1
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
3
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
4
|
Kurakawa T, Kani K, Chudan S, Nishikawa M, Tabuchi Y, Sakamoto K, Nagai Y, Ikushiro S, Furusawa Y. Rice Kefiran Ameliorates Obesity and Hepatic Steatosis Through the Change in Gut Microbiota. Microorganisms 2024; 12:2495. [PMID: 39770698 PMCID: PMC11728449 DOI: 10.3390/microorganisms12122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Obesity is a global epidemic and a significant risk factor for various diseases. Obesity and dysbiosis are associated, drawing attention to the mechanisms that regulate the gut microbiota. In this study, we focused on the postbiotic effects of rice kefiran (Kef), a functional product of Lactobacillus kefiranofaciens cultured in a rice-based medium, on obesity and its complications. Although Kef has the potential to improve obesity, the underlying mechanisms remain unknown. Therefore, we aimed to elucidate the mechanisms underlying changes in gut microbiota. The administration of Kef significantly suppressed diet-induced body weight gain, reduced liver fat accumulation, and modestly improved insulin resistance. Among the gut bacteria, Lachnospiraceae and Lachnoclostridium, which were positively correlated with obesity, decreased in mice administered Kef. In contrast, Bacteroides and Alistipes, both reported to ameliorate obesity, were increased. Consistent with the changes in the gut microbiota, Kef increased fecal acetate levels, which ameliorated obesity and hepatic steatosis. Predictive metagenomic analysis suggested that Kef administration increased the abundance of KEGG orthologs, associated with carbohydrate metabolism and improvements in insulin resistance. In conclusion, Kef improves diet-induced obesity, hepatic steatosis, and insulin resistance by regulating the gut microbiota's composition.
Collapse
Affiliation(s)
- Takuto Kurakawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Toyama, Japan
| | - Kazuichi Sakamoto
- College of Agriculture, Ibaraki University, 3-21-1. Chuo, Ami-cho, Ami-machi 300-0393, Ibaraki, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan
| |
Collapse
|
5
|
Kukaev E, Kirillova E, Tokareva A, Rimskaya E, Starodubtseva N, Chernukha G, Priputnevich T, Frankevich V, Sukhikh G. Impact of Gut Microbiota and SCFAs in the Pathogenesis of PCOS and the Effect of Metformin Therapy. Int J Mol Sci 2024; 25:10636. [PMID: 39408965 PMCID: PMC11477200 DOI: 10.3390/ijms251910636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder that impacts both the endocrine and metabolic systems, often resulting in infertility, obesity, insulin resistance, and cardiovascular complications. The aim of this study is to investigate the role of intestinal flora and its metabolites, particularly short-chain fatty acids (SCFAs), in the development of PCOS, and to assess the effects of metformin therapy on these components. SCFA levels in fecal and blood samples from women with PCOS (n=69) and healthy controls (n=18) were analyzed using Gas Chromatography-Mass Spectrometry (GC/MS) for precise measurement. Fecal microbiota were quantitatively detected by real-time polymerase chain reaction (PCR). To assess the efficacy of six months of metformin treatment, changes in the microbiota and SCFAs in the PCOS group (n=69) were also evaluated. The results revealed that women with PCOS exhibited a significant reduction in beneficial bacteria (namely, the C. leptum group and Prevotella spp.) alongside a notable overgrowth of opportunistic microorganisms (C. perfringens, C. difficile, Staphylococcus spp., and Streptococcus spp.). An overproduction of acetic acid (AA, FC=0.47, p<0.05) and valeric acid (VA, FC=0.54, p<0.05) suggests a link between elevated SCFAs and the development of obesity and PCOS. Interestingly, AA in the bloodstream might offer a protective effect against PCOS by ameliorating key symptoms such as high body mass index (r=-0.33, p=0.02), insulin resistance (r=-0.39, p=0.02), and chronic inflammation. Although serum SCFA levels showed non-significant changes following metformin treatment (p>0.05), the normalization of AA in the gut underscores that metformin exerts a more pronounced effect locally within the gastrointestinal tract. Furthermore, the study identified the most effective model for predicting the success of metformin therapy, based on serum concentrations of butyric acid (BA) and VA, achieving a 91% accuracy rate, 100% sensitivity, and 80% specificity. These promising findings highlight the potential for developing targeted interventions and personalized treatments, ultimately improving clinical outcomes for women with PCOS.
Collapse
Affiliation(s)
- Evgenii Kukaev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina Kirillova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Alisa Tokareva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Elena Rimskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Natalia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Galina Chernukha
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Tatiana Priputnevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (E.K.); (A.T.); (E.R.); (N.S.); (G.C.); (T.P.); (V.F.); (G.S.)
| |
Collapse
|
6
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hou C, Shi H, Xiao J, Song X, Luo Z, Ma X, Shi L, Wei H, Li J. Pomegranate Juice Supplemented with Inulin Modulates Gut Microbiota and Promotes the Production of Microbiota-Associated Metabolites in Overweight/Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14663-14677. [PMID: 38887904 DOI: 10.1021/acs.jafc.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pomegranate juice (PJ) and inulin have been reported to ameliorate diet-induced metabolic disorders by regulating gut microbiota dysbiosis. However, there was a lack of clinical evidence for the combined effects of PJ and inulin on regulating gut microbiota in individuals with metabolic disorders. A double-blind, parallel, randomized, placebo-controlled trial was conducted, and 68 overweight/obese individuals (25 ≤ BMI ≤ 35 kg/m2) were randomly assigned to receive 200 mL/d PJ, PJ supplemented with inulin, or placebo for 3 weeks. Our results showed that PJ and PJ+inulin did not significantly alter the levels of anthropometric and blood biochemical indicators after 3 weeks of treatment. However, there was an increasingly significant impact from placebo to PJ to PJ+inulin on the composition of gut microbiota. Detailed bacterial abundance analysis further showed that PJ+inulin treatment more profoundly resulted in significant changes in the abundance of gut microbiota at each taxonomic level than PJ. Moreover, PJ+inulin treatment also promoted the production of microbiota-associated short-chain fatty acids and pomegranate polyphenol metabolites, which correlated with the abundance of the bacterial genus. Our results suggested that PJ supplemented with inulin modulates gut microbiota composition and thus promotes the production of microbiota-associated metabolites that exert potential beneficial effects in overweight/obese subjects.
Collapse
Affiliation(s)
- Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Haidan Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuoting Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Ghanbari F, Hasani S, Aghili ZS, Asgary S. The potential preventive effect of probiotics, prebiotics, and synbiotics on cardiovascular risk factors through modulation of gut microbiota: A review. Food Sci Nutr 2024; 12:4569-4580. [PMID: 39055176 PMCID: PMC11266939 DOI: 10.1002/fsn3.4142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a significant contributor to global morbidity and death, underscoring the importance of their prevention and treatment. The association between the development and progression of CVD and several risk factors has been extensively studied. Among these risk factors, the gut microbiota has garnered considerable attention of the scientific community during the last two decades. In particular, dysbiosis is directly associated with many risk factors of CVD in the host, such as diabetes. Prior research has demonstrated a robust correlation between dysbiosis and the development of CVD. Probiotics, prebiotics, and synbiotics are considered important regulators of microbiota imbalances as they increase the colonization of beneficial bacteria and thereby alter the gut microbiota. Although these beneficial effects of biotics are now widely recognized, new evidence has demonstrated that target therapy of the microbiota affects many other organs, including the heart, through a process commonly referred to as the gut-heart axis. In this review, we will discuss the potential benefits of probiotics, prebiotics, and synbiotics for the beneficial effects on cardiovascular disease by modulating gut microbiota.
Collapse
Affiliation(s)
- Fahimeh Ghanbari
- Applied Physiology Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samira Hasani
- Department of Plant and Animal Biology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Zahra Sadat Aghili
- Department of Molecular Medicine, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
9
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
10
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Sochacka K, Kotowska A, Lachowicz-Wiśniewska S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024; 16:1039. [PMID: 38613071 PMCID: PMC11013804 DOI: 10.3390/nu16071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Obesity and depression are interdependent pathological disorders with strong inflammatory effects commonly found worldwide. They determine the health status of the population and cause key problems in terms of morbidity and mortality. The role of gut microbiota and its composition in the treatment of obesity and psychological factors is increasingly emphasized. Published research suggests that prebiotic, probiotic, or symbiotic preparations can effectively intervene in obesity treatment and mood-dysregulation alleviation. Thus, this literature review aims to highlight the role of intestinal microbiota in treating depression and obesity. An additional purpose is to indicate probiotics, including psychobiotics and prebiotics, potentially beneficial in supporting the treatment of these two diseases.
