1
|
He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, Zhang X, Chen J, Liu Y, Xu G. TCR-T cell therapy for solid tumors: challenges and emerging solutions. Front Pharmacol 2025; 16:1493346. [PMID: 40129944 PMCID: PMC11931055 DOI: 10.3389/fphar.2025.1493346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
With the use of T cell receptor T cells (TCR-T cells) and chimeric antigen receptor T cells (CAR-T cells), T-cell immunotherapy for cancer has advanced significantly in recent years. CAR-T cell therapy has demonstrated extraordinary success when used to treat hematologic malignancies. Nevertheless, there are several barriers that prevent this achievement from being applied to solid tumors, such as challenges with tumor targeting and inadequate transit and adaption of genetically modified T-cells, especially in unfavorable tumor microenvironments The deficiencies of CAR-T cell therapy in the treatment of solid tumors are compensated for by TCR-T cells, which have a stronger homing ability to initiate intracellular commands, 90% of the proteins can be used as developmental targets, and they can recognize target antigens more broadly. As a result, TCR-T cells may be more effective in treating solid tumors. In this review, we discussed the structure of TCR-T and have outlined the drawbacks of TCR-T in cancer therapy, and suggested potential remedies. This review is crucial in understanding the current state and future potential of TCR-T cell therapy. We emphasize how important it is to use combinatorial approaches, combining new combinations of various emerging strategies with over-the-counter therapies designed for TCR-T, to increase the anti-tumor efficacy of TCR-T inside the TME and maximize treatment safety, especially when it comes to solid tumor immunotherapies.
Collapse
Affiliation(s)
- Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Muhammad Asad Farooq
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Na Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiqian Zhang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Jian Chen
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Yinxia Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Cieplińska K, Niedziela E, Rdzanek AK, Słuszniak A, Chrapek M, Pałyga I, Kowalska A. Association between clinical activity score and serum sPD-1 and sPD-L1 levels during systemic glucocorticoid treatment for active moderate-to-severe thyroid eye disease. Cytokine 2025; 187:156862. [PMID: 39842384 DOI: 10.1016/j.cyto.2025.156862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND CD4+ T lymphocytes are key immune cells involved in orbital inflammation in thyroid eye disease (TED). Inhibition of their activity is important in treatment of TED, but effective drugs targeting these cells are lacking. The programmed cell death-1/programmed cell death ligand-1 pathway has been implicated in several T-cell-mediated diseases. Manipulation of this pathway with antagonists or agonists is an attractive therapeutic option. The role of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) in regulation of this pathway is debated. This study aimed to investigate the involvement of sPD-1 and sPD-L1 in the pathogenesis of TED, focusing on their utility as novel biomarkers to evaluate disease severity and treatment response. METHODS Thirty patients diagnosed with moderate-to-severe TED associated with Graves' disease were included. Blood samples were collected from patients before and 12 weeks after initiation of intravenous glucocorticosteroid (IVGC) treatment. Disease severity was assessed using the Clinical Activity Score (CAS) before and after IVGC treatment. Thyroid-stimulating hormone, free thyroxine, free triiodothyronine, thyroid-stimulating immunoglobulin, interleukin-6, sPD-1, and sPD-L1 levels were measured. Correlations between sPD-1, sPD-L1, and CAS before and after IVGC treatment were investigated. Serum concentrations of sPD-1 and sPD-L1 before and after IVGC treatment in patients with TED were compared with those in healthy controls (HCs). The changes in the tested protein concentrations upon IVGC treatment and their associations with clinical characteristics were investigated. Enzyme-linked immunosorbent assays were used to measure sPD-1 and sPD-L1 concentrations in peripheral blood serum. RESULTS There was a positive correlation of moderate Spearman's rank strength between sPD-L1 and CAS before and after treatment, and a positive correlation between sPD-1 and sPD-L1. However, no correlation was observed between sPD-1 and CAS. Baseline serum levels of sPD-1 and sPD-L1 did not significantly differ between patients with TED and HCs. There were no correlations between changes in the levels of the tested molecules upon IVGC treatment and the analyzed clinical features. The decreases of sPD-1 and sPD-L1 levels after 12 weeks of IVGC treatment were not significant. CONCLUSION The positive correlation of moderate Spearman's rank strength between sPD-L1 and CAS before and after 12 weeks of treatment indicates that sPD-L1 is involved in the pathogenesis of TED. sPD-L1 may become an additional immunological biomarker to assess the disease activity and monitor the respond to treatment. Although sPD-1 is reported in the literature to have an activating effect on lymphocytes, our study shows that sPD-1 may not play a significant role in the pathogenesis of TED, as its level does not differ significantly between the TED and HC groups and does not correlate with disease activity. Understanding the clinical value of sPD-1 and sPD-L1 is of great practical importance.
Collapse
Affiliation(s)
| | - Emilia Niedziela
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | | | - Anna Słuszniak
- Department of Tumor Markers, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Magdalena Chrapek
- Department of Mathematics, Faculty of Natural Sciences, Jan Kochanowski University, Kielce 25-406, Poland
| | - Iwona Pałyga
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Collegium Medicum, Jan Kochanowski University in Kielce, 25-317 Kielce, Poland; Department of Endocrinology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| |
Collapse
|
3
|
Chen Y, Lu X, Peng G, Liu S, Wang M, Hou H. A bibliometric analysis of research on PD-1/PD-L1 in urinary tract tumors. Hum Vaccin Immunother 2024; 20:2390727. [PMID: 39385743 PMCID: PMC11469446 DOI: 10.1080/21645515.2024.2390727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 10/12/2024] Open
Abstract
Programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are key components in immune checkpoint studies across various tumors, including those in the urinary tract. The utilization of PD-1/PD-L1 inhibitors in urinary tract tumors is on the rise. This study provides a comprehensive overview of PD-1/PD-L1 research in urinary tract tumors through bibliometric analysis. A search was conducted in the Web of Science Core Collection (WoSCC) database for academic papers on PD-1/PD-L1 in urinary tract tumors published between January 1, 1999, and September 3, 2022. Tools such as VOSviewer, CiteSpace, and an online bibliometric platform, were used for an in-depth analysis covering countries, institutions, authors, journals, references, and keywords. A total of 1,711 articles on PD-1/PD-L1 in urinary tract tumors were analyzed. The United States led in article contributions, followed by China and Japan. Harvard University was the top institution in this research area. With notable conctributions from Choueiri TK, who authored 48 related articles. The Journal for Immunotherapy of Cancer was the top publisher, and Topalian SL's 2012 publication in The New England Journal of Medicine was the most cited article. Key author keywords included "immunotherapy," "PD-L1," "renal cell carcinoma," "bladder cancer," and "immune checkpoint inhibitors." Notably, research on the role of PD-1/PD-L1 in kidney and bladder cancer has garnered significant attention.
Collapse
Affiliation(s)
- Yongming Chen
- Beijing Hospital National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojin Lu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Genyuan Peng
- Department of Gastrointestinal Surgery, Shenshan Central Hospital of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
5
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J, Zhu Z. Autoimmune disease: a view of epigenetics and therapeutic targeting. Front Immunol 2024; 15:1482728. [PMID: 39606248 PMCID: PMC11599216 DOI: 10.3389/fimmu.2024.1482728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Autoimmune diseases comprise a large group of conditions characterized by a complex pathogenesis and significant heterogeneity in their clinical manifestations. Advances in sequencing technology have revealed that in addition to genetic susceptibility, various epigenetic mechanisms including DNA methylation and histone modification play critical roles in disease development. The emerging field of epigenetics has provided new perspectives on the pathogenesis and development of autoimmune diseases. Aberrant epigenetic modifications can be used as biomarkers for disease diagnosis and prognosis. Exploration of human epigenetic profiles revealed that patients with autoimmune diseases exhibit markedly altered DNA methylation profiles compared with healthy individuals. Targeted cutting-edge epigenetic therapies are emerging. For example, DNA methylation inhibitors can rectify methylation dysregulation and relieve patients. Histone deacetylase inhibitors such as vorinostat can affect chromatin accessibility and further regulate gene expression, and have been used in treating hematological malignancies. Epigenetic therapies have opened new avenues for the precise treatment of autoimmune diseases and offer new opportunities for improved therapeutic outcomes. Our review can aid in comprehensively elucidation of the mechanisms of autoimmune diseases and development of new targeted therapies that ultimately benefit patients with these conditions.
Collapse
Affiliation(s)
- Siqi Mu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Wanrong Wang
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qiuyu Liu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Naiyu Ke
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feiyang Sun
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| |
Collapse
|
6
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
7
|
Chen R, Lin Q, Tang H, Dai X, Jiang L, Cui N, Li X. PD-1 immunology in the kidneys: a growing relationship. Front Immunol 2024; 15:1458209. [PMID: 39507530 PMCID: PMC11537962 DOI: 10.3389/fimmu.2024.1458209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
In recent years, knowledge regarding immune regulation has expanded rapidly, and major advancements have been made in immunotherapy for immune-associated disorders, particularly cancer. The programmed cell death 1 (PD-1) pathway is a cornerstone in immune regulation. It comprises PD-1 and its ligands mediating immune tolerance mechanisms and immune homeostasis. Accumulating evidence demonstrates that the PD-1 axis has a crucial immunosuppressive role in the tumor microenvironment and autoimmune diseases. PD-1 receptors and ligands on immune cells and renal parenchymal cells aid in maintaining immunological homeostasis in the kidneys. Here, we present a comprehensive review of PD-1 immunology in various kidney disorders, including renal cell carcinoma, glomerulonephritis, kidney transplantation, renal aging, and renal immune-related adverse events secondary to PD-1 immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningxun Cui
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Del Carmen Crespo Oliva C, Labrie M, Allard-Chamard H. T peripheral helper (Tph) cells, a marker of immune activation in cancer and autoimmune disorders. Clin Immunol 2024; 266:110325. [PMID: 39067677 DOI: 10.1016/j.clim.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
T peripheral helper (Tph) cells are a newly discovered subtype of CD4+ T cells that have emerged as the counterpart of T follicular helper (Tfh) cells in the peripheral tissues. These two cell types share some common characteristics, such as high levels of PD1 and CXCL13 expression, but differ in the expression of transcription factors and chemokine receptors. Tph cells have been studied in relation to B cells' effector functions, including cytokines production and antibody-mediated immune responses. However, their role in the inflammatory-mediated development of malignancies remains poorly understood. Tph cells were initially identified in the synovium of rheumatoid arthritis patients and have since been found to be expanded in several autoimmune diseases. They have been linked to a worse prognosis in autoimmune conditions, but intriguingly, their presence has been correlated with better outcomes in certain types of cancer. The functions of Tph cells are still being investigated, but recent data suggests their involvement in the assembly of tertiary lymphoid structures (TLS). Furthermore, their interaction with B cells, which have been mainly described as possessing a memory phenotype, promotes their development. In this review, we explore the role of Tph cells in peripheral immune responses during cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Celia Del Carmen Crespo Oliva
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hugues Allard-Chamard
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Rheumatology, Department of Medicine, Faculty of Medicine andd Health Sciences, Université de sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
9
|
Sahyon HA, Alharbi NS, Asad Z, El Shishtawy MA, Derbala SA. Assessment of the Circulating PD-1 and PD-L1 Levels and P53 Expression as a Predictor of Relapse in Pediatric Patients with Wilms Tumor and Hypernephroma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1035. [PMID: 39334568 PMCID: PMC11430274 DOI: 10.3390/children11091035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Background/Objectives: Wilms tumor (WT) is the most common form of pediatric renal tumor, accounting for over 90% of cases followed by hypernephroma. Some pediatric patients with WT (10%) experience relapse or metastasis and have poor survival rates. PD-L1 assists cancer cells in escaping damage from the immune system. P53 mutations are found in relapsed WT tumor samples. We hypothesized that testing circulating PD-1 and PD-L1 and P53 expression levels could offer a simple method to predict patient relapse and explore novel treatments for pediatric WTs and hypernephroma. Methods: Flow cytometric detection of cPD-1, cPD-L1, and P53 expression in relapsed and in-remission WT and hypernephroma before and after one year of chemotherapy was performed. Results: Our data shows increased levels of cPD-L1 in relapsed pediatric patients with WT or hypernephroma before and after chemotherapy. There were also slight and significant increases in cPD-1 levels in relapsed groups before chemotherapy. Additionally, we observed significant decreases in P53 expression after one year of chemotherapy in relapsed pediatric patients. Conclusions: Our study found that circulating PD-L1 can be used as a predictor marker for WT and hypernephroma relapse. In conclusion, these circulating markers can assist in monitoring relapse in WT and hypernephroma patients without the need for several biopsies.
