1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
Liang T, Jiang T, Liang Z, Li L, Chen Y, Chen T, Yang L, Zhang N, Dong B, Xie X, Gu B, Wu Q. Gut microbiota-driven BCAA biosynthesis via Staphylococcus aureus -expressed acetolactate synthase impairs glycemic control in type 2 diabetes in South China. Microbiol Res 2025; 296:128145. [PMID: 40138872 DOI: 10.1016/j.micres.2025.128145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
An increase in branched-chain amino acid (BCAA) levels can result in insulin resistance at different stages of type 2 diabetes (T2D), however, the causes of this increase are unclear. We performed metagenomics and metabolomics profiling in patients with prediabetes (PDM), newly diagnosed diabetes (NDDM), and post-medication type 2 diabetes (P2DM) to investigate whether altered gut microbes and metabolites could explain the specific clinical characteristics of different disease stages of T2D. Here we identify acetolactate synthase (ALS) a BCAA biosynthesis enzyme in Staphylococcus aureus as a cause of T2D insulin resistance. Compared with healthy peoples, patients with PDM, NDDM, and P2DM groups, especially in P2DM group, have increased faecal numbers of S. aureus. We also demonstrated that insulin administration may be a risk factor for S. aureus infection in T2D. The presence of ALS-positive S. aureus correlated with the levels of BCAAs and was associated with an increased fasting blood glucose (FBG) and insulin resistance. Humanized microbiota transplantation experiment indicated that ALS contributes to disordered insulin resistance mediated by S. aureus. We also found that S. aureus phage can reduced the FBG levels and insulin resistance in db/db mice. The ALS-positive S. aureus are associated with insulin resistance in T2D, opening a new therapeutic avenue for the prevention or treatment of diabetes.
Collapse
Affiliation(s)
- Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhuang Liang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi 710054, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ya Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ni Zhang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bo Dong
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi 710054, China.
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
3
|
Majid H, Kohli S, Islam SU, Nidhi. The role of branched chain aminotransferase in the interrelated pathways of type 2 diabetes mellitus and Alzheimer's disease. J Diabetes Metab Disord 2025; 24:90. [PMID: 40151764 PMCID: PMC11936868 DOI: 10.1007/s40200-025-01597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 03/29/2025]
Abstract
Objectives This review assessed the role of Branched-Chain Amino Acid Transaminase (BCAT) enzymes in human metabolism, and their involvement in the catabolism of branched-chain amino acids (BCAAs) and exploring the association between Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) through insulin resistance. Methods The analysis involves a comprehensive literature review of recent research findings related to BCAT enzymes, BCAA metabolism, T2DM, and AD. Relevant studies and articles were identified through systematic searches in databases such as PubMed, ScienceDirect, and other scholarly resources. Inclusion criteria encompassed research articles, reviews, and studies published in peer-reviewed journals, with a focus on human metabolism, BCAT enzymes, and the interplay between BCAA metabolism, T2DM, and AD. Results The association between T2DM and AD suggests a potential metabolic link, particularly through dysregulated BCAA metabolism leading to insulin resistance. The impact of impaired insulin signaling is implicated in brain function and the accumulation of amyloid plaques facilitated by BCAT. Conclusion The identified link between BCAT, BCAA metabolism, T2DM, and AD suggests that disruptions in BCAT levels could serve as valuable indicators for early detection of insulin resistance and cognitive impairment as observed in Type 3 Diabetes which may present a promising therapeutic target.
Collapse
Affiliation(s)
- Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Sunil Kohli
- Department of Medicine and Diabetes Unit, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sajad Ul Islam
- Department of Medicine and Diabetes Unit, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
4
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
5
|
Wang J, Cui C, Hou F, Wu Z, Peng Y, Jin H. Metabolic profiling and early prediction models for gestational diabetes mellitus in PCOS and non-PCOS pregnant women. Eur J Med Res 2025; 30:245. [PMID: 40186293 PMCID: PMC11971856 DOI: 10.1186/s40001-025-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common pregnancy complication, significantly affecting maternal and neonatal health. Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by metabolic abnormalities, which notably elevates the risk of developing GDM during pregnancy. METHODS In this study, we utilized ultra-high-performance liquid chromatography for untargeted metabolomics analysis of serum samples from 137 pregnant women in the early-to-mid-pregnancy. The cohort consisted of 137 participants, including 70 in the PCOS group (36 who developed GDM in mid-to-late pregnancy and 34 who did not) and 67 in the non-PCOS group (37 who developed GDM and 30 who remained GDM-free). The aim was to investigate metabolic profile differences between PCOS and non-PCOS patients and to construct early GDM prediction models separately for the PCOS and non-PCOS groups. RESULTS Our findings revealed significant differences in the metabolic profiles of PCOS patients, which may help elucidate the higher risk of GDM in the PCOS population. Moreover, tailored early GDM prediction models for the PCOS group demonstrated high predictive performance, providing strong support for early diagnosis and intervention in clinical practice. CONCLUSIONS Untargeted metabolomics analysis revealed distinct metabolic patterns between PCOS patients and non-PCOS patients, particularly in pathways related to GDM. Based on these findings, we successfully constructed GDM prediction models for both PCOS and non-PCOS groups, offering a promising tool for clinical management and early intervention in high-risk populations.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Can Cui
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Fei Hou
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Zhiyan Wu
- Department of Gynecology, Qingzhou People's Hospital, Weifang, Shandong Province, People's Republic of China
| | - Yingying Peng
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China.
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
6
|
Bobin P, Mitanchez D, Castellano B, Grit I, Moyon T, Raux A, Vambergue A, Winer N, Darmaun D, Michel C, Le Drean G, Alexandre-Gouabau MC. A specific metabolomic and lipidomic signature reveals the postpartum resolution of gestational diabetes mellitus or its evolution to type 2 diabetes in rat. Am J Physiol Endocrinol Metab 2025; 328:E493-E512. [PMID: 39947887 DOI: 10.1152/ajpendo.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 02/01/2025] [Indexed: 04/01/2025]
Abstract
Gestational diabetes mellitus (GDM) represents a major public health concern due to adverse maternal postpartum and long-term outcomes. Current strategies to manage GDM fail to reduce the maternal risk to develop later impaired glucose tolerance (IGT) and type 2 diabetes (T2D). In a rodent model of diet-induced GDM without obesity, we explored the perinatal metabolic adaptations in dams with gestational IGT followed by either persistent or resolved postpartum IGT. Female Sprague-Dawley rats were fed a high-fat high-sucrose (HFHS) or a chow [control group (CTL)] diet, 1 wk before mating and throughout gestation (G). Following parturition, HFHS dams were randomized to two subgroups: one switched to a chow diet and the other one maintained on an HFHS diet throughout lactation (L). Oral glucose tolerance tests (OGTTs) were performed, and plasma metabolome-lipidome were characterized at G12 and L12. We found that 1) in GDM-pregnant dams, IGT was associated with incomplete fatty acid oxidation (FAO), enhanced gluconeogenesis, altered insulin signaling, and oxidative stress; 2) improved glucose tolerance postpartum seemed to restore complete FAO along with elevation of nervonic acid-containing sphingomyelins, assumed to impart β-cell protection; and 3) persistence of IGT after delivery was associated with metabolites known to predict the early onset of insulin and leptin resistance, with maintained liver dysfunction. Our findings shed light on the impact of postpartum IGT evolution on maternal metabolic outcome after an episode of GDM. They suggest innovative strategies, implemented shortly after delivery and targeted on these biomarkers, should be explored to curb or delay the transition from GDM to T2D in these mothers.NEW & NOTEWORTHY Specific metabolomic/lipidomic features are associated with GDM postpartum outcomes. GDM-pregnant dams exhibit partial fatty acid oxidation and boosted gluconeogenesis. Resolution of postpartum IGT relies on nervonic acid-sphingomyelin, a β-cell protector. Postpartum IGT persistence suggests muscle insulin resistance and liver dysfunction.
Collapse
Affiliation(s)
- Paul Bobin
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Delphine Mitanchez
- Department of Neonatology, Bretonneau Hospital, François Rabelais University, Tours, France
- INSERM UMRS_938, Centre de Recherche Saint Antoine, Paris, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Thomas Moyon
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Axel Raux
- Oniris, INRAE, LABERCA, Nantes, France
| | - Anne Vambergue
- Department of Diabetology, Hospital Huriez, CHRU de Lille, University of Lille, EGID-UMR 8199, Lille, France
| | - Norbert Winer
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
- Department of Obstetrics and Gynecology, CHU, Nantes University Hospital, Nantes, France
| | | | | | | | | |
Collapse
|
7
|
Duerre DJ, Hansen JK, John SV, Jen A, Carrillo ND, Bui H, Bao Y, Fabregat M, Catrow JL, Chen LY, Overmyer KA, Shishkova E, Pearce Q, Keller MP, Anderson RA, Cryns VL, Attie AD, Cox JE, Coon JJ, Fan J, Galmozzi A. Haem biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. Nat Metab 2025:10.1038/s42255-025-01253-6. [PMID: 40133548 DOI: 10.1038/s42255-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The distinctive colour of brown adipose tissue (BAT) is attributed to its high content of haem-rich mitochondria. However, the mechanisms by which BAT regulates intracellular haem levels remain largely unexplored. Here we demonstrate that haem biosynthesis is the primary source of haem in brown adipocytes. Inhibiting haem biosynthesis results in an accumulation of the branched-chain amino acids (BCAAs) valine and isoleucine, owing to a haem-associated metabolon that channels BCAA-derived carbons into haem biosynthesis. Haem synthesis-deficient brown adipocytes display reduced mitochondrial respiration and lower UCP1 levels than wild-type cells. Although exogenous haem supplementation can restore intracellular haem levels and mitochondrial function, UCP1 downregulation persists. This sustained UCP1 suppression is linked to epigenetic regulation induced by the accumulation of propionyl-CoA, a byproduct of disrupted haem synthesis. Finally, disruption of haem biosynthesis in BAT impairs thermogenic response and, in female but not male mice, hinders the cold-induced clearance of circulating BCAAs in a sex-hormone-dependent manner. These findings establish adipose haem biosynthesis as a key regulator of thermogenesis and sex-dependent BCAA homeostasis.