Collapse
Affiliation(s)
- Klaudia Sochacka
- Faculty of Medicine and Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Agata Kotowska
- Department of Social Policy, Institute of Sociological Sciences, College of Social Sciences, University of Rzeszow, 35-310 Rzeszow, Poland;
| | | |
Collapse
|
12
|
Fang C, Shen Y, Ma Z, Li Y, Zhang J, Liu C, Ye Y. l-Theanine Prevents Colonic Damage via NF-κB/MAPK Signaling Pathways Induced by a High-Fat Diet in Rats. Mol Nutr Food Res 2024; 68:e2300797. [PMID: 38549456 DOI: 10.1002/mnfr.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Indexed: 05/12/2024]
Abstract
SCOPE l-Theanine (l-Thea) is an amino acid which is naturally present in tea leaves. It has been associated with possible health advantages, including obesity prevention, but the underlying molecular mechanisms have not been elucidated. METHODS AND RESULTS A multiomics approach is utilized to examine the mechanism by which l-Thea exerts its antiobesity effects. This study reveals that l-Thea administration significantly ameliorates high-fat diet (HFD)-induced obesity in rats by improving body weight and hyperlipidemia. l-Thea mitigates HFD-induced inflammation and reverses hepatic and colonic damage, and intestinal barrier. This research verifies that the preventive effect of l-Thea on obesity in rats induced by an HFD with colitis is accomplished by suppressing the phosphorylation of important proteins in the NF-κB/mitogen-activated protein kinase (MAPK) pathways. Metabolome analysis reveals that l-Thea regulates HFD-induced metabolic disorders, specifically through modulation of steroid hormone biosynthesis. Microbiome analysis reveals that l-Thea mitigates HFD-induced dysbiosis by increasing the relative abundance of obesity-associated probiotic bacteria, including Blautia coccoides and Lactobacillus murinus, while simultaneously suppressing the abundance of pathogenic bacteria. CONCLUSIONS l-Thea alleviates colitis generated by an HFD by restoring the integrity of the intestinal barrier, suppressing inflammation through regulation of MAPK/NF-κB signaling pathways, and enhancing microbial metabolism in colon.
Collapse
Affiliation(s)
- Chunyan Fang
- Institute of Quality Standard and Testing Technology Research, Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yifeng Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ziyang Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuchen Li
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chen Liu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yulong Ye
- Institute of Quality Standard and Testing Technology Research, Tea Research Institute, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, PR China
| |
Collapse
|
13
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
14
|
Boyte ME, Akhtar N, Koshy B, Roe AL. A Review of Probiotic Ingredient Safety Supporting Monograph Development Conducted by the United States Pharmacopeia (USP). J Diet Suppl 2024; 22:123-161. [PMID: 38356247 DOI: 10.1080/19390211.2024.2314488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The United States Pharmacopeia (USP) is an independent, nonprofit science-based organization whose mission is to improve global health through public standards and related products for medicines, food and dietary supplements. Probiotic-based dietary supplements are increasingly popular in the marketplace and USP has developed fourteen monographs specific to probiotic ingredients, including representatives from the Genera Lactobacillus, Bacillus, Streptococcus, and Bifidobacterium. These monographs include the definition of the article, tests for identification, quantification assays (enumeration in the case of probiotics), limits for contaminants, and other quality parameters when appropriate. In addition to quality, the USP also considers the safety of probiotics for monograph development. This report includes an overview of the USP admission evaluation process for probiotics as well as a tabular summary of the probiotic monographs currently available. Pharmacopeia monographs can guide manufacturers and brand owners and protect consumers through establishment of quality standards.
Collapse
Affiliation(s)
- Marie-Eve Boyte
- Dietary Supplement Admission Evaluation and Labeling Expert Committee, United States Pharmacopeia, Rockville, Maryland, USA
| | - Nadeem Akhtar
- United States Pharmacopeia, Rockville, Maryland, USA
| | - Binu Koshy
- United States Pharmacopeia, Rockville, Maryland, USA
| | - Amy L Roe
- Dietary Supplement Admission Evaluation and Labeling Expert Committee, United States Pharmacopeia, Rockville, Maryland, USA
| |
Collapse
|
15
|
Zhang CL, Wang C, Dong YS, Sun YQ, Xiu ZL. Dynamic immobilization of bacterial cells on biofilm in a polyester nonwoven chemostat. BIORESOUR BIOPROCESS 2024; 11:17. [PMID: 38647810 PMCID: PMC10992621 DOI: 10.1186/s40643-024-00732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/12/2024] [Indexed: 04/25/2024] Open
Abstract
Cell immobilization plays an important role in biocatalysis for high-value products. It is necessary to maintain the viability of immobilized cells for bioconversion using viable cells as biocatalysts. In this study, a novel polyester nonwoven chemostat was designed for cell immobilization to investigate biofilm formation and the dynamic balance between adsorption and desorption of cells on polyester nonwoven. The polyester nonwoven was suitable for cell immobilization, and the cell numbers on the polyester nonwoven can reach 6.5 ± 0.38 log CFU/mL. After adding the polyester nonwoven to the chemostat, the fluctuation phenomenon of free bacterial cells occurred. The reason for this phenomenon was the balance between adsorption and desorption of bacterial cells on the polyester nonwoven. Bacterial cells could adhere to the surface of polyester nonwoven via secreting extracellular polymeric substances (EPS) to form biofilms. As the maturation of biofilms, some dead cells inside the biofilms can cause the detachment of biofilms. This process of continuous adsorption and desorption of cells can ensure that the polyester nonwoven chemostat has lasting biological activity.
Collapse
Affiliation(s)
- Chao-Lei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Public Security Management Department, Liaoning Police College, Yingping Road 260, Dalian, 116024, People's Republic of China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Yue-Sheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Ya-Qin Sun
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
16
|
Horvath A, Zukauskaite K, Hazia O, Balazs I, Stadlbauer V. Human gut microbiome: Therapeutic opportunities for metabolic syndrome-Hype or hope? Endocrinol Diabetes Metab 2024; 7:e436. [PMID: 37771199 PMCID: PMC10781898 DOI: 10.1002/edm2.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 09/30/2023] Open
Abstract
Shifts in gut microbiome composition and metabolic disorders are associated with one another. Clinical studies and experimental data suggest a causal relationship, making the gut microbiome an attractive therapeutic goal. Diet, intake of probiotics or prebiotics and faecal microbiome transplantation (FMT) are methods to alter a person's microbiome composition. Although FMT may allow establishing a proof of concept to use microbiome modulation to treat metabolic disorders, studies show mixed results regarding the effects on metabolic parameters as well as on the composition of the microbiome. This review summarizes the current knowledge on diet, probiotics, prebiotics and FMT to treat metabolic diseases, focusing on studies that also report alterations in microbiome composition. Furthermore, clinical trial results on the effects of common drugs used to treat metabolic diseases are synopsized to highlight the bidirectional relationship between the microbiome and metabolic diseases. In conclusion, there is clear evidence that microbiome modulation has the potential to influence metabolic diseases; however, it is not possible to distinguish which intervention is the most successful. In addition, a clear commitment from all stakeholders is necessary to move forward in the direction of developing targeted interventions for microbiome modulation.
Collapse
Affiliation(s)
- Angela Horvath
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Kristina Zukauskaite
- Medical University of GrazGrazAustria
- Life Sciences CentreVilnius UniversityVilniusLithuania
| | - Olha Hazia
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Irina Balazs
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Vanessa Stadlbauer
- Medical University of GrazGrazAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| |
Collapse
|
17
|
Wu L, Park SH, Kim H. Direct and Indirect Evidence of Effects of Bacteroides spp. on Obesity and Inflammation. Int J Mol Sci 2023; 25:438. [PMID: 38203609 PMCID: PMC10778732 DOI: 10.3390/ijms25010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Metabolic disorders present a significant public health challenge globally. The intricate relationship between the gut microbiome, particularly Bacteroides spp. (BAC), and obesity, including their specific metabolic functions, remains partly unresolved. This review consolidates current research on BAC's role in obesity and lipid metabolism, with three objectives: (1) To summarize the gut microbiota's impact on obesity; (2) To assess BAC's efficacy in obesity intervention; (3) To explore BAC's mechanisms in obesity and lipid metabolism management. This review critically examines the role of BAC in obesity, integrating findings from clinical and preclinical studies. We highlight the changes in BAC diversity and concentration following successful obesity treatment and discuss the notable differences in BAC characteristics among individuals with varying obesity levels. Furthermore, we review recent preclinical studies demonstrating the potential of BAC in ameliorating obesity and related inflammatory conditions, providing detailed insights into the methodologies of these in vivo experiments. Additionally, certain BAC-derived metabolites have been shown to be involved in the regulation of host lipid metabolism-related pathways. The enhanced TNF production by dendritic cells following BAC administration, in response to LPS, also positions BAC as a potential adjunctive therapy in obesity management.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Rehabilitation Medicine of Korean Medicine, Ilsan Hospital of Dongguk University, Goyang 10326, Republic of Korea;
| | - Seo-Hyun Park
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Bundang Hospital of Dongguk University, Seongnam 13601, Republic of Korea;
| |
Collapse
|
18
|
Carson MD, Westwater C, Novince CM. Adolescence and the Microbiome: Implications for Healthy Growth and Maturation. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1900-1909. [PMID: 37673331 PMCID: PMC10699129 DOI: 10.1016/j.ajpath.2023.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023]
Abstract
The gut microbiota was initially thought to develop into a stable, adult-like profile during early postnatal life. The formation of the gut microbiota during early life has been shown to contribute to healthy growth and has lifelong implications for host health. Adolescence, the developmental period between childhood and adulthood, is a critical window for healthy growth and maturation. The composition of the gut microbiota in adolescents is distinct from that of children and adults, which supports the premise that the gut microbiota continues to develop during adolescence toward an adult-like profile. Research has begun to shift its focus from understanding the gut microbiome at the extremes of the life span to evaluating the importance of the gut microbiome during adolescence and its role in healthy development. This article provides an overview of adolescent development, host-microbiota interactions, and experimental models used to discern effects of gut microbiota on health and disease. Herein, the role of the gut microbiota is reviewed as it relates to adolescent: i) brain development, cognition, and behavior; ii) metabolism and adiposity; and iii) skeletal growth and bone mass accrual. Future directions are addressed, including omics investigations defining mechanisms through which the gut microbiota influences adolescent development. Furthermore, we discuss advancing noninvasive interventions targeting the adolescent gut microbiota that could be employed to support healthy growth and maturation.
