapeutic targets for the development of drugs for some HCC patients.
Collapse
|
39
|
Zhang M, Chua MS, Hu J, Li H, Zhang S, Wu L, Han B. High Inflammatory Factor Grading Predicts Poor Disease-Free Survival in AJCC Stage I-II Hepatocellular Carcinoma Patients After R0 Resection. Cancer Manag Res 2019; 11:10623-10632. [PMID: 31908534 PMCID: PMC6927565 DOI: 10.2147/cmar.s230386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, we established the inflammatory factor grade system (IFGs) based on the hepatocellular carcinoma (HCC) microenvironment to investigate the role of inflammatory factor grade (IFG) in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage I-II. Patients and methods We enrolled 87 HCC patients with AJCC stage I-II who underwent R0 resection between 2000 and 2012 and had paraffin-embedded specimens. Immunohistochemistry (IHC) was performed to investigate the expression of 12 inflammatory factors and then to establish the IFGs (grade A or B) based on the IHC data. Subsequently, Kaplan-Meier and Cox univariate/multivariate survival analyses were performed to examine the potential prognostic significance. Results Higher IFG (IFG-B) is significantly associated with greater tumor size (P=0.037), and IFG-B predicts a worse disease-free survival (DFS, P<0.001). Moreover, a platelet count (PLT) ≤100×109/L, tumor size ≥5 cm, poor tumor differentiation, and IFG-B are independent risk factors for DFS. Conclusion Overall, by establishing a grading system for the level of inflammatory factors in the HCC microenvironment, IFG-B can effectively predict poor DFS in AJCC stage I-II HCC patients after R0 resection.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jie Hu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Liqun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
40
|
Mining TCGA Database for Tumor Microenvironment-Related Genes of Prognostic Value in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2408348. [PMID: 31828095 PMCID: PMC6885833 DOI: 10.1155/2019/2408348] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The "Estimation of STromal and Immune cells in MAlignant Tumors using Expression data" algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.
Collapse
|
41
|
Taskaeva YS, Bgatova NP. Cytological Characteristics of a Heterogeneous Population of Hepatocellular Carcinoma-29 Cells after Injection of Lithium Carbonate in the Experiment. Bull Exp Biol Med 2019; 167:779-783. [PMID: 31655987 DOI: 10.1007/s10517-019-04621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/29/2022]
Abstract
Five cytological types of hepatocellular carcinoma-29 (G-29) grown in the muscle tissue of the thigh of experimental animals were identified by transmission electron microscopy; 89% of these were poorly differentiated type I-III cells. Lithium in a concentration of 20 mM produced a damaging effect on poorly differentiated G-29 cells: the number of cells with zones of intracellular component destruction and volume density of these zones increased, while volume density of cisterns of endoplasmic reticulum decreased. These results suggest that lithium carbonate can cause destructive changes in the heterogeneous population of G-29 cells during in vivo tumor development.
Collapse
Affiliation(s)
- Yu S Taskaeva
- Research Institute of Clinical and Experimental Lymphology, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. .,Novosibirsk National Research State University, Novosibirsk, Russia.
