1
|
Yao M, Miao L, Wang X, Han Y. Targeting programmed cell death pathways in gastric cancer: a focus on pyroptosis, apoptosis, necroptosis and PANoptosis. Gene 2025; 960:149546. [PMID: 40334955 DOI: 10.1016/j.gene.2025.149546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/05/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Gastric cancer (GC) is recognized as one of the most prevalent and serious malignancies, distinguished by its high incidence and fatality rates. Given the considerable mortality rate associated with GC, it is imperative to clarify the related pathways of GC development and further identify feasible targets for rational targeted therapy. Accumulating evidence reveals that programmed cell death (PCD) is a crucial element in both the progression and treatment of cancer. Pyroptosis, apoptosis, and necroptosis are three well-studied types of PCD, and a link between them and GC has been established in recent studies. PANoptosis, a comparatively novel type of PCD, shares key traits with pyroptosis, apoptosis, and necroptosis, yet cannot be entirely illustrated by any single model. PANoptosis has been discovered to exert an impact on multiple diseases, including cancer, infections, and inflammatory conditions, consequently offering novel perceptions into the progression and treatment of GC. This review seeks to encapsulate the emerging roles and therapeutic potential of pyroptosis, apoptosis, necroptosis, and PANoptosis in GC, laying the groundwork for the advancement of innovative treatment methods that target important signaling pathways connected with these four forms of PCD.
Collapse
Affiliation(s)
- Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Xin Wang
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China; Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
2
|
Yao J, Li Y, Liu X, Liang W, Li Y, Wu L, Wang Z, Song W. FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression. Neural Regen Res 2025; 20:2068-2083. [PMID: 39254567 PMCID: PMC11691456 DOI: 10.4103/nrr.nrr-d-23-01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/13/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00028/figure1/v/2024-09-09T124005Z/r/image-tiff Alzheimer's disease is characterized by deposition of amyloid-β, which forms extracellular neuritic plaques, and accumulation of hyperphosphorylated tau, which aggregates to form intraneuronal neurofibrillary tangles, in the brain. The NLRP3 inflammasome may play a role in the transition from amyloid-β deposition to tau phosphorylation and aggregation. Because NLRP3 is primarily found in brain microglia, and tau is predominantly located in neurons, it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines. Here, we found that neurons also express NLRP3 in vitro and in vivo, and that neuronal NLRP3 regulates tau phosphorylation. Using biochemical methods, we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons. In primary neurons and the neuroblastoma cell line Neuro2A, FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-β is present. In the brains of aged wild-type mice and a mouse model of Alzheimer's disease, FUBP3 expression was markedly increased in cortical neurons. Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses. We also found that FUBP3 trimmed the 5' end of DNA fragments that it bound, implying that FUBP3 functions in stress-induced responses. These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to-phospho-tau transition than microglial NLRP3, and that amyloid-β fundamentally alters the regulatory mechanism of NLRP3 expression in neurons. Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice, FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Xu W, Ma W, Yue J, Hu Y, Zhang Y, Wang H, Tai S, Chen J, Liang C. Juglone alleviates pelvic pain and prostatic inflammation via inhibiting the activation of NLRP3 inflammasome and alleviating oxidative stress in EAP mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156732. [PMID: 40250034 DOI: 10.1016/j.phymed.2025.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Juglone, a naphthoquinone compound that occurs naturally, is present predominantly in the fruits, leaves, and roots of walnut plants. Although its antioxidant and anti-inflammatory effects have been demonstrated in various diseases, its therapeutic potential remains unexplored in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). PURPOSE Our objective was to investigate the therapeutic effectiveness of juglone in treating CP/CPPS and elucidate the potential mechanism involved. METHODS To establish experimental autoimmune prostatitis (EAP) mouse models and macrophage pyroptosis models, the therapeutic impact of juglone on CP/CPPS was evaluated. Molecular docking analysis, a cellular thermal shift assay (CETSA), and consultation with the Human Protein Atlas database were conducted to further explore the target molecules involved in juglone treatment for CP/CPPS. In addition, we utilized immunohistochemistry, immunofluorescence, Western blotting, and flow cytometry to assess macrophage pyroptosis and related pathway protein expressions. The evaluation of oxidative stress (OxS) was conducted through malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) assays. BzATP, an agonist of the NLRP3 pyroptosis pathway, was utilized for recovery experiments both in vitro and in vivo. RESULTS Administration of juglone to EAP model mice ameliorated prostatic inflammation, reduced pain symptoms, and decreased proinflammatory cytokine levels. Molecular docking analysis and CETSA, in conjunction with data from the Human Protein Atlas database, indicated that NLRP3, caspase-1, and GSDMD, along with their effects on macrophage pyroptosis, may serve as key targets for the effects of juglone. Furthermore, juglone inhibited the expression of these proteins. Assays of OxS demonstrated that the administration of juglone mitigated OxS in both animal and cellular experiments. These results were reversed with BzATP treatment. CONCLUSION In conclusion, juglone can alleviate EAP by suppressing the pyroptosis of macrophages mediated by NLRP3/GSDMD and alleviating OxS; therefore, juglone has the potential as a therapeutic for CP/CPPS. Furthermore, our studies confirmed that juglone can bind stably to NLRP3, caspase-1, and GSDMD. These findings validate the mechanism of action of juglone and offer valuable insights for the treatment of other diseases mediated by these proteins, such as inflammatory bowel disease, nonalcoholic steatohepatitis, and multiple sclerosis.