Collapse
Affiliation(s)
- Matthew D Carson
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Caroline Westwater
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Chad M Novince
- Departments of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Endocrinology, Department of Pediatrics, College of Medicine, Medical University of South Carolina, Charleston, South Carolina; Division of Periodontics, Department of Stomatology, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
19
|
Saravanan D, Khatoon B S, Winner G J. Unraveling the Interplay: Exploring the Links Between Gut Microbiota, Obesity, and Psychological Outcomes. Cureus 2023; 15:e49271. [PMID: 38143611 PMCID: PMC10746887 DOI: 10.7759/cureus.49271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This narrative review delves into the complex and intricate mechanisms of the gut-brain axis. Gut microbiota has gained immense importance in the treatment of various diseases. The therapeutic potential of gut-microbial modulation is slowly coming to light. With good preclinical evidence, some human studies shed light on the translation potential of gut-microbial modulation. The concept of gut-microbial modulation has been studied for over a few decades. The relationship between gut microbiota and various homeostatic mechanisms is fascinating. Over the years, we have started understanding the immense role of gut microbiota in various homeostatic mechanisms. There are a good number of clinical studies that have shown the therapeutic potential of gut-microbial modulation in obesity and psychological diseases, especially depression and anxiety. The gut-microbial modulation can be achieved by dietary factors or supplementation. In this review, we explore the mechanisms by which prebiotics, probiotics, and synbiotics alter the gut-brain axis. The review limits its discussion to the most recent clinical studies that have shown promise as therapeutic strategies.
Collapse
Affiliation(s)
- Divya Saravanan
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Suhana Khatoon B
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Jefry Winner G
- Pharmacology and Therapeutics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
20
|
Kamal FD, Dagar M, Reza T, Karim Mandokhail A, Bakht D, Shahzad MW, Silloca-Cabana EO, Mohsin SN, Chilla SP, Bokhari SFH. Beyond Diet and Exercise: The Impact of Gut Microbiota on Control of Obesity. Cureus 2023; 15:e49339. [PMID: 38143595 PMCID: PMC10748854 DOI: 10.7759/cureus.49339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity, a widespread health concern characterized by the excessive accumulation of body fat, is a complex condition influenced by genetics, environment, and social determinants. Recent research has increasingly focused on the role of gut microbiota in obesity, highlighting its pivotal involvement in various metabolic processes. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, interacts with the host in a myriad of ways, impacting energy metabolism, appetite regulation, inflammation, and the gut-brain axis. Dietary choices significantly shape the gut microbiota, with diets high in fat and carbohydrates promoting the growth of harmful bacteria while reducing beneficial microbes. Lifestyle factors, like physical activity and smoking, also influence gut microbiota composition. Antibiotics and medications can disrupt microbial diversity, potentially contributing to obesity. Early-life experiences, including maternal obesity during pregnancy, play a vital role in the developmental origins of obesity. Therapeutic interventions targeting the gut microbiota, including prebiotics, probiotics, fecal microbiota transplantation, bacterial consortium therapy, and precision nutrition, offer promising avenues for reshaping the gut microbiota and positively influencing weight regulation and metabolic health. Clinical applications of microbiota-based therapies are on the horizon, with potential implications for personalized treatments and condition-based interventions. Emerging technologies, such as next-generation sequencing and advanced bioinformatics, empower researchers to identify specific target species for microbiota-based therapeutics, opening new possibilities in healthcare. Despite the promising outlook, microbiota-based therapies face challenges related to microbial selection, safety, and regulatory issues. However, with ongoing research and advances in the field, these challenges can be addressed to unlock the full potential of microbiota-based interventions.
Collapse
Affiliation(s)
| | - Mehak Dagar
- Internal Medicine, Himalayan Institute of Medical Sciences, New Delhi, IND
| | - Taufiqa Reza
- Medicine, Avalon University School of Medicine, Youngstown, USA
| | | | - Danyal Bakht
- Medicine and Surgery, Mayo Hospital, Lahore, PAK
| | | | | | - Syed Naveed Mohsin
- Orthopedics, St. James's Hospital, Dublin, IRL
- General Surgery, Cavan General Hospital, Cavan, IRL
| | - Srikar P Chilla
- Medicine, CARE Hospitals, Hyderabad, IND
- Health Sciences, University of East London, London, GBR
| | | |
Collapse
|
21
|
Li Y, Liu T, Qin L, Wu L. Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review. J Transl Med 2023; 21:525. [PMID: 37542325 PMCID: PMC10401801 DOI: 10.1186/s12967-023-04319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in overweight or obese children by meta-analysis, namely, body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), adiponectin, leptin and tumor necrosis factor-α (TNF-α) and summarize the mechanisms of action of probiotics based on the existing researches. METHODS Six databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI) were searched until March 2023. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model or random effect model to observe the effects of probiotic administration on the included indicators. RESULTS Four publications with a total of 206 overweight or obesity children were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HDL-C (MD, 0.06; 95% CI 0.03, 0.09; P = 0.0001), LDL-C (MD, - 0.06; 95% CI - 0.12, - 0.00; P = 0.04), adiponectin (MD, 1.39; 95% CI 1.19, 1.59; P < 0.00001), leptin (MD, - 2.72; 95% CI - 2.9, - 2.54; P < 0.00001) and TNF-α (MD, - 4.91; 95% CI - 7.15, - 2.67; P < 0.0001) compared to those in the placebo group. Still, for BMI, the palcebo group seemed to be better than the probiotic group (MD, 0.85; 95% CI 0.04, 1.66; P = 0.04). TC (MD, - 0.05; 95% CI - 0.12, 0.02; P = 0.14) and TG (MD, - 0.16; 95% CI - 0.36, 0.05; P = 0.14) were not different between two groups. CONCLUSIONS This review drew that probiotics might act as a role in regulating HDL-C, LDL-C, adiponectin, leptin and TNF-α in overweight or obesity children. Additionally, our systematic review yielded that probiotics might regulate lipid metabolism and improve obese associated symptoms by some paths. This meta-analysis has been registered at PROSPERO with ID: CRD42023408359.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
22
|
Kilic Yildirim G, Dinleyici M, Vandenplas Y, Dinleyici EC. Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial). Gut Pathog 2023; 15:36. [PMID: 37474971 PMCID: PMC10360342 DOI: 10.1186/s13099-023-00563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Gut microbiota manipulation may be a potential therapeutic target to reduce host energy storage. There is limited information about the effects of probiotics/synbiotics on intestinal microbiota composition in children and adolescents with obesity. The objective of this randomized double-blind placebo-controlled trial was to test the effects of a multispecies synbiotic on intestinal microbiota composition in children and adolescents with exogenous obesity. METHOD Children with exogenous obesity were managed with a standard diet and increased physical activity and were randomly allocated into two groups at a ratio of 1:1; the 1st group received synbiotic supplementation (probiotic mixture including Lactobacillus acidophilus, Lacticaseibacillus. rhamnosus, Bifidobacterium bifidum, Bifidobacterium longum, Enterococcus faecium (total 2.5 × 109 CFU/sachet) and fructo-oligosaccharides (FOS; 625 mg/sachet) for 12 weeks; the 2nd group received placebo once daily for 12 weeks. Fecal samples were obtained before and at the end of the 12-week intervention to characterize the changes in the gut microbiota composition. Detailed metagenomic and bioinformatics analyses were performed. RESULTS Before the intervention, there were no significant differences in alpha diversity indicators between the synbiotic and placebo groups. After 12 weeks of intervention, the observed taxonomic units and Chao 1 were lower in the synbiotic group than at baseline (p < 0.001 for both). No difference for alpha diversity indicators was observed in the placebo group between baseline and 12 weeks of intervention. At the phylum level, the intestinal microbiota composition of the study groups was similar at baseline. The major phyla in the synbiotic group were Firmicutes (66.7%) and Bacteroidetes (18.8%). In the synbiotic group, the Bacteroidetes phylum was higher after 12 weeks than at baseline (24.0% vs. 18.8%, p < 0.01). In the synbiotic group, the Firmicutes/Bacteroidetes ratio was 3.54 at baseline and 2.75 at 12 weeks of intervention (p < 0.05). In the placebo group, the Firmicutes/Bacteroidetes ratio was 4.70 at baseline and 3.54 at 12 weeks of intervention (p < 0.05). After 12 weeks of intervention, the Firmicutes/Bacteroidetes ratio was also lower in the synbiotic group than in the placebo group (p < 0.05). In the synbiotic group, compared with the baseline, we observed a statistically significant increase in the genera Prevotella (5.28-14.4%, p < 0.001) and Dialister (9.68-13.4%; p < 0.05). Compared to baseline, we observed a statistically significant increase in the genera Prevotella (6.4-12.4%, p < 0.01) and Oscillospira (4.95% vs. 5.70%, p < 0.001) in the placebo group. In the synbiotic group, at the end of the intervention, an increase in Prevotella, Coprococcus, Lachnospiraceae (at the genus level) and Prevotella copri, Coprococcus eutactus, Ruminococcus spp. at the species level compared to baseline (predominance of Eubacterium dolichum, Lactobacillus ruminis, Clostridium ramosum, Bulleidia moorei) was observed. At the end of the 12th week of the study, when the synbiotic and placebo groups were compared, Bacteroides eggerthi species were dominant in the placebo group, while Collinsella stercoris species were dominant in the synbiotic group. CONCLUSION This study is the first pediatric obesity study to show that a synbiotic treatment is associated with both changes intestinal microbiota composition and decreases in BMI. Trial identifier: NCT05162209 (www. CLINICALTRIALS gov).