| | - N P Bgatova
- Research Institute of Clinical and Experimental Lymphology, Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
42
|
Li N, Zhao L, Guo C, Liu C, Liu Y. Identification of a novel DNA repair-related prognostic signature predicting survival of patients with hepatocellular carcinoma. Cancer Manag Res 2019; 11:7473-7484. [PMID: 31496805 PMCID: PMC6689532 DOI: 10.2147/cmar.s204864] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is the sixth most lethal neoplasm worldwide. Traditional biomarkers often exploit the relationship between a certain gene and cancer progression, but they cannot predict patient survival or prognosis accurately. We aim to construct a new DNA repair-related gene signature that combines several genes to improve prognosis prediction in HCC. Methods We selected an HCC mRNA sequencing (mRNA-seq) dataset (n=365) from The Cancer Genome Atlas (TCGA), and gene set enrichment analysis (GSEA) was used to explore bioinformatics information and further screen genes. We then built a gene signature based on the Cox proportional hazards regression model. Results GSEA revealed that the hallmark DNA repair gene set was significantly upregulated in the tumor phenotype. A set of seven genes, namely, ADA, FEN1, POLR2G, SAC3D1, SEC61A1, SF3A3, and UPF3B, were significantly a
ssociated with overall survival (OS) and used to form a gene signature. The signature risk score was calculated and used to divide patients into high‐ and low‐risk groups. The high-risk group showed worse prognosis (log-rank test p<0.0001). Univariate and multivariate Cox regression analysis showed that the prognostic performance of this risk score signature was robust in different subgroups based on clinicopathological features, with p-values <0.05 (HR=2.38, 95% CI (confidence interval) =1.355–4.184), indicating that it can serve as an independent prognostic indicator. Conclusion We developed and identified a seven‐gene signature related to the DNA repair process that can predict survival in HCC. It can be used as an effective classification tool and to guide clinical treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Central Laboratory, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Guo
- Department of Pharmacy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Chang Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Yongyu Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
43
|
Ma XL, Sun YF, Wang BL, Shen MN, Zhou Y, Chen JW, Hu B, Gong ZJ, Zhang X, Cao Y, Pan BS, Zhou J, Fan J, Guo W, Yang XR. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 2019; 19:760. [PMID: 31370822 PMCID: PMC6676608 DOI: 10.1186/s12885-019-5963-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/19/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUNDS The role of sphere-forming culture in enriching subpopulations with stem-cell properties in hepatocellular carcinoma (HCC) is unclear. The present study investigates its value in enriching cancer stem cells (CSCs) subpopulations and the mechanism by which HCC CSCs are maintained. METHODS HCC cell lines and fresh primary tumor cells were cultured in serum-free and ultra-low attachment conditions to allow formation of HCC spheres. In vitro and in vivo experiments were performed to evaluate CSC characteristics. Expression levels of CSC-related genes were assessed by qRT-PCR and the correlation between sphere formation and clinical characteristics was investigated. Finally, gene expression profiling was performed to explore the molecular mechanism underlying HCC CSC maintenance. RESULTS We found that both cell lines and primary tumor cells formed spheres. HCC spheres possessed the capacity for self-renewal, proliferation, drug resistance, and contained different subpopulations of CSCs. Of interest, 500 sphere-forming Huh7 cells or 200 primary tumor cells could generate tumors in immunodeficient animals. Sphere formation correlated with size, multiple tumors, satellite lesions, and advanced stage. Further investigation identified that the PPARα-SCD1 axis plays an important role in maintenance of the CSC properties of HCC sphere cells by promoting nuclear accumulation of β-Catenin. Inhibition of SCD1 interfered with sphere formation, down-regulated expression of CSC-related markers, and reduced β-Catenin nuclear accumulation. CONCLUSIONS Sphere-forming culture can effectively enrich subpopulations with stem-cell properties, which are maintained through activation of the PPARα-SCD1 axis. Therefore, we suggest that targeting the SCD1-related CSC machinery might provide a novel insight into HCC treatment.
