1
|
Langeraert J, Gasthuys E, Vermeulen A. Small molecule drug absorption in inflammatory bowel disease and current implementation in physiologically- based pharmacokinetic models. Eur J Pharm Sci 2025; 209:107095. [PMID: 40187540 DOI: 10.1016/j.ejps.2025.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/09/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestinal mucosa, with predominant localization in the colon in ulcerative colitis (UC) or affecting the entire length of the gastrointestinal tract in Crohn's disease (CD). Recent advances in the drug development space have been marked by a return to orally administered small molecules with novel mechanisms of action such as Janus kinase inhibitors. Additionally, the prevalence of certain chronic conditions is higher in IBD patients, many of which are treated with orally administered drugs. Given the pathophysiology and localization of IBD, altered drug absorption from the gastrointestinal tract can be expected. This review discusses several physiological differences between the small and large intestine with the potential to influence drug absorption including pathophysiology related alterations associated with IBD. The main physiological parameters which are identified include luminal fluid volume, luminal pH, transit time, bile salt concentration, microbiome, absorptive surface area, permeability and metabolizing enzymes and transporters. Literature regarding these factors in IBD patients is marked with high heterogeneity in reporting of disease severity and location leading to difficulties in interpreting data across different studies. While the influence of most of these factors has been directly assessed in healthy volunteers, this is rarely the case for IBD patients. Furthermore, studies which used PBPK modelling to describe the PK of an orally administered drug in an IBD population and were able to verify their findings using clinical data are critically examined. These models were able to incorporate the pathophysiological changes associated with IBD and partly succeeded in adequately predicting drug absorption in this population. Given the limited amount of PBPK studies performed on a limited number of drugs, the developed models are most likely not suitable to be used as a general PBPK model for the IBD population.
Collapse
Affiliation(s)
- Jonas Langeraert
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Elke Gasthuys
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - An Vermeulen
- Laboratory of Medicinal Biochemistry and Clinical Analysis, Department of Bioanalysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Dumitru A, Tocia C, Bădescu AC, Trandafir A, Alexandrescu L, Popescu R, Dumitru E, Chisoi A, Manea M, Matei E, Cozaru GC, Rugină S. Linking gut permeability to liver steatosis: Noninvasive biomarker evaluation in MASLD patients - a prospective cross-sectional study. Medicine (Baltimore) 2025; 104:e42476. [PMID: 40419913 DOI: 10.1097/md.0000000000042476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Recent research highlights a potential link between metabolic dysfunction-associated steatotic liver disease (MASLD) and intestinal barrier dysfunction. Increased intestinal permeability (IP) may facilitate the translocation of bacteria, endotoxins (e.g., lipopolysaccharides [LPS]), and pathogen-associated molecular patterns into the portal venous system, fostering a pro-inflammatory environment and contributing to liver inflammation. This study aimed to identify correlations between intestinal barrier biomarkers (occludin, LPS, and intestinal-type fatty-acid-binding proteins [I-FABP]) and MASLD. A single-center prospective cross-sectional study was conducted, including 72 MASLD patients and 68 healthy controls. Fibroscan-controlled attenuation parameter (CAP) was performed in all subjects. Blood samples were analyzed for biochemical parameters, and serum levels of occludin, LPS, and I-FABP were measured using the ELISA method with the Human occludin, LPS, and I-FABP ELISA Kit test systems (FineTest, Wuhan, China). LPS and I-FABP levels were significantly higher in MASLD patients compared to controls, with the highest LPS levels observed in the diabetic MASLD subgroup. Occludin levels showed no statistically significant differences between groups. All 3 biomarkers were positively correlated with BMI, with the highest levels in obese subjects. LPS was positively correlated with CRP levels. Using Fibroscan-CAP, we found a positive correlation between LPS and both liver stiffness and CAP score, as well as between I-FABP and liver stiffness. MASLD patients exhibit increased IP, with enterocyte injury present irrespective of diabetes status, though more pronounced in diabetic MASLD. Occludin does not appear to be a reliable biomarker for evaluating intestinal barrier function in MASLD. Obesity is linked to elevated biomarkers, suggesting an association between increased IP and obesity. I-FABP and LPS may serve as noninvasive biomarkers for assessing hepatic fibrosis and steatosis in MASLD patients. Notably, LPS, given its correlation with elevated CRP levels, could be utilized as a marker of disease progression and severity.
Collapse
Affiliation(s)
- Andrei Dumitru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Cristina Tocia
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Alina-Cristina Bădescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Anamaria Trandafir
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Luana Alexandrescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Razvan Popescu
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Eugen Dumitru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Anca Chisoi
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Medical Sciences Academy, Bucharest, Romania
| | - Mihaela Manea
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
| | - Georgeta Camelia Cozaru
- "Sf. Apostol Andrei" Clinical Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, Constanta, Romania
- Medical Sciences Academy, Bucharest, Romania
| | - Sorin Rugină
- Academy of Romanian Scientists, Bucharest, Romania
- Medical Sciences Academy, Bucharest, Romania
- Clinical Hospital of Infectious Diseases, Constanta, Romania
| |
Collapse
|
3
|
Sun A, Shan X, Liu R, Tang Z, Huang J, Zhang S, Bian L, Shi Y, Liu Z, Hu J, Wang C. A strain of Lactobacillus plantarum from piglet intestines enhances the anti-PoRV effect via the STING-IFN-I pathway. BMC Vet Res 2025; 21:316. [PMID: 40319282 PMCID: PMC12049038 DOI: 10.1186/s12917-025-04766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Rotavirus infection represents a major etiology of severe diarrheal disease in neonatal and weaned piglets, causing substantial economic burdens to the global swine industry. Lactobacillus plantarum, a ubiquitous probiotic in natural ecosystems, has demonstrated multifaceted biological functions. The stimulator of the interferon gene (STING) is involved in type I interferon (IFN-I) mediated host antiviral innate immunity, which is a pivotal adaptor in response to the microbial DNA/RNA-activated signaling pathways. Emerging evidence suggests that certain probiotic strains can activate the STING-dependent pathway to induce IFN-I responses. In the present study, we successfully isolated a strain of Lactobacillus plantarum (designated LP1)from porcine intestinal contents and investigate its potential to counteract porcine rotavirus (PoRV) infection via modulation of antiviral signaling pathway. RESULT LP1 exhibited superior tolerance to simulated gastrointestinal conditions (pH 3.0 and 0.3% bile salts) compared with other isolated Lactobacillus strains. In vitro adhesion assays demonstrated that LP1effectively colonized porcine intestinal epithelial cells (IPEC-J2) without inducing cytotoxicity or apoptosis. Animal experiments also confirmed the protective effect of LP1 in mice against rotavirus, by reducing body weight loss, promoting viral clearance in feces, and alleviating intestinal mucosal damage. Mechanistic investigations identified STING-IRF3 pathway activation as the pivotal antiviral mechanism. Both phosphorylation of STING and IRF3 in LP1-treated IPEC-J2 cells accompanied by upregulated transcription and secretion of IFN-β and interferon-stimulated genes (ISGs). Consistent findings were observed in intestinal tissues of LP1-protected mice with STING pathway activation correlating with reduction in viral titers. Crucially, STING inhibitor (C-170) administration could reverse LP1-mediated antiviral effects. CONCLUSION LP1 exerts potent anti-PoRV activity in both murine models and porcine intestinal epithelial (IPEC-J2) cells through STING-IRF3 signaling axis-mediated IFN-β production.
Collapse
Affiliation(s)
- Anqi Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Shan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Ruihan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zhengxu Tang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingshu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Shihan Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Lihong Bian
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yumeng Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Zixuan Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Cao Y, Xiao S, Fang Y, Yang J, Hu Z, Zhang H, Liu X, Liu D, Zhou Z, Wang P. Fluxapyroxad induces chronic colonic inflammation via inhibiting intestinal aryl hydrocarbon receptors in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179134. [PMID: 40112552 DOI: 10.1016/j.scitotenv.2025.179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Fluxapyroxad, the most extensively utilized succinate dehydrogenase inhibitor (SDHI) fungicide, lacks comprehensive research on potential risks associated with chronic toxicity. To investigate its effects on chronic colonic inflammation and elucidate the underlying mechanisms, a mouse model was employed to assess oral exposure to fluxapyroxad at no observed adverse effect level (NOEL) for 13 weeks, in vitro and in silico models were utilized as well. The results revealed reduced body weight gain, colon length reduction, crypt damage, goblet cell loss in the colon, impaired intestinal barrier integrity, and an elevation of proinflammatory cytokines, including IL-6, IL-1β, and TNF-α following fluxapyroxad exposure in mice. These findings suggested that fluxapyroxad induced chronic colonic inflammation. Furthermore, fluxapyroxad decreased interleukin 22 levels and antibacterial peptide secretion by inhibiting Aryl hydrocarbon receptors (AhR) activation, which was confirmed in vitro experiments. Molecular docking analysis indicated that fluxapyroxad spontaneously formed halogen bonds and bound hydrophobic interactions with AhR, which might act as an AhR inhibitor. These results indicated that AhR inhibition may represent one of the primary mechanisms for chronic colonic inflammation induced by fluxapyroxad exposure. This study shed light on the association between low acute pesticide exposure to fluxapyroxad and chronic colonic inflammation development while contributing to pesticide safety assessment.
Collapse
Affiliation(s)
- Yue Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Shouchun Xiao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Yaofeng Fang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Jiaxing Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Zeyu Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Hongjun Zhang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, China, No. 22 Maizidian Street, Chaoyang, Beijing 100125, PR China.