Collapse
Affiliation(s)
- Wenlong Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Jiabin Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Yongtao Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Haojie Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, PR China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| |
Collapse
|
4
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2025; 83:1387-1397. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Dallel S, Despalles M, Tore M, Renaud Y, Kocer A, Damon-Soubeyrand C, Pouchin P, Vachias C, Boutourlinsky K, Gonthier-Gueret C, De Haze A, Sanchez P, Pointud JC, Bouchareb E, Vialat M, Lagarde A, Gulunga C, Chaput L, Vega A, Brugnon F, Tauveron I, Trousson A, de Joussineau C, Degoul F, Morel L, Lobaccaro JM, Maqdasy S, Baron S. LXR pathway drives hormonal response intensity in polycystic ovary syndrome. EMBO Mol Med 2025:10.1038/s44321-025-00251-1. [PMID: 40399491 DOI: 10.1038/s44321-025-00251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Gonadotropin injections used to stimulate oocyte production during assisted reproductive technology (ART) procedures are associated with the risk of an abnormal response in predisposed patients suffering polycystic ovary syndrome (PCOS). Liver X receptors (LXR) pathway has been identified as key regulators during this process. This study explores the integration of the hormonal signals, cellular networks and molecular mechanisms linking sterol signaling with inflammation and immune infiltration. Pharmacological activation of LXR in a wild-type context protects against gonadotropin hyperstimulation mirroring the effect observed in LXR-deficient mice. Ovarian stimulation leads to immune cell infiltration orchestrated by granulosa cells in absence of LXR, resulting in an altered granulosa cell response to gonadotropin and enhanced inflammation. LXR controls inflammasome activity by regulating Thioredoxin Interacting Protein (TXNIP) gene expression in mural granulosa cells, thereby modulating IL1β production. This immune cell infiltration persists throughout ovulation in PCOS patients and is observed in cumulus oocytes complexes, highlighting the pivotal role of LXR path in regulating inflammatory processes during hormonal stimulation in ART procedures.
Collapse
Affiliation(s)
- Sarah Dallel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Manon Despalles
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Margaux Tore
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Caroline Vachias
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Katia Boutourlinsky
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Céline Gonthier-Gueret
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Jean-Christophe Pointud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Cristina Gulunga
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Laure Chaput
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Aurélie Vega
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
| | - Florence Brugnon
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Assistance Médicale à la Procréation, CECOS, CHU Clermont-Ferrand, F-63003, Clermont-Ferrand, France
- Université Clermont Auvergne, IMOST, INSERM 1240, Faculté médecine, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Igor Tauveron
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Jean Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Salwan Maqdasy
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Silvère Baron
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Shteinfer-Kuzmine A, Moyal MM, Karunanithi Nivedita A, Trishna S, Nadir A, Tripathi S, Shoshan-Barmatz V. Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1. Pharmaceuticals (Basel) 2025; 18:757. [PMID: 40430574 DOI: 10.3390/ph18050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/03/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin's adverse effects on many diseases.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Meital M Moyal
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Sweta Trishna
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Almog Nadir
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shubhandra Tripathi
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Wang SQ, Meng YQ, Wu YL, Nan JX, Jin CH, Lian LH. Imidazole-Based ALK5 Inhibitor Attenuates TGF-β/Smad-Mediated Hepatic Stellate Cell Activation and Hepatic Fibrogenesis. Chem Res Toxicol 2025; 38:930-941. [PMID: 40211771 DOI: 10.1021/acs.chemrestox.5c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Liver fibrosis resulting from severe liver damage is a major clinical problem for which effective pharmacological drugs and treatment strategies are lacking. TGF-β, a hallmark of liver fibrosis, has been shown to promote ALK5 phosphorylation in an activated state. Hence, the suppression of ALK5 signal transduction has emerged as a promising therapeutic strategy for the treatment of liver fibrosis. In this study, the imidazole derivative J-1149, which exhibited inhibitory activity against ALK5, was synthesized to exert antifibrotic effects, and the inhibition mechanisms were uncovered. Our findings suggested that J-1149 significantly attenuated HSC activation and liver fibrogenesis by acting on the TGF-β/Smad signaling pathway. Concurrently, the potential of J-1149 to impede the P2X7R/NLRP3 axis, curtail the infiltration of macrophages and neutrophils, and reduce liver fibrogenesis was also highlighted. These results demonstrated that J-1149 is a promising candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Si-Qi Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu-Qing Meng
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Cheng-Hua Jin
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research (Yanbian University) of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
8
|
Zeng X, Yuan Y, Li Y, Hu Z, Hu S. Deciphering the NLRP3 inflammasome in diabetic encephalopathy: Molecular insights and emerging therapeutic targets. Exp Neurol 2025; 391:115304. [PMID: 40383363 DOI: 10.1016/j.expneurol.2025.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic encephalopathy (DE) is a neurological complication characterized by neuroinflammation, cognitive impairment, and memory decline, with its pathogenesis closely linked to the activation of the NLRP3 inflammasome. As a central regulator of the innate immune system, the NLRP3 inflammasome plays a pivotal role in DE progression by mediating neuroinflammation, pyroptosis, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, and microglial polarization. This review systematically explores the molecular mechanisms by which the NLRP3 inflammasome contributes to DE, focusing on its role in neuroinflammatory cascades and neuronal damage, as well as the diabetes-associated physiological changes that exacerbate DE pathogenesis. Furthermore, we summarize emerging therapeutic strategies targeting the NLRP3 inflammasome, including small-molecule inhibitors and bioactive compounds derived from traditional herbal medicine, highlighting their potential for DE treatment. These findings not only advance our understanding of DE but also provide a foundation for developing NLRP3-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Xinyi Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yi Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; School of Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yujia Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
9
|
Roman-Pepine D, Serban AM, Capras RD, Cismaru CM, Filip AG. A Comprehensive Review: Unraveling the Role of Inflammation in the Etiology of Heart Failure. Heart Fail Rev 2025:10.1007/s10741-025-10519-w. [PMID: 40360833 DOI: 10.1007/s10741-025-10519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Heart failure (HF) remains a leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. This comprehensive review aims to elucidate the intricate mechanisms by which inflammation contributes to the development and progression of HF. The review synthesizes current research on the involvement of both innate and adaptive immune responses in HF, highlighting the roles of cytokines, chemokines, and other inflammatory mediators. Recent studies have demonstrated that chronic inflammation, driven by factors such as oxidative stress, neurohormonal activation, and metabolic disturbances, leads to adverse cardiac remodeling and impaired myocardial function. The review explores how systemic inflammation, characterized by elevated levels of inflammatory biomarkers like C-reactive protein (CRP) and interleukin-6 (IL-6), correlates with HF severity and outcomes. Additionally, it discusses the impact of comorbid conditions such as diabetes, obesity, and hypertension on inflammatory pathways and HF risk. The review also delves into the therapeutic implications of targeting inflammation in HF. Despite mixed results from early clinical trials, emerging evidence suggests that anti-inflammatory therapies offer benefits in specific HF phenotypes. The potential of novel therapeutic strategies, including the use of biologics and small molecule inhibitors, is examined in the context of their ability to modulate inflammatory responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Diana Roman-Pepine
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400348, Cluj-Napoca-Napoca, Romania.
