1
|
McGenity C, Clarke EL, Jennings C, Matthews G, Cartlidge C, Freduah-Agyemang H, Stocken DD, Treanor D. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. NPJ Digit Med 2024; 7:114. [PMID: 38704465 PMCID: PMC11069583 DOI: 10.1038/s41746-024-01106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
Ensuring diagnostic performance of artificial intelligence (AI) before introduction into clinical practice is essential. Growing numbers of studies using AI for digital pathology have been reported over recent years. The aim of this work is to examine the diagnostic accuracy of AI in digital pathology images for any disease. This systematic review and meta-analysis included diagnostic accuracy studies using any type of AI applied to whole slide images (WSIs) for any disease. The reference standard was diagnosis by histopathological assessment and/or immunohistochemistry. Searches were conducted in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-analysis was performed using a bivariate random effects model, with additional subgroup analyses also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSIs), representing many diseases. These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4). There was heterogeneity in study design and 99% of studies identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns. Details on selection of cases, division of model development and validation data and raw performance data were frequently ambiguous or missing. AI is reported as having high diagnostic accuracy in the reported areas but requires more rigorous evaluation of its performance.
Collapse
Affiliation(s)
- Clare McGenity
- University of Leeds, Leeds, UK.
- Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Emily L Clarke
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Charlotte Jennings
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | | | | - Darren Treanor
- University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Department of Clinical Pathology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Rawlani P, Ghosh NK, Kumar A. Role of artificial intelligence in the characterization of indeterminate pancreatic head mass and its usefulness in preoperative diagnosis. Artif Intell Gastroenterol 2023; 4:48-63. [DOI: 10.35712/aig.v4.i3.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/08/2023] [Indexed: 12/07/2023] Open
Abstract
Artificial intelligence (AI) has been used in various fields of day-to-day life and its role in medicine is immense. Understanding of oncology has been improved with the introduction of AI which helps in diagnosis, treatment planning, management, prognosis, and follow-up. It also helps to identify high-risk groups who can be subjected to timely screening for early detection of malignant conditions. It is more important in pancreatic cancer as it is one of the major causes of cancer-related deaths worldwide and there are no specific early features (clinical and radiological) for diagnosis. With improvement in imaging modalities (computed tomography, magnetic resonance imaging, endoscopic ultrasound), most often clinicians were being challenged with lesions that were difficult to diagnose with human competence. AI has been used in various other branches of medicine to differentiate such indeterminate lesions including the thyroid gland, breast, lungs, liver, adrenal gland, kidney, etc. In the case of pancreatic cancer, the role of AI has been explored and is still ongoing. This review article will focus on how AI can be used to diagnose pancreatic cancer early or differentiate it from benign pancreatic lesions, therefore, management can be planned at an earlier stage.
Collapse
Affiliation(s)
- Palash Rawlani
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Nalini Kanta Ghosh
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
3
|
Alzoubi I, Bao G, Zheng Y, Wang X, Graeber MB. Artificial intelligence techniques for neuropathological diagnostics and research. Neuropathology 2022. [PMID: 36443935 DOI: 10.1111/neup.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022]
Abstract
Artificial intelligence (AI) research began in theoretical neurophysiology, and the resulting classical paper on the McCulloch-Pitts mathematical neuron was written in a psychiatry department almost 80 years ago. However, the application of AI in digital neuropathology is still in its infancy. Rapid progress is now being made, which prompted this article. Human brain diseases represent distinct system states that fall outside the normal spectrum. Many differ not only in functional but also in structural terms, and the morphology of abnormal nervous tissue forms the traditional basis of neuropathological disease classifications. However, only a few countries have the medical specialty of neuropathology, and, given the sheer number of newly developed histological tools that can be applied to the study of brain diseases, a tremendous shortage of qualified hands and eyes at the microscope is obvious. Similarly, in neuroanatomy, human observers no longer have the capacity to process the vast amounts of connectomics data. Therefore, it is reasonable to assume that advances in AI technology and, especially, whole-slide image (WSI) analysis will greatly aid neuropathological practice. In this paper, we discuss machine learning (ML) techniques that are important for understanding WSI analysis, such as traditional ML and deep learning, introduce a recently developed neuropathological AI termed PathoFusion, and present thoughts on some of the challenges that must be overcome before the full potential of AI in digital neuropathology can be realized.
Collapse
Affiliation(s)
- Islam Alzoubi
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Guoqing Bao
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney Camperdown New South Wales Australia
| | - Xiuying Wang
- School of Computer Science The University of Sydney Sydney New South Wales Australia
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
4
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
5
|
Abstract
Histopathological images (HIs) are the gold standard for evaluating some types of tumors for cancer diagnosis. The analysis of such images is time and resource-consuming and very challenging even for experienced pathologists, resulting in inter-observer and intra-observer disagreements. One of the ways of accelerating such an analysis is to use computer-aided diagnosis (CAD) systems. This paper presents a review on machine learning methods for histopathological image analysis, including shallow and deep learning methods. We also cover the most common tasks in HI analysis, such as segmentation and feature extraction. Besides, we present a list of publicly available and private datasets that have been used in HI research.