Collapse
Affiliation(s)
- Xiao-Lu Ma
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Min-Na Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Jian-Wen Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Zi-Jun Gong
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Xin Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, 410078 China
| | - Bai-shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
44
|
Reappraisal of Failures in Downstaging Treatment of Hepatocellular Carcinoma Prior to Liver Transplant-Preliminary Report on the Impact of Underestimations of Tumor Numbers and Tumor Sizes as Measured From Imaging Before Transplant. Transplant Proc 2019; 51:1428-1434. [PMID: 31079940 DOI: 10.1016/j.transproceed.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 02/08/2023]
Abstract
Downstaging treatment of hepatocellular carcinoma (HCC) prior to liver transplant (LT) is an accepted strategy to meet the Milan criteria. However, after transplant surgery, a reality is noted that the number or/and the size of some HCCs measured from the liver explants is different from that measured from the pre-LT imaging. If tumor number or tumor size measured from the liver explants was beyond that measured from pre-LT imaging, we define it as "failed downstaging." Among 27 patients who received downstaging therapies, there are 11 "number reduction failures" and 6 "size reduction failures." We attribute the discrepancy to 2 possible reasons; one is that the pre-LT imaging after downstaging could not completely detect all the HCC; the other is that the time interval between the downstaging and LT is long enough to develop new HCCs. After follow-up, 6 patients developed HCC recurrence. The significant factors affecting recurrence include tumor size from postdownstaging imaging (P = .048), tumor number ≥ 2 (P = .007), multiple sessions of downstaging (P = .03), ratio of neutrophil to lymphocyte (P = .047), and tumor number from liver explant (borderline P = .05). Tumor recurrence after LT is significantly higher in those with "size reduction failure" (P = .048). The interval between LT and tumor recurrence is significantly shorter in those with "size reduction failure" (P = .04). To decrease underestimations of HCC, combining various imaging studies including the computed tomographic scan, magnetic resonance imaging, and contrast ultrasonography is needed to increase the accuracy before LT. Repeated imaging studies at short intervals of no more than 3 months are necessary during a long wait. How to minimize the underestimations of HCC to determine the appropriate candidacy for LT is an important goal for transplantation surgeons.
Collapse
|
45
|
Wu X, Zhang L, Zhou J, Liu L, Fu Q, Fu A, Feng X, Xin R, Liu H, Gao Y, Xue J. Clinicopathologic significance of LAIR-1 expression in hepatocellular carcinoma. Curr Probl Cancer 2019; 43:18-26. [DOI: 10.1016/j.currproblcancer.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
|
46
|
Zavadil JA, Herzig MCS, Hildreth K, Foroushani A, Boswell W, Walter R, Reddick R, White H, Zare H, Walter CA. C3HeB/FeJ Mice mimic many aspects of gene expression and pathobiological features of human hepatocellular carcinoma. Mol Carcinog 2018; 58:309-320. [PMID: 30365185 DOI: 10.1002/mc.22929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a deadly cancer, underscoring the need for relevant preclinical models. Male C3HeB/FeJ mice model spontaneous HCC with some hepatocarcinogenesis susceptibility loci corresponding to syntenic regions of human chromosomes altered in HCC. We tested other properties of C3HeB/FeJ tumors for similarity to human HCC. C3HeB/FeJ tumors were grossly visible at 4 months of age, with prevalence and size increasing until about 11 months of age. Histologic features shared with human HCC include hepatosteatosis, tumor progression from dysplasia to poorly differentiated, vascular invasion, and trabecular, oncocytic, vacuolar, and clear cell variants. More tumor cells displayed cytoplasmic APE1 staining versus normal liver. Ultrasound effectively detected and monitored tumors, with 85.7% sensitivity. Over 5000 genes were differentially expressed based on the GSE62232 and GSE63898 human HCC datasets. Of these, 158 and 198 genes, respectively, were also differentially expressed in C3HeB/FeJ. Common cancer pathways, cell cycle, p53 signaling and other molecular aspects, were shared between human and mouse differentially expressed genes. We established eigengenes that distinguish HCC from normal liver in the C3HeB/FeJ model and a subset of human HCC. These features extend the relevance and improve the utility of the C3HeB/FeJ line for HCC studies.