Collapse
Affiliation(s)
- Heba A. Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nadaa S. Alharbi
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
- Ministry of Health, Riyadh 12233, Saudi Arabia
| | - Zummar Asad
- Department of Medicine & Surgery, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (N.S.A.); (Z.A.)
| | - Mohamed A. El Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Safaa A. Derbala
- Urology, and Nephrology Center, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
10
|
Abdolmaleki S, Ganjalikhani hakemi M, Ganjalikhany MR. An in silico investigation on the binding site preference of PD-1 and PD-L1 for designing antibodies for targeted cancer therapy. PLoS One 2024; 19:e0304270. [PMID: 39052609 PMCID: PMC11271968 DOI: 10.1371/journal.pone.0304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer control and treatment remain a significant challenge in cancer therapy and recently immune checkpoints has considered as a novel treatment strategy to develop anti-cancer drugs. Many cancer types use the immune checkpoints and its ligand, PD-1/PD-L1 pathway, to evade detection and destruction by the immune system, which is associated with altered effector function of PD-1 and PD-L1 overexpression on cancer cells to deactivate T cells. In recent years, mAbs have been employed to block immune checkpoints, therefore normalization of the anti-tumor response has enabled the scientists to develop novel biopharmaceuticals. In vivo affinity maturation of antibodies in targeted therapy has sometimes failed, and current experimental methods cannot accommodate the accurate structural details of protein-protein interactions. Therefore, determining favorable binding sites on the protein surface for modulator design of these interactions is a major challenge. In this study, we used the in silico methods to identify favorable binding sites on the PD-1 and PD-L1 and to optimize mAb variants on a large scale. At first, all the binding areas on PD-1 and PD-L1 have been identified. Then, using the RosettaDesign protocol, thousands of antibodies have been generated for 11 different regions on PD-1 and PD-L1 and then the designs with higher stability, affinity, and shape complementarity were selected. Next, molecular dynamics simulations and MM-PBSA analysis were employed to understand the dynamic, structural features of the complexes and measure the binding affinity of the final designs. Our results suggest that binding sites 1, 3 and 6 on PD-1 and binding sites 9 and 11 on PD-L1 can be regarded as the most appropriate sites for the inhibition of PD-1-PD-L1 interaction by the designed antibodies. This study provides comprehensive information regarding the potential binding epitopes on PD-1 which could be considered as hotspots for designing potential biopharmaceuticals. We also showed that mutations in the CDRs regions will rearrange the interaction pattern between the designed antibodies and targets (PD-1 and PD-L1) with improved affinity to effectively inhibit protein-protein interaction and block the immune checkpoint.
Collapse
Affiliation(s)
- Sarah Abdolmaleki
- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mazdak Ganjalikhani hakemi
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
11
|
Sangani PS, Yazdani S, Khalili-Tanha G, Ghorbani E, Al-Hayawi IS, Fiuji H, Khazaei M, Hassanian SM, Kiani M, Ghayour-Mobarhan M, Ferns GA, Nazari E, Avan A. The therapeutic impact of programmed death - 1 in the treatment of colorectal cancer. Pathol Res Pract 2024; 259:155345. [PMID: 38805760 DOI: 10.1016/j.prp.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is the most common type of newly diagnosed cancer. Metastatic spread and multifactorial chemoresistance have limited the benefits of current therapies. Hence, it is imperative to identify new therapeutic agents to increase treatment efficacy. One of CRC's most promising immunotherapeutic targets is programmed death-1 (PD-1), a cell surface receptor that regulates immune responses. In this paper, we provide an overview of the therapeutic impact of PD-1 in the treatment of CRC. Cancer cells can exploit the PD-1 pathway by upregulating its programmed death-ligand 1 (PD-L1) ligand to evade immune surveillance. The binding of PD-L1 to PD-1 inhibits T cell function, leading to tumor immune escape. PD-1 inhibitors, such as pembrolizumab and nivolumab, block the PD-1/PD-L1 interaction. Clinical trials evaluating PD-1 inhibitors in advanced CRC have shown promising results. In patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) tumors characterized by high mutation rates and increased immunogenicity, PD-1 blockade has demonstrated remarkable efficacy. As a result, pembrolizumab and nivolumab have received accelerated approval by regulatory authorities for the treatment of MSI-H/dMMR metastatic CRC. Additionally, combination approaches, such as combining PD-1 inhibitors with other immunotherapies or targeted agents, are being explored. Despite the success of PD-1 inhibitors in CRC, challenges still exist. Immune-related adverse events can occur and require close monitoring. In conclusion, PD-1 inhibitors have demonstrated significant therapeutic impact, particularly in patients with MSI-H/dMMR tumors.
Collapse
Affiliation(s)
- Pooria Salehi Sangani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Yazdani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamid Fiuji
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - MohammadAli Kiani
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
12
|
Moriyama R, Katsumata Y, Okamoto Y, Harigai M. Upregulation of PD-1 and its ligands and expansion of T peripheral helper cells in the nephritic kidneys of lupus-prone BXSB- Yaa mice. Lupus 2024; 33:816-827. [PMID: 38622764 DOI: 10.1177/09612033241247908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of the programmed cell death protein 1 (PD-1) pathway and T peripheral helper (Tph) cells in the pathogenesis of lupus nephritis using lupus-prone BXSB-Yaa mice. METHODS Male BXSB-Yaa mice and age-matched male C57BL/6 mice were used. The expression of PD-1 and its ligands (programmed cell death 1 ligand-1, PD-L1 and programmed cell death 1 ligand-2, PD-L2) and the phenotypes of kidney-derived cells and splenocytes expressing these molecules were analyzed by immunofluorescence and flow cytometry. RESULTS Nephritis spontaneously developed in 16-week-old but not in 8-week-old BXSB-Yaa or C57BL/6 mice. PD-1 was expressed on CD4+ mononuclear cells (MNCs) that infiltrated the glomeruli of 16-week-old BXSB-Yaa mice. The frequency of CD4+PD-1+CXCR5-ICOS+ kidney-derived Tph cells was higher in 16-week-old than in 8-week-old BXSB-Yaa and C57BL/6 mice, whereas the frequency of CD4+PD-1+CXCR5+ICOS+ kidney-derived T follicular helper (Tfh) cells was not significantly different between the mice. PD-L1 was constitutively expressed in the renal tubules. PD-L2 was expressed in the glomeruli of 16-week-old BXSB-Yaa mice. The frequency of PD-L1highCD11c+CD3-CD19- and PD-L2+CD11c+CD3-CD19- kidney-derived MNCs in 16-week-old BXSB-Yaa mice was significantly higher than that of the control mice. The percentage of kidney-derived Tph cells but not Tfh cells was correlated with the urinary protein levels in the nephritic mice. CONCLUSION The results of this study suggest that kidney-infiltrating PD-1+ Tph cells expanded concomitantly with the upregulation of PD-L1 and PD-L2 in the kidneys and the progression of lupus nephritis.
Collapse
Affiliation(s)
- Rina Moriyama
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasuhiro Katsumata
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuko Okamoto
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Masayoshi Harigai
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Wei Y, Zhang Z, Xue T, Lin Z, Chen X, Tian Y, Li Y, Jing Z, Fang W, Fang T, Li B, Chen Q, Lan T, Meng F, Zhang X, Liang X. In Situ Synthesis of an Immune-Checkpoint Blocker from Engineered Bacteria Elicits a Potent Antitumor Response. ACS Synth Biol 2024; 13:1679-1693. [PMID: 38819389 DOI: 10.1021/acssynbio.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Immune-checkpoint blockade (ICB) reinvigorates T cells from exhaustion and potentiates T-cell responses to tumors. However, most patients do not respond to ICB therapy, and only a limited response can be achieved in a "cold" tumor with few infiltrated lymphocytes. Synthetic biology can be used to engineer bacteria as controllable bioreactors to synthesize biotherapeutics in situ. We engineered attenuated Salmonella VNP20009 with synthetic gene circuits to produce PD-1 and Tim-3 scFv to block immunosuppressive receptors on exhausted T cells to reinvigorate their antitumor response. Secreted PD-1 and Tim-3 scFv bound PD-1+ Tim-3+ T cells through their targeting receptors in vitro and potentiated the T-cell secretion of IFN-γ. Engineered bacteria colonized the hypoxic core of the tumor and synthesized PD-1 and Tim-3 scFv in situ, reviving CD4+ T cells and CD8+ T cells to execute an antitumor response. The bacteria also triggered a strong innate immune response, which stimulated the expansion of IFN-γ+ CD4+ T cells within the tumors to induce direct and indirect antitumor immunity.