Collapse
Affiliation(s)
- Gonca Kilic Yildirim
- Faculty of Medicine, Pediatrics Nutrition and Metabolism Unit, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Meltem Dinleyici
- Faculty of Medicine, Department of Social Pediatrics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Yvan Vandenplas
- Vrije Unversiteit Brussel, UZ Brussel, KidZ Health Castle, Brussels, Belgium
| | - Ener Cagri Dinleyici
- Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir, TR-26040, Turkey.
| |
Collapse
|
23
|
Loy MH, Usseglio J, Lasalandra D, Gold MA. Probiotic Use in Children and Adolescents with Overweight or Obesity: A Scoping Review. Child Obes 2023; 19:145-159. [PMID: 35723657 DOI: 10.1089/chi.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Context: Probiotics have been proposed as a prevention or treatment for pediatric overweight and obesity. Objective: Conduct a scoping review on probiotic use in children and adolescents with overweight or obesity and those with weight-related conditions and to identify knowledge gaps and research priorities. Data Sources: Seven databases using keywords and medical subject heading terms for articles reporting probiotic use in children or adolescents with overweight or obesity published from database conception until initiation of the study. Study Selection: Articles reporting primary data on probiotics use in children or adolescents with overweight or obesity. Data Extraction: We utilized the Arksey and O'Malley framework, PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, followed a predetermined study protocol for level-one abstract and level-two full-text screenings, synthesized information into subject-area domains, and identified research gaps. Limitations: Heterogeneity of probiotic interventions, host factors, and genomics. Results: Database search yielded 1356 unique articles with 19 randomized placebo-controlled studies, 945 participants, duration of interventions from 8 weeks to 9 months. Disease indications included Nonalcoholic Fatty Liver Disease, insulin resistance, hypercholesterolemia, Prader-Willi Syndrome, metabolic syndrome, and obesity. Limited and heterogeneous evidence for probiotic use in children and adolescents with weight-related conditions noted. Heterogeneity among published articles in probiotic strains, doses, design, biomarkers, confirmation, and outcomes observed. Conclusions: Despite complex existing and limited data, studies to date of children and adolescents with overweight and obesity demonstrate potential beneficial treatment effects of probiotics on BMI, adiposity, metabolic parameters, inflammatory markers, fatty liver, transaminase levels, and glucose metabolism. Clinical trials to address heterogeneous results are needed.
Collapse
Affiliation(s)
- Michelle H Loy
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Integrative Health and Well-Being, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - John Usseglio
- Health Sciences Library, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Melanie A Gold
- Heilbrunn Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- Section of Adolescent Medicine, Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
- Center for Community Health and Education, School-Based Health Centers, NewYork Presbyterian, New York, NY, USA
| |
Collapse
|
24
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
25
|
Vega-Cárdenas M, Martínez-Gutierrez F, Lara-Ramírez EE, Reynaga-Hernandez E, Yañez-Estrada L, Ratering S, Schnell S, Godínez-Hernández CI, Vargas-Morales JM, Portales-Pérez DP. Agave fructans enhance the effects of fermented milk products on obesity biomarkers: a randomised trial. Benef Microbes 2023; 14:153-164. [PMID: 36856122 DOI: 10.3920/bm2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Dysbiosis has been implicated in childhood obesity. Oral intake of fermented milk containing Lacticaseibacillus casei strain Shirota preserves gut microbiota (GM) diversity in children and adults. This study was a double-blind trial involving 37 overweight or obese children aged 6-10 years. Children were followed over a 6-week intervention period in which they received different fermented milk products containing L. casei Shirota: 10 in the first group received just L. casei Shirota; 13 received L. casei Shirota with 3 g/day of inulin (L. casei+inulin); and 14 received L. casei Shirota with 3 g/day of fructans from Agave salmiana (L. casei+fructans). Principal component analysis showed the relationship between microbial abundance, GM metabolites, and other obesity-related markers. Supplementation with probiotics and synbiotics improved the HDL-cholesterol levels of overweight and obese children, although no changes in body composition were detected. We observed an increase in butyrate or propionate concentrations in the L. casei+fructans group compared to the end of the intervention (P<0.03). A diminished level of ANGPTL4 within the L. casei+fructans group (P=0.04) was also found, but no differences when lipopolysaccharide-binding protein was evaluated. The FFAR2+ cell frequency decreased between baseline and at the end of 6-week intervention in L. casei+inulin (P=0.02) and L. casei+fructans groups (P=0.04). In contrast, the percentage of CD14+FFAR3+ frequency increased in the same groups (P=0.04). The L. casei Shirota with inulin or fructans modulates GM, which improves the lipid profile and changes at a molecular level, such as expression of FFAR3 and FFAR2, ANGPTL4, propionate, and butyrate. It, therefore, could be considered an interesting therapeutic possibility for treating childhood overweight and obesity. The study was registered at ClinicalTrials.gov (ID: NCT05423015).
Collapse
Affiliation(s)
- M Vega-Cárdenas
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico
| | - F Martínez-Gutierrez
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico.,Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - E E Lara-Ramírez
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute (IMSS), Alameda Trinidad García de La Cadena 438, Zacatecas Centro 98000 Zacatecas, Zac, Mexico
| | - E Reynaga-Hernandez
- Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - L Yañez-Estrada
- Faculty of Medicine, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - S Ratering
- Institute of Applied Microbiology, Justus Liebig University, Schubertstr. 81 35392, Giessen, Germany
| | - S Schnell
- Institute of Applied Microbiology, Justus Liebig University, Schubertstr. 81 35392, Giessen, Germany
| | - C I Godínez-Hernández
- Desert Zones Research Institute, UASLP, De Altair 200, Col del Llano, 78377, San Luis Potosí, SLP, Mexico
| | - J M Vargas-Morales
- Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| | - D P Portales-Pérez
- Research Centre for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí (UASLP), Av. Sierra Leona 550, Lomas de San Luis 78210, San Luis Potosí, SLP, Mexico.,Faculty of Chemical Sciences, UASLP, Av. Dr. Manuel Nava 6, Zona Universitaria 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
26
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
27
|
Xu Y, Zhao J, Ma Y, Liu J, Cui Y, Yuan Y, Xiang C, Ma D, Liu H. The microbiome types of colorectal tissue are potentially associated with the prognosis of patients with colorectal cancer. Front Microbiol 2023; 14:1100873. [PMID: 37025624 PMCID: PMC10072283 DOI: 10.3389/fmicb.2023.1100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
As the second leading cause of cancer worldwide, colorectal cancer (CRC) is associated with a poor prognosis. Although recent studies have explored prognostic markers in patients with CRC, whether tissue microbes carry prognostic information remains unknown. Here, by assessing the colorectal tissue microbes of 533 CRC patients, we found that Proteobacteria (43.5%), Firmicutes (25.3%), and Actinobacteria (23.0%) dominated the colorectal tissue microbiota, which was different from the gut microbiota. Moreover, two clear clusters were obtained by clustering based on the tissue microbes across all samples. By comparison, the relative abundances of Proteobacteria and Bacteroidetes in cluster 1 were significantly higher than those in cluster 2; while compared with cluster 1, Firmicutes and Actinobacteria were more abundant in cluster 2. In addition, the Firmicutes/Bacteroidetes ratios in cluster 1 were significantly lower than those in cluster 2. Further, compared with cluster 2, patients in cluster 1 had relatively poor survival (Log-rank test, p = 0.0067). By correlating tissue microbes with patient survival, we found that the relative abundance of dominant phyla, including Proteobacteria, Firmicutes, and Bacteroidetes, was significantly associated with survival in CRC patients. Besides, the co-occurrence network of tissue microbes at the phylum level of cluster 2 was more complicated than that of cluster 1. Lastly, we detected some pathogenic bacteria enriched in cluster 1 that promote the development of CRC, thus leading to poor survival. In contrast, cluster 2 showed significant increases in the abundance of some probiotics and genera that resist cancer development. Altogether, this study provides the first evidence that the tissue microbiome of CRC patients carries prognostic information and can help design approaches for clinically evaluating the survival of CRC patients.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Zhao
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingying Cui
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuqing Yuan
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongshen Ma
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Hui Liu, ; Dongshen Ma,
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Pathology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Hui Liu, ; Dongshen Ma,
| |
Collapse
|
28
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
29
|
Yang D, Wei X, Zhang B, Zhu R, Hu H, Fan X, Du H, Chen X, Zhang Z, Zhao M, Oh Y, Gu N. Probiotics protect against hepatic steatosis in tris (2-chloroethyl) phosphate-induced metabolic disorder of mice via FXR signaling. Food Chem Toxicol 2022; 169:113440. [PMID: 36162615 DOI: 10.1016/j.fct.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), the most widely useful and most frequently detective organophosphate flame retardants in environment, has been shown potential relationship with adolescent weight. Probiotics is an effective therapy for metabolic diseases such as obesity and NAFLD with gut microbiota dysregulation. This study aims to explore the protective effects of probiotics against lipid metabolic disorder induced by chronic TCEP exposure and demonstrate the mechanism of this event. The data showed that dietary complex probiotics supplement attenuated TCEP-induced obesity, hyperlipidemia, liver dysfunction, and hepatic steatosis. In addition, dietary complex probiotics suppressed TCEP-promoted ileal FXR signaling, and upregulated hepatic FXR/SHP pathway inhibited by TCEP. Moreover, dietary complex probiotics stimulated PPARα-mediated lipid oxidation and suppressed SREBP1c/PPARγ-mediated lipid synthesis via regulation of FXR signaling. Therefore, this study indicates that dietary complex probiotics could protect against hepatic steatosis via FXR-mediated signaling pathway in TCEP-induced metabolism disorder in mice, resulting in attenuation of systemic lipid accumulation.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
30
|