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
5
|
Chen Q, Gao Y, Li F, Yuan L. The role of gut-islet axis in pancreatic islet function and glucose homeostasis. Diabetes Obes Metab 2025; 27:1676-1692. [PMID: 39916498 PMCID: PMC11885102 DOI: 10.1111/dom.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/08/2025]
Abstract
The gastrointestinal tract plays a vital role in the occurrence and treatment of metabolic diseases. Recent studies have convincingly demonstrated a bidirectional axis of communication between the gut and islets, enabling the gut to influence glucose metabolism and energy homeostasis in animals strongly. The 'gut-islet axis' is an essential endocrine signal axis that regulates islet function through the dialogue between intestinal microecology and endocrine metabolism. The discovery of glucagon-like peptide-1 (GLP-1), gastric inhibitory peptide (GIP) and other gut hormones has initially set up a bridge between gut and islet cells. However, the influence of other factors remains largely unknown, such as the homeostasis of the gut microbiota and the integrity of the gut barrier. Although gut microbiota primarily resides and affect intestinal function, they also affect extra-intestinal organs by absorbing and transferring metabolites derived from microorganisms. As a result of this transfer, islets may be continuously exposed to gut-derived metabolites and components. Changes in the composition of gut microbiota can damage the intestinal barrier function to varying degrees, resulting in increased intestinal permeability to bacteria and their derivatives. All these changes contribute to the severe disturbance of critical metabolic pathways in peripheral tissues and organs. In this review, we have outlined the different gut-islet axis signalling mechanisms associated with metabolism and summarized the latest progress in the complex signalling molecules of the gut and gut microbiota. In addition, we will discuss the impact of the gut renin-angiotensin system (RAS) on the various components of the gut-islet axis that regulate energy and glucose homeostasis. This work also indicates that therapeutic approaches aiming to restore gut microbial homeostasis, such as probiotics and faecal microbiota transplantation (FMT), have shown great potential in improving treatment outcomes, enhancing patient prognosis and slowing down disease progression. Future research should further uncover the molecular links between the gut-islet axis and the gut microbiota and explore individualized microbial treatment strategies, which will provide an innovative perspective and approach for the diagnosis and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Gao
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fangyu Li
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Yuan
- Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Młynarska E, Barszcz E, Budny E, Gajewska A, Kopeć K, Wasiak J, Rysz J, Franczyk B. The Gut-Brain-Microbiota Connection and Its Role in Autism Spectrum Disorders. Nutrients 2025; 17:1135. [PMID: 40218893 PMCID: PMC11990867 DOI: 10.3390/nu17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions with a heterogeneous and multifactorial etiology that is not yet fully understood. Among the various factors that may contribute to ASD development, alterations in the gut microbiota have been increasingly recognized. Microorganisms in the gastrointestinal tract play a crucial role in the gut-brain axis (GBA), affecting nervous system development and behavior. Dysbiosis, or an imbalance in the microbiota, has been linked to both behavioral and gastrointestinal (GI) symptoms in individuals with ASD. The microbiota interacts with the central nervous system through mechanisms such as the production of short-chain fatty acids (SCFAs), the regulation of neurotransmitters, and immune system modulation. Alterations in its composition, including reduced diversity or an overabundance of specific bacterial taxa, have been associated with the severity of ASD symptoms. Dietary modifications, such as gluten-free or antioxidant-rich diets, have shown potential for improving gut health and alleviating behavioral symptoms. Probiotics, with their anti-inflammatory properties, may support neural health and reduce neuroinflammation. Fecal microbiota transplantation (FMT) is being considered, particularly for individuals with persistent GI symptoms. It has shown promising outcomes in enhancing microbial diversity and mitigating GI and behavioral symptoms. However, its limitations should be considered, as discussed in this narrative review. Further research is essential to better understand the long-term effects and safety of these therapies. Emphasizing the importance of patient stratification and phenotype characterization is crucial for developing personalized treatment strategies that account for individual microbiota profiles, genetic predispositions, and coexisting conditions. This approach could lead to more effective interventions for individuals with ASD. Recent findings suggest that gut microbiota may play a key role in innovative therapeutic approaches to ASD management.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Barszcz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Emilian Budny
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Kacper Kopeć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Li T, Chen J, Xu Y, Ji W, Yang S, Wang X. Hawthorn Pectin Alleviates DSS-Induced Colitis in Mice by Ameliorating Intestinal Barrier Function and Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5872-5885. [PMID: 40011195 DOI: 10.1021/acs.jafc.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Pectin, as a kind of soluble dietary fiber in hawthorns, exhibits a wide range of biological activities. Nevertheless, its role and mechanism in ulcerative colitis (UC) remain unclear. In this study, the effect of hawthorn pectin (HP) against dextran sulfate sodium (DSS)-induced UC in mice and its underlying mechanism were evaluated. HP dramatically alleviated the pathological symptoms related to colitis in mice, displaying an increase in body weight and colon length and inhibition in colon damage. Importantly, HP inhibited the serum levels of inflammation-related factors including tumor necrosis factor-α, IL-1β, and IL-6 as well as decreased the number of F4/80-positive macrophages in the colon. Moreover, the expression levels of ZO-1 and occludin proteins related to intestinal permeability were increased. A significant decrease in a dose-dependent manner at the gut bacterial genus level (such as Alistipes, Colidextribacter, and Blautia) was observed after HP treatment. HP improved the metabolic pathways of gut microbiota and increased the concentrations of short-chain fatty acids in cecal contents of UC mice. Intriguingly, fecal microbiota transplantation intervention with an HP-derived microbiome notably increased the length and relieved histopathological changes of colon in UC mice. Conclusively, our study provided valuable insights into the potential of HP as a prebiotic for maintaining intestinal health and confirmed that HP could ameliorate UC in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Tao Li
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Junbo Chen
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuncong Xu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenhua Ji
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
8
|
Grover M, Vanuytsel T, Chang L. Intestinal Permeability in Disorders of Gut-Brain Interaction: From Bench to Bedside. Gastroenterology 2025; 168:480-495. [PMID: 39236897 DOI: 10.1053/j.gastro.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Intestinal barrier function lies at a critical interface of a range of peripheral and central processes that influence disorders of gut-brain interactions (DGBI). Although rigorously tested, the role of barrier dysfunction in driving clinical phenotype of DGBI remains to be fully elucidated. In vitro, in vivo, and ex vivo strategies can test various aspects of the broader permeability and barrier mechanisms in the gut. Luminal mediators of host, bacterial, and dietary origin can influence the barrier function and a disrupted barrier can also influence the luminal milieu. Critical to our understanding is how barrier dysfunction is influenced by stress and other comorbidities that associate with DGBI and the crosstalk between barrier and neural, hormonal, and immune responses. Additionally, the microbiome's significant role in the communication between the brain and gut has led to the integrative model of a microbiome gut-brain axis with reciprocal interactions between brain networks and networks composed of multiple cells in the gut, including immune cells, enterochromaffin cells, gut microbiota and the derived luminal mediators. This review highlights the techniques for assessment of barrier function, appraises evidence for barrier dysfunction in DGBI including mechanistic studies in humans, as well as provides an overview of therapeutic strategies that can be used to directly or indirectly restore barrier function in DGBI patients.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KULeuven, Leuven, Belgium
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
9
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
10
|
Cutilli A, Jansen SA, Paolucci F, van Hoesel M, Frederiks CL, Mulder TAM, Chalkiadakis T, Mokry M, Prekovic S, Mocholi E, Lindemans CA, Coffer PJ. Interferon-gamma induces epithelial reprogramming driving CXCL11-mediated T-cell migration. J Leukoc Biol 2025; 117:qiae205. [PMID: 39302156 DOI: 10.1093/jleuko/qiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
The cytokine interferon-gamma plays a multifaceted role in intestinal immune responses ranging from anti- to proinflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of interferon-gamma exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. Interferon-gamma treatment of organoids led to transcriptional reprogramming, marked by a switch to a proinflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium posttreatment confirmed chemokine secretion. Interferon-gamma treatment of organoids led to enhanced T-cell migration in a CXCL11-dependent manner without affecting T-cell activation status. Taken together, our results suggest a specific role for CXCL11 in T-cell recruitment that could be targeted to prevent T-cell trafficking to the inflamed intestine.
Collapse
Affiliation(s)
- Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Suze A Jansen
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Francesca Paolucci
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Marliek van Hoesel
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cynthia L Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Tessa A M Mulder
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Theofilos Chalkiadakis
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Stefan Prekovic
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Caroline A Lindemans
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Paul J Coffer
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Zhu L, Yang X. Gut Microecological Prescription: A Novel Approach to Regulating Intestinal Micro-Ecological Balance. Int J Gen Med 2025; 18:603-626. [PMID: 39931312 PMCID: PMC11807788 DOI: 10.2147/ijgm.s504616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The intestinal microecology is comprises intestinal microorganisms and other components constituting the entire ecosystem, presenting characteristics of stability and dynamic balance. Current research reveals intestinal microecological imbalances are related to various diseases. However, fundamental research and clinical applications have not been effectively integrated. Considering the importance and complexity of regulating the intestinal microecological balance, this study provides an overview of the high-risk factors affecting intestinal microecology and detection methods. Moreover, it proposes the definition of intestinal microecological imbalance and the definition, formulation, and outcomes of gut microecological prescription to facilitate its application in clinical practice, thus promoting clinical research on intestinal microecology and improving the quality of life of the population.
Collapse
Affiliation(s)
- Lingping Zhu
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
- School of Public Health, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xuefeng Yang
- The Affiliated Nanhua Hospital, Department of General Practice, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
12
|
Pearce SC, Kerr BJ. Feed restriction as a model for small intestinal permeability in nursery pigs. J Anim Sci 2025; 103:skaf131. [PMID: 40259486 PMCID: PMC12080539 DOI: 10.1093/jas/skaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
Reduced feed intake is a hallmark of many animal diseases and environmental conditions and has been shown to cause intestinal barrier dysfunction. As there are several markers and assays to evaluate intestinal barrier function, feed restriction may present a potential model to validate and compare multiple in vivo, ex vivo, and tissue markers of intestinal integrity. Forty-eight barrows (9.7 kg initial body weight) were fed for 7 d at feed intakes of 100%, 75%, 50%, or 25% of expected ad libitum feed intake. After which urine, and blood were taken for in vivo lactulose:mannitol analysis. Additional ileum samples were taken for examination of intestinal function including ex vivo tissue transepithelial electrical resistance (TEER), tissue fluorescein isothiocyanate-dextran (FD4) transport, as well as small intestinal villus height and crypt depth, and gene expression. Data were analyzed as an ANOVA as well as a contrast where 25% and 50% were combined, as were 75% and 100%. As expected, observed feed intake followed a linear pattern, as did body weight changes. Pigs fed ad libitum (100%) gained 3.8 kg whereas pigs fed at 75% restriction gained 2.5 kg, pigs fed at 50% restriction gained 1.2 kg and pigs fed at 25% lost 0.37 kg (P < 0.05). Results showed tissue changes in morphology in duodenum, jejunum and ileum at 25% and 50% feed restriction (P < 0.05). Specifically, pigs fed at 75% and 100% feed levels had on average a 26% greater villus height compared to pigs fed at 50% and 25% (P < 0.01). There were no significant differences in TEER, however there was also a tendency for a contrast difference for FD4 as well as for a significant increase in urinary lactulose:mannitol at 25% compared to 75% and 100% (P < 0.10). Similarly, pro-inflammatory gene marker, IL17A was increased at 25% feeding level compared to 75% and 100% (P < 0.05). Taken together, these data show that feed restriction may be a good model to compare validation methods for intestinal permeability and function, but that length of feed restriction may have reduced larger impacts on intestinal function observed in other studies.