Collapse
Affiliation(s)
- Dylan J Duerre
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia K Hansen
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Steven V John
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Annie Jen
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Noah D Carrillo
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hoang Bui
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yutong Bao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matias Fabregat
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - J Leon Catrow
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Yu Chen
- Graduate Program in Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Quentinn Pearce
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Haws SA, Liu Y, Green CL, Chaiyakul K, Mishra P, Babygirija R, Armstrong EA, Mehendale AT, Ong IM, Lamming DW, Denu JM. Individual dietary amino acid restrictions induce distinct metabolic and chromatin states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.06.570456. [PMID: 38106163 PMCID: PMC10723491 DOI: 10.1101/2023.12.06.570456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dietary protein and essential amino acid (EAA) restriction promote favorable metabolic reprogramming, although the extent to which shared or EAA-specific mechanisms facilitate diet-associated phenotypes remains unclear. Here, we compared the physiological and molecular effects of dietary methionine, leucine, or isoleucine depletion (Met-D, Leu-D, and Ile-D) in C57BL/6J mice. Each diet elicited responses not phenocopied by mTORC1 inhibition, including reduced fat mass and hepatic amino acid catabolism. Ile-D yielded additional distinct responses, highlighted by histone H2A/H4 hypoacetylation and maintained hepatic acetyl-CoA levels despite downregulated FA β-oxidation. Multi-Omics Factor Analysis of 14,139 data points objectively affirmed Ile-D phenotypes are distinct from Met-D or Leu-D and identified several metabolic and chromatin features as primary discriminators. Metabolic and epigenetic responses to Ile-D were recapitulated in vitro , suggesting underlying mechanisms represent fundamental cellular properties. Together, these results demonstrate EAAs can stimulate unique phenotypes and highlight distinct molecular mechanisms by which EAAs may inform metabolic health.
Collapse
|
9
|
Hong Z, Zhou K, Wei Y, Ma B, Xie G, Zhang Z, Liang J. Associations of Plasma and Fecal Metabolites with Body Mass Index and Body Fat Distribution in Children. J Clin Endocrinol Metab 2025; 110:e1173-e1184. [PMID: 38703096 DOI: 10.1210/clinem/dgae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Childhood obesity continues to be a critical public health concern with far-reaching implications for well-being. OBJECTIVE This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6 to 9 years in China. METHODS This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry. By using orthogonal projections to latent structures discriminant analysis and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (β -1.373 to -.016, pFDR < 0.001-0.031; β -1.008 to -.071, pFDR 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (β .023-2.396, pFDR < 0.001; β .014-1.736, pFDR < 0.001-0.049). CONCLUSION Plasma and fecal metabolites such as glutamine may serve as potential therapeutic targets for the development of obesity.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Kejun Zhou
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Yuanhuan Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Bingjie Ma
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Guoxiang Xie
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
10
|
Ao L, van Heemst D, Jukema JW, Rensen PCN, Willems van Dijk K, Noordam R. Potential causal evidence for an ApoB-independent and HDL-related risk profile associated with coronary artery disease. J Lipid Res 2025; 66:100778. [PMID: 40089107 DOI: 10.1016/j.jlr.2025.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Plasma 1H-NMR metabolomic measures have yielded significant insight into the pathophysiology of cardiometabolic disease, but their inter-related nature complicates causal inference and clinical interpretation. This study aimed to investigate the associations of unrelated 1H-NMR metabolomic profiles with coronary artery disease (CAD) and ischemic stroke (IS). Principal component (PC) analysis was performed on 168 1H-NMR metabolomic measures in 56,712 unrelated European participants from UK Biobank to retrieve uncorrelated PCs, which were used in Cox-proportional hazard models. For each outcome, two-sample Mendelian randomization analyses were then conducted based on three nonoverlapping databases, followed by a meta-analysis. The first six PCs collectively explaining 88% of the total variance were identified. For CAD, results from Cox and Mendelian randomization analyses were generally directionally consistent. The pooled odds ratios (95% CI) for CAD per one-SD increase in genetically influenced PC1 and PC3 (both characterized by distinct apolipoprotein B [ApoB]-associated lipoprotein profiles) were 1.04 (1.03, 1.05) and 0.94 (0.93, 0.96), respectively. Besides, the pooled odds ratio (95% CI) for CAD per one-SD increase in genetically influenced PC4, characterized by simultaneously decreased small HDL and increased large HDL, and independent of ApoB, was 1.05 (1.03, 1.07). For IS, increases of PC3 and PC5 (characterized by increased amino acids) were associated with a lower risk and a higher risk, respectively. This study confirms associations of ApoB-associated lipoprotein profiles with CAD and IS, and highlights the possible existence of an ApoB-independent lipoprotein profile, characterized by a distinctive HDL subparticle distribution, driving CAD.
Collapse
Affiliation(s)
- Linjun Ao
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Loos CMM, Urschel KL. Current understanding of insulin dysregulation and its relationship with carbohydrate and protein metabolism in horses. Domest Anim Endocrinol 2025; 92:106940. [PMID: 40073599 DOI: 10.1016/j.domaniend.2025.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Insulin dysregulation (ID) is a common metabolic disorder in horses, characterized by hyperinsulinemia and/or peripheral insulin resistance. The critical role of hyperinsulinemia in endocrinopathic laminitis has driven research into the insulinotropic effects of dietary nutrients and the reciprocal impact of ID on nutrient metabolism. The relationship between ID and carbohydrate metabolism has been extensively studied; however, the effects of ID on protein metabolism in horses remain largely unexplored. This review begins with an overview of the importance of insulin in the regulation of muscle protein synthesis and degradation and then examines the current understanding of the interplay between ID and protein and carbohydrate metabolism in horses. Horses with ID exhibit altered resting plasma amino acid concentrations and shifts in postprandial amino acid dynamics. Recent work illustrated that ID horses had higher levels of plasma amino acids following a protein meal and delayed postprandial clearance from the blood compared to non-ID horses. The postprandial muscle synthetic response does not seem to be diminished in ID horses, but alterations in key cellular signaling molecules have been reported. ID horses display a pronounced hyperinsulinemic response following the consumption of feeds providing a range of protein, non-structural carbohydrate, starch and water-soluble carbohydrate intakes. Recent studies have shown that ID horses have an increased postprandial incretin response, contributing to the observed hyperinsulinemia. To minimize the postprandial insulin response, thresholds for carbohydrate consumption have recently been proposed. Similar thresholds should be established for protein to aid in the refinement of nutritional strategies to manage ID horses.
Collapse
Affiliation(s)
- C M M Loos
- Versele-Laga, Cavalor Equine Nutrition, Belgium.
| | - K L Urschel
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY, USA
| |
Collapse
|
12
|
Dadson P, Honka MJ, Suomi T, Haridas PAN, Rokka A, Palani S, Goltseva E, Wang N, Roivainen A, Salminen P, James P, Olkkonen VM, Elo LL, Nuutila P. Proteomic profiling reveals alterations in metabolic and cellular pathways in severe obesity and following metabolic bariatric surgery. Am J Physiol Endocrinol Metab 2025; 328:E311-E324. [PMID: 39819027 DOI: 10.1152/ajpendo.00220.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were downregulated 6 months post surgery compared with baseline [false discovery rate (FDR) < 0.01]. We observed a downregulation of proteins associated with mitochondrial integrity, amino acid catabolism, and lipid metabolism in the patients with severe obesity compared with the controls. Bariatric surgery was associated with an upregulation in pathways related to mitochondrial function, protein synthesis, folding and trafficking, actin cytoskeleton regulation, and DNA binding and repair. These findings emphasize the significant changes in metabolic and cellular pathways following bariatric surgery, highlighting the potential mechanisms underlying the observed health improvements postbariatric surgery. The data provided alongside this paper will serve as a valuable resource for the development of targeted therapeutic strategies for obesity and related metabolic complications. ClinicalTrials.gov registration numbers: NCT00793143 (registered on 19 November 2008) (https://clinicaltrials.gov/ct2/show/NCT00793143) and NCT01373892 (registered on 15 June 2011) (https://clinicaltrials.gov/ct2/show/NCT01373892).NEW & NOTEWORTHY Our study investigates the effects of metabolic bariatric surgery on adipose tissue proteins, highlighting the mechanisms driving weight loss postsurgery. Through extensive proteomic analysis of adipose biopsies from patients with severe obesity pre- and postsurgery, alongside healthy subjects without obesity, we identified significant alterations in metabolic pathways. These findings provide insights into potential therapeutic targets for obesity-related complications.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Elena Goltseva
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Paulina Salminen
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Surgery, University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Peter James
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
14
|
Feige JN. An mTOR paradox in sarcopenia via BCAA catabolism. NATURE AGING 2025; 5:341-343. [PMID: 39948274 DOI: 10.1038/s43587-025-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Affiliation(s)
- Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
16
|
Arnold M, Buyukozkan M, Doraiswamy PM, Nho K, Wu T, Gudnason V, Launer LJ, Wang-Sattler R, Adamski J, De Jager PL, Ertekin-Taner N, Bennett DA, Saykin AJ, Peters A, Suhre K, Kaddurah-Daouk R, Kastenmüller G, Krumsiek J. Individual bioenergetic capacity as a potential source of resilience to Alzheimer's disease. Nat Commun 2025; 16:1910. [PMID: 39994231 PMCID: PMC11850607 DOI: 10.1038/s41467-025-57032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Impaired glucose uptake in the brain is an early presymptomatic manifestation of Alzheimer's disease (AD), with symptom-free periods of varying duration that likely reflect individual differences in metabolic resilience. We propose a systemic "bioenergetic capacity", the individual ability to maintain energy homeostasis under pathological conditions. Using fasting serum acylcarnitine profiles from the AD Neuroimaging Initiative as a blood-based readout for this capacity, we identified subgroups with distinct clinical and biomarker presentations of AD. Our data suggests that improving beta-oxidation efficiency can decelerate bioenergetic aging and disease progression. The estimated treatment effects of targeting the bioenergetic capacity were comparable to those of recently approved anti-amyloid therapies, particularly in individuals with specific mitochondrial genotypes linked to succinylcarnitine metabolism. Taken together, our findings provide evidence that therapeutically enhancing bioenergetic health may reduce the risk of symptomatic AD. Furthermore, monitoring the bioenergetic capacity via blood acylcarnitine measurements can be achieved using existing clinical assays.