Huang J, Kang D, Zhang F, Yang Y, Liu C, Xiao J, Long Y, Lang B, Peng X, Wang W, Wang X, Liu F, Davis JM, Zhao J, Wu R. Probiotics Plus Dietary Fiber Supplements Attenuate Olanzapine-Induced Weight Gain in Drug-Naïve First-Episode Schizophrenia Patients: Two Randomized Clinical Trials. Schizophr Bull 2022; 48:850-859. [PMID: 35569003 PMCID: PMC9212091 DOI: 10.1093/schbul/sbac044] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND HYPOTHESIS Antipsychotic-induced weight gain is associated with alterations to the composition of the gut microbiota. The purpose of this study was to determine the effect of probiotics plus dietary fiber on antipsychotic-induced weight gain. STUDY DESIGN Two sequential, randomized clinical trials were conducted. In Study 1, 90 drug-naïve, first-episode schizophrenia patients were randomized to receive either olanzapine plus probiotics or olanzapine monotherapy for 12 weeks. In Study 2, 60 drug-naïve, first-episode schizophrenia patients were randomly assigned to receive either olanzapine plus probiotics and dietary fiber or olanzapine monotherapy for 12 weeks. STUDY RESULTS In Study 1, no significant differences in weight gain were observed between the two groups. The insulin resistance index (IRI) was lower in the olanzapine plus probiotics group compared with the olanzapine monotherapy group at week 12 (estimated mean difference, -0.65, [95% confidence interval (CI), -1.10 to -0.20]; p = .005). In Study 2, weight gain was lower in the probiotics plus dietary fiber group than in the olanzapine monotherapy group at week 12 (estimated mean difference -3.45 kg, [95% CI, -5.91 to -1.00]; p = .007). At week 12, IRI increased significantly in the olanzapine monotherapy group (mean, 1.74; standard deviation (SD) = 1.11, p < .001), but not in the olanzapine plus probiotics and dietary fiber group (mean 0.47, SD = 2.16, p = .35) with an estimated mean difference of -0.95 between the two groups [95% CI, -1.77 to -0.14]; p = .022). CONCLUSIONS These results provide support for the efficacy and safety of probiotics plus dietary fiber in attenuating antipsychotic-induced weight gain in drug-naïve, first-episode schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Fengyu Zhang
- Beijing Huilongguan Hospital and Peking University Huilongguan Clinical Medical School, Beijing, China,Global Clinical and Translational Research Institute, Bethesda, MD, USA
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Chenchen Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingmei Xiao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujun Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bing Lang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xingjie Peng
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiyan Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - John M Davis
- Psychiatric Institute, University of Illinois, Chicago, IL, USA
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Renrong Wu
- To whom correspondence should be addressed: Department of Psychiatry of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; tel: +86 15874179855, fax: +86 73185295214, e-mail:
| |
Collapse
|
31
|
Yue X, Wen S, Long-Kun D, Man Y, Chang S, Min Z, Shuang-Yu L, Xin Q, Jie M, Liang W. Three important short-chain fatty acids (SCFAs) attenuate the inflammatory response induced by 5-FU and maintain the integrity of intestinal mucosal tight junction. BMC Immunol 2022; 23:19. [PMID: 35448938 PMCID: PMC9027456 DOI: 10.1186/s12865-022-00495-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/18/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a used chemotherapy drug for cancer, and its main side effect is intestinal mucositis which causes chemotherapy to fail. It was known that short-chain fatty acids (SCFAs) can inhibit immune cell release of various proinflammatory factors and inhibit excessive intestinal inflammation. However, the inhibitory effect of SCFAs on 5-FU-induced intestinal mucositis is still unclear. RESULTS To simulate the effects of SCFAs on immune and intestinal epithelial cells, the cells (THP-1 cells and Caco-2 cells) were pretreated with sodium acetate (NaAc), sodium propionate (NaPc) and sodium butyrate (NaB), then inflammation was induced by 5-FU. The expressions of reactive oxygen species (ROS), Beclin-1, LC3-II, NF-κB p65, NLRP3 inflammasome, proinflammatory/anti-inflammatory cytokines and mucosal tight junction proteins were determined. In our results, the three SCFAs could inhibit ROS expressions, NLRP3, Caspase-1, IL-1β, IL-6, IL-18, Beclin-1 and LC3-II, when induced by 5-FU. In a 5-FU-induced chemoentermuctis mouse model, Lactobacillus rhamnoides can increase the concentrations of three SCFAs in faeces and increase the concentrations of IL-1β, IL-6 and IgA in serum, and decrease the expressions of NLRP3 and IL-17 in spleen cells. The expressions of ZO-1 and Occludin in intestinal mucosa were significantly increased. CONCLUSIONS These results indicated that the three SCFAs can effectively suppress the inflammation of THP-1 cells and Caco-2 cells and maintain tight junction integrity in intestinal mucosal epithelial cells.
Collapse
Affiliation(s)
- Xi Yue
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Sun Wen
- Department of Critical Care Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, 212400, People's Republic of China
| | - Ding Long-Kun
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Man
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Sun Chang
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhang Min
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Li Shuang-Yu
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qian Xin
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Ma Jie
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wu Liang
- Medical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Asadi A, Shadab Mehr N, Mohamadi MH, Shokri F, Heidary M, Sadeghifard N, Khoshnood S. Obesity and gut-microbiota-brain axis: A narrative review. J Clin Lab Anal 2022; 36:e24420. [PMID: 35421277 PMCID: PMC9102524 DOI: 10.1002/jcla.24420] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obesity is a major health problem that is associated with many physiological and mental disorders, such as diabetes, stroke, and depression. Gut microbiota has been affirmed to interact with various organs, including the brain. Intestinal microbiota and their metabolites might target the brain directly via vagal stimulation or indirectly through immune‐neuroendocrine mechanisms, and they can regulate metabolism, adiposity, homoeostasis and energy balance, and central appetite and food reward signaling, which together have crucial roles in obesity. Studies support the concept of bidirectional signaling within the gut–brain axis (GBA) in the pathophysiology of obesity, mediated by metabolic, endocrine, neural, and immune system mechanisms. Materials and methods Scopus, PubMed, Google Scholar, and Web of Science databases were searched to find relevant studies. Results The gut–brain axis (GBA), a bidirectional connection between the gut microbiota and brain, influences physiological function and behavior through three different pathways. Neural pathway mainly consists of the enteric nervous system (ENS) and vagus nerve. Endocrine pathway, however, affects the neuroendocrine system of the brain, particularly the hypothalamus–pituitary–adrenal (HPA) axis and immunological pathway. Several alterations in the gut microbiome can lead to obesity, by modulating metabolic pathways and eating behaviors of the host through GBA. Therefore, novel therapies targeting the gut microbiome, i.e., fecal microbiota transplantation and supplementation with probiotics and prebiotics, can be a potential treatment for obesity. Conclusion This study corroborates the effect of gut microbiome on physiological function and body weight. The results show that the gut microbiota is becoming a target for new antiobesity therapies.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Shadab Mehr
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Fazlollah Shokri
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
33
|
Russo E, Fiorindi C, Giudici F, Amedei A. Immunomodulation by probiotics and prebiotics in hepatocellular carcinoma. World J Hepatol 2022; 14:372-385. [PMID: 35317185 PMCID: PMC8891667 DOI: 10.4254/wjh.v14.i2.372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary malignancy in patients suffering from chronic liver diseases and cirrhosis. Recent attention has been paid to the involvement of the gut-liver axis (GLA) in HCC pathogenesis. This axis results from a bidirectional, anatomical and functional relationship between the gastrointestinal system and the liver. Moreover, the complex network of interactions between the intestinal microbiome and the liver plays a crucial role in modulation of the HCC-tumor microenvironment, contributing to the pathogenesis of HCC by exposing the liver to pathogen-associated molecular patterns, such as bacterial lipopolysaccharides, DNA, peptidoglycans and flagellin. Indeed, the alteration of gut microflora may disturb the intestinal barrier, bringing several toll-like receptor ligands to the liver thus activating the inflammatory response. This review explores the new therapeutic opportunities that may arise from novel insights into the mechanisms by which microbiota immunomodulation, represented by probiotics, and prebiotics, affects HCC through the GLA.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Camila Fiorindi
- Department of Health Professions, Dietary Production Line and Nutrition, University Hospital of Careggi, Florence 50134, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| |
Collapse
|
34
|
Amedei A, Gitto S, Campani C, Marra F. Probiotics and the gut-liver axis. PROBIOTICS 2022:467-481. [DOI: 10.1016/b978-0-323-85170-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Verma A, Nelson MT, DePaolo WR, Hampe C, Roth CL. A randomized double-blind placebo controlled pilot study of probiotics in adolescents with severe obesity. J Diabetes Metab Disord 2021; 20:1289-1300. [PMID: 34900780 PMCID: PMC8630143 DOI: 10.1007/s40200-021-00855-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of the study is to assess the effect of probiotic supplementation on gut microbiota and insulin resistance in adolescents with severe obesity. METHODS Through a randomized, double blind, placebo-controlled, 12-week pilot clinical trial, 15 adolescents with severe obesity received either an oral probiotic 'Visbiome®' (n = 8) or placebo (n = 7). Anthropometry, fasting glucose, insulin, hs-CRP and stool for microbiome and calprotectin were collected at baseline (week 0) and 12 weeks after intervention. RESULTS Among completers (n = 4 in each of the two groups), mean change in fasting glucose was significantly lower in the probiotic group (0 ± 4 mg/dL) as compared to the placebo group (6.3 ± 1.7 mg/dL) (p = 0.028). Gut microbial Firmicutes to Bacteroidetes (F/B) ratio had a greater decline from week 0 to week 12 in the probiotic group (mean 17.7 ± 25.1 to 2.39 ± 2.0, respectively) but was not statistically significant (p = 0.06) as compared to in the placebo group (mean 12.8 ± 18.2 to 6.9 ± 5.61, respectively) (p = 0.89). Weight and BMI (mean ± SD) trended to remain stable in the treatment group (-1.07 ± 6.1 kg and -0.3 ± 2.2 kg/m2 respectively) as compared to the placebo group (3.9 ± 5.1 kg, 1.0 ± 1.6 kg/m2) but was not significant (p = 0.12 for weight and 0.38 for BMI). No significant change in the fasting insulin, HOMA-IR, or serum and stool inflammatory markers were noted between the two groups (p > 0.05). One participant in the treatment arm reported adverse effects of gastrointestinal intolerance. CONCLUSION Probiotic therapy with Visbiome® may improve the fasting glucose and possibly decrease the gut microbial F/B ratio as compared to placebo in adolescents with severe obesity. Future larger studies are required to confirm these findings.U.S. Clinical Trial Registry number: NCT03109587. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-021-00855-7.