Collapse
Affiliation(s)
- Sarah C Pearce
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| |
Collapse
|
13
|
Shi H, Sun J, Sun Y, Wu J, Jiang G, Xu Z, Shi X, Fang M. Intestinal Epithelial Cell-specific Knockout of METTL3 Aggravates Intestinal Inflammation in CLP Mice by Weakening the Intestinal Barrier. Curr Pharm Biotechnol 2025; 26:80-91. [PMID: 38482615 DOI: 10.2174/0113892010271970240202054245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 11/30/2024]
Abstract
BACKGROUND Many studies have demonstrated that the expression of methyltransferase- like 3 (METTL3) is altered in various inflammatory diseases. Its specific mechanistic role in the intestinal inflammatory response during sepsis remains limited and requires further investigation. OBJECTIVES Explore the potential mechanism of METTL3 in the intestinal inflammatory response during sepsis. MATERIALS AND METHODS Immunohistochemical analysis was utilized to detect the expression of METTL3 in the necrotic intestine of patients with intestinal necrosis and the small intestine of cecal ligation and puncture (CLP) mice. Mice were subjected to the CLP and Sham surgeries, intestine tissue was harvested and performed HE staining, and ELISA to examine intestinal inflammatory responses, while TUNEL staining was applied to detect intestinal cell apoptosis. Additionally, ELISA was used to detect diamine oxidase (DAO) and intestinal fatty acid binding protein (I-FABP) levels in intestinal tissue. Immunohistochemistry and RT-qPCR were also employed to examine the mRNA and protein expression levels of Zona Occludens 1 (ZO-1) and Claudin-1. Finally, transcriptomic sequencing was performed on the small intestine tissues of METTL3 Knock-out (KO) and Wild-type (WT) mice in response to sepsis. RESULTS METTL3 exhibited lower expression level in the necrotic intestine of patients and the small intestine of CLP mice. Loss of METTL3 in CLP mice triggered significantly higher expression of TNF-α and IL-18, down-regulated expression of ZO-1 and claudin-1, and decreased expression of DAO and I-FABP in the intestinal tissue. KEGG enrichment analysis showed that the differential genes were significantly enriched in immune-related pathways. CONCLUSION This study reveals a novel mechanism responsible for exacerbated intestinal inflammation orchestrated by METTL3. Particularly, METTL3 null mice displayed decreased ZO- 1 and Claudin-1 expression, which largely hampered intestinal epithelial barrier function, resulting in bacterial and toxin translocation and intestinal immune activation and inflammation against sepsis.
Collapse
Affiliation(s)
- Hongzhou Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, 210000, China
| | - Yaya Sun
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Junjie Wu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Guangqing Jiang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Zhaiyue Xu
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| | - Miao Fang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 21000, China
| |
Collapse
|
14
|
McDonnell SC, Graham-Engeland JE, Sliwinski MJ, Engeland CG, Knight EL. Cognotoxemia: endotoxemia and gender predict changes in working memory performance in healthy adults. Front Neurosci 2024; 18:1453325. [PMID: 39568668 PMCID: PMC11577790 DOI: 10.3389/fnins.2024.1453325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Examining the contribution of peripheral systems to cognitive function under healthy circumstances may improve our understanding of the systems that confer risk or resilience in diseased states. Endotoxemia-a pro-inflammatory response to the translocation of bacteria that reside in the gut on other sources (e.g., respiratory tract; infection) into the blood-was hypothesized to relate to worsened cognitive functioning. Gender was explored as a moderator. Methods A sample of 162 healthy adults (25-65 years old) provided plasma, from which a measure of endotoxemia was determined [i.e., the ratio of lipopolysaccharide binding protein (LBP) to soluble cluster of differentiation 14 receptors (sCD14)]. Participants performed an array of laboratory and ambulatory cognitive tasks at three timepoints, each separated by 9 months. Two sets of multilevel models were used: Prospective models, linking endotoxemia at baseline with changes in cognition across time, and coupling models, which examine correlations of endotoxemia with cognition across time. Results A prospective model indicated lower levels of endotoxemia at baseline predicted improvements in working memory across the three timepoints; higher levels were associated with no change in cognitive performance. Gender was not found to modulate this finding. Interestingly, a coupling analysis of endotoxemia and gender across time showed that in men, those with higher endotoxemia performed better at the working memory task overall; in women, working memory performance was similar regardless of endotoxemia level. Conclusion This work provides initial evidence that endotoxemia may be associated with a dampening of improvement in working memory, improvement consistent with practice effects, which should be expected in a sample of healthy, relatively young adults. The findings also provide preliminary evidence that, at least for men, higher degrees of endotoxemia are not inherently negative, and may link with short term positive outcomes for working memory.
Collapse
Affiliation(s)
- Sally C McDonnell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Jennifer E Graham-Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Christopher G Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, PA, United States
| | - Erik L Knight
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
15
|
Song X, Zhang X, Zhang M, Liu S, Zhang N, Liu X, Li B, Li J, Geng Z, Zuo L, Wang Y, Wang L, Hu J. The JNK/P38 signalling pathway activated by testin protects the intestinal epithelial barrier against Crohn's disease-like colitis. Chem Biol Interact 2024; 403:111222. [PMID: 39237074 DOI: 10.1016/j.cbi.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The unknown mechanism that controls intestinal barrier dysfunction in individuals with Crohn's disease (CD) plays a crucial role in the onset of intestinal inflammation. Testin, an intercellular linker protein, has the potential to protect epithelial barrier function. This study aimed to analyse the effects of Testin on CD-like colitis and explore the possible underlying mechanism. Colon samples from CD patients and trinitrobenzene-sulfonic acid (TNBS)-treated mice were collected to examine changes in Testin expression. To assess the therapeutic effects of Testin on CD-like colitis in mice, we examined the symptoms of enteritis, performed histological analysis, and evaluated intestinal barrier permeability. The ability of Testin to stabilize tight junction (TJ) proteins was investigated via immunofluorescence and western blotting. We conducted in vivo and in vitro experiments using colonic organoids and blocking techniques to explore how Testin safeguards the integrity of the intestinal barrier. Testin expression was downregulated in the colons of CD patients and TNBS-treated mice. Increasing Testin expression led to amelioration of colitis symptoms and reduced the production of inflammatory cytokines in the colons of TNBS-induced colitis model mice. Furthermore, increased Testin expression resulted in decreased depletion of TJ proteins (ZO-1 and Claudin-1) and promoted the effectiveness of the intestinal barrier in mice with TNBS-induced colon damage and in lipopolysaccharide (LPS)-stimulated colonic organoids. Elevated Testin levels inactivated the JNK/P38 signalling pathway, potentially contributing to the beneficial impact of Testin on the intestinal barrier. Testin can inhibit the loss of TJ proteins in CD mice by inactivating the JNK/P38 pathway. These findings help to clarify how Testin alleviates CD-like colitis in mice by protecting intestinal barrier function. These findings could lead to the use of a new treatment approach for CD in clinical practice.
Collapse
Affiliation(s)
- Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Min Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, China
| | - Shengbao Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Nuo Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Bohan Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Lian Wang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
16
|
Bronze S, Agrawal M, Colombel JF, Torres J, Ungaro RC. Review article: Prevention of inflammatory bowel disease-The path forward. Aliment Pharmacol Ther 2024; 60:1166-1175. [PMID: 39403049 DOI: 10.1111/apt.18263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The possibility of preventing inflammatory bowel disease (IBD) is becoming more plausible due to advances in understanding preclinical disease and successful prevention trials in other immune-mediated diseases, such as type 1 diabetes and rheumatoid arthritis. However, before that possibility becomes reality, several efforts need to occur in parallel and in a coordinated way. AIM To propose some critical steps necessary for advancing the field of IBD prediction and prevention. METHODS We reviewed the current literature to identify the necessary steps toward a preventive strategy for IBD. RESULTS The first step should determine the most robust predictive biomarkers and validate them across independent cohorts, creating a multidimensional predictive tool. The second step is to gain a better understanding of the preferences of first-degree relatives and people at risk for IBD, informing the implementation of screening and preventive strategies. Third, these efforts should contribute to the development of high-risk clinics and establish the necessary networks for disease prevention trials. CONCLUSIONS Advancing the field of IBD prediction and prevention will require a multifaceted approach, integrating biomarker discovery, understanding patient preferences, and establishing infrastructure for a collaborative network to support the practical implementation of IBD prevention strategies.
Collapse
Affiliation(s)
- Sérgio Bronze
- Gastroenterology and Hepatology Department, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Manasi Agrawal
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean-Frédéric Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joana Torres
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Hospital da luz Lisboa, Lisbon, Portugal
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ryan C Ungaro
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Han K, Wang F, Ma X, Wu Y, Zhang H, Zhao Y, Wang H, Ma J, Luan X. Human placental mesenchymal stromal cells alleviate intestinal oxidative damage in mice with graft-versus-host disease via CD73/adenosine/PI3K/Akt/GSK-3β axis. Cell Signal 2024; 123:111372. [PMID: 39209221 DOI: 10.1016/j.cellsig.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intestinal damage is a common and serious complication in patients with graft-versus-host disease (GVHD). Human placental mesenchymal stromal cells (hPMSCs) ameliorate GVHD tissue damage by exerting anti-oxidative effects; however, the underlying mechanisms remain not fully clear. METHODS A GVHD mouse model and tumor necrosis factor-α (TNF-α)-stimulated human colon epithelial cell lines NCM460 and HT-29 cells were used to investigate the mechanisms of hPMSCs alleviating GVHD-induced intestinal oxidative damage. RESULTS hPMSCs reduced TNF-α concentrations and the number of CD3+TNF-α+ T-cells, which were negatively correlated with the expression of claudin-1, occludin, and ZO-1, through CD73 in the colon tissue of GVHD mice. Meanwhile, hPMSCs reduced the mean fluorescence intensity (MFI) of reactive oxygen species (ROS) and the concentration of malondialdehyde (MDA), promoted superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as claudin-1, occludin, and ZO-1 expression, in colonic epithelial cells of GVHD mice and TNF-α-stimulated cells via CD73. Moreover, hPMSCs upregulated adenosine (ADO) concentrations in GVHD mice and TNF-α-stimulated cells and mitigated the loss of tight junction proteins via the CD73/ADO/ADO receptors. Further analysis showed that hPMSCs diminished Fyn expression and enhanced Nrf2, GCLC, and HO-1 expression in both TNF-α-stimulated cells and colonic epithelial cells of GVHD mice by activating PI3K/Akt/GSK-3β pathway. CONCLUSIONS The results suggested that hPMSC-mediated redox metabolism balance and promoted tight junction protein expression were achieved via CD73/ADO/PI3K/Akt/GSK-3β/Fyn/Nrf2 axis, by which alleviating intestinal oxidative injury in GVHD mice.