Collapse
Affiliation(s)
- Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Diabetes Research (DZD e.V.), Munich, Germany
- German Center for Cardiovascular Disease (DZHK e.V.), Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Filipski KJ, Martinez-Alsina LA, Reese MR, Evrard E, Buzon LM, Cameron KO, Zhang Y, Coffman KJ, Bradow J, Kormos BL, Liu S, Knafels JD, Sahasrabudhe PV, Chen J, Kalgutkar AS, Bessire AJ, Orozco CC, Balesano A, Cerny MA, Bollinger E, Reyes AR, Laforest B, Rosado A, Williams G, Marshall M, Tam Neale K, Chen X, Hirenallur-Shanthappa D, Stansfield JC, Groarke J, Qiu R, Karas S, Roth Flach RJ, Esler WP. Discovery of First Branched-Chain Ketoacid Dehydrogenase Kinase (BDK) Inhibitor Clinical Candidate PF-07328948. J Med Chem 2025; 68:2466-2482. [PMID: 39560668 DOI: 10.1021/acs.jmedchem.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inhibition of branched-chain ketoacid dehydrogenase kinase (BDK or BCKDK), a negative regulator of branched-chain amino acid (BCAA) metabolism, is hypothesized to treat cardio-metabolic diseases. From a starting point with potential idiosyncratic toxicity risk, modification to a benzothiophene core and discovery of a cryptic pocket allowed for improved potency with 3-aryl substitution to arrive at PF-07328948, which was largely devoid of protein covalent binding liability. This BDK inhibitor was shown also to be a BDK degrader in cells and in vivo rodent studies. Plasma biomarkers, including BCAAs and branched-chain ketoacids (BCKAs), were lowered in vivo with enhanced pharmacodynamic effect upon chronic dosing due to BDK degradation. This molecule improves metabolic and heart failure end points in rodent models. PF-07328948 is the first known selective BDK inhibitor candidate to be examined in clinical studies, with Phase 1 single ascending dose data showing good tolerability and a pharmacokinetic profile commensurate with once-daily dosing.
Collapse
Affiliation(s)
- Kevin J Filipski
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Luis A Martinez-Alsina
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Leanne M Buzon
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly O Cameron
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Yuan Zhang
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Karen J Coffman
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James Bradow
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bethany L Kormos
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Shenping Liu
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - John D Knafels
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Parag V Sahasrabudhe
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Andrew J Bessire
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christine C Orozco
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amanda Balesano
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew A Cerny
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eliza Bollinger
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Allan R Reyes
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Brigitte Laforest
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amy Rosado
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - George Williams
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Mackenzie Marshall
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kelly Tam Neale
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Xian Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | | - John C Stansfield
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John Groarke
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ruolun Qiu
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Spinel Karas
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Rachel J Roth Flach
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - William P Esler
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
18
|
Jackson VE, Wu Y, Bonelli R, Owen JP, Scott LW, Farashi S, Kihara Y, Gantner ML, Egan C, Williams KM, Ansell BRE, Tufail A, Lee AY, Bahlo M. Multi-omic spatial effects on high-resolution AI-derived retinal thickness. Nat Commun 2025; 16:1317. [PMID: 39904976 PMCID: PMC11794613 DOI: 10.1038/s41467-024-55635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
Retinal thickness is a marker of retinal health and more broadly, is seen as a promising biomarker for many systemic diseases. Retinal thickness measurements are procured from optical coherence tomography (OCT) as part of routine clinical eyecare. We processed the UK Biobank OCT images using a convolutional neural network to produce fine-scale retinal thickness measurements across > 29,000 points in the macula, the part of the retina responsible for human central vision. The macula is disproportionately affected by high disease burden retinal disorders such as age-related macular degeneration and diabetic retinopathy, which both involve metabolic dysregulation. Analysis of common genomic variants, metabolomic, blood and immune biomarkers, disease PheCodes and genetic scores across a fine-scale macular thickness grid, reveals multiple novel genetic loci including four on the X chromosome; retinal thinning associated with many systemic disorders including multiple sclerosis; and multiple associations to correlated metabolites that cluster spatially in the retina. We highlight parafoveal thickness to be particularly susceptible to systemic insults. These results demonstrate the gains in discovery power and resolution achievable with AI-leveraged analysis. Results are accessible using a bespoke web interface that gives full control to pursue findings.
Collapse
Affiliation(s)
- V E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Y Wu
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - R Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - J P Owen
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - L W Scott
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - S Farashi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Y Kihara
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - M L Gantner
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - C Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - K M Williams
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Section of Ophthalmology, King's College London, London, UK
| | - B R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - A Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - A Y Lee
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - M Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
McCann JR, Yang C, Bihlmeyer N, Tang R, Truong T, An J, Jawahar J, Ilkayeva O, Muehlbauer M, Hu ZZ, Dressman H, Poppe L, Granek J, David LA, Shi P, Balikcioglu PG, Shah S, Armstrong SC, Newgard CB, Seed PC, Rawls JF. Branched chain amino acid metabolism and microbiome in adolescents with obesity during weight loss therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.03.25321363. [PMID: 39974080 PMCID: PMC11838640 DOI: 10.1101/2025.02.03.25321363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Towards improving outcomes for adolescents with obesity, we aimed to define metabolic and microbiome phenotypes at baseline and post-weight loss intervention. METHODS The Pediatric Obesity Microbiome and Metabolism Study enrolled 220 adolescents aged 10-18 with severe obesity (OB) and 67 healthy weight controls (HWC). Blood, stool, and clinical measures were collected at baseline and after a 6-month intervention for the OB group. Serum metabolomic and fecal microbiome data were analyzed for associations with BMI, insulin resistance, and inflammation. Fecal microbiome transplants were performed on germ-free mice using samples from both groups to assess weight gain and metabolomic changes. RESULTS Adolescents with OB exhibited elevated serum branched-chain amino acids (BCAA) but reduced ketoacid metabolites (BCKA) compared to HWC. This pattern was sex- and age-dependent, unlike adults with OB, who showed elevated levels of both. The fecal microbiomes of adolescents with OB and HWC had similar diversity but differed in membership and functional potential. FMT from OB and HWC donors had similar effects on mouse body weight, with specific taxa linked to weight gain in FMT recipients. Longitudinal analysis identified metabolic and microbial features correlated with changes in health measures during the intervention. CONCLUSION Adolescents with OB have unique metabolomic adaptations and microbiome signatures compared to their HWC counterparts and adults with OB. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03139877 (Observational Study) and NCT02959034 (Repository). FUNDING SOURCES American Heart Association Grants: 17SFRN33670990, 20PRE35180195National Institute of Diabetes and Digestive and Kidney Diseases Grant: R24-DK110492.
Collapse
|
20
|
Zhou J, Gao X, Zhang D, Jiang C, Yu W. Effects of breaking up prolonged sitting via exercise snacks intervention on the body composition and plasma metabolomics of sedentary obese adults: a randomized controlled trial. Endocr J 2025; 72:183-192. [PMID: 39537176 PMCID: PMC11850105 DOI: 10.1507/endocrj.ej24-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity resulting from long-term sedentary a significant threat to human health. This study explores the effects of exercise snack intervention on body composition and plasma metabolomics in sedentary obese adults. Participants in the snack group were subjected to 4 days of sprint exercises by stair-climbing per week for 12 weeks. Systemic and regional fat mass, epicardial adipose tissue (EAT), abdominal visceral (AVFA) and subcutaneous (ASFA) fat area and plasma metabolomics data were measured before and after intervention. A higher improvement of EAT, AVFA and ASFA in the snack group compared to that in the control group, with a significant interaction effect (p < 0.05). The key differential metabolites between the two groups include isoleucine, glycine and serine. The proposed exercise snack effectively reduced the amount of AVFA and EAT. The change in body composition may be associated with the altered pathways of isoleucine, glycine, and serine metabolism.
Collapse
Affiliation(s)
- Jianming Zhou
- Institute of Physical Education, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
| | - Xiaoning Gao
- Ophthalmology Department, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao 266071, Shandong, China
| | - Dandan Zhang
- Institute of Finance and Economics, Shanghai Lida University, Shanghai 201608, China
| | - Chuanwu Jiang
- Medical Imaging Department, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao 266071, Shandong, China
| | - Wenbing Yu
- Institute of Sports Human Science, Ocean University of China, Qingdao 266100, Shandong, China
| |
Collapse
|
21
|
Reiss JD, Mataraso SJ, Holzapfel LF, Marić I, Kasowski MM, Martin CR, Long JZ, Stevenson DK, Shaw GM. Applications of Metabolomics and Lipidomics in the Neonatal Intensive Care Unit. Neoreviews 2025; 26:e100-e114. [PMID: 39889768 DOI: 10.1542/neo.26-2-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 02/03/2025]
Abstract
The metabolome and lipidome comprise the thousands of molecular compounds in an organism. Molecular compounds consist of the upstream metabolic components of intracellular reactions or the byproducts of cellular pathways. Molecular and biochemical perturbations are associated with disorders in newborns and infants. The diagnosis of inborn errors of metabolism has relied on targeted metabolomics for several decades. Newer approaches offer the potential to identify novel biomarkers for common diseases of the newborn and infant. They may also elucidate novel predictive or diagnostic measures for a variety of health trajectories. Here, we review the relevance of the metabolome and lipidome for common disorders and highlight challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Jonathan D Reiss
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Samson J Mataraso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Lindsay F Holzapfel
- Department of Pediatrics, Division of Neonatology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ivana Marić
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Maya M Kasowski
- Metabolic Health Center, Stanford University, Palo Alto, California
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Camilia R Martin
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Jonathan Z Long
- Department of Pathology, Chemistry, Engineering and Medicine for Human Health, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
22
|
Seibel AJ, Frosti CL, Tlemçani AR, Lahiri N, Brammer-DePuy JA, Layne MD, Tien J. Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels. Cell Mol Bioeng 2025; 18:53-69. [PMID: 39949491 PMCID: PMC11813835 DOI: 10.1007/s12195-024-00840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose Obesity is associated with poor lymphatic solute drainage. It is unclear whether the chronic inflammation, hypoxia, and hyperlipidemia that are together associated with obesity cause impaired drainage function, and if so, whether these conditions act directly on lymphatic endothelial cells (LECs) or are indirectly mediated by the mechanical properties or cellular composition of the surrounding tissue. Methods We engineered blind-ended lymphatic vessels in type I collagen gels and simulated the obese microenvironment with a cocktail of tumor necrosis factor (TNF)-α, cobalt chloride (CoCl2), and oleate, which model inflammation, hypoxia, and hyperlipidemia, respectively. We compared the solute drainage rate and leakage of lymphatics that were exposed to simulated obesity or not. We performed similar assays with lymphatics in stiffened gels, in adipocyte-laden gels, or in the presence of conditioned medium (CM) from adipose cells treated with the same cocktail. Results Lymphatics that were exposed to simulated obesity exhibited more gaps in endothelial junctions, leaked more solute, and drained solute less quickly than control lymphatics did, regardless of matrix stiffness. CM from adipose cells that were exposed to simulated obesity did not affect lymphatics. Lymphatics in adipocyte-laden gels did not exhibit worse drainage function when exposed to simulated obesity. Conclusions The combination of obesity-associated inflammation, hypoxia, and hyperlipidemia impairs lymphatic solute drainage and does so by acting directly on LECs. Surprisingly, adipocytes may play a protective role in preventing obesity-associated conditions from impairing lymphatic solute drainage. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00840-z.