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001, Cluj-Napoca- Napoca, Romania.
| | - Adela Mihaela Serban
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001, Cluj-Napoca- Napoca, Romania
- 5 Th Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400348, Cluj-Napoca-Napoca, Romania
| | - Roxana-Denisa Capras
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400348, Cluj-Napoca-Napoca, Romania
| | - Cristina Mihaela Cismaru
- Department of Infectious Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400348, Cluj-Napoca-Napoca, Romania
| | - Adriana Gabriela Filip
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400348, Cluj-Napoca-Napoca, Romania
| |
Collapse
|
10
|
Cao P, Yang Y, Zhang N, Wang B, Gong Z. Inflammasomes: novel therapeutic targets for metabolic syndrome? Front Endocrinol (Lausanne) 2025; 16:1569579. [PMID: 40433411 PMCID: PMC12106043 DOI: 10.3389/fendo.2025.1569579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Chronic inflammation is a hallmark for Metabolic Syndrome (MetS). It is also one of the most important risk factors for insulin resistance and metabolic disorders. Inflammasomes, which are intracellular multiprotein complexes within the innate immune system, regulate the production and maturation of pro-inflammatory cytokines including interleukin-1β (IL-1β) and IL-18 upon sensing pathogens or danger signals in the cytosol. A growing body of evidence indicates that inflammasomes play a pivotal role in the pathophysiology and progression of metabolic diseases, as deficiency in the key component of inflammasomes protects mice from high fat diet induced obesity and insulin resistance. Thus, in this review, we will summarize the role of inflammasomes in MetS and how to treat MetS by targeting inflammasomes. This may provide novel insights and therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Pengyu Cao
- The Second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yulin Yang
- The Second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ningning Zhang
- The Second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bojian Wang
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Singh DD. NLRP3 inflammasome: structure, mechanism, drug-induced organ toxicity, therapeutic strategies, and future perspectives. RSC Med Chem 2025:d5md00167f. [PMID: 40370650 PMCID: PMC12070810 DOI: 10.1039/d5md00167f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Drug-induced toxicity is an important issue in clinical medicine, which typically results in organ dysfunction and adverse health consequences. The family of NOD-like receptors (NLRs) includes intracellular proteins involved in recognizing pathogens and triggering innate immune responses, including the activation of the NLRP3 inflammasome. The NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3) inflammasome is a critical component for both innate and adaptive immune responses and has been implicated in various drug-induced toxicities, including hepatic, renal, and cardiovascular diseases. The unusual activation of the NLRP3 inflammasome causes the release of pro-inflammatory cytokines, such as IL-1β and IL-18, which can lead to more damage to tissues. Targeting NLRP3 inflammasome is a potential therapeutic endeavour for suppressing drug-induced toxicity. This review provides insights into the mechanism, drug-induced organ toxicity, therapeutic strategies, and prospective therapeutic approaches of the NLRP3 inflammasome and summarizes the developing therapies that target the inflammasome unit. This review has taken up one of the foremost endeavours in understanding and inhibiting the NLRP3 inflammasome as a means of generating safer pharmacological therapies.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur 303002 India +91 9450078260
| |
Collapse
|
12
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 PMCID: PMC12069715 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
13
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
14
|
Guo M, Wu H, Zhang J, Zhao L, He J, Yu Z, Ma X, Yong Y, Li Y, Ju X, Liu X. Baicalin n-butyl ester alleviates inflammatory bowel disease and inhibits pyroptosis through the ROS/ERK/P-ERK/NLRP3 pathway in vivo and in vitro. Biomed Pharmacother 2025; 186:118012. [PMID: 40168722 DOI: 10.1016/j.biopha.2025.118012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Baicalin is a flavonoid extracted from dried roots of the plant Scutellariabaicalensis. Baicalin n-butyl ester (BNE) is a flavonoid obtained by esterification of baicalin and has anti-inflammatory and antioxidant effects. PURPOSE The therapeutic efficacy and potential mechanism of BNE in inflammatory bowel disease remain unclear. This study investigated the effects and underlying mechanisms of BNE in ulcerative colitis. METHODS Dextran sulfate sodium (DSS) was used to construct a mouse model of ulcerative colitis, and mice were given intragastric administration of BNE. During the experiment, the changes of body weight and hematochezia of mice were observed. At the end of administration, the levels of inflammatory factors, colonic microbial changes and pyroptosis of colonic cells were measured. Mouse intestinal epithelial cells were stimulated by lipopolysaccharide/adenosine-5'-triphosphate to establish an in vitro model. ELISA, qRT-PCR