Collapse
Affiliation(s)
- Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianyuan Xue
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xinyu Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhangyan Jing
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianliang Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Baoqi Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Qi Chen
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xin Liang
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
14
|
Lin J, Wu Y, Liu G, Cui R, Xu Y. Advances of ultrasound in tumor immunotherapy. Int Immunopharmacol 2024; 134:112233. [PMID: 38735256 DOI: 10.1016/j.intimp.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Immunotherapy has become a revolutionary method for treating tumors, offering new hope to cancer patients worldwide. Immunotherapy strategies such as checkpoint inhibitors, chimeric antigen receptor T-cell (CAR-T) therapy, and cancer vaccines have shown significant potential in clinical trials. Despite the promising results, there are still limitations that impede the overall effectiveness of immunotherapy; the response to immunotherapy is uneven, the response rate of patients is still low, and systemic immune toxicity accompanied with tumor cell immune evasion is common. Ultrasound technology has evolved rapidly in recent years and has become a significant player in tumor immunotherapy. The introductions of high intensity focused ultrasound and ultrasound-stimulated microbubbles have opened doors for new therapeutic strategies in the fight against tumor. This paper explores the revolutionary advancements of ultrasound combined with immunotherapy in this particular field.
Collapse
Affiliation(s)
- Jing Lin
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China.
| | - Yuwei Wu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Guangde Liu
- Department of Ultrasound, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, PR China
| | - Rui Cui
- Department of Ultrasonography, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, PR China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China.
| |
Collapse
|
15
|
Mondal S, Saha S, Sur D. Immuno-metabolic reprogramming of T cell: a new frontier for pharmacotherapy of Rheumatoid arthritis. Immunopharmacol Immunotoxicol 2024; 46:330-340. [PMID: 38478467 DOI: 10.1080/08923973.2024.2330636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition characterized by ongoing inflammation primarily affecting the synovial joint. This inflammation typically arises from an increase in immune cells such as neutrophils, macrophages, and T cells (TC). TC is recognized as a major player in RA pathogenesis. The involvement of HLA-DRB1 and PTPN-2 among RA patients confirms the TC involvement in RA. Metabolism of TC is maintained by various other factors like cytokines, mitochondrial proteins & other metabolites. Different TC subtypes utilize different metabolic pathways like glycolysis, oxidative phosphorylation and fatty acid oxidation for their activation from naive TC (T0). Although all subsets of TC are not deleterious for synovium, some subsets of TC are involved in joint repair using their anti-inflammatory properties. Hence artificially reprogramming of TC subset by interfering with their metabolic status poised a hope in future to design new molecules against RA.
Collapse
Affiliation(s)
- Sourav Mondal
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Sarthak Saha
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, India
| |
Collapse
|
16
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
17
|
Ma Y, Yu J, Ma X, Li Q, Su Q, Cao B. Efficacy and adverse events of immune checkpoint inhibitors in esophageal cancer patients: Challenges and perspectives for immunotherapy. Asia Pac J Clin Oncol 2024; 20:180-187. [PMID: 37171038 DOI: 10.1111/ajco.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide. Patients with EC have a generally poor prognosis mainly due to the lack of effective treatments. Cancer immunotherapy is a promising novel treatment option for EC. This literature review investigated the clinical efficacy of immunotherapy either alone or in combination with chemotherapy or targeted therapy. In addition, we analyzed the adverse events associated with immune checkpoint inhibitors (ICIs). In conclusion, ICIs increase the efficacy of EC treatments, thereby improving the outcomes of EC patients. The findings of this study may help enhance the response to immunotherapy, diminish toxicity, and thus eventually improve medical care for patients with EC.
Collapse
Affiliation(s)
- Yingjie Ma
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Junxian Yu
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaoting Ma
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qin Li
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qiang Su
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Bangwei Cao
- Department of Oncology, Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
18
|
Hou K, Xu X, Ge X, Jiang J, Ouyang F. Blockade of PD-1 and CTLA-4: A potent immunotherapeutic approach for hepatocellular carcinoma. Biofactors 2024; 50:250-265. [PMID: 37921427 DOI: 10.1002/biof.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 11/04/2023]
Abstract
Immune checkpoints (ICPs) can promote tumor growth and prevent immunity-induced cancer cell apoptosis. Fortunately, targeting ICPs, such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4), has achieved great success in the past few years and has gradually become an effective treatment for cancers, including hepatocellular carcinoma (HCC). However, many patients do not respond to ICP therapy due to acquired resistance and recurrence. Therefore, clarifying the specific mechanisms of ICP in the development of HCC is very important for enhancing the efficacy of anti-PD-1 and anti-CTLA-4 therapy. In particular, antigen presentation and interferon-γ (IFN-γ) signaling were reported to be involved in the development of resistance. In this review, we have explained the role and regulatory mechanisms of ICP therapy in HCC pathology. Moreover, we have also elaborated on combinations of ICP inhibitors and other treatments to enhance the antitumor effect. Collectively, recent advances in the pharmacological targeting of ICPs provide insights for the development of a novel alternative treatment for HCC.
Collapse
Affiliation(s)
- Kai Hou
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xiaohui Xu
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Xin Ge
- Clinical Research Center of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Jiacen Jiang
- Department of Medicine of the Second Affiliated Hospital, University of South China, Hengyang, Hunan, PR China
| | - Fan Ouyang
- Department of Cardiology, Zhuzhou Hospital, the Affiliated Hospital of Xiangya Medical College of Central South University, Zhuzhou, Hunan, PR China
| |
Collapse
|
19
|
Cheng Y, Song Z, Chen J, Tang Z, Wang B. Molecular basis, potential biomarkers, and future prospects of OSCC and PD-1/PD-L1 related immunotherapy methods. Heliyon 2024; 10:e25895. [PMID: 38380036 PMCID: PMC10877294 DOI: 10.1016/j.heliyon.2024.e25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) affects a large number of individuals worldwide. Despite advancements in surgery, radiation, and chemotherapy, satisfactory outcomes have not been achieved. In recent years, the success of drugs targeting programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has led to breakthroughs in cancer treatment, but systematic summaries on their effectiveness against OSCC are lacking. This article reviews the latest research on the PD-1/PD-L1 pathway and the potential of combination therapy based on this pathway in OSCC. Further, it explores the mechanisms involved in the interaction of this pathway with exosomes and protein-protein interactions, and concludes with potential future OSCC therapeutic strategies.
Collapse
Affiliation(s)
- Yuxi Cheng
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Zhengzheng Song
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Juan Chen
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| | - Baisheng Wang
- Xiangya Stomatological Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Stomatology, Central South University, Changsha, 410008, China
- Clinical Research Center of Oral Major Diseases and Oral Health, 410008, Hunan, China
| |
Collapse
|
20
|
Tang F, Deng M, Xu C, Yang R, Ji X, Hao M, Wang Y, Tian M, Geng Y, Miao J. Unraveling the microbial puzzle: exploring the intricate role of gut microbiota in endometriosis pathogenesis. Front Cell Infect Microbiol 2024; 14:1328419. [PMID: 38435309 PMCID: PMC10904627 DOI: 10.3389/fcimb.2024.1328419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Endometriosis (EMs) is a prevalent gynecological disorder characterized by the growth of uterine tissue outside the uterine cavity, causing debilitating symptoms and infertility. Despite its prevalence, the exact mechanisms behind EMs development remain incompletely understood. This article presents a comprehensive overview of the relationship between gut microbiota imbalance and EMs pathogenesis. Recent research indicates that gut microbiota plays a pivotal role in various aspects of EMs, including immune regulation, generation of inflammatory factors, angiopoietin release, hormonal regulation, and endotoxin production. Dysbiosis of gut microbiota can disrupt immune responses, leading to inflammation and impaired immune clearance of endometrial fragments, resulting in the development of endometriotic lesions. The dysregulated microbiota can contribute to the release of lipopolysaccharide (LPS), triggering chronic inflammation and promoting ectopic endometrial adhesion, invasion, and angiogenesis. Furthermore, gut microbiota involvement in estrogen metabolism affects estrogen levels, which are directly related to EMs development. The review also highlights the potential of gut microbiota as a diagnostic tool and therapeutic target for EMs. Interventions such as fecal microbiota transplantation (FMT) and the use of gut microbiota preparations have demonstrated promising effects in reducing EMs symptoms. Despite the progress made, further research is needed to unravel the intricate interactions between gut microbiota and EMs, paving the way for more effective prevention and treatment strategies for this challenging condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
21
|
Tamari K, Minami K, Tatekawa S, Seo Y, Fukusumi T, Tanaka H, Suzuki M, Eguchi H, Takenaka Y, Hirata T, Hayashi K, Isohashi F, Shimizu S, Koizumi M, Inohara H, Ogawa K. Circulating Plasma Exosomal PD-L1 Predicts Prognosis of Head and Neck Squamous Cell Carcinoma After Radiation Therapy. Adv Radiat Oncol 2024; 9:101353. [PMID: 38405303 PMCID: PMC10885579 DOI: 10.1016/j.adro.2023.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose Radiation therapy is widely used to treat head and neck squamous cell carcinoma (HNSCC). This study evaluated the association between circulating plasma programmed death-ligand 1 (PD-L1) and the outcomes of patients with HNSCC after radiation therapy. Methods and Materials In this retrospective observational study, plasma samples of 76 patients with HNSCC who underwent radiation therapy from June 2019 to August 2021 were analyzed. These plasma samples were obtained before radiation therapy. The median follow-up was 32.5 months. Total and exosomal PD-L1 was measured by enzyme-linked immunosorbent assay and retrospectively analyzed for association with overall survival (OS), progression-free survival (PFS), and local control (LC). Prognostic factors among patients' characteristics and circulating PD-L1 in plasma were evaluated by univariate (log-rank test) and multivariate (Cox proportional hazards model) analyses. Results The median concentration of total PD-L1 in plasma was 115.1 pg/mL (95% CI, 114.7-137.9 pg/mL), and the median concentration of exosomal PD-L1 was 2.8 pg/mL (95% CI, 6.0-13.0 pg/mL). Univariate and multivariate analyses showed exosomal PD-L1 as a prognostic factor for PFS and LC. Patients with high exosomal PD-L1 in plasma had poor PFS and LC compared with those with low exosomal PD-L1, indicating that 1-year PFS was 79.2% versus 33.3% (P < .001) and 1-year LC was 87.3% versus 50.0% (P < .001) in patients with high and low exosomal PD-L1, respectively. However, exosomal PD-L1 in plasma had no significant effect on OS. Total PD-L1 in plasma did not correlate with PFS, LC, and OS. Conclusions The pretreatment circulating exosomal PD-L1 in plasma of patients with HNSCC was a prognostic factor after radiation therapy.