Collapse
Affiliation(s)
- Alex J. Seibel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Cheyanne L. Frosti
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Abderrahman R. Tlemçani
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Nikhil Lahiri
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Joely A. Brammer-DePuy
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Matthew D. Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
- Division of Materials Science and Engineering, Boston University, Boston, MA USA
| |
Collapse
|
23
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
24
|
Aarika K, Rajyalakshmi R, Nalla LV, Gajula SNR. From Complexity to Clarity: Expanding Metabolome Coverage With Innovative Analytical Strategies. J Sep Sci 2025; 48:e70099. [PMID: 39968702 PMCID: PMC11836935 DOI: 10.1002/jssc.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Metabolomics, a powerful discipline within systems biology, aims at comprehensive profiling of small molecules in biological samples. The challenges of biological sample complexity are addressed through innovative sample preparation methods, including solid-phase extraction and microextraction techniques, enhancing the detection and quantification of low-abundance metabolites. Advances in chromatographic separation, particularly liquid chromatography (LC) and gas chromatography (GC), coupled with high-resolution (HR) mass spectrometry (MS), have significantly improved the sensitivity, selectivity, and throughput of metabolomic studies. Cutting-edge techniques, such as ion-mobility mass spectrometry (IM-MS) and tandem MS (MS/MS), further expand the capacity for comprehensive metabolite profiling. These advanced analytical platforms each offer unique advantages for metabolomics, with continued technological improvements driving deeper insights into metabolic pathways and biomarker discovery. By providing a detailed overview of current trends and techniques, this review aims to offer valuable insights into the future of metabolomics in human health research and its translational potential in clinical settings. Toward the end, this review also highlights the biomedical applications of metabolomics, emphasizing its role in biomarker discovery, disease diagnostics, personalized medicine, and drug development.
Collapse
Affiliation(s)
- Kanukolanu Aarika
- GITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Ramijinni Rajyalakshmi
- GITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Lakshmi Vineela Nalla
- Department of PharmacologyGITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical AnalysisGITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| |
Collapse
|
25
|
Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, Xia L, Liu S, Chen J, Xu Z, Luo C, Sheng J. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab 2025; 7:367-382. [PMID: 39820557 DOI: 10.1038/s42255-024-01206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1. Mechanistically, proline diminished paraspeckles in hepatocytes, liberating the retained mRNA species into cytoplasm for translation, including the mRNAs of Ppargc1a and Foxo1, contributing to enhanced gluconeogenesis and hyperglycaemia. We further demonstrated that the proline-paraspeckle-mRNA retention axis existed in diabetic liver samples, and intervening in this axis via paraspeckle restoration substantially alleviated hyperglycaemia in both female and male diabetic mouse models. Collectively, our results not only delineated a previously unappreciated proline-instigated, paraspeckle-dependent mRNA-retention mechanism regulating gluconeogenesis, but also spotlighted proline and paraspeckle as potential targets for managing hyperglycaemia.
Collapse
Affiliation(s)
- Yurong Zhao
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinxin Chai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwei He
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Linghao Xia
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Sishuo Liu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingzhou Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Yang M, Xie Q, Wang J, Zha A, Chen J, Jiang Q, Kang M, Deng Q, Yin Y, Tan B. Ningxiang pig-derived lactobacillus reuteri modulates host intramuscular fat deposition via branched-chain amino acid metabolism. MICROBIOME 2025; 13:32. [PMID: 39891238 PMCID: PMC11786426 DOI: 10.1186/s40168-024-02013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Gut microbiota has been extensively demonstrated to modulate host lipid metabolism. Higher intramuscular fat (IMF) accumulation in Chinese indigenous breed pigs is associated with their special gut microbiota structure. However, the specific microbes and metabolic pathways responsible for lipid deposition are still poorly understood. RESULTS In the present study, a comparative analysis of the gut microbiota and metabolome in obese Ningxiang (NX) pigs and lean Duroc × Landrace × Yorkshire (DLY) pigs was conducted. The results revealed a higher abundance of gut lactobacilli and a correlation of branched-chain amino acid (BCAA) metabolism pathway in NX pigs. We proceeded to verify the roles of various lactobacilli strains originating from NX pigs in BCAA metabolism and lipids deposition in SD rats. We demonstrated that L. reuteri is a fundamental species responsible for modulating lipid deposition in NX pigs and that increased circulating levels of BCAA are positively linked to greater lipid deposition. Additionally, it has been verified that L. reuteri originating from NX pigs has the ability to improve BCAA synthesis in the gut and enhance IMF content in lean DLY pigs. The expression of genes related to lipid synthesis was also significantly upregulated. CONCLUSIONS Taken together, our results imply that NX pig-derived L. reuteri regulates BCAA metabolism and plays a potential role in improving the meat quality of lean pig breeds through modulation of host intramuscular lipid deposition. The results provide a new strategy for improving the meat quality of commercial pigs by influencing host metabolism through supplementing dietary additives. Video Abstract.
Collapse
Affiliation(s)
- Mei Yang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Xie
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Andong Zha
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China
| | - Jiashun Chen
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Jiang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Meng Kang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qiuchun Deng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Yulong Yin
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China.
| | - Bie Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|
27
|
Wu X, Tjahyo AS, Volchanskaya VSB, Wong LH, Lai X, Yong YN, Osman F, Tay SL, Govindharajulu P, Ponnalagu S, Tso R, Teo HS, Khoo K, Fan H, Goh CC, Yap CPL, Leow MKS, Henry CJ, Haldar S, Lim KJ. A legume-enriched diet improves metabolic health in prediabetes mediated through gut microbiome: a randomized controlled trial. Nat Commun 2025; 16:942. [PMID: 39843443 PMCID: PMC11754483 DOI: 10.1038/s41467-025-56084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Healthy dietary patterns rich in legumes can improve metabolic health, although their additional benefits in conjunction with calorie restriction have not been well-established. We investigated effects of a calorie-restricted, legume-enriched, multicomponent intervention diet compared with a calorie-restricted control diet in 127 Chinese prediabetes participants, living in Singapore. The study was a 16-week, single-blind, parallel-design, randomized controlled trial (n = 63 intervention group (IG), n = 64 control group (CG); mean ± SD age 62.2 ± 6.3 years, BMI 23.8 ± 2.6 kg/m2). Primary outcomes were markers of glycemia and all measurements were taken at 2 or 4-weekly intervals. At the end of 16 weeks, both groups had significantly lower BMI (q(Time) = 1.92 ×10-42, β = -0.02) compared with baseline, with minimal difference between groups. The IG had significantly greater reductions in LDL cholesterol (q(Treatment×Time) = 0.01, β = -0.16), total cholesterol (q(Treatment×Time) = 0.02, β = -0.3) and HbA1c (q(Treatment×Time) = 0.04, β = -0.004) compared with CG, alongside increases in fiber degrading species in IG, mediated through metabolites such as bile acids and amino acids. A legume-enriched, multicomponent intervention diet can improve metabolic health in a prediabetes population, in addition to benefits obtained from calorie restriction alone, partially mediated through changes in gut microbial composition and function. Trial registration: Clinical Trials NCT04745702.
Collapse
Affiliation(s)
- Xiaorong Wu
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Alvin Surya Tjahyo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Long Hui Wong
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Xianning Lai
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Yi Ning Yong
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Farhana Osman
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Shia Lyn Tay
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Shalini Ponnalagu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Kaijie Khoo
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Huan Fan
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Chew Chan Goh
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Clara Poh Lian Yap
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Institute for Human Development and Potential (IHDP), A*STAR, Singapore, Singapore
- Division of Medicine, Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Obstetrics and Gynaecology and Human Potential Translational Research programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth Gateway Building, St. Paul's Lane, Bournemouth, United Kingdom.
| | - Kevin Junliang Lim
- WIL@NUS Corporate Laboratory, National University of Singapore, Centre for Translational Medicine, Singapore, Singapore.