and immunoblotting were used to explore the effect and mechanism of BNE on pyroptosis. RESULTS In vivo, BNE drastically attenuated ulcerative colitis symptoms by relieving body weight loss, a decline in colon length, and destruction of colon tissue structure. BNE also reduced the secretion of pro-inflammatory cytokines, including IL-1β, IL-18, and TNF-α, and reactive oxygen species (ROS). Furthermore, 16S rRNA sequencing analyses of gut microbiota revealed that BNE reversed gut microbiota dysbiosis by reducing the abundance of unclassified-Clostridia-UCG-014 and increasing that of Lachnospiraceae. BNE also inhibited cell pyroptosis in mice with DSS-induced colitis. In vitro analyses showed that BNE decreased the secretion of IL-1β, IL-18, TNF-α, and ROS in lipopolysaccharide/adenosine-5'-triphosphate-stimulated mouse intestinal epithelial cells, and it inhibited pyroptosis mediated by oligomeric domain-like receptor protein 3 (NLRP3). Addition of ROS scavenger and ERK inhibitor further confirmed that BNE down-regulated ROS and inhibited the phosphorylation of ERK, thus inhibiting NLRP3-mediated cell pyroptosis. The magnetic beads pull-down assay showed that BNE had the capacity to bind directly to the ERK proteinin MODE-K cells. CONCLUSION BNE protects against colitis by increasing the abundance of Lachnospiraceae in vivo and suppressing pyroptosis via binding ERK protein and inhibiting ROS/ERK/P-ERK/NLRP3 in vivo and in vitro.
Collapse
Affiliation(s)
- Mengru Guo
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huining Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jin Zhang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linlu Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jieyi He
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xingbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
15
|
de Oliveira IM, Chaves MM. The NLRP3 Inflammasome in inflammatory diseases: Cellular dynamics and role in granuloma formation. Cell Immunol 2025; 411-412:104961. [PMID: 40339528 DOI: 10.1016/j.cellimm.2025.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). Inflammasomes, cytoplasmic protein complexes, are activated in response to PAMPs and DAMPs, leading to the release of inflammatory cytokines such as IL-1β and IL-18. NLRP3 inflammasome is one of the best characterized inflammasomes and recently its activation has been associated with granuloma formation, structures that aggregate immune cells in response to infections, such as those caused by bacteria, fungi and parasites, and autoinflammatory diseases, such as sarcoidosis. Activation of NLRP3 inflammasomes in macrophages induces the release of cytokines that recruit immune cells, such as monocytes and lymphocytes, to the site of infection. Neutrophils, monocytes, T and B lymphocytes are important in the formation and maintenance of granulomas. Although NLRP3 plays a key role in the immune response, cell recruitment and granuloma formation, many aspects of its function in different cell types remain to be elucidated. In this review, we aim to outline the NLRP3 inflammasome not only as a protein complex that aids innate immune cells in combating intracellular pathogens but also as a platform with broader implications in orchestrating immune responses. This underexplored aspect of the NLRP3 inflammasome presents a novel perspective on its involvement in immunity. Thus, we review the current understanding of the role of the NLRP3 inflammasome in immune cell infiltration and its significance in the organization and formation of granulomas in inflammatory diseases.
Collapse
Affiliation(s)
- Isadora M de Oliveira
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Zou Y, Zhang B, Jiang K, Zhou X, Tang Q, Chen S, Wu Q, Zhao X, Zhang X. GPR40 inhibits microglia-mediated neuroinflammation via the NLRP3/IL-1β/glutaminase pathway after subarachnoid hemorrhage. Biochem Pharmacol 2025; 238:116971. [PMID: 40318813 DOI: 10.1016/j.bcp.2025.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/12/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Subarachnoid hemorrhage is one type of strokes with high mortality and disability and there exists several mechanisms in SAH pathology. G-protein-coupled receptor 40 (GPR40) is proven to exert anti-inflammatory effects in several central nervous system (CNS) diseases. However, the precise role of GPR40 in SAH pathogenesis remains largely unknown. In this study, both in vivo and in vitro SAH models were used to investigate the mechanism of GPR40 attenuating neuroinflammation after SAH onset. We found that GPR40 expression in microglia decreased, which promoted IL-1β secretion and aggravated neuronal death after SAH onset. The GPR40 agonist GW9508 attenuated neuronal damage and ameliorated neurological deficits in SAH-model mice. Mechanistically, GPR40 in microglia inhibited pyroptosis, and cytokine production via inhibiting NLRP3/caspase-1/IL-1β pathway. Then the level of IL-1β secreted by microglia and transported to neurons via exosome were decreased, which down-regulated glutaminase, counteracted glutamate accumulation, and facilitated neuronal survival. These results revealed that GPR40 is a novel regulator that inhibits microglia-mediated neuroinflammation and is a potential therapeutic target in SAH therapy.