Collapse
Affiliation(s)
- Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuji Seo
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidenori Tanaka
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Motoyuki Suzuki
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hirotaka Eguchi
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yukinori Takenaka
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takero Hirata
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology–Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
22
|
Liu J, Shao X, Fan J, Wang Y, Cao Y, Tan G, Sugimoto K, Li B, Jia Z. Association of plasma sPD-1 and sPD-L1 with disease status and future relapse in AQP4-IgG (+) NMOSD. Ann Clin Transl Neurol 2024; 11:436-449. [PMID: 38069466 PMCID: PMC10863926 DOI: 10.1002/acn3.51964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated disorder with aquaporin 4-immunoglobulin G (AQP4-IgG) in most settings. Soluble programmed death-1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) play key roles in immunomodulation. We aim to assess the association of sPD-1 and sPD-L1 with cytokines and their clinical significance in AQP4-IgG (+) NMOSD. METHOD We measured plasma sPD-1, sPD-L1, and 10 cytokines levels of 66 AQP4-IgG (+) NMOSD patients, including 40 patients in attack (attack-NMOSD) and 26 patients in remission (remission-NMOSD) phases, and 28 healthy controls through ultrasensitive Simoa and SP-X platform, respectively. We also performed >2 years (median) of follow-up after testing and analyzed the relationship between the detection index and current and future clinical parameters. RESULT Plasma sPD-1 level discriminated attack-NMOSD from remission-NMOSD (AUC = 0.692, p = 0.009). sPD-1 and sPD-L1 levels positively correlated with IL-6 (rsPD-1 = 0.313; rsPD-L1 = 0.508), IFN-γ (rsPD-1 = 0.331; rsPD-L1 = 0.456), and TNF-α (rsPD-1 = 0.451; rsPD-L1 = 0.531) expression, as well as clinical indicators, including the EDSS score (rsPD-1 = 0.331; rsPD-L1 = 0.402), number of attacks (rsPD-1 = 0.431) and segments of spinal cord involvement (rsPD-1 = 0.462; rsPD-L1 = 0.508). The risk of relapse within 2 years after sampling was associated with higher sPD-1/sPD-L1 ratio in attack-NMOSD (p = 0.022; Exp(B) = 1.589). INTERPRETATION Plasma sPD-1 and sPD-L1 levels reflected current disease severity and activity, and predicted future relapses in AQP4-IgG (+) NMOSD, suggesting that they hold the potential to guide timely and targeted treatment.
Collapse
Affiliation(s)
- Jia Liu
- Institute for Brain DisordersBeijing University of Chinese MedicineBeijingChina
- Department of Neurology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xi Shao
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Jingya Fan
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ying Wang
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yuanbo Cao
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Guojun Tan
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neurology (Hebei Medical University)Ministry of EducationShijiazhuangChina
- Neurological Laboratory of Hebei ProvinceShijiazhuangChina
| | - Kazuo Sugimoto
- Institute for Brain DisordersBeijing University of Chinese MedicineBeijingChina
- Department of Neurology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Bin Li
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neurology (Hebei Medical University)Ministry of EducationShijiazhuangChina
- Neurological Laboratory of Hebei ProvinceShijiazhuangChina
| | - Zhen Jia
- Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Neurology (Hebei Medical University)Ministry of EducationShijiazhuangChina
- Neurological Laboratory of Hebei ProvinceShijiazhuangChina
| |
Collapse
|
23
|
Tang YY, Xu WD, Fu L, Liu XY, Huang AF. Synergistic effects of BTN3A1, SHP2, CD274, and STAT3 gene polymorphisms on the risk of systemic lupus erythematosus: a multifactorial dimensional reduction analysis. Clin Rheumatol 2024; 43:489-499. [PMID: 37688767 DOI: 10.1007/s10067-023-06765-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus is a complex autoimmune disorder, and evidence supports the significance of genetic polymorphisms in SLE genetic susceptibility. The aim of this study was to assess the effects of BTN3A1 (butyrophilin 3A1), SHP2 (Src homology-2 containing protein tyrosine phosphatase), CD274 (programmed cell death 1 ligand 1), and STAT3 (signal transducer-activator of transcription 3) gene interactions on SLE risk. MATERIALS AND METHODS Two hundred and ninety patients diagnosed with SLE and 370 healthy controls were recruited. A multifactor dimensionality reduction (MDR) approach was used to determine the epistasis among single nucleotide polymorphisms (SNPs) on the BTN3A1 (rs742090), SHP2 (rs58116261), CD174 (rs702275), and STAT3 (rs8078731) genes. The best risk prediction model was identified in terms of precision and cross-validation consistency. RESULTS Allele A and genotype AA were negatively related to genetic susceptibility of SLE for BTN3A1 rs742090 (OR = 0.788 (0.625-0.993), P = 0.044; OR = 0.604 (0.372-0.981), P = 0.040). For STAT3 rs8078731, allele A and genotype AA were positively related to the risk of SLE (OR = 1.307 (1.032-1.654), P = 0.026; OR = 1.752 (1.020-3.010), P = 0.041). MDR analysis revealed the most significant interaction between BTN3A1 rs742090 and SHP2 rs58116261. The best risk prediction model was a combination of BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 (accuracy = 0.5866, consistency = 10/10, OR = 1.9870 (1.5964-2.4731), P = 0.001). CONCLUSION These data indicate that risk prediction models formed by gene interactions (BTN3A1, SHP2, STAT3) can identify susceptible populations of SLE. Key Points • BTN3A1 rs742090 polymorphism was a protective factor for systemic lupus erythematosus, while STAT3 rs8078731 polymorphism was a risk factor. • There was a strong synergistic effect of BTN3A1 rs742090 and SHP2 rs58116261, and interaction among BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 constructed the best model to show association with SLE risk.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
24
|
Chen Z, Yao MW, Ao X, Gong QJ, Yang Y, Liu JX, Lian QZ, Xu X, Zuo LJ. The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells. Chin J Traumatol 2024; 27:1-10. [PMID: 38065706 PMCID: PMC10859298 DOI: 10.1016/j.cjtee.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 02/05/2024] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of Orthopedics, 953 Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, Tibet Autonomous Region, China
| | - Qing-Jia Gong
- College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jin-Xia Liu
- Department of Obstetrics and Gynecology, Chongqing People's Hospital, Chongqing, 401121, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Ling-Jing Zuo
- Department of Nuclear Medicine, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650034, China.
| |
Collapse
|
25
|
Miao K, Zhang L. Pathogenesis, pathological characteristics and individualized therapy for immune-related adverse effects. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:215-222. [PMID: 39171279 PMCID: PMC11332905 DOI: 10.1016/j.pccm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 08/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are a class of antitumor medications that target immune checkpoints, which induce the activation of lymphocytes. These treatments effectively prolong the survival of patients with advanced tumors, especially lung cancer. However, in addition to tumor killing effects, ICIs may also cause an imbalance between immune tolerance and immunity. Over-activated lymphocytes may cause various types of damage to multiple organs throughout the body, called immune-related adverse events. In this review, we summarize the pathogenesis, pathological characteristics, biomarkers, and therapeutic agents for immune-related adverse events.
Collapse
Affiliation(s)
- Kang Miao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100005, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100005, China
| |
Collapse
|
26
|
Mohammed EE, Türkel N, Yigit UM, Dalan AB, Sahin F. Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms. Biol Trace Elem Res 2023; 201:5692-5707. [PMID: 36940038 DOI: 10.1007/s12011-023-03632-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer among women worldwide. Despite the initial clinical response obtained with the widely used conventional chemotherapy, an improved prognosis for breast cancer patients has been missing in the clinic because of the high toxicity to normal cells, induction of drug resistance, and the potential immunosuppressive effects of these agents. Therefore, we aimed to investigate the potential anti-carcinogenic effect of some boron derivatives (sodium pentaborate pentahydrate (SPP) and sodium perborate tetrahydrate (SPT)), which showed a promising effect on some types of cancers in the literature, on breast cancer cell lines, as well as immuno-oncological side effects on tumor-specific T cell activity. These findings suggest that both SPP and SPT suppressed proliferation and induced apoptosis in MCF7 and MDA-MB-231 cancer cell lines through downregulation of the monopolar spindle-one-binder (MOB1) protein. On the other hand, these molecules increased the expression of PD-L1 protein through their effect on the phosphorylation level of Yes-associated protein (Phospho-YAP (Ser127). In addition, they reduced the concentrations of pro-inflammatory cytokines such as IFN-γ and cytolytic effector cytokines such as sFasL, perforin, granzyme A, Granzyme B, and granulysin and increased the expression of PD-1 surface protein in activated T cells. In conclusion, SPP, SPT, and their combination could have growth inhibitory (antiproliferative) effects and could be a potential treatment for breast cancer. However, their stimulatory effects on the PD-1/PD-L1 signaling pathway and their effects on cytokines could ultimately account for the observed repression of the charging of specifically activated effector T cells against breast cancer cells.
Collapse
Affiliation(s)
- Eslam Essam Mohammed
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | - Nezaket Türkel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey
| | | | - Altay Burak Dalan
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Istanbul, 34755, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755, Turkey.
| |
Collapse
|
27
|
Gao X, Wang X, Guan Y, Wang L, Gao Y, Niu J. Soluble immune checkpoints are elevated in patients with primary biliary cholangitis. Eur J Med Res 2023; 28:477. [PMID: 37915081 PMCID: PMC10621234 DOI: 10.1186/s40001-023-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Primary biliary cholangitis (PBC) is a chronically progressive liver disease mediated by an autoimmune response. The aetiology and pathogenesis of PBC are not fully understood and may be related to immune disorders caused by genetic factors and their interaction with environmental factors. Immune checkpoints play an important role in preventing the occurrence of autoimmunity. However, the level of immune checkpoints in PBC has not been reported. Here, we aimed to identify the serum levels of soluble checkpoints in patients with PBC. METHODS Soluble checkpoint levels were evaluated using enzyme-linked immunosorbent assay in 60 patients with PBC and 20 healthy controls (HCs). The expression of immune checkpoints was compared in liver biopsy tissue samples using immunohistochemistry. Receiver operating characteristic (ROC) curves and area under the curve (AUCs) were used to determine the diagnostic performance of soluble checkpoints and laboratory indexes between patients with PBC and HCs and patients with mild and advanced PBC. A logistic regression was performed for advanced PBC. RESULTS sCD134, sLAG-3, sPD-1, sPD-L1, and sTIM-3 levels were significantly increased in patients with PBC compared with those in healthy controls. Additionally, the levels of sCD134, sPD-1, sPD-L1, and sTIM-3 were positively associated with disease progression. Moreover, soluble checkpoints were correlated with immunoglobulin and liver functions. ROC analyses between patients with PBC and HCs showed that the AUCs of sOX40, sPD-1, and sPD-L1 were 0.967, 0.922, and 0.971, respectively. The optimal cut-off values of sOX40, sPD-1, and sPD-L1 for PBC diagnosis were 89.15, 213.4, and 68, respectively. ROC analyses between mild and advanced patients with PBC revealed that the AUCs of sOX40 and sTIM-3 were 0.767 and 0.765, respectively. The optimal cut-off values for predicting PBC stage ≥ III were 199.45 and 361.5, respectively. In univariate analysis, age, ALB, and sOX40 were associated with advanced PBC. Further, the expression of CD134 and TIM-3 was upregulated in the liver of patients with PBC. CONCLUSIONS Our study results indicate that the serum titer of soluble checkpoints is increased in Chinese patients with PBC.