Collapse
Affiliation(s)
- Kaiyue Han
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Feifei Wang
- Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Xiaolin Ma
- Hematology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Yunhua Wu
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Hengchao Zhang
- Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Yaxuan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Hua Wang
- Hematology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264000, Shandong Province, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong Province, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, 264000, Shandong Province, China.
| |
Collapse
|
18
|
Młynarska E, Jakubowska P, Frąk W, Gajewska A, Sornowska J, Skwira S, Wasiak J, Rysz J, Franczyk B. Associations of Microbiota and Nutrition with Cognitive Impairment in Diseases. Nutrients 2024; 16:3570. [PMID: 39458564 PMCID: PMC11510709 DOI: 10.3390/nu16203570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recent research highlights the growing interest in the impact of nutrition on cognitive health and function in disease, as dietary habits are increasingly recognized as crucial factors in relation to brain function. This focus is especially important given the rising prevalence of neurodegenerative diseases and the cognitive decline associated with poor dietary choices. Links are now being sought between brain function and the microbiota and gut-brain axis. Mechanisms are proposed that include low-grade chronic neuroinflammation, the influence of short-chain fatty acids, or the disruption of glial cells and transmitters in the brain. METHODS We reviewed the articles on pubmed. This is not a systematic review, but of the narrative type. We wanted to outline the issue and summarise the latest information. RESULTS The axis in question has its foundation in nutrition. It has been reported that diet, particularly the components and the timing of food intake, has an impact on cognitive processes. The Mediterranean diet is most often cited in the literature as being beneficial to health. In order to obtain a more complete view, it is worth considering other dietary patterns, even those that impair our health. CONCLUSIONS Determining what is beneficial and what is not will allow us to develop a speronized strategy for the prevention of, and fight against, cognitive impairment. Appropriately selected supplements, the functions of which we have also discussed, may prove supportive.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Sornowska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Sylwia Skwira
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
19
|
Yan J, Nie Y, Chen X, Ding M, Zhang S. Mechanistic study of fructus aurantii (Quzhou origin) in regulating ileal reg3g in the treatment for NASH. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155924. [PMID: 39098169 DOI: 10.1016/j.phymed.2024.155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a critical stage in the progression of non-alcoholic fatty liver disease (NAFLD), characterized by obvious inflammation and fibrosis. Because of its high incidence rate and serious consequences, NASH is becoming a global health problem. The influence of endotoxin translocation on NASH is receiving attention. As a traditional Chinese herb that effectively improves hepatic inflammation, Fructus Aurantii (Quzhou origin, FAQ) is widely used in the clinical treatment of NASH. However, the intervention mechanism of FAQ on reg3g and related endotoxin translocation remains unclear. AIM To study the mechanism of the impact by which ileal regenerating family member 3 gamma (reg3g) deficiency and subsequent endotoxin translocation impact the progression of NASH; To elucidate the efficacy and mechanism of FAQ in the treatment of NASH. METHODS Clinical serum, ileal tissue, and dynamic NASH model-related analyses collectively confirmed that reg3g is a pivotal gene associated with NASH. Reg3g-/- mice were used to assess the impact of reg3g on liver injury, inflammation, and fibrosis, as well as the underlying mechanism involved. In vitro studies elucidated the regulatory effects of FAQ on reg3g, intestinal barrier function, and intestinal permeability. Subsequently, the efficacy of FAQ was investigated in NASH mouse models. Pathological examinations combined with Western blotting (WB), immunohistochemistry (IHC), and multiplex immunohistochemical (mIHC) analyses were used to evaluate the effects of FAQ on mucosal repair and barrier function. Transepithelial electrical resistance (TEER), fluorescein isothiocyanate-dextran 4 (FD-4) experiments, coupled with enzyme linked immunosorbent assay (ELISA) and chromogenic LAL endotoxin assay were used to confirm intestinal permeability and endotoxin translocation. The results of WB and mIHC reflected the levels of endotoxin recruitment and M1 macrophage polarization in the liver. Parameters such as body weight, transaminases, and cholesterol were utilized to assess the metabolic effects of FAQ. RESULTS Decreased expression of reg3g was associated with the progression of NASH. Ileal deficiency in reg3g resulted in damage to the intestinal barrier and permeability, leading to the recruitment of endotoxins via the 'gut-liver' axis to the liver, causing the polarization of M1 macrophages, release of inflammatory factors, excessive inflammation, and activation of hepatic stellate cells (HSCs), leading to fibrosis. FAQ significantly upregulated ileal reg3g expression and the expression of intestinal barrier-related proteins tight junction protein 1 (ZO-1) and occludin (OLCN) in mice (p < 0.05), thereby improving intestinal barrier function and permeability. Reduced intestinal permeability led to decreases in endotoxins entering the bloodstream and accumulating in the liver (p < 0.05). The expression of CD68 suggested reduced polarization of M1 macrophages. Expression levels of actin alpha 2, smooth muscle actin (α-SMA) and extracellular matrix (ECM)-related proteins also decreased, indicating improved liver fibrosis. CONCLUSION FAQ ameliorates NASH by upregulating the expression of reg3g. The upregulation of reg3g contributes to the repair of the intestinal barrier and permeability, reducing the recruitment of endotoxins and subsequent polarization of M1 macrophages, excessive inflammation, and fibrosis.
Collapse
Affiliation(s)
- Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou 310000, China
| | - Yunmeng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Xinli Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou 310000, China
| | - Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou 310000, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou 310000, China; Key Laboratory of Traditional Chinese Medicine for the treatment of Intestine-Liver of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
20
|
Abdulqadir R, Al-Sadi R, Haque M, Gupta Y, Rawat M, Ma TY. Bifidobacterium bifidum Strain BB1 Inhibits Tumor Necrosis Factor-α-Induced Increase in Intestinal Epithelial Tight Junction Permeability via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex-Dependent Stimulation of Peroxisome Proliferator-Activated Receptor γ and Suppression of NF-κB p65. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1664-1683. [PMID: 38885924 PMCID: PMC11372998 DOI: 10.1016/j.ajpath.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. Herein, the addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced inhibitory kappa B kinase α (IKK-α) activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unraveled novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. The current data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.
Collapse
Affiliation(s)
- Raz Abdulqadir
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Rana Al-Sadi
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Thomas Y Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
21
|
Gangaiah D, Gu M, Zaparte A, Will O, Dolan LC, Goering A, Pillai J, Mane SP, Plata G, Helmes EB, Welsh DA, Mahajan AK. Effects of Limosilactobacillus reuteri strains PTA-126787 and PTA-126788 on intestinal barrier integrity and immune homeostasis in an alcohol-induced leaky gut model. Sci Rep 2024; 14:19584. [PMID: 39179898 PMCID: PMC11344072 DOI: 10.1038/s41598-024-70549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Intestinal barrier is a first line of defense that prevents entry of various harmful substances from the lumen into the systemic environment. Impaired barrier function with consequent translocation of harmful substances into systemic circulation ("leaky gut") is a central theme in many gastrointestinal, autoimmune, mental, and metabolic diseases. Probiotics have emerged as a promising strategy to maintain intestinal integrity and address "leaky gut". Using in silico, in vitro and avian in vivo analyses, we previously showed that two novel L. reuteri strains, PTA-126787 (L. reuteri 3630) and PTA-126788 (L. reuteri 3632), isolated from broiler chickens possess favorable safety profiles. Consistent with a recent study, here we show that L. reuteri 3630 and 3632 are phylogenetically similar to human L. reuteri strains. Daily administration of high doses of L. reuteri 3630 and 3632 to Sprague Dawley rats for 28 days was found to be safe with no adverse effects. More importantly, administration of L. reuteri 3630 and 3632 significantly reduced markers associated with alcohol-induced leaky gut, by downregulating inflammatory cytokines and upregulating anti-inflammatory cytokines in an alcohol model of leaky gut in mice. While L. reuteri 3630 cells and supernatant showed no activation, L. reuteri 3632 cells but not supernatant showed activation of AhR, a key transcription factor that regulates gut and immune homeostasis. L. reuteri 3630 is creamish white in morphology typical of Lactobacillus species and L. reuteri 3632 displays a unique orange pigmentation, which was stable even after passaging for 480 generations. We identified a rare polyketide biosynthetic gene cluster in L. reuteri 3632 that likely encodes for the orange-pigmented secondary metabolite. Similar to L. reuteri 3632 cells, the purified orange metabolite activated AhR. All together, these data provide evidence on the phylogenetic relatedness, safety, efficacy, and one of the likely mechanisms of action of L. reuteri 3630 and 3632 for potential probiotic applications to address "leaky gut" and associated pathologies in humans.
Collapse
Affiliation(s)
| | - Min Gu
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Aline Zaparte
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Olaf Will
- Elanco Animal Health, Inc., Alfred-Nobel-Strasse 50, 40789, Monheim Am Rhein, Germany
| | - Laurie C Dolan
- GRAS Associates, 1180 Grand Park Avenue, North Bethesda, MD, 20852, USA
| | | | - Jason Pillai
- MicroMGx, Inc., 3440 S Dearborn St, Chicago, IL, 60616, USA
| | | | - German Plata
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - Emily B Helmes
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - David A Welsh
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
22
|
Yu J, Tang H, Zhou N, Wang Z, Huang W, Chen Y, Wang D, Ni J, Lu J, Yao YF. Dietary L-arabinose-induced gut dysbiosis exacerbates Salmonella infection outcome. mSystems 2024; 9:e0052224. [PMID: 38980058 PMCID: PMC11334454 DOI: 10.1128/msystems.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
The gut microbiota is essential for providing colonization resistance against pathogens. Dietary sugars markedly shift the composition of the intestinal microbiota and alter host susceptibility to enteric infections. Here, we demonstrate the effect of L-arabinose on bacterial infection by using a mouse infection model with Salmonella enterica serovar Typhimurium (S. Tm). In the presence of microbiota, L-arabinose induces a dramatic expansion of Enterobacteriaceae, thereby decreasing the microbiota diversity and causing more severe systemic infection. However, L-arabinose supplementation does not alter the disease progression of Salmonella infection in a microbiota-depleted mouse model. More importantly, short-term supplementation of L-arabinose fails to exert anti-diabetic effects in Salmonella-infected hyperglycemia mice and still promotes infection. Overall, our work reveals that a high intake of dietary L-arabinose supports a bloom of Enterobacteriaceae in Salmonella-infected gut, further accelerating the process of systemic infection.IMPORTANCEL-arabinose is a promising natural sweetener and food additive for the regulation of hyperglycemia. Since diabetic subjects are more susceptible to infections, the safety of dietary L-arabinose in diabetic patients experiencing infection remains a concern. Our findings reveal that L-arabinose exacerbates Salmonella infection outcome by inducing gut microbiota dysbiosis in mice. High dietary intake of L-arabinose may be deleterious for diabetic individuals undergoing infection.