Collapse
Affiliation(s)
- Jessica A Zavadil
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Maryanne C S Herzig
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Kim Hildreth
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Amir Foroushani
- Department of Computer Science, Texas State University, San Marcos, Texas
| | - William Boswell
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Ronald Walter
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Robert Reddick
- Pathology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Hugh White
- Radiology Department, University of Texas Health Science Center, San Antonio, Texas.,Radiology Department, Audie L. Murphy Memorial Veterans Affairs Hospital, San Antonio, Texas
| | - Habil Zare
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
47
|
Jeng KS, Huang CC, Chung CS, Lin CK, Teng CJ, Shueng PW, Chen KH. Transplantation After Successful Downstaging by Multimodal Treatments of American Joint Committee on Cancer Stage IIIB Hepatocellular Carcinoma With Portal Vein Thrombi: A Case Report. Transplant Proc 2018; 50:2882-2884. [PMID: 30401416 DOI: 10.1016/j.transproceed.2017.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023]
Abstract
The effective treatment for hepatocellular carcinoma (HCC) with American Joint Committee on Cancer stage IIIB remains controversial and challenging because of the high recurrence rate after resection and low survival rate. The median survival of those with macroscopic portal vein tumor thrombus (PVTT) is short. We reported such a case which received liver transplantation (LT) after successful consecutive downstaging therapies. A 40-year-old man with alcohol related liver cirrhosis and repeated esophageal varices bleeding had HCC with tumor thrombi in right main portal vein and the second portal branch of segment VI (stage IIIB). The received percutaneous alcohol injection, radiofrequency ablation, 8 sessions of transcatheter hepatic arterial chemoembolization, radiotherapy, and target therapy with sorafenib. Computed tomography (CT) scan and magnetic resonance imaging after treatments showed no viable fragments in the tumor and revealed both the right main portal vein and V1 branch were patent. One month later, the patient received a deceased LT. The perioperative course was rather smooth. After discharge, the interval follow-up CT studies of the chest and liver and whole body bone scan showed no tumor recurrence or metastasis up to 20 months postoperation.
Collapse
Affiliation(s)
- K-S Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - C-C Huang
- Department of Radiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - C-S Chung
- Division of Gastroenterology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - C-K Lin
- Division of Gastroenterology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - C-J Teng
- Division of Hematology & Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - P-W Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - K-H Chen
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| |
Collapse
|
48
|
Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Arch Toxicol 2018; 93:25-35. [PMID: 30357543 DOI: 10.1007/s00204-018-2332-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The mammalian gut microbiome (GM) plays a critical role in xenobiotic biotransformation and can profoundly affect the toxic effects of xenobiotics. Previous in vitro studies have demonstrated that gut bacteria have the capability to metabolize arsenic (As); however, the specific roles of the gut microbiota in As metabolism in vivo and the toxic effects of As are largely unknown. Here, we administered sodium arsenite to conventionally raised mice (with normal microbiomes) and GM-disrupted mice with antibiotics to investigate the role of the gut microbiota in As biotransformation and its toxicity. We found that the urinary total As levels of GM-disrupted mice were much higher, but the fecal total As levels were lower, than the levels in the conventionally raised mice. In vitro experiments, in which the GM was incubated with As, also demonstrated that the gut bacteria could adsorb or take up As and thus reduce the free As levels in the culture medium. With the disruption of the gut microbiota, arsenic biotransformation was significantly perturbed. Of note, the urinary monomethylarsonic acid/dimethylarsinic acid ratio, a biomarker of arsenic metabolism and toxicity, was markedly increased. Meanwhile, the expression of genes of one-carbon metabolism, including folr2, bhmt, and mthfr, was downregulated, and the liver S-adenosylmethionine (SAM) levels were significantly decreased in the As-treated GM-disrupted mice only. Moreover, As exposure altered the expression of genes of the p53 signaling pathway, and the expression of multiple genes associated with hepatocellular carcinoma (HCC) was also changed in the As-treated GM-disrupted mice only. Collectively, disruption of the GM enhances the effect of As on one-carbon metabolism, which could in turn affect As biotransformation. GM disruption also increases the toxic effects of As and may increase the risk of As-induced HCC in mice.