Collapse
Affiliation(s)
- Xiuzhu Gao
- Department of Hepatology, First Hospital of Jilin University, Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, First Hospital of Jilin University, Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yazhe Guan
- Department of Hepatology, First Hospital of Jilin University, Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Liquan Wang
- Jilin Province Occupational Disease Prevention and Treatment Hospital, 2351 Mingxi Road, Changchun, 130052, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital of Jilin University, Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Jilin University, No 71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
28
|
Sebestyén E, Major N, Bodoki L, Makai A, Balogh I, Tóth G, Orosz Z, Árkosy P, Vaskó A, Hodosi K, Szekanecz Z, Szekanecz É. Immune-related adverse events of anti-PD-1 immune checkpoint inhibitors: a single center experience. Front Oncol 2023; 13:1252215. [PMID: 37916172 PMCID: PMC10618004 DOI: 10.3389/fonc.2023.1252215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Objectives Immune checkpoint inhibitors (ICIs) stimulate antitumor immune responses and, in parallel, they might trigger autoimmune and other immunopathological mechanisms eventually leading to immune-related adverse events (irAE). In our study, we assessed patients with malignancies who underwent anti-PD-1 treatment at the University of Debrecen, Clinical Center. Patients and methods Between June 2017 and May 2021, 207 patients started ICI treatment at our university. A total of 157 patients received nivolumab and 50 were treated with pembrolizumab. We looked for factors associated with the development of irAEs. In addition to correlation studies, we performed binary logistic regression analysis to determine, which factors were associated with irAEs. We also performed Forward Likelihood Ratio (LR) analysis to determine independent prognostic factors. Results At the time of data analysis, the mean duration of treatment was 2.03 ± 0.69 years. ROC analysis determined that 9 or more treatment cycles were associated with a significantly higher risk of irAEs. A total of 125 patients received ≥9 treatment cycles. Three times more patients were treated with nivolumab than pembrolizumab. Of the 207 patients, 66 (32%) developed irAEs. Among the 66 patients who developed irAEs, 36 patients (55%) developed one, 23 (35%) developed two, while 7 (10%) developed three irAEs in the same patient. The most common irAEs were thyroid (33 cases), dermatological (25 cases), pneumonia (14 cases) and gastrointestinal complications (13 cases). Patients who developed irAEs received significantly more treatment cycles (21.8 ± 18.7 versus 15.8 ± 17.4; p=0.002) and were younger at the start of treatment (60.7 ± 10.8 versus 63.4 ± 10.1 years; p=0.042) compared to patients without irAEs. Pembrolizumab-treated patients developed more but less severe irAEs compared to those receiving nivolumab. Conclusion ICI treatment is very effective, however, irAEs may develop. These irAEs might be related to the number of treatment cycles and the type of treated malignancy.
Collapse
Affiliation(s)
- Enikő Sebestyén
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Major
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Levente Bodoki
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Makai
- Department Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ingrid Balogh
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Tóth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Orosz
- Department Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Árkosy
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Vaskó
- Department Pulmonology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Hodosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szekanecz
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
29
|
Rezayi M, Hosseini A. Structure of PD1 and its mechanism in the treatment of autoimmune diseases. Cell Biochem Funct 2023; 41:726-737. [PMID: 37475518 DOI: 10.1002/cbf.3827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
PD-1 and CTLA-4 can play an important role in addressing the issue of autoimmune diseases. PD-1 is a transmembrane glycoprotein expressed on T, B, and Dentric cells. This molecule functions as a checkpoint in T cell proliferation. Ligation of PD-1 with its ligands inhibits the production of IL-2, IL-7, IL-10, and IL-12 as well as other cytokines by macrophages, natural killer (NK) cells, and T cells, which can suppress cell proliferation and inflammation. Today, scientists attempt to protect against autoimmune diseases by PD-1 inhibitory signals. In this review, we discuss the structure, expression, and signaling pathway of PD-1. In addition, we discuss the importance of PD-1 in regulating several autoimmune diseases, reflecting how manipulating this molecule can be an effective method in the immunotherapy of some autoimmune diseases.
Collapse
Affiliation(s)
- Mahdi Rezayi
- Department of Medical Sciences, Marand Baranch, Islamic Azad University, Marand, Iran
| | - Arezoo Hosseini
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
31
|
Grudman S, Fajardo JE, Fiser A. Optimal selection of suitable templates in protein interface prediction. Bioinformatics 2023; 39:btad510. [PMID: 37603727 PMCID: PMC10491951 DOI: 10.1093/bioinformatics/btad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
MOTIVATION Molecular-level classification of protein-protein interfaces can greatly assist in functional characterization and rational drug design. The most accurate protein interface predictions rely on finding homologous proteins with known interfaces since most interfaces are conserved within the same protein family. The accuracy of these template-based prediction approaches depends on the correct choice of suitable templates. Choosing the right templates in the immunoglobulin superfamily (IgSF) is challenging because its members share low sequence identity and display a wide range of alternative binding sites despite structural homology. RESULTS We present a new approach to predict protein interfaces. First, template-specific, informative evolutionary profiles are established using a mutual information-based approach. Next, based on the similarity of residue level conservation scores derived from the evolutionary profiles, a query protein is hierarchically clustered with all available template proteins in its superfamily with known interface definitions. Once clustered, a subset of the most closely related templates is selected, and an interface prediction is made. These initial interface predictions are subsequently refined by extensive docking. This method was benchmarked on 51 IgSF proteins and can predict nontrivial interfaces of IgSF proteins with an average and median F-score of 0.64 and 0.78, respectively. We also provide a way to assess the confidence of the results. The average and median F-scores increase to 0.8 and 0.81, respectively, if 27% of low confidence cases and 17% of medium confidence cases are removed. Lastly, we provide residue level interface predictions, protein complexes, and confidence measurements for singletons in the IgSF. AVAILABILITY AND IMPLEMENTATION Source code is freely available at: https://gitlab.com/fiserlab.org/interdct_with_refinement.
Collapse
Affiliation(s)
- Steven Grudman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
32
|
Toledo A, Fragoso G, Carrillo-Mezo R, Romo ML, Sciutto E, Fleury A. Can sPD-1 and sPD-L1 Plasma Concentrations Predict Treatment Response among Patients with Extraparenchymal Neurocysticercosis? Pathogens 2023; 12:1116. [PMID: 37764924 PMCID: PMC10535301 DOI: 10.3390/pathogens12091116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Extraparenchymal neurocysticercosis (EP-NC) is a chronic, potentially life-threatening disease that responds poorly to initial anthelmintic drug therapy. A depressed specific reactivity of peripheral lymphocytes and an increased level of specific Tregs accompanies EP-NC. The immune checkpoint pathway PD-1 and its ligand PD-L1 downregulates effector T cells, causing specific immune suppression in chronic diseases. This study explored whether their soluble forms, sPD-1/sPD-L1, are present in plasma among patients with EP-NC and if their levels could be associated with treatment response. A total of 21 patients with vesicular EP-NC and 22 healthy controls were included. Patients received standard treatment and were followed for six months to assess treatment response by assessing changes in cyst volume determined with 3D MRI. The presence of both sPD-1 and sPD-L1 was more frequently detected among patients with EP-NC than in healthy controls and had higher concentrations. Among patients, higher pre-treatment levels of both markers were associated with a poor treatment response, and the sensitivity and specificity of the sPD-1/sPD-L1 ratio for predicting any response to treatment were high. Our results are consistent with the presence of lymphocyte exhaustion and open new research perspectives to improve the prognosis of patients with this severe disease.
Collapse
Affiliation(s)
- Andrea Toledo
- Unidad de Neuro Inflamación, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Roger Carrillo-Mezo
- Departamento de Neurorradiología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Matthew L Romo
- Department of Epidemiology & Biostatistics, CUNY Graduate School of Public Health and Health Policy, City University of New York, New York, NY 10027, USA
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Agnès Fleury
- Unidad de Neuro Inflamación, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigación Biomédicas, Universidad Nacional Autónoma de México (UNAM)/Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
- Clínica de Neurocisticercosis, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| |
Collapse
|
33
|
Shen R, Li Z, Wu X. The mitotic spindle-related seven-gene predicts the prognosis and immune microenvironment of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:10131-10141. [PMID: 37266661 PMCID: PMC10423164 DOI: 10.1007/s00432-023-04906-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE Abnormalities in the mitotic spindle have been linked to a variety of cancers. Data on their role in the onset, progression, and treatment of lung adenocarcinoma (LUAD) need to be explored. METHODS The data were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Signatures Database (MSigDB), for the training cohort, external validation cohort, and the hallmark mitotic spindle gene set, respectively. Mitotic spindle genes linked to LUAD prognosis were identified and intersected with differentially expressed up-regulated genes in the training cohort. Nomogram prediction models were built based on least absolute shrinkage and selection operator (LASSO) regression, univariate cox, and multivariate cox analyses. The seven-gene immunological score was examined, as well as the correlation of immune checkpoints. The DLGAP5 and KIF15 expression in BEAS-2B, A549, H1299, H1975, and PC-9 cell lines was validated with western blot (WB). RESULTS A total of 965 differentially expressed up-regulated genes in the training cohort intersected with 51 mitotic spindle genes associated with LUAD prognosis. Finally, the seven-gene risk score was determined and integrated with clinical characteristics to construct the nomogram model. Immune cell correlation analysis revealed a negative correlation between seven-gene expression with B cell, endothelial cell (excluding LMNB1), and T cell CD8 + (p < 0.05). However, the seven-gene expression was positively correlated with multiple immune checkpoints (p < 0.05). The expression of DLGAP5 and KIF15 were significantly higher in A549, H1299, H1975, and PC-9 cell lines than that in BEAS-2B cell line. CONCLUSION High expression of the seven genes is positively correlated with poor prognosis of LUAD, and these genes are promising as prospective immunotherapy targets.