Collapse
Affiliation(s)
- Yan Zou
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing'tao Zhang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kun Jiang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Xiao'ming Zhou
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi'kai Tang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shu'juan Chen
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xudong Zhao
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, China; Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, China; Wuxi Neurosurgical Institute, Wuxi, China.
| | - Xin Zhang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Zuo Z, Wang Y, Fang Y, Zhao M, Wang Z, Yang Z, Jia B, Sun Y. A novel regulator of NLRP3 inflammasome: Peptides. Peptides 2025; 187:171381. [PMID: 40064242 DOI: 10.1016/j.peptides.2025.171381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The NLRP3 inflammasome plays a crucial role as a critical regulator of the immune response and has been implicated in the pathogenesis of numerous diseases. Peptides, known for their remarkable potency, selectivity, and low toxicity, have been extensively employed in disease treatment. Recent research has unveiled the potential of peptides in modulating the activity of the NLRP3 inflammasome. This review begins by examining the structure of the NLRP3 inflammasome, encompassing NLRP3, ASC, and Caspase-1, along with the three activation pathways: canonical, non-canonical, and alternative. Subsequently, we provide a comprehensive summary of peptide modulators targeting the NLRP3 inflammasome and elucidate their underlying mechanisms. The efficacy of these modulators has been validated through in vitro and in vivo experiments on NLRP3 inflammasome regulation. Furthermore, we conduct sequence alignment of the identified peptides and investigate their binding sites on the NLRP3 protein. This work is a foundational exploration for advancing peptides as potential therapeutic agents for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Mengya Zhao
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Research Center of Special Environmental Biomechanics and Medical Engineering, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
18
|
Niu W, Li Z, Liu C, Zhang Z, Chen W, Wang Y, Guo X, Feng X, Wang Y, Shi G, Liu Y, Shen H, Han Y, Zhen Q, Wang R, Sun L. Correlation Studies Between Double-Stranded DNA and Diabetes Mellitus. J Diabetes Res 2025; 2025:9919456. [PMID: 40330739 PMCID: PMC12055326 DOI: 10.1155/jdr/9919456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Background: Diabetes mellitus (DM) is a common chronic endocrine and metabolic disease, and its complications can involve multiple organs and seriously threaten human health. Double-stranded DNA (dsDNA) plays an important role in the autoimmune system; however, the correlation between dsDNA and DM has not been fully studied. Methods: This study recruited 388 diabetic patients and 2970 healthy controls to investigate the relationship between serum dsDNA and DM. The diagnosis of DM was based on the medical diagnostic and treatment standards for DM published by the American Diabetes Association (ADA). The study adhered to ethical principles and obtained informed consent from all participants. We measured serum dsDNA levels in both diabetic patients and healthy controls. The study examined differences in serum dsDNA levels among diabetic patients under various conditions, including different temperatures, ultraviolet (UV) light exposure, seasons, and clinical indicators. Additionally, quantitative PCR was used to assess the expression of dsDNA receptors, single-stranded RNA (ssRNA) receptors, absent in melanoma factor 2 (AIM2)-related inflammatory factors, and Type I interferon (INF) in the peripheral blood of patients and control groups. Results: Peripheral blood serum dsDNA levels were elevated in diabetic patients compared to controls (mean values 1.09 and 0.97 ng/ml, respectively, p < 0.001). We also found that the gene expression levels of dsDNA receptor, ssRNA receptor, AIM2-related inflammatory factors, and Type I IFN in diabetic patients were upregulated. And serum dsDNA levels correlated with clinical indicators. Conclusions: We have confirmed that DM is closely associated with serum dsDNA levels. Therefore, dsDNA detection shows promise as a novel approach for evaluating DM progression, offering new insights for the future diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Wanli Niu
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medicine, North China University of Science and Technology, Tangshan, China
| | - Zhuo Li
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunmeng Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ziyan Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Weiwei Chen
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yirui Wang
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofen Guo
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinyu Feng
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuge Wang
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medicine, North China University of Science and Technology, Tangshan, China
| | - Guanglei Shi
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuhang Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, China
| | - Haoran Shen
- School of Basic Medicine, North China University of Science and Technology, Tangshan, Hebei, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medicine, North China University of Science and Technology, Tangshan, China
| | - Yang Han
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Ruimin Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Liangdan Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
- Key Laboratory for quality of salt alkali resistant TCM of Hebei Administration of TCM, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
19
|
Li X, Yang L, Kang X, Wang G, Yuan Y, Yang H, Yang T, Wang Z. TAK-242 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TLR4/NF-κB pathway in rat experimental autoimmune neuritis. Int Immunopharmacol 2025; 153:114429. [PMID: 40112603 DOI: 10.1016/j.intimp.2025.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
The inhibition of the TLR4 receptor has been shown to protect neural structure and improve neurological functions in peripheral nervous system (PNS) diseases. There is a scarcity of research regarding the effect of inflammasomes during the process of neuroinflammation in immune related PNS disorders, such as, Guillain-Barré syndrome (GBS), even though it is an essential part for pathophysiology from immunological diseases that impact central nervous system (CNS). In this investigation, we found that TLR4 expression and formation and activation of the NLRP3 inflammasome were increased in the sciatic nerve of experimental autoimmune neuritis (EAN). Further intraperitoneal injection of the selective TLR4 receptor inhibitor TAK-242 (Resatorvid) showed that TAK-242 not only stopped the advancement of EAN to a certain extent, but also alleviated peripheral nerve injury brought on by EAN, as evidenced by improvements in body weight loss, neurological function scores, and nerve conduction deficits. More importantly, TAK-242 effectively inhibited neuroinflammation in EAN rats, mitigated myelin loss and helped the regeneration and repair of EAN peripheral nerve injury, mainly through suppressing TLR4/NF-κB signaling pathway and decreasing NLRP3 inflammasome activation. Based on these findings, administration of TAK-242 can be used as a potential therapy approach for GBS.