Collapse
Affiliation(s)
- Arushi Verma
- Department of Pediatrics, University of Washington, Seattle, WA USA
- Division of Pediatric Endocrinology, Seattle Children’s Hospital, Seattle, WA USA
- Present Address: Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada Reno School of Medicine, 75 Pringle Way, Suite 505, Reno, NV 89521 USA
| | - Maria T. Nelson
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - William R. DePaolo
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA USA
| | - Christiane Hampe
- Department of Medicine, Division of Endocrinology, University of Washington, Seattle, WA USA
| | - Christian L. Roth
- Division of Pediatric Endocrinology, Seattle Children’s Hospital, Seattle, WA USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA USA
| |
Collapse
|
36
|
Probiotic Enhancement of Antioxidant Capacity and Alterations of Gut Microbiota Composition in 6-Hydroxydopamin-Induced Parkinson's Disease Rats. Antioxidants (Basel) 2021; 10:antiox10111823. [PMID: 34829694 PMCID: PMC8615185 DOI: 10.3390/antiox10111823] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress plays a key role in the degeneration of dopaminergic neurons in Parkinson's disease (PD), which may be aggravated by concomitant PD-associated gut dysbiosis. Probiotics and prebiotics are therapeutically relevant to these conditions due to their antioxidant, anti-inflammatory, and gut microbiome modulation properties. However, the mechanisms by which probiotic/prebiotic supplementation affects antioxidant capacity and the gut microbiome in PD remains poorly characterized. In this study, we assessed the effects of a Lactobacillus salivarius AP-32 probiotic, a prebiotic (dried AP-32 culture medium supernatant), and a probiotic/prebiotic cocktail in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced PD. The neuroprotective effects and levels of oxidative stress were evaluated after eight weeks of daily supplementation. Fecal microbiota composition was analyzed by fecal 16S rRNA gene sequencing. The supplements were associated with direct increases in host antioxidant enzyme activities and short-chain fatty acid production, protected dopaminergic neurons, and improved motor functions. The supplements also altered the fecal microbiota composition, and some specifically enriched commensal taxa correlated positively with superoxide dismutase, glutathione peroxidase, and catalase activity, indicating supplementation also promotes antioxidant activity via an indirect pathway. Therefore, L. salivarius AP-32 supplementation enhanced the activity of host antioxidant enzymes via direct and indirect modes of action in rats with 6-OHDA-induced PD.
Collapse
|
37
|
Baldi S, Mundula T, Nannini G, Amedei A. Microbiota shaping — the effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J Gastroenterol 2021; 27:6715-6732. [PMID: 34754163 PMCID: PMC8554405 DOI: 10.3748/wjg.v27.i39.6715] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dementia is a chronic progressive neurological disease affecting millions of people worldwide, and represents a relevant economic burden for healthcare systems. Although its pathogenesis is still unknown, recent findings have reported that a dysregulated gut-brain axis communication, a fundamental relationship mediated by several host and microbial molecules, is associated with cognitive disorders. In addition, gut microbiota manipulation reduces neuroinflammation, improving cognitive function by restoring the functional gut-brain axis.
AIM To better define the effects of probiotics, prebiotics, synbiotics, and fecal microbiota transplant (FMT) on cognitive function.
METHODS We performed a literature search of human randomized clinical trials to examine the effects of the administration of probiotics, prebiotics, synbiotics, or FMT on cognition outcomes in healthy or sick people of every age, sex, and nationality. We systematically searched Embase, Medline/PubMed, Cochrane Library, central and clinicaltrials.gov databases with a combination of comprehensive terms related to cognition and gut microbiota manipulation. Then we carefully reviewed and synthesized the data by type of study design and setting, characteristics of the studied population, kind of intervention (strain type or mixture type, dosage, and frequency of administration), control treatment, inclusion and exclusion criteria, follow-up duration, and cognitive or memory outcomes.
RESULTS After examining the titles and abstracts, the initial literature screening identified 995 articles, but we added 23 papers in our systematic review. The analyses of these selected studies highlighted that both probiotic supplementation and FMT improved cognitive function regardless of the type and posology of administration and the adopted cognitive tests and questionnaires. We found that most of the studies conducted in healthy people showed a significant positive effect of the intervention on at least one of the performed cognitive tests. Regarding unhealthy subjects, while FMT and especially probiotic administration had multiple beneficial effects on different cognitive functions, supplementation with prebiotics did not provide any cognitive improvement.
CONCLUSION Probiotic supplementation and FMT may represent a promising strategy to restore gut eubiosis and enhance the cognitive functions of healthy people and patients with neurological disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi, Florence 50134, Italy
| |
Collapse
|
38
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
39
|
Yu L, Zhang L, Duan H, Zhao R, Xiao Y, Guo M, Zhao J, Zhang H, Chen W, Tian F. The Protection of Lactiplantibacillus plantarum CCFM8661 Against Benzopyrene-Induced Toxicity via Regulation of the Gut Microbiota. Front Immunol 2021; 12:736129. [PMID: 34447391 PMCID: PMC8383074 DOI: 10.3389/fimmu.2021.736129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023] Open
Abstract
The present study evaluated the protection of Lactiplantibacillus plantarum CCFM8661, a candidate probiotic with excellent benzopyrene (B[a]P)-binding capacity in vitro, against B[a]P-induced toxicity in the colon and brain of mice. Mice that received B[a]P alone served as the model group. Each mouse in the L. plantarum treatment groups were administered 2×109 colony forming unit (CFU) of L. plantarum strains once daily, followed by an oral dose of B[a]P at 50 mg/kg body weight. Behavior, biochemical indicators in the colon and brain tissue, and the gut microbiota composition and short-chain fatty acid (SCFA) levels in the gut were investigated. Compared to the treatment in the model group, CCFM8661 treatment effectively reduced oxidative stress in the brain, improved behavioral performance, increased intestinal barrier integrity, and alleviated histopathological changes in mice. Moreover, CCFM8661 increased the gut microbiota diversity and abundance of Ruminococcus and Lachnospiraceae and reduced the abundance of pro-inflammatory Turicibacter spp. Additionally, the production of SCFAs was significantly increased by L. plantarum CCFM8661. Our results suggest that CCFM8661 is effective against acute B[a]P-induced toxicity in mice and that it can be considered as an effective and easy dietary intervention against B[a]P toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Lingyu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Arnal ME, Denis S, Uriot O, Lambert C, Holowacz S, Paul F, Kuylle S, Pereira B, Alric M, Blanquet-Diot S. Impact of oral galenic formulations of Lactobacillus salivarius on probiotic survival and interactions with microbiota in human in vitro gut models. Benef Microbes 2021; 12:75-90. [PMID: 34109893 DOI: 10.3920/bm2020.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Health benefits of probiotics in humans essentially depend on their ability to survive during gastrointestinal (GI) transit and to modulate gut microbiota. To date, there is few data on the impact of galenic formulations of probiotics on these parameters. Even if clinical studies remain the gold standard to evaluate the efficacy of galenic forms, they stay hampered by technical, ethical and cost reasons. As an alternative approach, we used two complementary in vitro models of the human gut, the TNO gastrointestinal (TIM-1) model and the Artificial Colon (ARCOL), to study the effect of three oral formulations of a Lactobacillus salivarius strain (powder, capsule and sustained-release tablet) on its viability and interactions with gut microbiota. In the TIM-1 stomach, no or low numbers of bacteria were respectively released from the capsule and tablet, confirming their gastro-resistance. The capsule was disintegrated in the jejunum on average 76 min after administration while the core of sustained-release tablet was still intact at the end of digestion. Viability in TIM-1 was significantly influenced by the galenic form with survival percentages of 0.003±0.004%, 2.8±0.6% and 17.0±1.8% (n=3) for powder, capsule and tablet, respectively. In the ARCOL, the survival of the strain tended to be higher in the post-treatment phase with the tablet compared to capsule, but gut microbiota composition and activity were not differently modulated by the two formulations. In conclusion, the sustained-release tablet emerged as the formulation that most effectively preserved viability of the tested strain during GI passage. This study highlights the usefulness of in vitro gut models for the pre-screening of probiotic pharmaceutical forms. Their use could also easily be extended to the evaluation of the effects of food matrices and age on probiotic survival and activity during GI transit.