Collapse
Affiliation(s)
- Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuoqiang Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Huang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
23
|
Rodríguez-Ramírez R, Fernández Peralbo MA, Mendía I, Long JCD, Sousa C, Cebolla Á. Urinary excretion of gluten immunoreactive peptides as an indicator of gastrointestinal function after fasting and dietary provocation in healthy volunteers. Front Immunol 2024; 15:1433304. [PMID: 39161759 PMCID: PMC11330814 DOI: 10.3389/fimmu.2024.1433304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Understanding intestinal permeability is paramount for elucidating gastrointestinal health and pathology. The size and nature of the molecule traversing the intestinal barrier offer crucial insights into various acute and chronic diseases, as well as the evolution of some conditions. This study aims to assess the urinary excretion kinetics of gluten immunogenic peptides (u-GIP), a unique class of dietary peptides detectable in urine, in volunteers under controlled dietary conditions. This evaluation should be compared to established probes like lactulose, a non-digestible disaccharide indicative of paracellular permeability, and mannitol, reflecting transcellular permeability. Methods Fifteen participants underwent simultaneous ingestion of standardized doses of gluten (10 g), lactulose (10 g), and mannitol (1 g) under fasting conditions for at least 8 hours pre-ingestion and during 6 hours post-ingestion period. Urine samples were collected over specified time intervals. Excretion patterns were analyzed, and correlations between the lactulose-to-mannitol ratio (LMR) and u-GIP parameters were assessed. Results The majority of u-GIP were detected within the first 12 hours post-ingestion. Analysis of the variability in cumulative excretion across two sample collection ranges demonstrated that lactulose and u-GIP exhibited similar onset and excretion dynamics, although GIP reached its maximum peak earlier than either lactulose or mannitol. Additionally, a moderate correlation was observed between the LMR and u-GIP parameters within the longest urine collection interval, indicating potential shared characteristics among permeability pathways. These findings suggest that extending urine collection beyond 6 hours may enhance data reliability. Discussion This study sheds light on the temporal dynamics of u-GIP in comparison to lactulose and mannitol, established probes for assessing intestinal permeability. The resemblance between u-GIP and lactulose excretion patterns aligns with the anticipated paracellular permeability pathway. The capacity to detect antigenic food protein fragments in urine opens novel avenues for studying protein metabolism and monitoring pathologies related to the digestive and intestinal systems.
Collapse
Affiliation(s)
- Raquel Rodríguez-Ramírez
- Research and Development Department, Biomedal S.L., Seville, Spain
- Inorganic Chemistry Department, Faculty of Science, University of Granada, Granada, Spain
| | | | - Irati Mendía
- Research and Development Department, Biomedal S.L., Seville, Spain
| | | | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ángel Cebolla
- Research and Development Department, Biomedal S.L., Seville, Spain
| |
Collapse
|
24
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
25
|
Lacy BE, Wise JL, Cangemi DJ. Leaky Gut Syndrome: Myths and Management. Gastroenterol Hepatol (N Y) 2024; 20:264-272. [PMID: 39193076 PMCID: PMC11345991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Leaky gut syndrome is a condition widely popularized in the lay literature, although it is not currently accepted as a formal medical diagnosis. Multiple gastrointestinal symptoms are ascribed to leaky gut syndrome, including diarrhea, bloating, distension, abdominal pain, and dyspeptic symptoms of early satiety, nausea, and postprandial fullness. The etiology and pathophysiology of leaky gut syndrome are multifactorial; a preceding gastrointestinal infection, inflammatory bowel disease, and certain medications may be relevant factors in some patients. The diagnosis of leaky gut syndrome is problematic. Although patients are frequently informed that the diagnosis can be readily made using results from blood work or stool studies, no validated test currently exists to make this diagnosis. Patients report a variety of myths about the etiology, diagnosis, and treatment of leaky gut syndrome, which can cause alarm and can frequently lead to expensive, unnecessary tests and unproven, sometimes dangerous treatments. This article reviews some of the most common myths about leaky gut syndrome and provides data from the scientific literature to correct these statements. Management strategies, based on data, are provided when available.
Collapse
Affiliation(s)
- Brian E. Lacy
- Division of Gastroenterology & Hepatology, Mayo Clinic Jacksonville, Jacksonville, Florida
| | - Journey L. Wise
- Graduate Research Education Program, Mayo Clinic Rochester, Rochester, Minnesota
| | - David J. Cangemi
- Division of Gastroenterology & Hepatology, Mayo Clinic Jacksonville, Jacksonville, Florida
| |
Collapse
|
26
|
Frieling T, Gjini B, Melchior I, Euler P, Kreysel C, Kalde S, Krummen B, Kiesslich R, Hemmerlein B. Gastrointestinal adverse reaction to food (GARF) and endoscopic confocal laser endomicroscopy (eCLE). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1201-1206. [PMID: 38749460 DOI: 10.1055/a-2258-8509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
BACKGROUND AND STUDY AIMS Gastrointestinal adverse reaction to food (GARF) is reported frequently in the general population and even more in patients with disorders of the gut brain axis. However, there is a significant difference between self-reported and objective proven GARF. The aim of the study was to characterize a mucosal correlate of GARF by endoscopic confocal laser endomicroscopy (eCLE) with duodenal food challenge (DFC). PATIENTS AND METHODS In an observational and proof of concept study we evaluated 71 patients with disorders of the gut brain axis without (group I, n=19) and with (group II, n=52) GARF by eCLE and DFC. Spontaneous and food induced transfer of fluorescein into duodenal lumen was detected 10 minutes following intravenously application of fluorescein and 10 minutes after DFC. RESULTS According to Rom IV, the patients (group I/II) could be classified as irritable bowel syndrome (IBS) 32%/31%, functional abdominal pain without changes in bowel movement 47 %/48 %, functional abdominal bloating/distension 0 %/10 %, functional diarrhea 5 %/ 2 %, and unspecified functional bowel disorder 16 %/10 %, respectively. 21 %/27 % of the patients responded with a fluorescein leakage into the duodenal lumen before and 74 %/69 % following to DFC. Frequency rank order of food components that induced a response were soy (55.5 %/60 %), wheat (60 %/45.5 %), egg (35.7 %/8.3), milk (30 %/18.2 %) and yeast (10 %/6.6 %), respectively. Histology of duodenal biopsies, number, form and distribution of intraepithelial lymphocytes and mucosal mast cells as well as mast cell function were normal. Overall, 14 %/79 % reported main symptom benefit following a food exclusion therapy according to eCLE and DFC that was significant different between the groups. CONCLUSION The results of our study indicate that eCLE with DFC is a technique to clinically evaluate patients with disorders of the gut brain axis and GARF resulting in a high proportion of patients reporting symptom benefit upon food exclusion dietary advice focussed on the results of eCLE.
Collapse
Affiliation(s)
- Thomas Frieling
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | - Besmir Gjini
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | - Ilka Melchior
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | - Philipp Euler
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | | | - Sigrid Kalde
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | - Britta Krummen
- Medizinische Klinik II, HELIOS Klinikum Krefeld, Krefeld, Germany
| | - Ralf Kiesslich
- Regional Medical Managing Director, Helios Dr. Horst Schmidt Kliniken Wiesbaden GmbH, Wiesbaden, Germany
| | | |
Collapse
|
27
|
Zhang Y, Wang W. Probiotics in reducing obesity by reconfiguring the gut microbiota. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1042-1051. [PMID: 39788492 PMCID: PMC11495983 DOI: 10.11817/j.issn.1672-7347.2024.240361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 01/05/2025]
Abstract
Obesity, as a global health crisis, is increasingly linked to intestinal microecology. Probiotics colonise the body, effectively regulating the balance of intestinal flora, while strengthening the intestinal barrier, activating the immune response, releasing beneficial substances, and maintaining micro-ecological balance. This process not only enhances the defence against pathogens, but also reduces the production of inflammatory factors and lowers the level of chronic inflammation. However, the specific process and mechanism by which probiotics influence the intestinal microecology through the immune response, improve metabolic disorders caused by obesity, and participate in weight management are not clear. Through multiple neural pathways including the 'gut-brain axis' and their direct interaction with the intestine, probiotics increase the number of beneficial bacteria in the intestine and inhibit the growth of harmful bacteria, thus effectively restructuring the balance of the intestinal flora. This restructuring of the balance can optimise the intestinal environment and enhance the efficiency of food digestion and nutrient absorption. Probiotics show positive effects on obesity management by regulating the metabolic process and reducing fat accumulation, providing individuals with a new way to control body weight and prevent obesity. Therefore, the application of probiotics is of great significance in promoting gut health and weight management.
Collapse
Affiliation(s)
- Yunuo Zhang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| | - Wei Wang
- Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
| |
Collapse
|
28
|
Schneck NA, Moghieb A, Teague C, Perez HL. Development and application of a multi-sugar assay to assess intestinal permeability. Bioanalysis 2024; 16:849-861. [PMID: 39023344 PMCID: PMC11457621 DOI: 10.1080/17576180.2024.2374168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: Bioanalytical assays to measure rhamnose, erythritol, lactulose and sucralose in human urine and plasma were developed to support an indomethacin challenge study for intestinal permeability assessment in healthy participants.Methods: The multi-sugar assays utilized 5-μl sample matrix and a simple chemical derivatization with acetic anhydride, followed by RPLC-MS/MS detection.Results: Rhamnose and erythritol quantification was established between 1.00-1,000 μg/ml in urine and 250-250,000 ng/ml in plasma. For lactulose and sucralose, dynamic ranges of 0.1-100 μg/ml (urine) and 25-25,000 ng/ml (plasma) were applied for biological measurements.Conclusion: This work helped overcome some of the common analytical challenges associated with the bioanalysis of mono- and disaccharides and achieved improved limits of quantification.