Collapse
|
49
|
miRNA122a regulation of gene therapy vectors targeting hepatocellular cancer stem cells. Oncotarget 2018; 9:23577-23588. [PMID: 29805757 PMCID: PMC5955118 DOI: 10.18632/oncotarget.25280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
In this study, we report a miRNA122a based targeted gene therapy for hepatocellular cancer stem cells (CSCs). First, we assessed the levels of miRNA122a in normal human hepatocytes, a panel of hepatocellular carcinoma (HCC) cell lines and hepatocellular CSCs observing its significant downregulation in HCC and CSCs. The miRNA122a binding site was then incorporated at the 3'-UTR of reporter genes gaussia luciferase (GLuc) and eGFP which resulted in significant hepatocyte detargeting. Using this strategy for the delivery of gene directed enzyme prodrug therapy (GDEPT) utilizing the cytosine deaminase/5-fluorocytosine (CD/5-FC) system, we showed significant killing in cells with low or no miRNA122a while those cells, such as hepatocytes with high miRNA122a were largely spared. Next, we showed that CSC enriched tumorspheres exhibit a significant downregulation of miRNA122a expression providing a rational to exploit its binding site for targeted gene delivery. Using plasmids harboring reporters GLuc and eGFP with or without miR122a binding sites, we showed high reporter expression in the CSCs and little reported expression in the non-enriched cultures. Finally, we demonstrate the efficacy of miRNA122a based post-transcriptionally targeted GDEPT for hepatocellular CSCs.
Collapse
|
50
|
Ofuji K, Saito K, Suzuki S, Shimomura M, Shirakawa H, Nobuoka D, Sawada Y, Yoshimura M, Tsuchiya N, Takahashi M, Yoshikawa T, Tada Y, Konishi M, Takahashi S, Gotohda N, Nakamoto Y, Nakatsura T. Perioperative plasma glypican-3 level may enable prediction of the risk of recurrence after surgery in patients with stage I hepatocellular carcinoma. Oncotarget 2018; 8:37835-37844. [PMID: 28035063 PMCID: PMC5514954 DOI: 10.18632/oncotarget.14271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Glypican-3 (GPC3) is a glycosylphosphatidylinositol-anchored cell surface protein overexpressed in hepatocellular carcinoma(HCC), and its overexpression is associated with poor prognosis. The diagnostic potential of GPC3 as a serum marker has been reported. In the present study, we evaluated the usefulness of plasma GPC3 as a predictor for recurrence after surgical resection in stage I HCC patients by newly developed an enzyme-linked immunosorbent assay (ELISA) system. Current study demonstrated that high levels of preoperative plasma GPC3 patients tended to experience postoperative recurrence. On the other hand, pre- and postoperative plasma GPC3 positivity of non-recurrence patients was very low. Moreover, even after surgery, approximately half of patients who experienced recurrence were positive for plasma GPC3. Postoperative plasma GPC3 positivity was significantly correlated with worse recurrence-free survival. Immuohistochemical analysis also showed positive rate of GPC3-expression in HCC was higher in recurrence patients than in non-recurrence patients. These results suggested that both pre- and postoperative plasma GPC3 levels may be accurate predictors for recurrence after curative resection of early-stage HCC. It should be noted that the current study only examined a small number of cases; thus, a larger sample size is necessary to validate GPC3 as a predictor for HCC recurrence.
Collapse
Affiliation(s)
- Kazuya Ofuji
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan.,Second Department of Internal Medicine, University of Fukui, Eiheiji-cho Yoshida-gun, Fukui 910-1193, Japan
| | - Keigo Saito
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Shiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Hirofumi Shirakawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Daisuke Nobuoka
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Yu Sawada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Mayuko Yoshimura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Nobuhiro Tsuchiya
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Mari Takahashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Yoshitaka Tada
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| | - Masaru Konishi
- Division of Hepatobiliary Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Shinichiro Takahashi
- Division of Hepatobiliary Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Naoto Gotohda
- Division of Hepatobiliary Pancreatic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, University of Fukui, Eiheiji-cho Yoshida-gun, Fukui 910-1193, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|