Collapse
Affiliation(s)
- M E Arnal
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Denis
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - O Uriot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - C Lambert
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - S Holowacz
- PiLeJe Industrie, Parc Naturopôle, Les Tiolans 03800 Saint-Bonnet de Rochefort, France
| | - F Paul
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - S Kuylle
- Genibio, Le Pradas, ZI du Couserans, 09190 Lorp-Sentaraille, France
| | - B Pereira
- University Hospital Clermont-Ferrand, Biostatistics Units, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - M Alric
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| | - S Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé, 28 place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
41
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
42
|
Olvera-Rosales LB, Cruz-Guerrero AE, Ramírez-Moreno E, Quintero-Lira A, Contreras-López E, Jaimez-Ordaz J, Castañeda-Ovando A, Añorve-Morga J, Calderón-Ramos ZG, Arias-Rico J, González-Olivares LG. Impact of the Gut Microbiota Balance on the Health-Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021; 10:1261. [PMID: 34199351 PMCID: PMC8230287 DOI: 10.3390/foods10061261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a group of microorganisms that are deposited throughout the entire gastrointestinal tract. Currently, thanks to genomic tools, studies of gut microbiota have pointed towards the understanding of the metabolism of important bacteria that are not cultivable and their relationship with human homeostasis. Alterations in the composition of gut microbiota could explain, at least in part, some epidemics, such as diabetes and obesity. Likewise, dysbiosis has been associated with gastrointestinal disorders, neurodegenerative diseases, and even cancer. That is why several studies have recently been focused on the direct relationship that these types of conditions have with the specific composition of gut microbiota, as in the case of the microbiota-intestine-brain axis. In the same way, the control of microbiota is related to the diet. Therefore, this review highlights the importance of gut microbiota, from its composition to its relationship with the human health-disease condition, as well as emphasizes the effect of probiotic and prebiotic consumption on the balance of its composition.
Collapse
Affiliation(s)
- Laura-Berenice Olvera-Rosales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Alma-Elizabeth Cruz-Guerrero
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - Aurora Quintero-Lira
- Área Académica de Ingeniería Agroindustrial e Ingeniería en alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1, Ex-Hacienda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico;
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Judith Jaimez-Ordaz
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Javier Añorve-Morga
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| | - Zuli-Guadalupe Calderón-Ramos
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico; (E.R.-M.); (Z.-G.C.-R.)
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico;
| | - Luis-Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma 42184, Hidalgo, Mexico; (L.-B.O.-R.); (E.C.-L.); (J.J.-O.); (A.C.-O.); (J.A.-M.)
| |
Collapse
|
43
|
Abdel-Megeed RM. Probiotics: a Promising Generation of Heavy Metal Detoxification. Biol Trace Elem Res 2021; 199:2406-2413. [PMID: 32821997 DOI: 10.1007/s12011-020-02350-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Different environmental toxins especially heavy metals exist in soil, water, and air recording toxic effect on human, animal, and plant. These toxicant elements are widespread in environment causing various disturbances in biological systems. Numerous strategies have been applied recently to alleviate heavy metal contamination; however, most of these strategies were costly and seemed unfriendly to our environment. Probiotics are living cell bacteria with beneficial characteristics for human health. Lactobacillus and Bifidobacterium are the major probiotic groups; however, Pediococcus, Lactococcus, Bacillus, and yeasts are recorded as probiotic. The vital role of the probiotics on maintenance of body health was previously investigated. Probiotics were previously recorded to its powerful capacity to bind numerous targets and eliminate them with feces. These targets may be aluminum, cadmium, lead, or arsenic. The current review discusses the history of probiotics, detoxification role of probiotics caused by heavy metals, and mechanism of their action that modulate different signaling pathway disturbance associated with heavy metal accumulation in biological system.
Collapse
Affiliation(s)
- Rehab M Abdel-Megeed
- Therapeutic Chemistry Department, National Research Centre, El-Buhouth St, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
44
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients 2021; 13:nu13061848. [PMID: 34071499 PMCID: PMC8228678 DOI: 10.3390/nu13061848] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in young reproductive-aged women. PCOS is often associated with obesity and impairs reproductive health. Even though several theories have been proposed to explain the pathogenic mechanism of PCOS, the role of insulin resistance (IR) as a key etiological component, independently of (but amplified by) obesity, is well recognized. The consequent hyperinsulinemia activates excessive ovarian androgen production, leading to PCOS. Additionally, the state of chronic inflammation related to obesity impacts ovarian physiology due to insulin sensitivity impairment. The first-line treatment for adolescents with obesity and PCOS includes lifestyle changes; personalized dietary interventions; and, when needed, weight loss. Medical nutrition therapy (MNT) and the use of specific food supplements in these patients aim at improving symptoms and signs, including insulin resistance and metabolic and reproductive functions. The purpose of this narrative review is to present and discuss PCOS in adolescents with obesity, its relationship with IR and the role of MNT and food supplements in treatment. Appropriate early dietary intervention for the management of adolescents with obesity and PCOS should be considered as the recommended approach to restore ovulation and to protect fertility.
Collapse
|
46
|
Díaz-Orozco LE, Méndez-Sánchez N. Nutraceuticals & microbiota: review. Minerva Gastroenterol (Torino) 2021; 67:326-338. [PMID: 33978392 DOI: 10.23736/s2724-5985.21.02914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nutraceuticals are defined as products isolated or purified from foods that are generally sold in medicinal or dosage forms not usually associated with food which is demonstrated to have a physiological benefit or provide protection against chronic disease. In this context, the products offered should be rigorously evaluated by international regulatory agencies. More recently, nutraceuticals have been proposed as a potential preventive and therapeutic option in the assessment of chronic diseases, mainly by altering the microbiome composition. However, the current lack of conclusive evidence supporting the "healthy" or "normal" microbiome, along with the dysbiosis concept paradigm, could be both contributing to the lack of homogeneous results. These issues may be solved in the next years with the use of emergent technologies in the individual's microbiome assessment and its fluctuations in time or related to many factors, such as nutraceuticals. Additionally, future research assessing the independent association between the dysbiosis modification and any "potential" nutraceutical product (including bioactive ingredient or chemical compound in food) is going to enlarge the currently reduced "established nutraceuticals" group. In this work we have assessed the nutraceutical's potential role as a microbiome-targeted manipulation therapy, and the gut-liver axis involved in the digestive diseases' pathogenesis and progression, including the chronic liver diseases. Moreover, microbiome targeted nutraceuticals that show consistent results might be further included in clinical research and trials in the therapeutic assessment of chronic diseases. Finally, the indication of these quality microbiome-targeted nutraceuticals will undoubtedly carry health benefits for individuals.
Collapse
Affiliation(s)
- Luis E Díaz-Orozco
- National Autonomous University of Mexico, Mexico City, Mexico.,Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Nahum Méndez-Sánchez
- National Autonomous University of Mexico, Mexico City, Mexico - .,Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
47
|
Garcia-Ibañez P, Roses C, Agudelo A, Milagro FI, Barceló AM, Viadel B, Nieto JA, Moreno DA, Carvajal M. The Influence of Red Cabbage Extract Nanoencapsulated with Brassica Plasma Membrane Vesicles on the Gut Microbiome of Obese Volunteers. Foods 2021; 10:foods10051038. [PMID: 34068672 PMCID: PMC8151636 DOI: 10.3390/foods10051038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of the study was to evaluate the influence of the red cabbage extracts on the bioaccessibility of their isothiocyanates, and their effect on the intestinal microbiota using a dynamic model of human digestion treated with the gut microbiome of obese adults. The elicitation of red cabbage plants with methyl jasmonate (MeJA) duplicated the content of glucosinolates (GSLs) in the plant organs used for elaborating the encapsulated formula. The use of plasma membrane vesicles, according to a proper methodology and technology, showed a high retention of sulforaphane (SFN) and indol-3-carbinol (I3C) over the course of the 14-day digestion study. The microbiome was scarcely affected by the treatments in terms of microbiota composition or the Bacteroidetes/Firmicutes ratio, but a 3 to 4-fold increase was observed in the production of butyric acid with the encapsulated extract treatment. Based on our pilot red cabbage extract study, the consumption of this extract, mainly encapsulated, may play a potential role in the management of obesity in adults.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (P.G.-I.); (M.C.)