Collapse
Affiliation(s)
- Xiaocong Li
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Liping Yang
- Ningxia Medical University, Yinchuan 750004, China
| | - Xue Kang
- Ningxia Medical University, Yinchuan 750004, China
| | - Guowei Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanping Yuan
- Ningxia Medical University, Yinchuan 750004, China
| | - Huan Yang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Tingting Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China
| | - Zhenhai Wang
- General Hospital of Ningxia Medical University, Yinchuan 750004, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan 750004, China.
| |
Collapse
|
20
|
Wu Y, Jiang Y, Gong Y, Yao T, Zheng Q, Li Y, Xia Q, Li B, Li L. A "Janus" structured nanoclay microgel system for targeted probiotic therapy in diarrhea-predominant irritable bowel syndrome. J Control Release 2025; 383:113769. [PMID: 40280239 DOI: 10.1016/j.jconrel.2025.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Probiotic therapy holds potential for preventing and treating various gastrointestinal diseases, including diarrhea-predominant irritable bowel syndrome (IBS-D). Previous studies have suggested that it can help restore intestinal mucosal immunity and gut microbiota dysbiosis in IBS-D patients. Probiotics regulate host microbial metabolism and immune homeostasis, thereby improving host health. Effective and persistent colonization is crucial for probiotic therapy, but oral probiotics often suffer from limited efficacy due to loss of biological activity and insufficient colonization in the complex intestinal environment. Currently, formulations that specifically target gut mucosal colonization are scarce. We developed a "Janus" structured nanoclay microgel via microfluidics encapsulating Pediococcus pentosaceus Li05 (Li05) towards this end. Polydopamine enhanced the microgel's adhesion to the intestinal mucosa, prolonging its residence time in the intestine and enabling targeted delivery of active Li05. The nanoclay promoted Li05 aggregation and growth through charge adsorption, preserving its biological activity and ensuring an effective dose for gut colonization. In vivo studies demonstrated that the nanoclay microgel significantly alleviated diarrhea, mucosal inflammation, and gut microbiota dysbiosis in an IBS-D rat model. These findings suggest that this nanoclay microgel is an effective gut targeted formulation able to promote probiotic growth, offering new approaches for future probiotic therapy in IBS-D.
Collapse
Affiliation(s)
- Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Yiheng Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Yanrong Gong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Ting Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Qi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Yuetong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China.
| |
Collapse
|
21
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Zhao XP, Duan L, Zhao QR, Lv X, Tian NY, Yang SL, Dong K. NLRP3 inflammasome as a therapeutic target in doxorubicin-induced cardiotoxicity: role of phytochemicals. Front Pharmacol 2025; 16:1567312. [PMID: 40313623 PMCID: PMC12043718 DOI: 10.3389/fphar.2025.1567312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Doxorubicin (DOX) has received widespread attention as a broad-spectrum antitumor drug. However, it has been a recognized challenge that long-term DOX injections can lead to severe cardiotoxicity. There are numerous interventions to DOX-induced cardiotoxicity, and the most cost-effective is phytochemicals. It has been reported that phytochemicals have complex and diverse biological properties, facilitating the mitigation of DOX-induced cardiotoxicity. DOX-induced cardiotoxicity has numerous pathological mechanisms, and the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis is one of them. This review initially presents an overview of the pathological mechanisms that underlie cardiotoxicity induced by DOX. Subsequently, we present a comprehensive elucidation of the structure and activation of the NLRP3 inflammasome. Finally, we provide a detailed summary of phytochemicals that can mitigate DOX-induced cardiotoxicity by influencing the expression of the NLRP3 inflammasome in cardiomyocytes.
Collapse
Affiliation(s)
- Xiao-Peng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Lian Duan
- China Volleyball College, Beijing Sport University, Beijing, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Qian-Ru Zhao
- Shenyang Sports Research and Medical Center, Shenyang Sports Development Center, Shenyang, China
| | - Xing Lv
- Department of Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Nai-Yuan Tian
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Sheng-Lei Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Kun Dong
- College of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
23
|
Li Y, Xu Y, Jin C, Qiu J, Jiao X, Pan Z, Guo Y. Salmonella-NLRP3 Inflammasome Crosstalk: Host Defense Activation Versus Bacterial Immune Evasion Strategies. J Inflamm Res 2025; 18:5133-5148. [PMID: 40255664 PMCID: PMC12009050 DOI: 10.2147/jir.s519902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
The innate immune system plays a crucial role in defending against Salmonella infection. Inflammasomes are macromolecular complexes that assemble in response to the recognition of pathogen- or danger-associated molecular patterns. These complexes serve as signaling platforms for the activation of inflammatory Caspases, which subsequently triggers the maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18. This process also initiates pyroptosis, a highly inflammatory form of programmed cell death characterized by lytic cell lysis. Salmonella are intracellular pathogens that proliferate within epithelial cells and macrophages, posing a significant public health risk in both developed and developing countries. During Salmonella infection, the canonical NLRP3 and NLRC4 inflammasome, as well as non-canonical inflammasome, are activated. Unlike NLRC4 and non-canonical inflammasomes, which play crucial roles during intestinal infection phases, the role of NLRP3 inflammasome in resisting Salmonella infection demonstrates a higher degree of complexity and uncertainty. Nonetheless, the activation of NLRP3 inflammasome, along with the downstream innate and adaptive responses, form a robust host immune barrier against potential pathogens. Therefore, successful pathogens must evolve multiple mechanisms to circumvent or counteract these immune barriers. Here we review and discuss the mechanisms of NLRP3 inflammasome activation triggered by intracellular Salmonella, as well as the multiple strategies employed by Salmonella to avoid or delay NLRP3 inflammasome activation. A deeper understanding of how NLRP3 inflammasomes recognize Salmonella and how pathogens evade NLRP3 activation has the potential to facilitate the development of novel prevention and control measures for Salmonella infection.