Collapse
Affiliation(s)
- Nicole A Schneck
- GSK, Biomarker Platforms, Precision Medicine, GSK, 1250 S Collegeville Rd, Collegeville, PA19426, USA
| | - Ahmed Moghieb
- GSK, Biomarker Platforms, Precision Medicine, GSK, 1250 S Collegeville Rd, Collegeville, PA19426, USA
| | - Claire Teague
- GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Hermes Licea Perez
- GSK, Biomarker Platforms, Precision Medicine, GSK, 1250 S Collegeville Rd, Collegeville, PA19426, USA
| |
Collapse
|
29
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. METHODS The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. RESULTS AND CONCLUSION Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
30
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
31
|
Tang H, Zhou H, Zhang L, Tang T, Li N. Molecular mechanism of MLCK1 inducing 5-Fu resistance in colorectal cancer cells through activation of TNFR2/NF-κB pathway. Discov Oncol 2024; 15:159. [PMID: 38735014 PMCID: PMC11089027 DOI: 10.1007/s12672-024-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIMS Chemotherapy resistance in colorectal cancer have been faced with significant challenges in recent years. Particular interest is directed to tumor microenvironment function. Recent work has, identified a small molecule named Divertin that prevents myosin light chain kinase 1(MLCK1) recruitment to the perijunctional actomyosin ring(PAMR), restores barrier function after tumor necrosis factor(TNF)-induced barrier loss and prevents disease progression in experimental inflammatory bowel disease. Studies have shown that MLCK is a potential target for affecting intestinal barrier function, as well as for tumor therapy. However, the relative contributions of MLCK expression and chemotherapy resistance in colorectal cancers have not been defined. METHODS Statistical analysis of MYLK gene expression differences in colorectal cancer patients and normal population and prognosis results from The Cancer Genome Atlas(TCGA) data. Cell activity was detected by Cell counting Kit-8. Cell proliferation was detected by monoclonal plate. The apoptosis was detected by flow cytometry and western blot. Determine the role of MLCK1 in inducing 5-Fluorouracil(5-Fu) resistance in colorectal cancer cells was detected by overexpression of MLCK1 and knock-down expression of MLCK1. RESULTS MLCK1 is expressed at different levels in different colorectal cancer cells, high MLCK1 expressing cell lines are less sensitive to 5-Fu, and low MLCK1 expressing cell lines are more sensitive to 5-Fu. MLCK1 high expression enhances resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway. CONCLUSIONS MLCK1 high expression can enhance resistance to 5-Fu in colorectal cancer cells and the sensitivity to 5-Fu was increased after knocking down the expression of MLCK1, that might be closely correlated to TNFR2/NF-κB pathway, which will provide a new method for the treatment of colorectal cancer patients who are resistant to 5-Fu chemotherapy.
Collapse
Affiliation(s)
- Huifen Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Hui Zhou
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Liang Zhang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Tingting Tang
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China
| | - Ning Li
- Department of Hematology, The Affiliated Hospital, Hangzhou Normal University, 126# Wenzhou Road, Hangzhou, 310015, Zhejiang, People's Republic of China.
| |
Collapse
|
32
|
Li Q, Li J, Yin L, Huang J, Liu X, Shi J, Geng Z, Song X, Wang L, Wang Y, Zhang X, Zuo L, Hu J. Sophoricoside improved Crohn's disease-like colitis by inhibiting intestinal epithelial cell apoptosis through PI3K/AKT signaling. Int Immunopharmacol 2024; 131:111886. [PMID: 38493691 DOI: 10.1016/j.intimp.2024.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Increased apoptosis of intestinal epithelial cells (IECs) is a significant cause of intestinal barrier dysfunction in Crohn's disease (CD). Sophoricoside (SOP) is an isoflavone glycoside known for its anti-apoptotic properties. The aim of this study was to investigate the effects of SOP on mice with CD-like colitis and to understand the underlying mechanisms. METHODS Mice treated with 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to examine the therapeutic effect of SOP on CD-like colitis and intestinal barrier damage. To further explore SOP's impact on IECs apoptosis and intestinal barrier protection, an in vitro colonic organoid apoptosis model induced by TNF-α was utilized. Network pharmacology was employed to predict the relevant pathways and molecular processes associated with SOP in the treatment of CD. RESULTS Treatment with SOP significantly improved colitis symptoms in TNBS mice, as demonstrated by reductions in the Disease Activity Index (DAI), weight loss, colon shortening, macroscopic scores, colonic tissue inflammatory scores, and the expression of pro-inflammatory factors. Our experiments confirmed that SOP protects the intestinal barrier by counteracting IECs apoptosis. Additionally, this study established that SOP reduced IECs apoptosis by inhibiting the PI3K/AKT signaling pathway. CONCLUSIONS SOP can reduce IECs apoptosis through the inhibition of the PI3K/AKT signaling pathway, thereby protecting the intestinal barrier. This study is the first to illustrate how SOP ameliorates colitis and protects the intestinal barrier, suggesting SOP has potential clinical application in treating CD.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lixia Yin
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ju Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Jinran Shi
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, Anhui, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
33
|
Wang Z, Shen J. The role of goblet cells in Crohn' s disease. Cell Biosci 2024; 14:43. [PMID: 38561835 PMCID: PMC10985922 DOI: 10.1186/s13578-024-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.
Collapse
Affiliation(s)
- Zichen Wang
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Ministry of Health, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No.160 PuJian Road, Shanghai, 200127, China.
| |
Collapse
|
34
|
Cai Y, Deng W, Yang Q, Pan G, Liang Z, Yang X, Li S, Xiao X. High-fat diet-induced obesity causes intestinal Th17/Treg imbalance that impairs the intestinal barrier and aggravates anxiety-like behavior in mice. Int Immunopharmacol 2024; 130:111783. [PMID: 38514921 DOI: 10.1016/j.intimp.2024.111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
The prevalence of autism spectrum disorders (ASD) has been steadily increasing, and growing evidence suggests a link between high-fat diet (HFD), obesity, and ASD; however, the mechanism underlying this association remains elusive. Herein, BTBR T + tf/J (BTBR) inbred mice (a mouse ASD model) and C57Bl/6J (C57) mice were fed an HFD and normal diet (ND) for 8 weeks (groups: C57 + ND, C57 + HFD, BTBR + ND, and BTBR + HFD). Subsequently, mice underwent behavioral assessments, followed by intestinal tissues harvesting to detect expression of intestinal barrier proteins and inflammatory factors and immune cell numbers, and a correlation analysis. HFD-fed BTBR mice developed obesity, elevated blood sugar, significantly aggravated anxiety-like behaviors, impaired intestinal barrier function, intestinal inflammation with elevated CD4+IL17+ T (Th17) cells and reduced CD4+Foxp3+ T (Treg) cells, exhibiting reduced expression of proteins related to AMPK regulatory pathway (AMPK, p-AMPK, SIRT1). Correlation analysis revealed that the degree of behavioral anxiety, the degree of intestinal barrier damage, the severity of intestinal inflammation, and the degree of immune cell imbalance positively correlated with each other. Accordingly, HFD-induced obesity may cause intestinal Th17/Treg imbalance via the AMPK-SIRT1 pathway, leading to an inflammatory environment in the intestine, impairing intestinal barrier function, and ultimately aggravating anxiety-like behaviors in mice.
Collapse
Affiliation(s)
- Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Wenlin Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Guixian Pan
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Zao Liang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Ximei Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China.
| |
Collapse
|
35
|
Zhu M, Fang Y, Cheng Y, Xu E, Zhang Y, Zhai Z. The Alleviating Effect of Taxifolin on Deoxynivalenol-Induced Damage in Porcine Intestinal Epithelial Cells. Vet Sci 2024; 11:156. [PMID: 38668423 PMCID: PMC11053803 DOI: 10.3390/vetsci11040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Deoxynivalenol (DON) contamination in feed is a global concern that severely threatens the health of animals and humans. Taxifolin (TA) is a natural flavonoid, a member of the polyphenols, that possesses robust antioxidant properties. This study aimed to investigate the effect of TA on DON-induced damage in porcine intestinal epithelial cells (IPEC-J2). The cells were pre-incubated with a series of concentrations of TA for 24 h and exposed to DON (0.5 μg/mL) for another 24 h. The results showed that pretreatment with TA (150 μM) significantly inhibited the DON-induced decline in cell viability (p < 0.05) and cell proliferation (p < 0.01). Additionally, 150 μM TA also alleviated DON-induced apoptosis (p < 0.01). Moreover, TA decreased the production of reactive oxygen species (ROS) induced by DON (p < 0.01). In addition, TA attenuated DON-induced cell junction damage (p < 0.05). Further experiments showed that TA reversed the DON-induced reduction in antioxidant capacity in the IPEC-J2 cells, probably via activating the Nrf2 signaling pathway (p < 0.05). Collectively, these findings suggest that 150 μM TA can protect against 0.5 μg/mL DON-induced damage to IPEC-J2 cells, potentially via the activation of the Nrf2 signaling pathway. This study provides insight into TA's potential to act as a green feed additive in the pig farming industry and its efficacy in counteracting DON-induced intestinal damage.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yujie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China
| |
Collapse
|
36
|
Li T, Yu F, Zhang T, Wang X, Sun Y, Shuai G, Chen Y, Xue Y, Zhang J, Zhang H. Modulatory effects of fermented Polygonatum cyrtonema Hua on immune homeostasis and gut integrity in a dextran-sulfate-sodium-induced colitis model. Food Funct 2024; 15:3158-3173. [PMID: 38440931 DOI: 10.1039/d3fo04556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The gut health-promoting properties of saponin-rich Polygonatum cyrtonema Hua (FP) fermented with Lactobacillus plantarum P9 were explored in a dextran sulfate sodium (DSS)-induced colitis mouse model. FP supplementation effectively inhibited DSS-induced physiological alteration and impaired immune responses by reducing the disease activity index (DAI) score and restoring the T helper (Th) 1/Th2 and regulatory T (Treg)/Th17 ratios. In addition, FP supplementation protected the gut barrier function against DSS-induced damage via upregulation of zonula occludens (ZO)-1 and occludin and downregulation of pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-18, and the granulocyte-macrophage colony-stimulating factor (GM-CSF). This study further elucidated the potential mechanisms underlying the FP-mediated suppression of the plasticity of type 3 innate lymphoid cells (ILC3) and subsequent macrophage polarization. Therefore, the FP supplementation effectively restored mucosal immune homeostasis and enhanced gut integrity. In addition, it suppressed the growth of Escherichia-Shigella and Enterococcus and promoted the enrichment of probiotics and short-chain fatty acid-producing microbes, such as Romboutsia, Faecalibaculum, and Blautia. In conclusion, P. cyrtonema Hua fermented with L. plantarum P9 might be a promising dietary intervention to improve gut health by sustaining overall gut homeostasis and related gut integrity.