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
| | - Carles Roses
- Servei de Genòmica I Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.R.); (A.M.B.)
| | - Agatha Agudelo
- Sakata Seed Ibérica S.L., Pl. Poeta Vicente Gaos, 6 Bajo, 46021 Valencia, Spain;
- Biotechnology Department, Universidad Politécnica de Valencia, UPV, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fermin I. Milagro
- Center for Nutrition Research, Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de la Salud Carlos III, 289029 Madrid, Spain
| | - Ana M. Barceló
- Servei de Genòmica I Bioinformàtica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (C.R.); (A.M.B.)
| | - Blanca Viadel
- AINIA, Technology Centre, C/Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valencia, Spain; (B.V.); (J.A.N.)
| | - Juan Antonio Nieto
- AINIA, Technology Centre, C/Benjamin Franklin 5-11, Parque Tecnológico de Valencia, 46980 Paterna, Valencia, Spain; (B.V.); (J.A.N.)
| | - Diego A. Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus de Espinardo-25, E-30100 Murcia, Spain
- Correspondence:
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo-25, E-30100 Murcia, Spain; (P.G.-I.); (M.C.)
| |
Collapse
|
48
|
Rahayu ES, Mariyatun M, Putri Manurung NE, Hasan PN, Therdtatha P, Mishima R, Komalasari H, Mahfuzah NA, Pamungkaningtyas FH, Yoga WK, Nurfiana DA, Liwan SY, Juffrie M, Nugroho AE, Utami T. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol 2021; 27:107-128. [PMID: 33505154 PMCID: PMC7789061 DOI: 10.3748/wjg.v27.i1.107] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shifting on lifestyle, diet, and physical activity contributed on increasing number of obese people around the world. Multiple factors influence the development of obesity. Some research suggested that gut microbiota (GM) plays an important role in nutrient absorption and energy regulation of individuals, thus affecting their nutritional status. Report of Indonesia Basic Health Research showed that the prevalence of obesity in every province tended to increase. Although the root cause of obesity is excessive calorie intake compared with expenditure, the differences in gut microbial ecology between healthy and obese humans may affect energy homeostasis. GM affect body weight, especially obesity. Probiotics that are consumed while alive and able to colonize in the intestine are expected to increase the population of good bacteria, especially Bifidobacteria and Lactobacilli, and suppress pathogens such as Enterobacteriaceae and Staphylococcus. The strain of L. plantarum Dad-13 has been demonstrated to survive and colonize in the gastrointestinal tract of healthy Indonesian adults who consume fermented milk containing L. plantarum Dad-13. The consumption of probiotic L. plantarum Dad-13 powder decreased E. coli and non-E. coli coliform bacteria in school-aged children in Indonesia. L. plantarum is a dominant bacterium in the average Indonesian’s GM. For this reason, this bacterium is probably a more suitable probiotic for Indonesians.
AIM To determine the effect of the consumption of indigenous probiotic Lactobacillus plantarum Dad-13 powder in overweight adults in Yogyakarta (Indonesia).
METHODS Sixty overweight volunteers with a body mass index (BMI) equal to or greater than 25 consume indigenous probiotic powder L. plantarum Dad-13 (2 × 109 CFU/gram/sachet) for 90 d. The study was a randomized, double-blind, placebo-controlled study. The volunteers filled in a diary on a daily basis, which consisted of questions on study product intake (only during ingestion period), other food intake, number of bowel movements, fecal quality (consistency and color), any medications received, and any symptom of discomfort, such as diarrhea, constipation, vomiting, gassing, sensation of illness, etc. Fecal samples and the subjects’ diaries were collected on the morning of day 10 + 1, which was marked as the end of the baseline period and the start of the ingestion period. During the ingestion period (from day 11 to day 101), several parameters to measure and analyze the results included body weight and height (once a month), the lipid profile, GM analysis using MiSeq, short-chain fatty acid (SCFA) analysis using gas chromatography, and the measurement of fecal pH using a pH meter.
RESULTS The consumption of indigenous probiotic powder L. plantarum Dad-13 caused the average body weight and BMI of the probiotic group to decrease from 84.54 ± 17.64 kg to 83.14 ± 14.71 kg and 33.10 ± 6.15 kg/m2 to 32.57 ± 5.01 kg/m2, respectively. No significant reduction of body weight and BMI in the placebo group was observed. An analysis of the microbiota showed that the number of Bacteroidetes, specifically Prevotella, increased significantly, while that of Firmicutes significantly decreased. No significant change in lipid profile in both groups was found. Also, no significant change in SCFAs (e.g., butyrate, propionate, acetic acid) and pH level was found after the consumption of the probiotic.
CONCLUSION No significant differences in pH before and after ingestion were observed in both the probiotic and placebo groups as well as in the lipid profile of both cholesterol and triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and the LDL/HDL ratio. In addition, no significant changes in the concentration of SCFAs (e.g., acetic acid, propionate, and butyrate) were found after con-sumption. Interestingly, a significant decrease in body weight and BMI (P < 0.05) was determined in the treatment group. An analysis of GM shows that L. plantarum Dad-13 caused the Firmicutes population to decrease and the Bacteroidetes population (especially Prevotella) to increase.
Collapse
Affiliation(s)
- Endang Sutriswati Rahayu
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mariyatun Mariyatun
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nancy Eka Putri Manurung
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Pratama Nur Hasan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Phatthanaphong Therdtatha
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Riko Mishima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Husnita Komalasari
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurul Ain Mahfuzah
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fathyah Hanum Pamungkaningtyas
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Krisna Yoga
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dina Aulia Nurfiana
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Stefanie Yolanda Liwan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Juffrie
- Department of Public Health, Faculty of Medicine, Public Health and Nursery, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Tyas Utami
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
49
|
Rahayu ES, Mariyatun M, Putri Manurung NE, Hasan PN, Therdtatha P, Mishima R, Komalasari H, Mahfuzah NA, Pamungkaningtyas FH, Yoga WK, Nurfiana DA, Liwan SY, Juffrie M, Nugroho AE, Utami T. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol 2021. [PMID: 33505154 DOI: 10.3748/wjg.v27.i1.107]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shifting on lifestyle, diet, and physical activity contributed on increasing number of obese people around the world. Multiple factors influence the development of obesity. Some research suggested that gut microbiota (GM) plays an important role in nutrient absorption and energy regulation of individuals, thus affecting their nutritional status. Report of Indonesia Basic Health Research showed that the prevalence of obesity in every province tended to increase. Although the root cause of obesity is excessive calorie intake compared with expenditure, the differences in gut microbial ecology between healthy and obese humans may affect energy homeostasis. GM affect body weight, especially obesity. Probiotics that are consumed while alive and able to colonize in the intestine are expected to increase the population of good bacteria, especially Bifidobacteria and Lactobacilli, and suppress pathogens such as Enterobacteriaceae and Staphylococcus. The strain of L. plantarum Dad-13 has been demonstrated to survive and colonize in the gastrointestinal tract of healthy Indonesian adults who consume fermented milk containing L. plantarum Dad-13. The consumption of probiotic L. plantarum Dad-13 powder decreased E. coli and non-E. coli coliform bacteria in school-aged children in Indonesia. L. plantarum is a dominant bacterium in the average Indonesian's GM. For this reason, this bacterium is probably a more suitable probiotic for Indonesians. AIM To determine the effect of the consumption of indigenous probiotic Lactobacillus plantarum Dad-13 powder in overweight adults in Yogyakarta (Indonesia). METHODS Sixty overweight volunteers with a body mass index (BMI) equal to or greater than 25 consume indigenous probiotic powder L. plantarum Dad-13 (2 × 109 CFU/gram/sachet) for 90 d. The study was a randomized, double-blind, placebo-controlled study. The volunteers filled in a diary on a daily basis, which consisted of questions on study product intake (only during ingestion period), other food intake, number of bowel movements, fecal quality (consistency and color), any medications received, and any symptom of discomfort, such as diarrhea, constipation, vomiting, gassing, sensation of illness, etc. Fecal samples and the subjects' diaries were collected on the morning of day 10 + 1, which was marked as the end of the baseline period and the start of the ingestion period. During the ingestion period (from day 11 to day 101), several parameters to measure and analyze the results included body weight and height (once a month), the lipid profile, GM analysis using MiSeq, short-chain fatty acid (SCFA) analysis using gas chromatography, and the measurement of fecal pH using a pH meter. RESULTS The consumption of indigenous probiotic powder L. plantarum Dad-13 caused the average body weight and BMI of the probiotic group to decrease from 84.54 ± 17.64 kg to 83.14 ± 14.71 kg and 33.10 ± 6.15 kg/m2 to 32.57 ± 5.01 kg/m2, respectively. No significant reduction of body weight and BMI in the placebo group was observed. An analysis of the microbiota showed that the number of Bacteroidetes, specifically Prevotella, increased significantly, while that of Firmicutes significantly decreased. No significant change in lipid profile in both groups was found. Also, no significant change in SCFAs (e.g., butyrate, propionate, acetic acid) and pH level was found after the consumption of the probiotic. CONCLUSION No significant differences in pH before and after ingestion were observed in both the probiotic and placebo groups as well as in the lipid profile of both cholesterol and triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and the LDL/HDL ratio. In addition, no significant changes in the concentration of SCFAs (e.g., acetic acid, propionate, and butyrate) were found after con-sumption. Interestingly, a significant decrease in body weight and BMI (P < 0.05) was determined in the treatment group. An analysis of GM shows that L. plantarum Dad-13 caused the Firmicutes population to decrease and the Bacteroidetes population (especially Prevotella) to increase.
Collapse
Affiliation(s)
- Endang Sutriswati Rahayu
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mariyatun Mariyatun
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nancy Eka Putri Manurung
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Pratama Nur Hasan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Phatthanaphong Therdtatha
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Riko Mishima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Husnita Komalasari
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurul Ain Mahfuzah
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fathyah Hanum Pamungkaningtyas
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Krisna Yoga
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dina Aulia Nurfiana
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Stefanie Yolanda Liwan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Juffrie
- Department of Public Health, Faculty of Medicine, Public Health and Nursery, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Tyas Utami
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
50
|
Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2020; 246:778-789. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.
Collapse
Affiliation(s)
- Jisun Hj Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|