Collapse
Affiliation(s)
- Yuxuan Li
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Ying Xu
- The Department of Economics and Management, Jiangsu College of Tourism, Jiangsu, People’s Republic of China
| | - Cheng Jin
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Jiayi Qiu
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
| | - Xinan Jiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zhiming Pan
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yaxin Guo
- School of Nursing School of Public Health, Yangzhou University, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu, 225009, People’s Republic of China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
24
|
Liu Y, Wang Q, Ma J, Li J, Li C, Xie X, Xiao Q, Xie C, Liu H, Hong Y, Wang J. Discovery of Novel Sulfonylurea NLRP3 Inflammasome Inhibitor for the Treatment of Multiple Inflammatory Diseases. J Med Chem 2025; 68:7243-7262. [PMID: 40112040 DOI: 10.1021/acs.jmedchem.4c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
NLRP3 inflammasome is critical in innate immunity and inflammatory responses. A series of novel sulfonylurea-based NLRP3 inflammasome inhibitors was designed and synthesized. Notably, compound 15 exhibited the potent NLRP3 inhibitory activity, effectively suppressing IL-1β secretion in THP-1 (IC50 = 23 nM), demonstrating better efficacy compared to MCC950. It selectively inhibits NLRP3 activation by disrupting inflammasome assembly, with no effect on NLRC4 or AIM2 inflammasomes. Molecular docking showed that the 1-methyl-4-(methylamino)piperidine moiety forms a novel hydrogen bond with Asp662 in the hydrophilic region of NLRP3. Additionally, compound 15 displayed excellent pharmacokinetic properties with 99.6% oral bioavailability in mice. It exhibited superior efficacy in acute peritonitis and diabetic kidney disease models, surpassing MCC950. Tissue distribution studies confirmed that compound 15 specifically targeted the gut and showed efficacy in an IBD model, comparable to MCC950. These findings highlight compound 15 as a promising lead for novel oral NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Yiting Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Jiyuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiannan Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cen Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
25
|
Zhang Y, Pang S, Fu J, Li X, MoZeng Y, He G, Fang Z, Li W, Peng D, Zhang X, Jiang L. Enzyme-Mimic Photoinitiated Flow-Polymerization with High Stereoselectivity under Mild Conditions. J Am Chem Soc 2025; 147:12150-12161. [PMID: 40165479 DOI: 10.1021/jacs.5c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Enzymatic reactions can achieve efficient flow-polymerization with specificity and high stereoselectivity. However, current enzyme-mimic polymerization systems cannot achieve high stereoregularity in flow reactions under mild conditions. This inefficient chain control may be due to the absence of a specific catalyst structure for the target monomer. This study reports a model of enzyme-mimic catalytic material for the polymerization of a specific monomer. In particular, the specific enzyme-mimic photoinitiated flow-polymerization of benzyl acrylate was realized at 22 °C using zinc porphyrin metal-organic framework (Zn-PMOF) membranes with one-dimensional nanochannels, achieving the efficient synthesis of highly heterotactic polymers. Under visible light irradiation, the zinc porphyrin core on the membrane surface could initiate polymerization, while copper porphyrin MOF with similar structures could not. The specific channel structure of the Zn-PMOF membrane provided space for stereochemical control. Control experiments, density functional theory simulations, and spectroscopic characterizations show that the combination of size effect and channel-monomer interactions realized higher monomer conversion and polymer stereoregularity in the flow reaction. Furthermore, the crystallinity, shear stress, and ionic conductivity of enzyme-mimic polymers were considerably better than those of bulk polymerization products. Thus, this study provides a method for enzyme-mimic polymerization with high stereoselectivity under mild conditions.
Collapse
Affiliation(s)
- Yuhui Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Shuai Pang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Jiangwei Fu
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinting MoZeng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Guandi He
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenyuan Fang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Wei Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Daoling Peng
- Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Xiqi Zhang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou,Jiangsu 215123, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
26
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Zou G, Tang Y, Yang J, Fu S, Li Y, Ren X, Zhou N, Zhao W, Gao J, Ruan Z, Jiang Z. Signal-induced NLRP3 phase separation initiates inflammasome activation. Cell Res 2025:10.1038/s41422-025-01096-6. [PMID: 40164768 DOI: 10.1038/s41422-025-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
NLRP3 inflammasome is activated by diverse stimuli including infections, intracellular and environmental irritants. How NLRP3 senses these unrelated stimuli and what activates NLRP3 remain unknown. Here we report that signal-dependent NLRP3 phase separation initiated its activation, in which the palmitoyltransferase ZDHHC7-mediated tonic NLRP3 palmitoylation and an IDR region in the FISNA domain of NLRP3 play important roles. Moreover, three conserved hydrophobic residues in the IDR critically mediate multivalent weak interactions. NLRP3-activating stimuli including K+ efflux and NLRP3-interacting molecules imiquimod, palmitate, and cardiolipin all cause NLRP3 conformational change and induce its phase separation and activation in cells and/or in vitro. Surprisingly, amphiphilic molecules like di-alcohols used to inhibit biomolecular phase separation and chemotherapeutic drugs doxorubicin and paclitaxel activate NLRP3 independently of ZDHHC7 by directly inducing NLRP3 phase separation. Mechanistically, amphiphilic molecules decrease the solubility of both palmitoylated and non-palmitoylated NLRP3 to directly induce its phase separation and activation while NLRP3 palmitoylation reduces its solubility to some extent without activation. Therefore, ZDHHC7-mediated NLRP3 palmitoylation in resting cells licenses its activation by lowering the threshold for NLRP3 phase separation in response to any of the diverse stimuli whereas NLRP3 solubility-reducing molecules like di-alcohols and chemotherapeutic drugs activate NLRP3 directly. The signal-induced NLRP3 phase separation likely provides the simplest and most direct mechanistic basis for NLRP3 activation.