| |
Collapse
|
28
|
Calubag MF, Ademi I, Grunow I, Breuer L, Babygirija R, Lialios P, Le S, Minton D, Sonsalla MM, Illiano J, Knopf BA, Xiao F, Konopka AR, Harris DA, Lamming DW. Tissue-specific effects of dietary protein on cellular senescence are mediated by branched-chain amino acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632607. [PMID: 39868338 PMCID: PMC11761368 DOI: 10.1101/2025.01.13.632607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Dietary protein is a key regulator of healthy aging in both mice and humans. In mice, reducing dietary levels of the branched-chain amino acids (BCAAs) recapitulates many of the benefits of a low protein diet; BCAA-restricted diets extend lifespan, reduce frailty, and improve metabolic health, while BCAA supplementation shortens lifespan, promotes obesity, and impairs glycemic control. Recently, high protein diets have been shown to promote cellular senescence, a hallmark of aging implicated in many age-related diseases, in the liver of mice. Here, we test the hypothesis that the effects of high protein diets on metabolic health and on cell senescence are mediated by BCAAs. We find that reducing dietary levels of BCAAs protects male and female mice from the negative metabolic consequences of both normal and high protein diets. Further, we identify tissue-specific effects of BCAAs on cellular senescence, with restriction of all three BCAAs - but not individual BCAAs - protecting from hepatic cellular senescence while potentiating cell senescence in white adipose tissue. We find that the effects of BCAAs on hepatic cellular senescence are cell-autonomous, with lower levels of BCAAs protecting cultured cells from antimycin-A induced senescence. Our results demonstrate a direct effect of a specific dietary component on a hallmark of aging and suggest that cellular senescence may be highly susceptible to dietary interventions.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ismail Ademi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Isaac Grunow
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Lucia Breuer
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Penelope Lialios
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Sandra Le
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
| | - Dennis Minton
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia Illiano
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Wisconsin Laboratory for Surgical Metabolism, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Bailey A Knopf
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Fan Xiao
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam R Konopka
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David A Harris
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Wisconsin Laboratory for Surgical Metabolism, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705 USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705 USA
- Cell and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Comprehensive Diabetes Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
29
|
Li H, He J, Hou J, He C, Dai X, Song Z, Liu Q, Wang Z, Huang H, Ding Y, Qi T, Zhang H, Wu L. Intestinal rearrangement of biliopancreatic limbs, alimentary limbs, and common limbs in obese type 2 diabetic mice after duodenal jejunal bypass surgery. Front Endocrinol (Lausanne) 2025; 15:1456885. [PMID: 39845886 PMCID: PMC11750664 DOI: 10.3389/fendo.2024.1456885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Bariatric surgery is an effective treatment for type 2 Diabetes Mellitus (T2DM), yet the precise mechanisms underlying its effectiveness remain incompletely understood. While previous research has emphasized the role of rearrangement of the gastrointestinal anatomy, gaps persist regarding the specific impact on the gut microbiota and barriers within the biliopancreatic, alimentary, and common limbs. This study aimed to investigate the effects of duodenal-jejunal bypass (DJB) surgery on obese T2DM mice. We performed DJB and SHAM surgery in obese T2DM mice to investigate changes in the gut microbiota and barrier across different intestinal limbs. The effects on serum metabolism and potential associations with T2DM improvement were also investigated. Following DJB surgery, there was an increased abundance of commensals across various limbs. Additionally, the surgery improved intestinal permeability and inflammation in the alimentary and common limbs, while reducing inflammation in the biliopancreatic limbs. Furthermore, DJB surgery also improved T2DM by increasing L-glutamine, short-chain fatty acids, and bile acids and decreasing branched-chain amino acids. This study underscores the role of intestinal rearrangement in reshaping gut microbiota composition and enhancing gut barrier function, thereby contributing to the amelioration of T2DM following bariatric surgery, and providing new insights for further research on bariatric surgery.
Collapse
Affiliation(s)
- Heng Li
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jipei He
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
| | - Jie Hou
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengjun He
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojiang Dai
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigao Song
- Department of Cardiovascular Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangzhou, China
| | - Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Huang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunfa Ding
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengfei Qi
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongbin Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of People's Liberation Army (PLA), Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Liangping Wu
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Hualiang Qingying Biotechnology Co. Ltd, Guangzhou, China
| |
Collapse
|
30
|
Rauckhorst AJ, Sheldon RD, Pape DJ, Ahmed A, Falls-Hubert KC, Merrill RA, Brown RF, Deshmukh K, Vallim TA, Deja S, Burgess SC, Taylor EB. A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab 2025; 37:255-273.e6. [PMID: 39471817 PMCID: PMC11856365 DOI: 10.1016/j.cmet.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive 13C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Reid F Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kshitij Deshmukh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Thomas A Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
31
|
Reiss JD, Yang W, Chang AL, Long JZ, Marić I, Profit J, Sylvester KG, Stevenson DK, Aghaeepour N, Shaw GM. Transgenerational associations between newborn metabolic profiles and bronchopulmonary dysplasia in neonates born to mothers with an obese phenotype. Sci Rep 2025; 15:1144. [PMID: 39774255 PMCID: PMC11707363 DOI: 10.1038/s41598-025-85252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Maternal obesity increases risk for bronchopulmonary dysplasia (BPD) by up to 42%. Identifying metabolic features that may contribute to the association between maternal pre-pregnancy body mass index (BMI) and BPD is critical in defining the molecular relationship between these conditions. We investigated the association between maternal obesity and BPD using newborn screen metabolites as an explanatory variable. We hypothesized that elevated pre-pregnancy BMI compared to a normal BMI referent group, is associated with increased circulating short and long-chain acylcarnitines and subsequent development of BPD. This was a retrospective study with linkage of maternal pre-pregnancy BMI, with newborn screen metabolites obtained from the California Newborn Screening Program and further linked with neonatal outcomes. Results demonstrated elevated levels of phenylalanine and proline associated with an increased risk for BPD (OR 5.3, 95% CI 1.2-23.8 and OR 5.4, 95% CI 1.3-22.3) in the obesity group compared to the referent group. Short- and long-chain acylcarnitines demonstrated a mildly increased risk for BPD in neonates of mothers with severe obesity compared to controls. The findings suggest that specific metabolites may influence the molecular conditioning that increases susceptibility to BPD.
Collapse
Affiliation(s)
- Jonathan D Reiss
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA.
| | - Wei Yang
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Alan L Chang
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology and Stanford, Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University School of Medicine, Stanford, CA, USA
| | - Ivana Marić
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Jochen Profit
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Karl G Sylvester
- Stanford Department of Surgery, Division of Pediatric Surgery, 453 Quarry Rd, Palo Alto, CA, USA
| | - David K Stevenson
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| | - Nima Aghaeepour
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary M Shaw
- Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA
| |
Collapse
|
32
|
Bertran L, Rusu EC, Guirro M, Aguilar C, Auguet T, Richart C. Circulating proteomic profiles in women with morbid obesity compared to normal-weight women. J Proteomics 2025; 310:105317. [PMID: 39307454 DOI: 10.1016/j.jprot.2024.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
In this study, we aimed to evaluate circulating proteomic levels in women with morbid obesity (MO) compared to normal-weight (NW) women. Moreover, we have compared the proteomic profile between women with metabolically healthy (MH) MO and those with type 2 diabetes mellitus (T2DM). The study included 66 normal-weight (NW) women and 129 women with MO (54 MH and 75 with T2DM). Blood samples were processed for proteomics, involving protein extraction, quantification, digestion with peptide labelling and Nano (liquid chromatography (LC)-(Orbitrap) coupled to mass/mass spectrometry (MS/MS) analysis. Statistical analyses were performed. We identified 257 proteins. Women with MO showed significantly increased levels of 35 proteins and decreased levels of 45 proteins compared to NW women. Enrichment analysis of metabolic pathways revealed significant findings. Women with MO have an altered proteomic profile compared to normal-weight women, involving proteins significantly related to chylomicron assembly, complement cascade, clotting pathways and the insulin growth factor system. Regarding women with MO and T2DM compared to MHMO women, the proteomic profile shows alterations in mostly the same pathways associated with obesity. These findings confirmed in previous reports can help us better understand the pathophysiology of obesity and associated diseases. SIGNIFICANCE: Women with morbid obesity (MO) exhibit substantial proteomic alterations compared to normal-weight (NW) women, involving 80 proteins. These alterations are linked to significant metabolic pathways, including chylomicron assembly, complement cascade, clotting pathways and the insulin growth factor system. Additionally, women with MO and type 2 diabetes mellitus (T2DM) compared to metabolically healthy MO women share similar proteomic changes than the first comparison. These findings enhance our understanding of the pathophysiology of obesity and associated diseases, offering potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laia Bertran
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| | - Elena Cristina Rusu
- GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Maria Guirro
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, 43204 Reus, Spain.
| | - Carmen Aguilar
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Teresa Auguet
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain; GEMMAIR Research Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain.
| | - Cristóbal Richart
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain.
| |
Collapse
|
33
|
Wang S, Lin X, Zhou Y, Yang X, Ou M, Zhang L, Wang Y, Gao J. Investigation of newborn blood metabolomics in varying intrauterine growth conditions. J Pediatr (Rio J) 2025; 101:74-81. [PMID: 39178913 PMCID: PMC11763542 DOI: 10.1016/j.jped.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVES This study aimed to investigate changes in the blood metabolic profiles of newborns with varying intrauterine growth conditions. Specifically, we analyzed the levels of amino acids, carnitine, and succinylacetone among full-term newborns, including small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). We aim to identify differential metabolites and metabolic pathways that may offer insights into clinical interventions. METHODS A total of 5106 full-term newborns were included in the study. Blood samples were obtained from all newborns between 3 and 5 days after birth and analyzed using tandem mass spectrometry to detect blood metabolites. Subsequently, we screened for different metabolites and metabolic pathways among the groups using the MetaboAnalystR package (Version 1.0.1) in R software (R-3.6.0). RESULTS The levels of blood amino acids and carnitine metabolism differed significantly among newborns with varying intrauterine growth conditions. Full-term SGA newborns exhibited a decrease in multiple amino acids and an increase in multiple carnitines, while full-term LGA newborns showed an increase in multiple amino acids and acylcarnitines. CONCLUSION Continuous monitoring of the short-term and long-term growth and metabolic status of full-term SGA and LGA newborns is warranted with individualized dietary and nutritional adjustments to promote healthy growth in a timely manner. The findings of this research contribute to the broader understanding of SGA/LGA and shall inform future research on metabolomics, interventions, and long-term outcomes.
Collapse
Affiliation(s)
- Shengwen Wang
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Department of Children's Rehabilitation, Jiangsu Province, China
| | - Xiaofei Lin
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Department of Pediatrics, Jiangsu Province, China
| | - Yu Zhou
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Department of Children's Rehabilitation, Jiangsu Province, China
| | - Xin Yang
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Neonatal Disease Screening Center, Jiangsu Province, China
| | - Mingming Ou
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Neonatal Disease Screening Center, Jiangsu Province, China
| | - Linxin Zhang
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Neonatal Disease Screening Center, Jiangsu Province, China
| | - Yumei Wang
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Neonatal Disease Screening Center, Jiangsu Province, China.
| | - Jing Gao
- Huai'an Maternal and Child Health Care Hospital Affiliated to Yangzhou University, Department of Children's Rehabilitation, Jiangsu Province, China.
| |
Collapse
|
34
|
Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H, Chen L. Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism 2025; 162:156037. [PMID: 39317264 DOI: 10.1016/j.metabol.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND AIMS The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor. METHODS AND RESULTS Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes. CONCLUSION BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.