Collapse
Affiliation(s)
- Ruxin Shen
- Department of Thoracic Surgery, Affiliated Nantong Hospital of Shanghai University, Nantong, 226000, Jiangsu, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, 266023, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
34
|
Chen Z, Yao MW, Shen ZL, Li SD, Xing W, Guo W, Li Z, Wu XF, Ao LQ, Lu WY, Lian QZ, Xu X, Ao X. Interferon-gamma and tumor necrosis factor-alpha synergistically enhance the immunosuppressive capacity of human umbilical-cord-derived mesenchymal stem cells by increasing PD-L1 expression. World J Stem Cells 2023; 15:787-806. [PMID: 37700823 PMCID: PMC10494569 DOI: 10.4252/wjsc.v15.i8.787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear. AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis. METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis. RESULTS Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice. CONCLUSION Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhi-Lin Shen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shi-Dan Li
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Luo-Quan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wen-Yong Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, The South of Shangcai Village, Wenzhou 325005, Zhejiang Province, China
| | - Qi-Zhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing 400042, China
- Department of Orthopedics, 953 Hospital of PLA Army, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region, China.
| |
Collapse
|
35
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
36
|
Shi W, Zhang Y, Hao C, Guo X, Yang Q, Du J, Hou Y, Cao G, Li J, Wang H, Fang W. The significance of PD-1/PD-L1 imbalance in ulcerative colitis. PeerJ 2023; 11:e15481. [PMID: 37273534 PMCID: PMC10239227 DOI: 10.7717/peerj.15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Objectives To investigate the expression and significance of programmed cell death protein 1 (PD-1) and programmed cell death ligand-1 (PD-L1) in the mucosal tissues and peripheral blood of patients with ulcerative colitis (UC). Methods Eighty patients with UC were recruited from January 2021 to August 2022 from the Shanxi Province People's Hospital. PD-1 and PD-L1 expression was assessed by immunohistochemistry in mucosal tissues. An enzyme-linked immunosorbent assay was used to measure soluble PD-1 and PD-L1 levels in peripheral blood serum, and the membrane-bound forms of PD-1 (mPD-1), (T-helper cell) Th1 and Th17, in peripheral blood were determined by flow cytometry. Result PD-1 expression was observed only in the monocytes of the mucosal lamina propria of UC patients, while PD-L1 was mainly located in both epithelial cells and monocytes on the cell membrane. The expression level of PD-1/PD-L1 in the monocytes and epithelial cells of mucosal lamina propria increased with disease activity (P < 0.05). The percentages of PD-1/T and PD-1/CD4+T in the peripheral blood of moderate UC patients (PD-1/T 12.83 ± 6.15% and PD-1/CD4+T 19.67 ± 9.95%) and severe UC patients (PD-1/T 14.29 ± 5.71% and PD-1/CD4+T 21.63 ± 11.44%) were higher than in mild UC patients (PD-1/T 8.17 ± 2.80% and PD-1/CD4+T 12.44 ± 4.73%; P < 0.05). There were no significant differences in PD-1/CD8+T cells between mild and severe UC patients (P > 0.05). There was a statistically significant difference in the expression level of sPD-L1 between the UC groups and healthy controls, and the expression level of sPD-L1 increased with disease severity (P < 0.05); however, there was no statistically significant difference in sPD-1 expression levels between the UC groups and healthy controls (P > 0.05). The correlation coefficients between Th1 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.427, 0.589, 0.486, and 0.329, respectively (P < 0.001). The correlation coefficients between Th17 and sPD-L1, PD-1/T, PD-1/CD4+T and PD-1/CD8+T were 0.323, 0.452, 0.320, and 0.250, respectively (P < 0.05). Conclusion The expression level of PD-1/PD-L1 was correlated with UC disease activity, and two forms of PD-1 and PD-L1 may be used as a potential marker for predicting UC and assessing disease progression in UC patients. PD-1/PD-L1 imbalance was a significant phenomenon of UC immune dysfunction. Future research should focus on two forms of PD-1/PD-L1 signaling molecules to better understand the pathogenesis of UC and to identify potential drug therapies.
Collapse
Affiliation(s)
- Wei Shi
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chonghua Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Guo
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Qin Yang
- Department of Pathology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Junfang Du
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yabin Hou
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Gaigai Cao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jingru Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Haijiao Wang
- Shanxi Center for Disease Control and Prevention, Taiyuan, China
| | - Wei Fang
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan, China
| |
Collapse
|
37
|
Li Y, Tan R, Li R, Tian R, Liu Z, Wang X, Chen E, Pan T, Qu H. PKM2/STAT1-mediated PD-L1 upregulation on neutrophils during sepsis promotes neutrophil organ accumulation by serving an anti-apoptotic role. J Inflamm (Lond) 2023; 20:16. [PMID: 37131151 PMCID: PMC10155438 DOI: 10.1186/s12950-023-00341-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Delayed neutrophil apoptosis during sepsis may impact neutrophil organ accumulation and tissue immune homeostasis. Elucidating the mechanisms underlying neutrophil apoptosis may help identify potential therapeutic targets. Glycolysis is critical to neutrophil activities during sepsis. However, the precise mechanisms through which glycolysis regulates neutrophil physiology remain under-explored, especially those involving the non-metabolic functions of glycolytic enzymes. In the present study, the impact of programmed death ligand-1 (PD-L1) on neutrophil apoptosis was explored. The regulatory effect of the glycolytic enzyme, pyruvate kinase M2 (PKM2), whose role in septic neutrophils remains unaddressed, on neutrophil PD-L1 expression was also explored. METHODS Peripheral blood neutrophils were isolated from patients with sepsis and healthy controls. PD-L1 and PKM2 levels were determined by flow cytometry and Western blotting, respectively. Dimethyl sulfoxide (DMSO)-differentiated HL-60 cells were stimulated with lipopolysaccharide (LPS) as an in vitro simulation of septic neutrophils. Cell apoptosis was assessed by annexin V/propidium iodide (annexin V/PI) staining, as well as determination of protein levels of cleaved caspase-3 and myeloid cell leukemia-1 (Mcl-1) by Western blotting. An in vivo model of sepsis was constructed by intraperitoneal injection of LPS (5 mg/kg) for 16 h. Pulmonary and hepatic neutrophil infiltration was assessed by flow cytometry or immunohistochemistry. RESULTS PD-L1 level was elevated on neutrophils under septic conditions. Administration of neutralizing antibodies against PD-L1 partially reversed the inhibitory effect of LPS on neutrophil apoptosis. Neutrophil infiltration into the lung and liver was also reduced in PD-L1-/- mice 16 h after sepsis induction. PKM2 was upregulated in septic neutrophils and promoted neutrophil PD-L1 expression both in vitro and in vivo. In addition, PKM2 nuclear translocation was increased after LPS stimulation, which promoted PD-L1 expression by directly interacting with and activating signal transducer and activator of transcription 1 (STAT1). Inhibition of PKM2 activity or STAT1 activation also led to increased neutrophil apoptosis. CONCLUSION In this study, a PKM2/STAT1-mediated upregulation of PD-L1 on neutrophils and the anti-apoptotic effect of upregulated PD-L1 on neutrophils during sepsis were identified, which may result in increased pulmonary and hepatic neutrophil accumulation. These findings suggest that PKM2 and PD-L1 could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
38
|
Chiu CY, Schou MD, McMahon JH, Deeks SG, Fromentin R, Chomont N, Wykes MN, Rasmussen TA, Lewin SR. Soluble immune checkpoints as correlates for HIV persistence and T cell function in people with HIV on antiretroviral therapy. Front Immunol 2023; 14:1123342. [PMID: 37056754 PMCID: PMC10086427 DOI: 10.3389/fimmu.2023.1123342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction In people with HIV (PWH) both off and on antiretroviral therapy (ART), the expression of immune checkpoint (IC) proteins is elevated on the surface of total and HIV-specific T-cells, indicating T-cell exhaustion. Soluble IC proteins and their ligands can also be detected in plasma, but have not been systematically examined in PWH. Since T-cell exhaustion is associated with HIV persistence on ART, we aimed to determine if soluble IC proteins and their ligands also correlated with the size of the HIV reservoir and HIV-specific T-cell function. Methods We used multiplex bead-based immunoassay to quantify soluble programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin domain and mucin domain 3 (TIM-3), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2) in plasma from PWH off ART (n=20), on suppressive ART (n=75) and uninfected controls (n=20). We also quantified expression of membrane-bound IC and frequencies of functional T-cells to Gag and Nef peptide stimulation on CD4+ and CD8+ T-cells using flow cytometry. The HIV reservoir was quantified in circulating CD4+ T-cells using qPCR for total and integrated HIV DNA, cell-associated unspliced HIV RNA and 2LTR circles. Results Soluble (s) PD-L2 level was higher in PWH off and on ART compared to uninfected controls. Higher levels of sPD-L2 correlated with lower levels of HIV total DNA and higher frequencies of gag-specific CD8+ T-cells expressing CD107a, IFNγ or TNFα. In contrast, the concentration of sLAG-3 was similar in uninfected individuals and PWH on ART, but was significantly elevated in PWH off ART. Higher levels of sLAG-3 correlated with higher levels of HIV total and integrated DNA, and lower frequency of gag-specific CD4+ T cells expressing CD107a. Similar to sLAG-3, levels of sPD-1 were elevated in PWH off ART and normalized in PWH on ART. sPD-1 was positively correlated with the frequency of gag-specific CD4+ T cells expressing TNF-a and the expression of membrane-bound PD-1 on total CD8+ T-cells in PWH on ART. Discussion Plasma soluble IC proteins and their ligands correlate with markers of the HIV reservoir and HIV-specific T-cell function and should be investigated further in in large population-based studies of the HIV reservoir or cure interventions in PWH on ART.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maya D. Schou
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
| | - Steven G. Deeks
- Department of Medicine, University California San Francisco, San Francisco, CA, United States
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Johnson J, Kim SY, Sam PK, Asokan R, Cari EL, Bales ES, Luu TH, Perez L, Kallen AN, Nel-Themaat L, Polotsky AJ, Post MD, Orlicky DJ, Jordan KR, Bitler BG. Expression and T cell regulatory action of the PD-1 immune checkpoint in the ovary and fallopian tube. Am J Reprod Immunol 2023; 89:e13649. [PMID: 36394352 PMCID: PMC10559227 DOI: 10.1111/aji.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM Immune cell trafficking and surveillance within the ovary and fallopian tube are thought to impact fertility and also tumorigenesis in those organs. However, little is known of how native cells of the ovary and fallopian tube interact with resident immune cells. Interaction of the Programmed Cell Death Protein-1 (PD-1/PDCD-1/CD279) checkpoint with PD-L1 is associated with downregulated immune response. We have begun to address the question of whether PD-1 ligand or its receptors (PD-L1/-L2) can regulate immune cell function in these tissues of the female reproductive tract. METHOD OF STUDY PD-1 and ligand protein expression was evaluated in human ovary and fallopian tube specimens, the latter of which included stages of tubal cell transformation and early tumorigenesis. Ovarian expression analysis included the determination of the proteins in human follicular fluid (HFF) specimens collected during in vitro fertilization procedures. Finally, checkpoint bioactivity of HFF was determined by treatment of separately-isolated human T cells and the measurement of interferon gamma (IFNγ). RESULTS We show that membrane bound and soluble variants of PD-1 and ligands are expressed by permanent constituent cell types of the human ovary and fallopian tube, including granulosa cells and oocytes. PD-1 and soluble ligands were present in HFF at bioactive levels that control T cell PD-1 activation and IFNγ production; full-length checkpoint proteins were found to be highly enriched in HFF exosome fractions. CONCLUSION The detection of PD-1 checkpoint proteins in the human ovary and fallopian tube suggests that the pathway is involved in immunomodulation during folliculogenesis, the window of ovulation, and subsequent egg and embryo immune-privilege. Immunomodulatory action of receptor and ligands in HFF exosomes is suggestive of an acute checkpoint role during ovulation. This is the first study in the role of PD-1 checkpoint proteins in human tubo-ovarian specimens and the first examination of its potential regulatory action in the contexts of normal and assisted reproduction.