Collapse
Affiliation(s)
- Tao Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Fengyao Yu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Tao Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Gexia Shuai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yuhuan Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yanhua Xue
- Jian Chang Bang Pharmaceutical Co., Ltd, No.3 Jinshankou Industry Park, Fuzhou, Jiangxi Province 344000, China
| | - Jinlian Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
37
|
Kang TH, Lee SI. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J Anim Sci Biotechnol 2024; 15:30. [PMID: 38369477 PMCID: PMC10874546 DOI: 10.1186/s40104-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a mycotoxin that has received recognition worldwide because of its ability to cause growth delay, nutrient malabsorption, weight loss, emesis, and a reduction of feed intake in livestock. Since DON-contaminated feedstuff is absorbed in the gastrointestinal tract, we used chicken organoids to assess the DON-induced dysfunction of the small intestine. RESULTS We established a culture system using chicken organoids and characterized the organoids at passages 1 and 10. We confirmed the mRNA expression levels of various cell markers in the organoids, such as KI67, leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), mucin 2 (MUC2), chromogranin A (CHGA), cytokeratin 19 (CK19), lysozyme (LYZ), and microtubule-associated doublecortin-like kinase 1 (DCLK1), and compared the results to those of the small intestine. Our results showed that the organoids displayed functional similarities in permeability compared to the small intestine. DON damaged the tight junctions of the organoids, which resulted in increased permeability. CONCLUSIONS Our organoid culture displayed topological, genetic, and functional similarities with the small intestine cells. Based on these similarities, we confirmed that DON causes small intestine dysfunction. Chicken organoids offer a practical model for the research of harmful substances.
Collapse
Affiliation(s)
- Tae Hong Kang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeong-Sangbuk-Do, 37224, Republic of Korea.
- Research Institute for Innovative Animal Science, Kyungpook National University, 37224, Sangju, Gyeong-Sangbuk-Do, Republic of Korea.
| |
Collapse
|
38
|
Cutilli A, Jansen SA, Paolucci F, Mokry M, Mocholi E, Lindemans CA, Coffer PJ. IFNγ induces epithelial reprogramming driving CXCL11-mediated T cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578580. [PMID: 38370633 PMCID: PMC10871214 DOI: 10.1101/2024.02.03.578580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium post-treatment confirmed chemokine secretion. Furthermore, IFNγ-treatment of organoids led to enhanced T cell migration in a CXCL11-dependent manner without affecting T cell activation status. Taken together, our results suggest a specific role for CXCL11 in T cell recruitment that can be targeted to prevent T cell trafficking to the inflamed intestine.
Collapse
|
39
|
Hao M, Zhong K, Bai X, Wu S, Li L, He Y, Wang Z, Sun X, Wang Q, Guo Y, Sun Y, Wu L. Upregulated Tβ4 expression in inflammatory bowel disease impairs the intestinal mucus barrier by inhibiting autophagy in mice. Exp Cell Res 2024; 434:113871. [PMID: 38049080 DOI: 10.1016/j.yexcr.2023.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin β4 (Tβ4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tβ4 by examining Tβ4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tβ4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tβ4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tβ4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tβ4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tβ4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tβ4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tβ4 could be a new diagnostic marker for intestinal barrier defects.
Collapse
Affiliation(s)
- Menghao Hao
- School of Medicine, Southwest Jiaotong University, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China; Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Ke Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Xiaoqin Bai
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Shiyan Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lu Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yumei He
- North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiming Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Xiaobin Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Qiong Wang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Liping Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| |
Collapse
|
40
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Arora K, Gaudioso G, Solovyev P, Tuohy K, Di Cagno R, Gobbetti M, Fava F. In vitro faecal fermentation of Tritordeum breads and its effect on the human gut health. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100214. [PMID: 38116184 PMCID: PMC10727946 DOI: 10.1016/j.crmicr.2023.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Spontaneous fermentation of Tritordeum flour enhances the nutritional potential of this hybrid cereal. However, the effect of consumption of Tritordeum sourdough bread (SDB) on gut health remains to be elucidated. This study investigated the effect of in vitro digestion and faecal fermentation of SDB compared to that of traditional baker's yeast (BYB) Tritordeum bread. After 24-h anaerobic faecal fermentation, both SDB and BYB (1% w/v) induced an increase in the relative abundances of Bifidobacterium, Megasphaera, Mitsuokella, and Phascolarctobacterium genera compared to baseline, while concentrations of acetate and butyrate were significantly higher at 24 h for SDB compared to those for BYB. Integrity of intestinal epithelium, as assessed through in vitro trans-epithelial electrical resistance (TEER) assay, was slightly increased after incubation with SDB fermentation supernatants, but not after incubation with BYB fermentation supernatants. The SDB stimulated in vitro mucosal immune response by inducing early secretion of inflammatory cytokines, IL-6 and TNF-α, followed by downregulation of the inflammatory trigger through induction of anti-inflammatory IL-10 expression. Overall, our findings suggest that Tritordeum sourdough can modulate gut microbiota fermentation activity and positively impact the gut health.
Collapse
Affiliation(s)
- Kashika Arora
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 5, Bolzano 39100, Italy
| | - Giulia Gaudioso
- Nutrition and Nutrigenomics Unit, Fondazione Edmund Mach di San Michele all'Adige Via E. Mach, 1 38098 S. Michele all'Adige, Italy
| | - Pavel Solovyev
- Traceability Unit, Fondazione Edmund Mach di San Michele all'Adige Via E. Mach, 1 38098 S. Michele all'Adige, Italy
| | - Kieran Tuohy
- Nutrition and Nutrigenomics Unit, Fondazione Edmund Mach di San Michele all'Adige Via E. Mach, 1 38098 S. Michele all'Adige, Italy
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 5, Bolzano 39100, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Università di Bolzano, Piazza Università, 5, Bolzano 39100, Italy
| | - Francesca Fava
- Nutrition and Nutrigenomics Unit, Fondazione Edmund Mach di San Michele all'Adige Via E. Mach, 1 38098 S. Michele all'Adige, Italy
| |
Collapse
|
42
|
Yuan Y, Wang X, Huang S, Wang H, Shen G. Low-level inflammation, immunity, and brain-gut axis in IBS: unraveling the complex relationships. Gut Microbes 2023; 15:2263209. [PMID: 37786296 PMCID: PMC10549202 DOI: 10.1080/19490976.2023.2263209] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder, and it has been shown that the etiology of irritable bowel syndrome is a multifactorial complex of neurological, inflammatory, and immunological changes. There is growing evidence of low-grade chronic inflammation in irritable bowel patients. The peripheral action response of their intestinal immune factors is integrated into the central nervous system, while the microbiota interacts with the brain-gut axis contributing to the development of low-grade chronic inflammation. The objective of this review is to present a discussion about the impact of immune-brain-gut axis-inflammation interactions on irritable bowel syndrome, its clinical relevance in the course of irritable bowel syndrome disease, and possible therapeutic modalities.
Collapse
Affiliation(s)
- Yi Yuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiyang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shun Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guoming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
43
|
Khare S, Jog R, Bright A, Burgess DJ, Chakder SK, Gokulan K. Evaluation of mucosal immune profile associated with Zileuton nanocrystal-formulated BCS-II drug upon oral administration in Sprague Dawley rats. Nanotoxicology 2023; 17:583-603. [PMID: 38146991 DOI: 10.1080/17435390.2023.2289940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation. To evaluate the efficacy and mucosal immune profile of the nanocrystal drug, 10-week-old rats were dosed using capsules containing either API alone or nanocrystal formulated Zileuton (NDZ), or with a physical mixture (PM) using flexible oral gavage syringes. Control groups consisted of untreated, or placebo treated animals. Test formulations were administrated to rats at a dose of 30 mg/kg body weight (bw) once a day for 15 days. The rats treated with NDZ or PM had approximately 4.0 times lower (7.5 mg/kg bw) API when compared to the micron sized API treated rats. At the end of treatment, mucosal (intestinal tissue) and circulating cytokines were measured. The immunological response revealed that NDZ decreased several proinflammatory cytokines in the ileal mucosa (Interleukin-18, Tumor necrosis Factor-α and RANTES [regulated upon activation, normal T cell expressed and secreted]). A similar pattern in the cytokine profile was also observed for the micron sized API and PM treated rats. The cytokine production revealed that there was a significant increase in the production of IL-1β and IL-10 in the females in all experimental groups. Additionally, NDZ showed an immunosuppressive effect on proinflammatory cytokines both locally and systemically, which was similar to the response in micron sized API treated rats. These findings indicate that NDZ significantly decreased several proinflammatory cytokines and it displays less immunotoxicity, probably due to the nanocrystal formulation. Thus, the nanocrystal formulation is more suitable for oral drug delivery, as it exhibited better efficacy, safety, and reduced toxicity.
Collapse
Affiliation(s)
- Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Anshel Bright
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Sushanta K Chakder
- Center for Drug Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
44
|
Ren Y, Tian Y, Hou M, Zhao Y, Li J, Aftab U, Rousseau X, Jiang R, Kang X, Tian Y, Gong Y. Evaluation of stimbiotic on growth performance and intestinal development of broilers fed corn- or wheat-based diets. Poult Sci 2023; 102:103094. [PMID: 37931376 PMCID: PMC10633449 DOI: 10.1016/j.psj.2023.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023] Open
Abstract
In the antibiotics-free era, stimbiotic (STB) has been suggested as a new alternative of antibiotic growth promoters to modulate intestinal health via stimulating dietary fiber utilization in poultry production. The aim of this study was to evaluate the effects of STB supplementation in corn- or wheat-basal diet on growth performance, intestinal development, and function of broilers. A total of 512 one-day-old Arbor Acres(AA)broilers were randomly allocated 4 treatments, including corn group (CG), corn + 100 g/t STB (CG + STB), wheat group (WG), wheat + 100 g/t STB (WG + STB). The broilers were weighed at the days of 14, 28, and 42, of which 8 repetitions per treatment were randomly selected to determine the intestinal morphology, intestinal barrier, and cecal microbiota and metabolites. Our data showed that STB increased (P < 0.05) feed intake, body weight and reduced FCR for the overall period (0-42 d). At 28 d of age, significant increases in villus height and the villus height-to-crypt depth ratio (V/C) were found in the STB supplementation groups (P < 0.05). Addition of STB significantly increased intestinal mucosal DAO and AMPK enzyme activity and the gene expression of OCLN, CLDN1, ZO1, MUC2, SGLT1, PEPT1, FABP2, Ghrelin, and GCG in jejunum (P < 0.05), and significantly decreased the expression of the PYY gene. In addition, STB increased the relative abundance of beneficial bacteria, such as Akkermansia, Bifidobacterium, and Oscillospirales (P < 0.05). A significant increase in cecal short-chain fatty acid (SCFAs) concentration was also observed in the STB supplementation groups. At the cellular level, STB cannot directly increase the expression of small intestinal epithelial cells, and may indirectly improve intestinal barrier function by increasing the level of sodium butyrate. Overall, these results indicated that STB supplementation could improve the growth performance, intestinal development and barrier functions, and fiber fermentation in cecum of broiler chickens.