Collapse
Affiliation(s)
- Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
35
|
Feng S, Wang J, Peng Q, Zhang P, Jiang Y, Zhang H, Song X, Li Y, Huang W, Zhang D, Deng C. Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156348. [PMID: 39740377 DOI: 10.1016/j.phymed.2024.156348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Southern Schisandra is the dried and matured fruit of Schisandra sphenanthera Rehd. et Wils. in the family of Magnoliaceae; Traditional medicine reports that Schisandra sphenanthera has astringent and astringent properties, benefiting qi and promoting the production of body fluid, tranquilising the heart and calming the mind; it is clinically utilized for prolonged cough, thirst due to injury of the body fluid, internal heat and thirst, palpitation and insomnia, etc., and thirst belongs to the category of diabetes mellitus; the literature reports and the preliminary study of our team showed that Schisandra sphenanthera can be used to prevent and control diabetes mellitus. PURPOSE In the research, we investigated the mechanism of action of SDP against T2DM by integrating pharmacodynamics, endogenous metabolite assays and signalling pathways. MATERIALS AND METHODS UPLC-MS/MS was used to identify the chemical constituents. HPLC was utilized to determine the content of eight lignan-like components in SDP. A T2DM rat model was established by the combined induction of high-fat and high-sugar feed and STZ, and the mechanism of action of SDP on T2DM was investigated by using biochemical indices, Western blot analysis of protein expression, mRNA expression, immunohistochemistry and endogenous metabolites. RESULTS The chemical components in SDP were determined by UPLC-MS/MS and HPLC, and biochemical indicators determined that SDP has the effects of lowering blood glucose, anti-glycolipid metabolism, and anti-oxidative stress, and is able to restore pathological damage in the liver and pancreas, activate the PI3K/AKT, AMPK/mTOR, and sweetness receptor signalling pathways, restore the sweetness receptor mRNAs, and modulate the urinary compounds such as malic acid, γ-aminobutyric acid, leucine, N-acetylaspartic acid and other compounds thereby achieving the therapeutic effect of T2DM. CONCLUSION SDP can ameliorate diabetes-induced symptoms related to elevated blood glucose, dyslipidaemia, elevated fasting insulin levels and impaired glucose tolerance in rats; the anti-T2DM of SDP may be through the regulation of the sweet taste receptor pathway, the PI3K/AKT/mTOR and the AMPK/mTOR signalling pathway, which leads to the development of a normal level and exerts an antidiabetic effect.
Collapse
Affiliation(s)
- Shibo Feng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Jiaojiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Qin Peng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Panpan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China.
| |
Collapse
|
36
|
Xia L, Li C, Zhao J, Sun Q, Mao X. Rebalancing immune homeostasis in combating disease: The impact of medicine food homology plants and gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156150. [PMID: 39740376 DOI: 10.1016/j.phymed.2024.156150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Gut microbiota plays an important role in multiple human physiological processes and an imbalance in it, including the species, abundance, and metabolites can lead to diseases. These enteric microorganisms modulate immune homeostasis by presenting a myriad of antigenic determinants and microbial metabolites. Medicinal and food homologous (MFH) plants, edible herbal materials for both medicine and food, are important parts of Traditional Chinese Medicine (TCM). MFH plants have drawn much attention due to their strong biological activity and low toxicity. However, the interplay of MFH and gut microbiota in rebalancing the immune homeostasis in combating diseases needs systematic illumination. PURPOSE The review discusses the interaction between MFH and gut microbiota, including the effect of MFH on the major group of gut microbiota and the metabolic effect of gut microbiota on MFH. Moreover, how gut microbiota influences the immune system in terms of innate and adaptive immunity is addressed. Finally, the immunoregulatory mechanisms of MFH in regulation of host pathophysiology via gut microbiota are summarized. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Web of Science, and Google Scholar using relevant keywords. The obtained articles were screened and summarized by the research content of MFH and gut microbiota in immune regulation. RESULTS The review demonstrates the interaction between MFH and gut microbiota in disease prevention and treatment. Not only do the intestinal microorganisms and intestinal mucosa constitute an important immune barrier of the human body, but also lymphoid tissue and diffused immune cells within the mucosa participate in the response of innate immunity and adaptive immunity. MFH modulates immune regulation by affecting intestinal flora, helps maintain the balance of the immune system and interfere with the occurrence and development of a broad category of diseases. CONCLUSION Being absorbed from the gastrointestinal tract, MFH can have profound effects on gut microbiota. In turn, the gut microbiota also actively participate in the bioconversion of complex constituents from MFH, which could further influence their physiological and pharmacological properties. The review deepens the understanding of the relationship among MFH, gut microbiota, immune system, and human diseases and further promotes the progression of additional relevant research.
Collapse
Affiliation(s)
- Lu Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Chuangen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jia Zhao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food sciences, Florida State University, Tallahassee, USA
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
37
|
Al-Jaber H, Al-Muraikhy S, Jabr A, Yousef A, Anwardeen NR, Elrayess MA, Al-Mansoori L. Comparing Methods for Induction of Insulin Resistance in Mouse 3T3-L1 Cells. Curr Diabetes Rev 2025; 21:1-12. [PMID: 38204253 DOI: 10.2174/0115733998263359231211044539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024]
Abstract
Cell culture plays a crucial role in addressing fundamental research questions, particularly in studying insulin resistance (IR) mechanisms. Multiple in vitro models are utilized for this purpose, but their technical distinctions and relevance to in vivo conditions remain unclear. This study aims to assess the effectiveness of existing in vitro models in inducing IR and their ability to replicate in vivo IR conditions. BACKGROUND Insulin resistance (IR) is a cellular condition linked to metabolic disorders. Despite the utility of cell culture in IR research, questions persist regarding the suitability of various models. This study seeks to evaluate these models' efficiency in inducing IR and their ability to mimic in vivo conditions. Insights gained from this research could enhance our understanding of model strengths and limitations, potentially advancing strategies to combat IR and related disorders. OBJECTIVE 1- Investigate the technical differences between existing cell culture models used to study molecular mediators of insulin resistance (IR). 2- Compare the effectiveness of present in vitro models in inducing insulin resistance (IR). 3- Assess the relevance of the existing cell culture models in simulating the in vivo conditions and environment that provoke the induction of insulin resistance (IR). METHODS AND MATERIAL In vitro, eight sets of 3T3-L1 cells were cultured until they reached 90% confluence. Subsequently, adipogenic differentiation was induced using a differentiation cocktail (media). These cells were then divided into four groups, with four subjected to normal conditions and the other four to hypoxic conditions. Throughout the differentiation process, each cell group was exposed to specific factors known to induce insulin resistance (IR). These factors included 2.5 nM tumor necrosis factor-alpha (TNFα), 20 ng/ml interleukin-6 (IL-6), 10 micromole 4-hydroxynonenal (4HNE), and high insulin (HI) at a concentration of 100 nM. To assess cell proliferation, DAPI staining was employed, and the expression of genes associated with various metabolic pathways affected by insulin resistance was investigated using Real-Time PCR. Additionally, insulin signaling was examined using the Bio-plex Pro cell signaling Akt panel. RESULTS We induced insulin resistance in 3T3-L1 cells using IL-6, TNFα, 4HNE, and high insulin in both hypoxic and normoxic conditions. Hypoxia increased HIF1a gene expression by approximately 30% (P<0.01). TNFα reduced cell proliferation by 10-20%, and chronic TNFα treatment significantly decreased mature adipocytes due to its cytotoxicity. We assessed the impact of insulin resistance (IR) on metabolic pathways, focusing on genes linked to branched-chain amino acid metabolism, detoxification, and chemotaxis. Notably, ALDH6A1 and MCCC1 genes, related to amino acid metabolism, were significantly affected under hypoxic conditions. TNFα treatment notably influenced MCP-1 and MCP-2 genes linked to chemotaxis, with remarkable increases in MCP-1 levels and MCP-2 expression primarily under hypoxia. Detoxification-related genes showed minimal impact, except for a significant increase in MAOA expression under acute hypoxic conditions with TNFα treatment. Additional genes displayed varying effects, warranting further investigation. To investigate insulin signaling's influence in vitro by IRinducing factors, we assessed phospho-protein levels. Our results reveal a significant p-Akt induction with chronic high insulin (10%) and acute TNFα (12%) treatment under hypoxia (both P<0.05). Other insulin resistance-related phospho-proteins (GSK3B, mTOR, PTEN) increased with IL-6, 4HNE, TNFα, and high insulin under hypoxia, while p-IRS1 levels remained unaffected. CONCLUSION In summary, different in vitro models using inflammatory, oxidative stress, and high insulin conditions under hypoxic conditions can capture various aspects of in vivo adipose tissue insulin resistance (IR). Among these models, acute TNFα treatment may offer the most robust approach for inducing IR in 3T3-L1 cells.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Aldana Jabr
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Aisha Yousef
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
38
|
Roberts AT, Makar J, Abdelmalak J, Sinclair M, Testro A, Majumdar A. Management of Muscle Cramps in Patients With Cirrhosis: A Systematic Review of Randomised Controlled Trials. Aliment Pharmacol Ther 2025; 61:44-64. [PMID: 39548657 DOI: 10.1111/apt.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/16/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Muscle cramps are common in patients with cirrhosis. Despite their prevalence and impact on health-related quality of life, there are no widely used clinical practice guidelines for management of muscle cramps in cirrhosis. The aim of this review was to critically evaluate current evidence regarding treatment of muscle cramps in cirrhosis. METHODS A systematic review using PubMed, MEDLINE (Ovid), Embase, and Scopus databases was performed on 30 June by two independent reviewers to identify randomised controlled trials (RCTs) reporting interventions for muscle cramps in cirrhotic patients. RESULTS Twelve RCTs evaluating 13 distinct interventions were identified. Baclofen, methocarbamol, orphenadrine, and taurine supplementation reduced cramp frequency, severity, and duration when compared to placebo. Human albumin, pregabalin, and quinidine reduced cramp frequency compared to placebo. Pickle juice reduced cramp severity compared to placebo. BCAA supplementation and calcium carbonate were found to reduce cramp frequency compared to baseline. Stretching demonstrated a signal towards reducing cramp severity and frequency, and meditation had a signal towards reducing severity only when compared to baseline. Electro-acupuncture was the only intervention which demonstrated no therapeutic effect. Pregabalin was the only agent associated with significant side effects that limited its use. CONCLUSION Methocarbamol, orphenadrine, and taurine supplementation were found in placebo-controlled RCTs to be effective in reducing cramp frequency, severity, and duration in cirrhotic patients. All other interventions reported aside from electro-acupuncture demonstrated a positive impact on cramps. High-quality RCTs are needed to further investigate the use of these treatments in terms of comparative efficacy and safety.