Collapse
|
6
|
Akshintala VS, Khashab MA. Artificial intelligence in pancreaticobiliary endoscopy. J Gastroenterol Hepatol 2021; 36:25-30. [PMID: 33448514 DOI: 10.1111/jgh.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) applications in health care have exponentially increased in recent years, and a few of these are related to pancreatobiliary disorders. AI-based methods were applied to extract information, in prognostication, to guide clinical treatment decisions and in pancreatobiliary endoscopy to characterize lesions. AI applications in endoscopy are expected to reduce inter-operator variability, improve the accuracy of diagnosis, and assist in therapeutic decision-making in real time. AI-based literature must however be interpreted with caution given the limited external validation. A multidisciplinary approach combining clinical and imaging or endoscopy data will better utilize AI-based technologies to further improve patient care.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Lin HM, Xue XF, Wang XG, Dang SC, Gu M. Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. Artif Intell Gastroenterol 2020; 1:19-29. [DOI: 10.35712/aig.v1.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a complex cancer of the digestive tract. Diagnosis and treatment can be very difficult because of unclear early symptoms, the deep anatomical location of cancer tissues, and the high degree of cancer cell invasion. The prognosis is extremely poor; the 5-year survival rate of patients with pancreatic cancer is less than 1%. Artificial intelligence (AI) has great potential for application in the medical field. In addition to AI-based applications, such as disease data processing, imaging, and pathological image recognition, robotic surgery has revolutionized surgical procedures. To better understand the current role of AI in pancreatic cancer and predict future development trends, this article comprehensively reports the application of AI to the diagnosis, treatment, and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hai-Min Lin
- Department of General Surgery, the Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Xiao-Fei Xue
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Xiao-Gang Wang
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Sheng-Chun Dang
- Department of General Surgery, the Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of General Surgery, Pucheng Hospital, Weinan 715500, Shaanxi Province, China
| | - Min Gu
- Department of Oncology, Zhenjiang Hospital of Traditional Chinese and Western Medicine, Zhenjiang 212000 Jiangsu Province, China
| |
Collapse
|
8
|
Application of artificial intelligence for the diagnosis, treatment, and prognosis of pancreatic cancer. Artif Intell Gastroenterol 2020. [DOI: 10.35712/wjg.v1.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Differential Diagnostic Reasoning Method for Benign Paroxysmal Positional Vertigo Based on Dynamic Uncertain Causality Graph. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:1541989. [PMID: 32411277 PMCID: PMC7204354 DOI: 10.1155/2020/1541989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/08/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
Abstract
The accurate differentiation of the subtypes of benign paroxysmal positional vertigo (BPPV) can significantly improve the efficacy of repositioning maneuver in its treatment and thus reduce unnecessary clinical tests and inappropriate medications. In this study, attempts have been made towards developing approaches of causality modeling and diagnostic reasoning about the uncertainties that can arise from medical information. A dynamic uncertain causality graph-based differential diagnosis model for BPPV including 354 variables and 885 causality arcs is constructed. New algorithms are also proposed for differential diagnosis through logical and probabilistic inference, with an emphasis on solving the problems of intricate and confounding disease factors, incomplete clinical observations, and insufficient sample data. This study further uses vertigo cases to test the performance of the proposed method in clinical practice. The results point to high accuracy, a satisfactory discriminatory ability for BPPV, and favorable robustness regarding incomplete medical information. The underlying pathological mechanisms and causality semantics are verified using compact graphical representation and reasoning process, which enhance the interpretability of the diagnosis conclusions.
Collapse
|
10
|
Ulaganathan G, Mohamed Niazi KT, Srinivasan S, Balaji VR, Manikandan D, Hameed KAS, Banumathi A. A Clinicopathological Study of Various Oral Cancer Diagnostic Techniques. J Pharm Bioallied Sci 2017; 9:S4-S10. [PMID: 29284926 PMCID: PMC5731041 DOI: 10.4103/jpbs.jpbs_110_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Oral cancer is one of the most commonly occurring malignant tumors in the head and neck regions with high incident rate and mortality rate in the developed countries than in the developing countries. Generally, the survival rate of cancer patients may increase when diagnosed at early stage, followed by prompt treatment and therapy. Recently, cancer diagnosis and therapy design for a specific cancer patient have been performed with the advanced computer-aided techniques. The responses of the cancer therapy could be continuously monitored to ensure the effectiveness of the treatment process that hardly requires diagnostic result as quick as possible to improve the quality and patient care. This paper gives an overview of oral cancer occurrence, different types, and various diagnostic techniques. In addition, a brief introduction is given to various stages of immunoanalysis including tissue image preparation, whole slide imaging, and microscopic image analysis.
Collapse
Affiliation(s)
- G Ulaganathan
- Department of Oral Surgery, CSI College of Dental Sciences and Research, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - K Thanvir Mohamed Niazi
- Department of Oral Surgery, CSI College of Dental Sciences and Research, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - Soundarya Srinivasan
- Department of Oral Pathology, Best Dental Science College, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - V R Balaji
- Department of Periodontics, CSI College of Dental Sciences and Research, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - D Manikandan
- Department of Periodontics, CSI College of Dental Sciences and Research, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - K A Shahul Hameed
- Department of ECE, Sethu Institute of Technology, Pulloor, Kariapatti, Madurai, Tamil Nadu, India
| | - A Banumathi
- Department of ECE, Thiagarajar College of Engineering, Madurai, Tamil Nadu, India
| |
Collapse
|