Collapse
Affiliation(s)
- Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Rengasamy Asokan
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Evelyn Llerena Cari
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - Elise S. Bales
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Thanh-Ha Luu
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | | | | | - Liesl Nel-Themaat
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Alex J. Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Miriam D. Post
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - David J. Orlicky
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Human Immunology and Immunotherapy Initiative, Human Immune Monitoring Shared Resource, RC1-North, 8113, Aurora, Colorado 80045
| | - Benjamin G. Bitler
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| |
Collapse
|
40
|
Rogé M, Pointreau Y, Sargos P, Meyer E, Schick U, Hasbini A, Rio E, Bera G, Ruffier A, Quivrin M, Chasseray M, Latorzeff I, Martin E, Guimas V, Pommier P, Leroy T, Ronchin P, Lepinoy A, Grand A, Cartier L, Didas O, Denis F, Libois V, Blanc-Lapierre A, Supiot S. Randomized phase II trial in Prostate cancer with hormone-sensitive OligometaSTatic relapse: Combining stereotactic Ablative Radiotherapy and Durvalumab (POSTCARD GETUG P13): study protocol. Clin Transl Radiat Oncol 2023; 40:100613. [PMID: 36968576 PMCID: PMC10034400 DOI: 10.1016/j.ctro.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Background As in other solid tumors, increasing evidence indicates that patients diagnosed with a limited number of prostate cancer metastases, so-called oligometastases, have a better prognosis than patients with extensive metastatic disease. Stereotactic body radiotherapy (SBRT) is now considered an option in this population.Programmed death-1 (PD-1) and its ligands (PD-L1) are targeted by immune checkpoint inhibitors. Preclinical studies have shown that the tumor immune microenvironment changes when combining radiotherapy with immunotherapy, especially with hypofractionated radiotherapy.The oligometastatic setting appears to be the most relevant clinical situation for evaluating the immune response generated by radiotherapy and immune checkpoint inhibitors in patients with an intact immune system.We hypothesize that durvalumab will enhance the immune response following SBRT targeting oligometastatic lesions. Our purpose is to demonstrate, via a randomized 2:1 phase II trial, that SBRT (3 fractions) with durvalumab in oligometastatic hormone-sensitive prostate cancer patients would improve progression-free survival in patients with prostate cancer with up to 5 metastases compared to patients who exclusively received SBRT. Methods This is a multicentric randomized phase II study in French academic hospitals. Patients with prostate cancer and up to 5 metastases (lymph node and/or bone) were randomized into a 2:1 ratio between Arm A (experimental group), corresponding to durvalumab and SBRT to the metastases, and Arm B (control group), corresponding to SBRT alone to the metastases. The study aims to accrue a total of 96 patients within 3 years. The primary endpoint is two-year progression-free survival and secondary endpoints include androgen deprivation therapy-free survival, quality of life, toxicity, prostate cancer specific survival, overall survival, and immune response. Discussion The expected benefit for the patients in the experimental arm is longer life expectancy with acceptable toxicity. We also expect our study to provide data for better understanding the synergy between immunotherapy and radiotherapy in oligometastatic prostate cancer.
Collapse
Affiliation(s)
- Maximilien Rogé
- Department of Radiation Oncology, Centre Henri Becquerel, 1 rue d’Amiens, 76000 Rouen, France
- Corresponding author.
| | - Yoann Pointreau
- Department of Radiation Oncology, Centre Jean Bernard, 9 Rue Beauverger, 72100 Le Mans, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, 229 Cr de l'Argonne, 33076 Bordeaux, France
| | - Emmanuel Meyer
- Department of Radiation Oncology, Centre François Baclesse, 3 Av. du General Harris, 14000 Caen, France
| | - Ulrike Schick
- Department of Radiation Oncology, University Hospital Morvan, 2 avenue Foch, 29200 Brest, France
| | - Ali Hasbini
- Department of Radiation Oncology, Clinique Pasteur, 32 Rue Auguste Kervern, 29200 Brest, France
| | - Emmanuel Rio
- Department of Radiation Oncology, Centre Henri Becquerel, 1 rue d’Amiens, 76000 Rouen, France
| | - Guillaume Bera
- Department of Radiation Oncology, Centre Hospitalier de Bretagne Sud, 5 avenue de Choiseul, 56322 Lorient, France
| | - Amandine Ruffier
- Department of Radiation Oncology, Centre Jean Bernard, 9 Rue Beauverger, 72100 Le Mans, France
| | - Magali Quivrin
- Department of Radiation Oncology, Georges-François Leclerc Cancer Centre-UNICANCER, 1 Rue Professeur Marion, 21000 Dijon, France
| | - Mathieu Chasseray
- Department of Radiation Oncology, University Hospital Morvan, 2 avenue Foch, 29200 Brest, France
| | - Igor Latorzeff
- Department of Radiation Oncology, Oncorad Clinique Pasteur, 1, rue de la Petite Vitesse, 31 000 Toulouse, France
| | - Etienne Martin
- Department of Radiation Oncology, Georges-François Leclerc Cancer Centre-UNICANCER, 1 Rue Professeur Marion, 21000 Dijon, France
| | - Valentine Guimas
- Department of Radiation Oncology, Centre Henri Becquerel, 1 rue d’Amiens, 76000 Rouen, France
| | - Pascal Pommier
- Department of Radiation Oncology, Centre Léon Bérard, 28 Prom. Léa et Napoléon Bullukian, 69008 Lyon, France
| | - Thomas Leroy
- Department of Radiation Oncology, Clinique des Dentellières, 8 av Vauban, 59300 Valenciennes, France
| | - Philippe Ronchin
- Department of Radiation Oncology, Centre Azureen de Cancerologie, 1 Place Docteur Jean Luc Broquerie, 06250 Mougins, France
| | - Alexis Lepinoy
- Department of Radiation Oncology, Bourgogne Institute of Oncology, 18 Cr General de Gaulle, 21000 Dijon, France
| | - Audrey Grand
- Department of Radiation Oncology Center Hospitalier Lyon Sud, 165 Chem. du Grand Revoyet, 69495 Pierre-Bénite, France
| | - Lysian Cartier
- Department of Radiation Oncology, Institut Sainte Catherine, 250 Chem. de Baigne Pieds, 84918 Avignon, France
| | - Ossama Didas
- Department of Radiation Oncology, Hôpital Bretonneau, CHU de Tours, 2, boulevard Tonnellé, 37044 Tours, France
| | - Fabrice Denis
- Department of Radiation Oncology, Centre Jean Bernard, 9 Rue Beauverger, 72100 Le Mans, France
| | - Vincent Libois
- Department of Radiation Oncology, Centre Henri Becquerel, 1 rue d’Amiens, 76000 Rouen, France
| | - Audrey Blanc-Lapierre
- Department of Biostatistics, Institut de Cancérologie de l'Ouest, Bd Professeur Jacques Monod, 44800 Saint Herblain, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Centre Henri Becquerel, 1 rue d’Amiens, 76000 Rouen, France
| |
Collapse
|
41
|
Watanabe T, Yamaguchi Y. Cutaneous manifestations associated with immune checkpoint inhibitors. Front Immunol 2023; 14:1071983. [PMID: 36891313 PMCID: PMC9986601 DOI: 10.3389/fimmu.2023.1071983] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that block key mediators of tumor-mediated immune evasion. The frequency of its use has increased rapidly and has extended to numerous cancers. ICIs target immune checkpoint molecules, such as programmed cell death protein 1 (PD-1), PD ligand 1 (PD-L1), and T cell activation, including cytotoxic T-lymphocyte-associated protein-4 (CTLA-4). However, ICI-driven alterations in the immune system can induce various immune-related adverse events (irAEs) that affect multiple organs. Among these, cutaneous irAEs are the most common and often the first to develop. Skin manifestations are characterized by a wide range of phenotypes, including maculopapular rash, psoriasiform eruption, lichen planus-like eruption, pruritus, vitiligo-like depigmentation, bullous diseases, alopecia, and Stevens-Johnson syndrome/toxic epidermal necrolysis. In terms of pathogenesis, the mechanism of cutaneous irAEs remains unclear. Still, several hypotheses have been proposed, including activation of T cells against common antigens in normal tissues and tumor cells, increased release of proinflammatory cytokines associated with immune-related effects in specific tissues/organs, association with specific human leukocyte antigen variants and organ-specific irAEs, and acceleration of concurrent medication-induced drug eruptions. Based on recent literature, this review provides an overview of each ICI-induced skin manifestation and epidemiology and focuses on the mechanisms underlying cutaneous irAEs.
Collapse
Affiliation(s)
| | - Yukie Yamaguchi
- Department of Environmental Immuno-Dermatology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
42
|
Role of soluble forms of follicular helper T-cell membrane molecules in the pathogenesis of myasthenia gravis. J Neuroimmunol 2023; 375:578014. [PMID: 36621075 DOI: 10.1016/j.jneuroim.2022.578014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
This study examined the role of Tfh and Treg associated molecules also known as checkpoint molecules, their ligands, and IL-21 in myasthenia gravis (MG) pathogenesis. Serum levels of sPD-1, sPD-L1, sICOS, sICOSLG, sCTLA4, and IL-21 were measured in 39 patients with acetylcholine receptor (AChR) antibody-positive generalized MG and 27 controls. sPD-1 and IL-21 levels were higher in MG patients than in controls. Additionally, sPD-1 levels correlated positively with the levels of IL-21, sICOSLG, sCTLA4, and AChR antibody titers. sICOS are correlated with MGADL and AChR antibody titers. These Tfh associated molecules could be used as biomarkers of MG disease activity.
Collapse
|
43
|
DNA methylation and transcriptome signatures of the PDCD1 gene in ankylosing spondylitis. Genes Immun 2023; 24:46-51. [PMID: 36707702 DOI: 10.1038/s41435-023-00196-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune-related inflammatory arthritis. The association between the DNA methylation and mRNA expression of PDCD1 gene with the susceptibility to AS remains unclear. In this case-control study, the methylation level of PDCD1 promoter was detected in 80 AS patients and 80 healthy controls by MethylTarget method. The transcriptional level of PDCD1 gene was measured in 47 AS patients and 47 healthy controls by real-time quantitative PCR. Finally, 17 methylation sites mapped to one CpG island were detected. Compared to healthy controls, the promoter of PDCD1 was hypermethylated (p < 0.001) and the mRNA expression was downregulated (p < 0.001) in AS patients. Significantly negative correlation was identified between the DNA methylation and mRNA expression of PDCD1 gene (rs = -0.470, p < 0.001). The receiver operating characteristic (ROC) results showed that PDCD1 island had a sensitivity of 61.3% and a specificity of 82.5%, and PDCD1 mRNA had a sensitivity of 87.2% and a specificity of 89.0%. The methylation level of PDCD1 was positively correlated with the ESR, CRP and ASDAS of AS, and was not affected by HLA-B27 status, gender or medicine intake.