Collapse
Affiliation(s)
- Andrew T Roberts
- Department of Gastroenterology and Hepatology, the Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Joseph Makar
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Abdelmalak
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Gastroenterology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Marie Sinclair
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Adam Testro
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Avik Majumdar
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
39
|
Zagare A, Kurlovics J, Almeida C, Ferrante D, Frangenberg D, Vitali A, Gomez-Giro G, Jäger C, Antony P, Halder R, Krüger R, Glaab E, Stalidzans E, Arena G, Schwamborn JC. Insulin resistance compromises midbrain organoid neuronal activity and metabolic efficiency predisposing to Parkinson's disease pathology. J Tissue Eng 2025; 16:20417314241295928. [PMID: 39882547 PMCID: PMC11775974 DOI: 10.1177/20417314241295928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 01/31/2025] Open
Abstract
Growing evidence indicates that type 2 diabetes (T2D) is associated with an increased risk of developing Parkinson's disease (PD) through shared disease mechanisms. Studies show that insulin resistance, which is the driving pathophysiological mechanism of T2D plays a major role in neurodegeneration by impairing neuronal functionality, metabolism and survival. To investigate insulin resistance caused pathological changes in the human midbrain, which could predispose a healthy midbrain to PD development, we exposed iPSC-derived human midbrain organoids from healthy individuals to either high insulin concentration, promoting insulin resistance, or to more physiological insulin concentration restoring insulin signalling function. We combined experimental methods with metabolic modelling to identify the most insulin resistance-dependent pathogenic processes. We demonstrate that insulin resistance compromises organoid metabolic efficiency, leading to increased levels of oxidative stress. Additionally, insulin-resistant midbrain organoids showed decreased neuronal activity and reduced amount of dopaminergic neurons, highlighting insulin resistance as a significant target in PD prevention.
Collapse
Affiliation(s)
- Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Health Sciences Research Center, Faculty of Health Sciences Research, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Daniele Ferrante
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniela Frangenberg
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armelle Vitali
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Sequencing Platform, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
40
|
Huang H, Qin J, Wen Z, Wang C, Chen C, Liu Y, Li H, Cao S, Yang X. Association of branched-chain amino acids and risk of three urologic cancers: a Mendelian randomization study. Transl Cancer Res 2024; 13:6709-6720. [PMID: 39816560 PMCID: PMC11729756 DOI: 10.21037/tcr-24-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/31/2024] [Indexed: 01/18/2025]
Abstract
Background Multiple studies suggest a plausible connection between urologic cancers and branched-chain amino acids (BCAAs) breakdown metabolic enzymes. Nevertheless, there is scarce exploration into the variations in circulating BCAAs. In our research, we utilize bidirectional, two-sample Mendelian randomization (MR) analysis to predict the link between BCAAs levels and three distinct types of urological tumors. Methods The study examined data from the UK Biobank, including a comprehensive genome-wide association study (GWAS) of total BCAAs, leucine, isoleucine, and valine, alongside three urological system tumors [prostate cancer (PCa), kidney cancer, and bladder cancer] sourced from the Medical Research Council Integrative Epidemiology Unit (MRC-IEU) and FinnGen Consortium databases. The primary analytical approach involved the use of the inverse variance weighted (IVW) method, complemented by MR-PRESSO global testing and MR-Egger regression to identify potential horizontal pleiotropy. Heterogeneity was evaluated using the Cochran Q test. Results The levels of circulating total BCAAs [odds ratio (OR) =1.002688, 95% confidence interval (CI): 1.000, 1.005, P=0.03], leucine (OR =1.0038, 95% CI: 1.001, 1.007, P=0.008), isoleucine (OR =1.003352, 95% CI: 1.000, 1.007, P=0.04), and valine (OR =1.00279, 95% CI: 1.001, 1.005, P=0.009) showed positive associations with PCa risk. However, there was inadequate evidence to establish a link between BCAAs and bladder or kidney cancer. Conclusions In summary, an association existed between elevated levels of circulating total BCAAs, leucine, isoleucine, and valine, and an increased risk of PCa. However, no correlation was detected between BCAAs and kidney or bladder cancer.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiao Qin
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhi Wen
- Department of Urology, Langzhong People’s Hospital, Langzhong, China
| | - Chongjian Wang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Caixia Chen
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Liu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hongyuan Li
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Song Cao
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xuesong Yang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Health Management Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
41
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
42
|
Hunter B, Li M, Parker BL, Koay YC, Harney DJ, Pearson E, Cao J, Chen GT, Guneratne O, Smyth GK, Larance M, O'Sullivan JF, Lal S. Proteomic and metabolomic analyses of the human adult myocardium reveal ventricle-specific regulation in end-stage cardiomyopathies. Commun Biol 2024; 7:1666. [PMID: 39702518 DOI: 10.1038/s42003-024-07306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
The left and right ventricles of the human heart are functionally and developmentally distinct such that genetic or acquired insults can cause dysfunction in one or both ventricles resulting in heart failure. To better understand ventricle-specific molecular changes influencing heart failure development, we first performed unbiased quantitative mass spectrometry on pre-mortem non-diseased human myocardium to compare the metabolome and proteome between the normal left and right ventricles. Constituents of gluconeogenesis, glycolysis, lipogenesis, lipolysis, fatty acid catabolism, the citrate cycle and oxidative phosphorylation were down-regulated in the left ventricle, while glycogenesis, pyruvate and ketone metabolism were up-regulated. Inter-ventricular significance of these metabolic pathways was then found to be diminished within end-stage dilated cardiomyopathy and ischaemic cardiomyopathy, while heart failure-associated pathways were increased in the left ventricle relative to the right within ischaemic cardiomyopathy, such as fluid sheer-stress, increased glutamine-glutamate ratio, and down-regulation of contractile proteins, indicating a left ventricular pathological bias.
Collapse
Affiliation(s)
- Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Chin Koay
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Heart Research Institute, Newtown, NSW, Australia
| | - Dylan J Harney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Evangeline Pearson
- Paediatric Oncology and Haematology, Oxford Children's Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, England
| | - Jacob Cao
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gavin T Chen
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Oneka Guneratne
- Kolling Institute, Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gordon K Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Heart Research Institute, Newtown, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Nakhod VI, Butkova TV, Malsagova KA, Petrovskiy DV, Izotov AA, Nikolsky KS, Kaysheva AL. Sample Preparation for Metabolomic Analysis in Exercise Physiology. Biomolecules 2024; 14:1561. [PMID: 39766268 PMCID: PMC11673972 DOI: 10.3390/biom14121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics investigates final and intermediate metabolic products in cells. Assessment of the human metabolome relies principally on the analysis of blood, urine, saliva, sweat, and feces. Tissue biopsy is employed less frequently. Understanding the metabolite composition of biosamples from athletes can significantly improve our knowledge of molecular processes associated with the efficiency of training and recovery. Such knowledge may also lead to new management opportunities. Successful execution of metabolomic studies requires simultaneous qualitative and quantitative analyses of numerous small biomolecules in samples under test. Unlike genomics and proteomics, which do not allow for direct assessment of enzymatic activity, metabolomics focuses on biochemical phenotypes, providing unique information about health and physiological features. Crucial factors in ensuring the efficacy of metabolomic analysis are the meticulous selection and pre-treatment of samples.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (V.I.N.); (T.V.B.); (D.V.P.); (A.A.I.); (K.S.N.); (A.L.K.)
| | | | | | | | | |
Collapse
|
44
|
Wu Y, Avcilar-Kücükgöze I, Santovito D, Atzler D. Amino Acid Metabolism and Autophagy in Atherosclerotic Cardiovascular Disease. Biomolecules 2024; 14:1557. [PMID: 39766264 PMCID: PMC11673637 DOI: 10.3390/biom14121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the most common cause of mortality globally, accounting for approximately one out of three deaths. The main underlying pathology is atherosclerosis, a dyslipidemia-driven, chronic inflammatory disease. The interplay between immune cells and non-immune cells is of great importance in the complex process of atherogenesis. During atheroprogression, intracellular metabolic pathways, such as amino acid metabolism, are master switches of immune cell function. Autophagy, an important stress survival mechanism involved in maintaining (immune) cell homeostasis, is crucial during the development of atherosclerosis and is strongly regulated by the availability of amino acids. In this review, we focus on the interplay between amino acids, especially L-leucine, L-arginine, and L-glutamine, and autophagy during atherosclerosis development and progression, highlighting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Yuting Wu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20133 Milan, Italy
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
45
|
Loos CMM, Zhao S, Li L, Li J, Han W, Vanzant ES, McLeod KR. Essential oil supplementation improves insulin sensitivity and modulates the plasma metabolome of hyperinsulinemic horses. Front Vet Sci 2024; 11:1444581. [PMID: 39687851 PMCID: PMC11648227 DOI: 10.3389/fvets.2024.1444581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to investigate the effect of essential oil (EO) supplementation on insulin sensitivity (IS) and the plasma metabolome in insulin dysregulated (ID) horses. Horses were blocked by degree of IS and assigned randomly to treatment: oral daily bolus (50 mL) of either a plant derived EO supplement or carrier (CON). Mares were housed in dry lots with ad libitum access to grass hay and supplemented individually twice daily with a concentrate to meet nutrient requirements for mature horses. Before and after 6 wks of treatment, mares underwent a combined glucose-insulin tolerance test (CGIT) and an oral sugar test (OST) on separate days. Global metabolome analysis was conducted on plasma samples before and after treatment. Although treatment did not affect (p > 0.4) AUC or glucose clearance during CGIT, there was a treatment*covariate interaction (p ≤ 0.08) for insulin concentrations at 75 min (INS75) and positive phase time (PT) with EO decreasing both INS75 (p ≤ 0.002) and PT (p = 0.05) in horses with more severe initial degree of ID. Similarly, EO treatment reduced (p ≤ 0.006) insulinemic response to the OST in horses exhibiting higher pre-treatment responses (treatment*covariate, p = 0.004). There were 702 metabolites identified that were uniquely changed with EO treatment. Pathway analysis and biomarkers showed EO-mediated changes in amino acid, linoleic acid, mesaconic acid, TCA-cyle intermediates and bile acid metabolism. The directional changes in these pathways or biomarkers are consistent with changes in inulin sensitivity in other models. These data show that EO shifted the plasma metabolome and improved insulin sensitivity in horses.