Collapse
Affiliation(s)
- Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Jing Li
- AB Vista, Marlborough SN8 4AN, UK
| | | | | | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
45
|
Bianchimano P, Iwanowski K, Smith EM, Cantor A, Leone P, Bongers G, Gonzalez CG, Hongsup Y, Elias J, Weiner HL, Clemente JC, Tankou SK. Oral vancomycin treatment suppresses gut trypsin activity and preserves intestinal barrier function during EAE. iScience 2023; 26:108143. [PMID: 37915599 PMCID: PMC10616394 DOI: 10.1016/j.isci.2023.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Studies have reported increased intestinal permeability in multiple sclerosis (MS) patients and its mouse model experimental autoimmune encephalomyelitis (EAE). However, the mechanisms driving increased intestinal permeability that in turn exacerbate neuroinflammation during EAE remain unclear. Here we showed that vancomycin preserved the integrity of the intestinal barrier, while also suppressing gut trypsin activity, enhancing the relative abundance of specific Lactobacilli and ameliorating disease during EAE. Furthermore, Lactobacilli enriched in the gut of vancomycin-treated EAE mice at day 3 post immunization negatively correlated with gut trypsin activity and EAE severity. In untreated EAE mice, we observed increased intestinal permeability and increased intestinal protease activated receptor 2 (PAR2) expression at day 3 post immunization. Prior studies have shown that trypsin increases intestinal permeability by activating PAR2. Our results suggest that the interaction between intestinal PAR2 and trypsin may be a key modulator of intestinal permeability and disease severity during EAE.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Cantor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Leone
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerold Bongers
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos G. Gonzalez
- Department of Pharmacology, University of California San Diego, San Diego, CA 92093, USA
| | - Yoon Hongsup
- Institute of Clinical Neuroimmunology, Hospital and Biomedical Center of the Ludwig-Maximilian-University, Martinsried, Germany
- Hertie Senior Professor Group, Max-Plank-Institute of Neurobiology, Martinsried, Germany
| | - Joshua Elias
- Mass Spectrometry Platform, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jose C. Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K. Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
46
|
Pan C, Zhang H, Zhang L, Chen L, Xu L, Xu N, Liu X, Meng Q, Wang X, Zhang ZY. Surgery-induced gut microbial dysbiosis promotes cognitive impairment via regulation of intestinal function and the metabolite palmitic amide. MICROBIOME 2023; 11:248. [PMID: 37936242 PMCID: PMC10631187 DOI: 10.1186/s40168-023-01689-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Gut microbial dysbiosis is associated with neurological diseases; however, the mechanisms by which the microbiota regulates postoperative gastrointestinal and cognitive function are incompletely understood. METHODS Behavioral testing, MiSeq 16S rRNA gene sequencing, non-target metabolism, intestinal permeability detection, protein assays, and immunofluorescence staining were employed to discern the impacts of surgery on microbial profiles, intestinal barriers, serum metabolism, and the brain. Interventions in mice included fecal microbiota transplantation, the anti-inflammatory agent dexamethasone, Lactobacillus supplementation, indole propionic acid supplementation, and palmitic amide administration. RESULTS Surgery-induced cognitive impairment occurs predominantly in aged mice, and surgery-induced alterations in the microbiota composition profile exacerbate intestinal barrier disruption in aged mice. These adverse effects can be mitigated by transferring microbiota from young donors or by bolstering the intestinal barrier function using dexamethasone, Lactobacillus, or indole propionic acid. Moreover, microbiota composition profiles can be restored by transplanting feces from young mice to aged surgical mice, improving neuropathology and cognitive function, and these effects coincide with increased intestinal permeability. Metabolomic screening identified alterations in metabolites in mouse serum after surgery, especially the increase in palmitic amide. Palmitic amide levels in serum and brain can be decreased by transplanting feces from young mice to aged surgical mice. Oral palmitic amide exacerbates cognitive impairment and neuropathological changes in mice. CONCLUSIONS Gut microbial dysbiosis in mice after surgery is a key mechanism leading to cognition dysfunction, which disrupts the intestinal barrier and metabolic abnormalities, resulting in neuroinflammation and dendritic spine loss. Intestinal barrier damage and high level of palmitic amide in old mice may be the cause of high incidence of PND in the elderly. Preoperative microbiota regulation and intestinal barrier restoration may be of therapeutic benefit in preventing PND. Video Abstract.
Collapse
Affiliation(s)
- Cailong Pan
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Huiwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lingyuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lu Chen
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Lu Xu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Ning Xu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoliang Wang
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Changle Road 89, Nanjing, 210029, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Longmian Avenue 101, Nanjing, 211166, China.
- Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
47
|
Chen Y, Lan C, Zhong W, Song K, Ma Z, Huang L, Zhu Y, Xia H. Plasma anti-myosin autoantibodies in the diagnosis of necrotizing enterocolitis. Eur J Pediatr 2023; 182:5203-5210. [PMID: 37715022 PMCID: PMC10640473 DOI: 10.1007/s00431-023-05188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
We aimed to assess whether autoantibodies can be used as biomarkers for necrotizing enterocolitis (NEC) and applied for its early diagnosis. A prospective observational study was conducted in neonates with suspected NEC abdominal distension (the developmental study), which consisted of 50 neonates finally divided into NEC (n = 24) and non-NEC (n = 26) cohorts based on follow-up results. Serum samples were collected within 48 h of illness onset and used for screening NEC-associated plasma autoantibodies by autoantigen microarray. Additionally, we validated anti-myosin autoantibodies by enzyme-linked immunosorbent assay (ELISA) in an independent validation study, for which we selected plasma samples within 48 h of onset of NEC (n = 38) and samples of gestational age- and weight-matched controls (n = 13). Autoantigen microarray revealed that both IgG and IgM anti-myosin autoantibodies in plasma from neonates with NEC were significantly higher than those in neonates with other diagnoses. ELISA showed that plasma anti-myosin autoantibodies increased in the NEC cohort, with 1.5-fold higher levels than in the non-NEC cohort. Anti-myosin autoantibodies were able to distinguish NEC from non-NEC, achieving an area under the curve (AUC) of 0.8856 (95% confidence interval (CI): 0.7918-0.9795), with sensitivity of 81.58% and specificity of 76.93%. Plasma anti-myosin autoantibodies were significantly higher in all three subtypes of NEC (P < 0.0001 for NEC I; P = 0.0018 for NEC II; P = 0.0011 for NEC III), especially in NEC stage I than that in the non-NEC controls. CONCLUSION Anti-myosin autoantibodies may be applied as a promising diagnostic marker for NEC, especially for NEC stage I. WHAT IS KNOWN • Intestinal damage and self-antigen exposure may lead to increased autoantibodies, and they are widely used as biomarkers for diagnosing inflammatory bowel disease. • Necrotizing enterocolitis (NEC) is a devastating disease with overwhelming inflammation and immune dysregulation. WHAT IS NEW • Increased autoantibodies were present in patients with NEC, even before typical X-ray manifestations. • Anti-myosin autoantibodies may be applied as a promising diagnostic marker for NEC.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, CN 510630, China
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China
- Department of Pediatrics, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Chaoting Lan
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China
| | - Weiyong Zhong
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China
| | - Kai Song
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China
| | - Zuyi Ma
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China
| | - Lihua Huang
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China.
| | - Yun Zhu
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China.
| | - Huimin Xia
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, CN 510630, China.
- Provincial Key Laboratory of Research in Structure Birth Defect Diseaseand, Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Zhujiang New Town, Tianhe District, Guangzhou, Guangdong, CN 510623, China.
| |
Collapse
|
48
|
La Torre D, Van Oudenhove L, Vanuytsel T, Verbeke K. Psychosocial stress-induced intestinal permeability in healthy humans: What is the evidence? Neurobiol Stress 2023; 27:100579. [PMID: 37842017 PMCID: PMC10569989 DOI: 10.1016/j.ynstr.2023.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
An impaired intestinal barrier function can be detrimental to the host as it may allow the translocation of luminal antigens and toxins into the subepithelial tissue and bloodstream. In turn, this may cause local and systemic immune responses and lead to the development of pathologies. In vitro and animal studies strongly suggest that psychosocial stress is one of the factors that can increase intestinal permeability via mast-cell dependent mechanisms. Remarkably, studies have not been able to yield unequivocal evidence that such relation between stress and intestinal permeability also exists in (healthy) humans. In the current Review, we discuss the mechanisms that are involved in stress-induced intestinal permeability changes and postulate factors that influence these alterations and that may explain the translational difficulties from in vitro and animal to human studies. As human research differs highly from animal research in the extent to which stress can be applied and intestinal permeability can be measured, it remains difficult to draw conclusions about the presence of a relation between stress and intestinal permeability in (healthy) humans. Future studies should bear in mind these difficulties, and more research into in vivo methods to assess intestinal permeability are warranted.
Collapse
Affiliation(s)
- Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Tim Vanuytsel
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Guo J, Xu J, Chen L, Chen Z, Hu H, Nie J, Yuan J, Ma L, Lu J, Ji H, Xu B. Role of SIRT2 in intestinal barrier under cold exposure. Life Sci 2023; 330:121949. [PMID: 37495079 DOI: 10.1016/j.lfs.2023.121949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Prolonged cold exposure causes body stress and damages health. The intestinal environment is complex and variable, and direct contact with the external environment can easily cause stress, damage and even lead to diseases such as diarrhea. AIMS This study aimed to reveal the role of cold exposure on ileum damage and the role of SIRT2 in this process. MAIN METHODS C57BL6 mice and SIRT2 knockout mice were used to construct a chronic cold exposure model (21 days, random 4 °C exposure for 3 h per day), which was tested by various methods, including intestinal permeability assays, morphological assays, ultrastructural assays, western blotting, and fluorescence staining. In vitro assays were performed on the mouse small intestinal epithelial cell line MODE-K to investigate the role of endoplasmic reticulum stress, SIRT2 knockout, and autophagy on tight junctions. KEY FINDINGS The results showed that chronic cold exposure damaged the ileal epithelial barrier, with endoplasmic reticulum stress. Knockout of SIRT2 alleviates ileal injury via enhanced autophagy under cold exposure. And autophagy can restore the expression of ZO-1 under stress. SIGNIFICANCE This study can provide potential target and basic data for the treatment of IBD and other disorders of the intestinal barrier. Autophagy may be an important means of restoring damage to the intestinal barrier.
Collapse
Affiliation(s)
- Jingru Guo
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Leichong Chen
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhuo Chen
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Huijie Hu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junshu Nie
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianbin Yuan
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Li Ma
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jingjing Lu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hong Ji
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bin Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
50
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|