Collapse
|
44
|
Topp MS, Eradat H, Florschütz A, Hochhaus A, Wrobel T, Walewski J, Knopinska-Posluszny W, Kanate AS, Lech-Maranda E, Brunnberg U, Chitra S, Nielsen TG, Sellam G, Shivhare M, Lossos IS. Anti-CD20-atezolizumab-polatuzumab vedotin in relapsed/refractory follicular and diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2023; 149:811-817. [PMID: 35182224 PMCID: PMC9931830 DOI: 10.1007/s00432-021-03847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/30/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE New therapies are needed for relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma. This phase 1b, open-label trial evaluated two anti-CD20-based triplet combinations. METHODS Patients with R/R follicular lymphoma (FL; n = 13) were treated with obinutuzumab, atezolizumab, and polatuzumab vedotin (G-atezo-pola; 1.4 mg/kg/1.8 mg/kg) and patients with R/R diffuse large B-cell lymphoma (DLBCL; n = 23) received rituximab (R)-atezo-pola. The primary efficacy endpoint was complete response (CR) at end of induction (EOI) by PET-CT (investigator assessed; modified Lugano 2014 criteria). Safety endpoints were also assessed. RESULTS 13 FL patients were treated and evaluable for safety; 2/23 DLBCL patients did not receive treatment and were not included in the safety population. Median observation time was 23.3 and 5.7 months in the FL and DLBCL cohorts, respectively. At EOI, CR rates in FL patients treated with G-atezo-pola at pola doses of 1.4 mg/kg (N = 3) and 1.8 mg/kg (N = 7) were 33% and 14%, respectively. In DLBCL patients receiving R-atezo-pola, the CR rate at EOI was 13%. In the FL cohort, 62% of patients experienced a grade 3-5 adverse event (AE; including two deaths) and 31% developed a serious AE (SAE). In DLBCL patients, R-atezo-pola was associated with a lower incidence of grade 3-5 AEs (24%; one death) and SAEs (10%). In both cohorts, the most common grade 3-5 AEs were hematologic toxicities. CONCLUSION Based on these safety issues, considered as related specifically to G-atezo-pola, and limited efficacy, no further development of either combination is planned. TRIAL REGISTRATION NCT02729896; Date of registration: April 6, 2016.
Collapse
Affiliation(s)
- Max S Topp
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Anstalt des öffentlichen Rechts, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
| | - Herbert Eradat
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Tomasz Wrobel
- Department of Hematology, Wrocław Medical University, Wrocław, Poland
| | - Jan Walewski
- Narodowy Instytut Onkologii im, Marii Skłodowskiej-Curie - Panstwowy Instytut Badawczy, Warsaw, Poland
| | | | | | - Ewa Lech-Maranda
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | | | - Gila Sellam
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Izidore S Lossos
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
45
|
Beesley CF, Goldman NR, Taher TE, Denton CP, Abraham DJ, Mageed RA, Ong VH. Dysregulated B cell function and disease pathogenesis in systemic sclerosis. Front Immunol 2023; 13:999008. [PMID: 36726987 PMCID: PMC9885156 DOI: 10.3389/fimmu.2022.999008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex, immune-mediated rheumatic disease characterised by excessive extracellular matrix deposition in the skin and internal organs. B cell infiltration into lesional sites such as the alveolar interstitium and small blood vessels, alongside the production of defined clinically relevant autoantibodies indicates that B cells play a fundamental role in the pathogenesis and development of SSc. This is supported by B cell and fibroblast coculture experiments revealing that B cells directly enhance collagen and extracellular matrix synthesis in fibroblasts. In addition, B cells from SSc patients produce large amounts of profibrotic cytokines such as IL-6 and TGF-β, which interact with other immune and endothelial cells, promoting the profibrotic loop. Furthermore, total B cell counts are increased in SSc patients compared with healthy donors and specific differences can be found in the content of naïve, memory, transitional and regulatory B cell compartments. B cells from SSc patients also show differential expression of activation markers such as CD19 which may shape interactions with other immune mediators such as T follicular helper cells and dendritic cells. The key role of B cells in SSc is further supported by the therapeutic benefit of B cell depletion with rituximab in some patients. It is notable also that B cell signaling is impaired in SSc patients, and this could underpin the failure to induce tolerance in B cells as has been shown in murine models of scleroderma.
Collapse
Affiliation(s)
- Claire F. Beesley
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Nina R. Goldman
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Taher E. Taher
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Christopher P. Denton
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Rizgar A. Mageed
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Voon H. Ong
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
46
|
Brenu EW, Harris M, Hamilton-Williams EE. Circulating biomarkers during progression to type 1 diabetes: A systematic review. Front Endocrinol (Lausanne) 2023; 14:1117076. [PMID: 36817583 PMCID: PMC9935596 DOI: 10.3389/fendo.2023.1117076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
AIM Progression to type 1 diabetes (T1D) is defined in stages and clinical disease is preceded by a period of silent autoimmunity. Improved prediction of the risk and rate of progression to T1D is needed to reduce the prevalence of diabetic ketoacidosis at presentation as well as for staging participants for clinical trials. This systematic review evaluates novel circulating biomarkers associated with future progression to T1D. METHODS PubMed, Ovid, and EBSCO databases were used to identify a comprehensive list of articles. The eligibility criteria included observational studies that evaluated the usefulness of circulating markers in predicting T1D progression in at-risk subjects <20 years old. RESULTS Twenty-six studies were identified, seventeen were cohort studies and ten were case control studies. From the 26 studies, 5 found evidence for protein and lipid dysregulation, 11 identified molecular markers while 12 reported on changes in immune parameters during progression to T1D. An increased risk of T1D progression was associated with the presence of altered gene expression, immune markers including regulatory T cell dysfunction and higher short-lived effector CD8+ T cells in progressors. DISCUSSION Several circulating biomarkers are dysregulated before T1D diagnosis and may be useful in predicting either the risk or rate of progression to T1D. Further studies are required to validate these biomarkers and assess their predictive accuracy before translation into broader use. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero, identifier (CRD42020166830).
Collapse
Affiliation(s)
- Ekua W. Brenu
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Mark Harris
- Endocrinology Department, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Emma E. Hamilton-Williams
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, Australia
- *Correspondence: Emma E. Hamilton-Williams,
| |
Collapse
|
47
|
Exploring the Dynamic Crosstalk between the Immune System and Genetics in Gastrointestinal Stromal Tumors. Cancers (Basel) 2022; 15:cancers15010216. [PMID: 36612211 PMCID: PMC9818806 DOI: 10.3390/cancers15010216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Gastrointestinal Stromal Tumors (GISTs) represent a paradigmatic model of oncogene addiction. Despite the well-known impact of the mutational status on clinical outcomes, we need to expand our knowledge to other factors that influence behavior heterogeneity in GIST patients. A growing body of studies has revealed that the tumor microenvironment (TME), mostly populated by tumor-associated macrophages (TAMs) and lymphocytes (TILs), and stromal differentiation (SD) have a significant impact on prognosis and response to treatment. Interestingly, even though the current knowledge of the role of immune response in this setting is still limited, recent pre-clinical and clinical data have highlighted the relevance of the TME in GISTs, with possible implications for clinical practice in the near future. Moreover, the expression of immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and their relationship to the clinical phenotype in GIST are emerging as potential prognostic biomarkers. Looking forward, these variables related to the underlying tumoral microenvironment in GIST, though limited to still-ongoing trials, might lead to the potential use of immunotherapy, alone or in combination with targeted therapy, in advanced TKI-refractory GISTs. This review aims to deepen understanding of the potential link between mutational status and the immune microenvironment in GIST.
Collapse
|
48
|
Jin X, Ma X, Zhao D, Yang L, Ma N. Immune microenvironment and therapeutic progress of recurrent hepatocellular carcinoma after liver transplantation. Transl Oncol 2022; 28:101603. [PMID: 36542991 PMCID: PMC9794975 DOI: 10.1016/j.tranon.2022.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
HCC is a highly lethal tumor, and orthotopic liver transplantation, as one of the radical treatment methods for HCC, has opened-up a new therapeutic approach for the treatment of primary liver cancer. However, tumor recurrence after liver transplantation is the main reason that affects the long-term survival of recipients. At present, the application of ICIs has brought dawn to patients with refractory HCC. However, because of the special immune tolerance state created by long-term oral immunosuppressants in patients with HCC after liver transplantation, the current focus is how to regulate the immune balance of such patients and simultaneously maximize the anti-tumor effect. This article reviews the relationship between liver cancer and immunity, immune tolerance of liver transplantation, immune microenvironment after liver transplantation for HCC, and the application of immunotherapy in the recurrence of liver transplantation for HCC.
Collapse
Affiliation(s)
- Xin Jin
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, No.29 Bulan Road, Longgang District, Shenzhen, 518112, Guangdong Province, China
| | - Xiaoting Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Dong Zhao
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, No.29 Bulan Road, Longgang District, Shenzhen, 518112, Guangdong Province, China
| | - Lin Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China,Corresponding authors.
| | - Nan Ma
- Division of Liver Surgery and Organ Transplantation Center, Shenzhen Third People's Hospital, Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Disease, No.29 Bulan Road, Longgang District, Shenzhen, 518112, Guangdong Province, China,Corresponding authors.
| |
Collapse
|
49
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
50
|
Yang Y, Chen Y, Li Y, Feng Y, Hu N, Xue L. Expression and Significance of Programmed Death-1 and Its Ligands in the Accelerated Formation of Atherosclerosis in an Induced Murine Lupus Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6255383. [PMID: 39050559 PMCID: PMC11268968 DOI: 10.1155/2022/6255383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 07/27/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that occurs in artery walls, which seriously affects the survival and prognosis of patients with systemic lupus erythematosus (SLE). Immune and inflammatory responses have notable effects on all stages of AS. In this study, we modeled SLE combined with AS in vivo via intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) into apolipoprotein E-knockout (ApoE-/- ) mice that had accelerated atherosclerotic lesions compared with wild-type (WT) ApoE-/- mice. In pristane-induced ApoE-/- mice, expression of programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in peripheral blood and on the surfaces of atherosclerotic lesions significantly increased, and levels of proinflammatory cytokines, namely, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in peripheral blood were elevated. We did not detect expression of programmed death-ligand 2 (PD-L2) in the arterial plaques of either pristane-induced or WT ApoE-/- mice, nor did we observe any significant difference in PD-L2 expression in peripheral blood between the two groups. Taken together, these results suggested that PD-1/PD-L1 signaling pathway might play an important regulatory role in the progression of AS in an induced murine lupus model which implies a potential target for treatment of AS in SLE.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yueying Chen
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yongming Li
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiyi Feng
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Na Hu
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|