Collapse
Affiliation(s)
- Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Shuang Zhao
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Janet Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Wei Han
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
46
|
Brown Z, Yoneshiro T. Brown Fat and Metabolic Health: The Diverse Functions of Dietary Components. Endocrinol Metab (Seoul) 2024; 39:839-846. [PMID: 39566546 PMCID: PMC11695479 DOI: 10.3803/enm.2024.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 11/22/2024] Open
Abstract
Brown and beige adipocytes utilize a variety of substrates for cold-induced thermogenesis, contributing to the clearance of metabolites in circulation and, consequently, metabolic health. Food-derived compounds that exhibit agonistic activity at temperature-sensitive transient receptor potential channels may serve as cold mimics to elicit thermogenesis and substrate utilization in brown adipose tissue (BAT). In addition to fatty acids and glucose, branched-chain amino acids (BCAAs), which are essential amino acids obtained from foods, are actively catabolized in BAT through mitochondrial BCAA carrier (MBC). The relative contribution of BCAAs to fueling the tricarboxylic acid cycle as a substrate (i.e., anaplerosis) is estimated to be relatively small, yet BCAA catabolism in BAT exerts a critical role in systemic insulin sensitivity. The nature of this apparent tension remained unclear until the recent discovery that active BCAA catabolism in BAT through MBC is critical for the synthesis of metabolites such as glutathione, which is delivered to the liver to improve hepatic insulin sensitivity through redox homeostasis. Novel mechanistic insights into the control of BAT function and systemic metabolism reveal the therapeutic potential of food-derived compounds for improving metabolic flexibility and insulin sensitivity.
Collapse
Affiliation(s)
- Zachary Brown
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Wijdeveld LFJM, Collinet ACT, Huiskes FG, Brundel BJJM. Metabolomics in atrial fibrillation - A review and meta-analysis of blood, tissue and animal models. J Mol Cell Cardiol 2024; 197:108-124. [PMID: 39476947 DOI: 10.1016/j.yjmcc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia associated with severe cardiovascular complications. AF presents a growing global challenge, however, current treatment strategies for AF do not address the underlying pathophysiology. To advance diagnosis and treatment of AF, a deeper understanding of AF root causes is needed. Metabolomics is a fast approach to identify, quantify and analyze metabolites in a given sample, such as human serum or atrial tissue. In the past two decades, metabolomics have enabled research on metabolite biomarkers to predict AF, metabolic features of AF, and testing metabolic mechanisms of AF in animal models. Due to the field's rapid evolution, the methods of AF metabolomics studies have not always been optimal. Metabolomics research has lacked standardization and requires expertise to face methodological challenges. PURPOSE OF THE REVIEW We summarize and meta-analyze metabolomics research on AF in human plasma and serum, atrial tissue, and animal models. We present the current progress on metabolic biomarkers candidates, metabolic features of clinical AF, and the translation of metabolomics findings from animal to human. We additionally discuss strengths and weaknesses of the metabolomics method and highlight opportunities for future AF metabolomics research.
Collapse
Affiliation(s)
- Leonoor F J M Wijdeveld
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA 02142, Cambridge, United States
| | - Amelie C T Collinet
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Fabries G Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Lépine G, Mariotti F, Tremblay-Franco M, Courrent M, Verny MA, David J, Mathé V, Jame P, Anchisi A, Lefranc-Millot C, Perreau C, Guérin-Deremaux L, Chollet C, Castelli F, Chu-Van E, Huneau JF, Rémond D, Pickering G, Fouillet H, Polakof S. Increasing plant protein in the diet induces changes in the plasma metabolome that may be beneficial for metabolic health. A randomized crossover study in males. Clin Nutr 2024; 43:146-157. [PMID: 39454458 DOI: 10.1016/j.clnu.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND & AIM Dietary shifts replacing animal protein (AP) with plant protein (PP) sources have been associated with lowering cardiometabolic risk (CMR), but underlying mechanisms are poorly characterized. This nutritional intervention aims to characterize the metabolic changes induced by diets containing different proportions of AP and PP sources in males at CMR. DESIGN This study is a 4-week, crossover, randomized, controlled-feeding trial in which 19 males with CMR followed two diets providing either 36 % for the control diet (CON-D) or 64 % for the flexitarian diet (FLEX-D) of total protein intake from PP sources. Plasma nontargeted metabolomes (LC-MS method) were measured in the fasted state and after a high-fat challenge meal at the end of each intervention arm. Lipogenesis and protein synthesis fluxes, flow-mediated dilatation (FMD) and gluco-lipidic responses were assessed after the challenge meal. Data were analyzed with mixed models, and univariate and multivariate models for metabolomics data. RESULTS In both arms CMR improved with time, with decreased body weight (-0.9 %), insulin resistant (-34 %, HOMA-IR, Homeostatic Model Assessment for Insulin Resistance) and low-density lipoproteins (LDL)-cholesterol (-11 %). Diet had no effect on FMD or metabolic fluxes, but a trend (0.05 CONCLUSIONS Despite little changes in risk factors after 4 wk, this study evidenced subtle metabolic adaptations in amino acids and lipid metabolism and gut microbiota activity occurring after higher PP source intake that may be beneficial to CMR. CLINICALTRIALS GOV STUDY IDENTIFIER NCT04236518. CLINICAL TRIAL REGISTRY NCT04236518 on ClinicalTrials.gov.
Collapse
Affiliation(s)
- Gaïa Lépine
- Université Clermont Auvergne, INRAE, UNH, 63000, Clermont-Ferrand, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Marie Tremblay-Franco
- Toxalim - Research Centre in Food Toxicology, Toulouse University, INRAE, ENVT, INP-Purpan, UT3, F-31300, Toulouse, France; MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | | | - Marie-Anne Verny
- Université Clermont Auvergne, INRAE, UNH, 63000, Clermont-Ferrand, France
| | - Jérémie David
- Université Clermont Auvergne, INRAE, UNH, 63000, Clermont-Ferrand, France
| | - Véronique Mathé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Patrick Jame
- Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Anthony Anchisi
- Universite Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | | | | | - Céline Chollet
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Florence Castelli
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Emeline Chu-Van
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-François Huneau
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France
| | - Didier Rémond
- Université Clermont Auvergne, INRAE, UNH, 63000, Clermont-Ferrand, France
| | | | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91120, Palaiseau, France.
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UNH, 63000, Clermont-Ferrand, France.
| |
Collapse
|
49
|
Lim JJ, Prodhan UK, Silvestre MP, Liu AY, McLay J, Fogelholm M, Raben A, Poppitt SD, Cameron-Smith D. Low serum glycine strengthens the association between branched-chain amino acids and impaired insulin sensitivity assessed before and after weight loss in a population with pre-diabetes: The PREVIEW_NZ cohort. Clin Nutr 2024; 43:17-25. [PMID: 39423758 DOI: 10.1016/j.clnu.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
AIM Accumulation of circulating branched-chain amino acids (BCAA) is a hallmark feature of impaired insulin sensitivity. As intracellular BCAA catabolism is dependent on glycine availability, we hypothesised that the concurrent measurement of circulating glycine and BCAA may yield a stronger association with markers of insulin sensitivity than either BCAA or glycine alone. This study therefore examined the correlative relationships of BCAA, BCAA and glycine together, plus glycine alone on insulin sensitivity-related markers before and after an 8-week low energy diet (LED) intervention. METHODS This is a secondary analysis of the PREVIEW (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World) Study New Zealand sub-cohort. Eligible participants with pre-diabetes at baseline who achieved ≥8 % body weight loss following an LED intervention were included, of which 167 paired (Week 0 and Week 8) blood samples were available for amino acid analysis. Glycemic and other data were retrieved from the PREVIEW consortium database. Repeated measures linear mixed models were used to test the association between amino acids and insulin sensitivity-related markers (HOMA2-IR, glucose, insulin, and C-peptide). RESULTS Elevated BCAA was associated with impaired insulin sensitivity (p < 0.05), with strength of association (ηp2) almost doubled when glycine was added to the model. However, glycine in isolation was not associated with insulin sensitivity-related markers. The magnitude (β-estimates) of positive association between BCAA and HOMA2-IR, and inverse association between glycine and HOMA2-IR, increased when body weight was higher (Body weight∗BCAA, Body weight∗glycine, p < 0.05, both). CONCLUSION Low serum glycine strengthened the association between BCAA and impaired insulin sensitivity. Given that glycine is necessary to facilitate intracellular BCAA catabolism, measurement of glycine is necessary to complement BCAA analysis to comprehensively understand the contribution of amino acid metabolism in insulin sensitivity. CLINICAL TRIAL REGISTRATION This study was registered with ClinicalTrials.gov (NCT01777893).
Collapse
Affiliation(s)
- Jia Jiet Lim
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand.
| | - Utpal K Prodhan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; CINTESIS, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Amy Y Liu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jessica McLay
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Mikael Fogelholm
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand; High Value Nutrition, National Science Challenge, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Singapore, Singapore
| |
Collapse
|
50
|
Michael H, Weng GW, Vallas MM, Lovos D, Chen E, Sheiffele P, Weng W. Metabolomics analysis reveals resembling metabolites between humanized γδ TCR mice and human plasma. Sci Rep 2024; 14:29321. [PMID: 39592837 PMCID: PMC11599612 DOI: 10.1038/s41598-024-81003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Gamma delta (γδ) T cells, which reside in mucosal and epithelial tissues, are integral to immune responses and are involved in various cancers, autoimmune, and infectious diseases. To study human γδ T cells to a translational level, we developed γδ humanized TCR-T1 (HuTCR-T1) mice using our TruHumanization platform. We compared the metabolomic profiles from plasma samples of wild-type (WT), γδ HuTCR-T1 mice, and humans using UHPLC-MS/MS. Untargeted metabolomics and lipidomics were used to screen all detectable metabolites. Principal component analysis revealed that the metabolomic profiles of γδ HuTCR-T1 mice closely resemble those of humans, with a clear segregation of metabolites between γδ HuTCR-T1 and WT mice. Most humanized γδ metabolites were classified as lipids, followed by organic compounds and amino acids. Pathway analysis identified significant alterations in the metabolism of tryptophan, tyrosine, sphingolipids, and glycerophospholipids, shifting these pathways towards a more human-like profile. Immunophenotyping showed that γδ HuTCR-T1 mice maintained normal proportions of both lymphoid and myeloid immune cell populations, closely resembling WT mice, with only a few exceptions. These findings demonstrate that the γδ HuTCR-T1 mouse model exhibits a metabolomic profile that is remarkably similar to that of humans, highlighting its potential as a relevant model for investigating the role of metabolites in disease development and progression. This model also offers an opportunity to discover therapeutic human TCRs.
Collapse
Affiliation(s)
- Husheem Michael
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| | - Gene W Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Mikaela M Vallas
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Douglas Lovos
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Ellen Chen
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Paul Sheiffele
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Wei Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| |
Collapse
|