Collapse
Affiliation(s)
- Gonglu Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuluan Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Yang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Fu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuheng Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xuanyao Ren
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Nanhai Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wenlong Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Juyi Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ziran Ruan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
28
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
29
|
Albakova Z. Inflammasomes in lymphocytes as therapeutic targets. Transl Oncol 2025; 54:102342. [PMID: 40054124 PMCID: PMC11928805 DOI: 10.1016/j.tranon.2025.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/11/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025] Open
Abstract
Inflammasomes are cytoplasmic macromolecular complexes playing an important role in sensing exogenous and endogenous stimuli. Inflammasome activation leads to IL-1β and IL-18 secretion and pyroptosis. The concept of non-self recognition triggering inflammasome activation has been well-established for myeloid cells. However, increasing evidence suggests the presence of functional inflammasome or inflammasome-related components in lymphocytes. Dysregulated expression of inflammasome contributes to the development of many diseases, including cardiovascular, infectious, neurodegenerative diseases and cancer. Multiple clinical trials are being conducted to assess drugs targeting various inflammasome components. This review discusses current knowledge on inflammasome activation in T, B and NK cells and explores their potential as therapeutic targets. Further understanding inflammasome and pyroptotic pathways in lymphocytes may have implications in the development of novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
30
|
Chen X, Wang Y, Huang J, Dou H, Zhang Z, Zheng Y, Long R, Zhang X, Xu F, Ye W, Xiao Q. Tamibarotene directly targets the NACHT domain of NLRP3 to alleviate acute myocardial infarction. Biochem Pharmacol 2025; 234:116801. [PMID: 39952330 DOI: 10.1016/j.bcp.2025.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated in the exacerbation of myocardial damage and the subsequent development of heart failure following myocardial infarction (MI). Inhibiting NLRP3 inflammasome activation offers a promising therapeutic strategy for mitigating MI-related injury, although no NLRP3 inhibitors have received Food and Drug administration (FDA) approval to date. To identify novel NLRP3 inflammasome inhibitors through the repurposing of FDA-approved drugs, Tamibarotene emerged as a potent inhibitor with a favorable safety profile. Mechanistically, Tamibarotene inhibits NLRP3 inflammasome activation independently of retinoic acid receptor activation, binding to Phe410 and Ile417 within the nucleotide-binding and oligomerization (NACHT) domain in an ATPase activity-dependent manner. This interaction further inhibits the assembly of the NLRP3 inflammasome. In a murine model of MI, Tamibarotene significantly reduced myocardial damage and improved cardiac function by inhibiting NLRP3 inflammasome activation. In summary, NLRP3 has been identified as a direct target of Tamibarotene for myocardial repair following MI, indicating that Tamibarotene could serve as a potential precursor for the development of innovative NLRP3 inhibitors.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yunjing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junjun Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huaqian Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhe Zhang
- Department of Cardiovascular Medicine & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yutong Zheng
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Rui Long
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Xiaofeng Zhang
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Fengdan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Weijun Ye
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Qing Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
31
|
Jiang K, Zou Y, Song Y, Zhou L, Zhang B, Zhou X, Zhang X. G-Protein-Coupled Receptor 84 Aggravates Early Brain Injury via Microglial NLRP3-ASC Inflammasome After Subarachnoid Hemorrhage. Brain Behav 2025; 15:e70379. [PMID: 40200750 PMCID: PMC11979352 DOI: 10.1002/brb3.70379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is one of the most devastating hemorrhagic strokes. SAH causes neuroinflammation and leads to both early brain injury and delayed brain injury. G-protein-coupled receptor 84 (GPR84), one of the orphan class-A G protein-coupled receptors (GPCRs), exerts pro-inflammatory and pro-phagocytic effects via targeting microglia in the central nervous system (CNS). This research investigated the role of GPR84 on SAH pathology via neuroinflammation. METHODS An enzyme-linked immunosorbent assay was used for GPR84 expression in cerebrospinal fluid (CSF) samples from patients with SAH. An experimental SAH-model mouse was established by stereotactic injection of autologous blood into the chiasmatic cisterna. The SAH model in vitro was established by exposing microglia to hemoglobin. After inhibition of GPR84 in mice by GPR84-siRNA and GPR84-antagonist 3, the neurological deficits were evaluated by modified Garcia test, beam balance test, and Morris water maze. Neuronal death in SAH-model mice was evaluated by Nissl staining. GPR84, NLRP3 inflammasome, and cAMP/PKA expressions were detected by western blot and immunofluorescence. RESULTS GPR84 was upregulated in patients after SAH onset. The GPR84 expression in microglia increased after SAH onset, activated NLRP3 inflammasome, and promoted IL-1β secretion. Both GPR84-shRNA and GPR84-antagonist 3 improved neurological deficits in SAH-model mice. Mechanistically, GPR84 activated the NLRP3 inflammasome via the cAMP/PKA signaling pathway to aggravate neuronal injury. CONCLUSIONS GPR84 promotes NLRP3-mediated pyroptosis and activated NLRP3 inflammation via cAMP/PKA pathway.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical MedicineNanjing Medical UniversityNanjingChina
- Department of NeurosurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuaianChina
| | - Yan Zou
- Nanjing Jinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yue Song
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical MedicineNanjing Medical UniversityNanjingChina
| | - Long'jiang Zhou
- Department of NeurologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Bing'tao Zhang
- Nanjing Jinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiao'ming Zhou
- Nanjing Jinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
32
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Aljabali AAA, Tambuwala M. Exploring Scopoletin's Therapeutic Efficacy in DSS-Induced Ulcerative Colitis: Insights into Inflammatory Pathways, Immune Modulation, and Microbial Dynamics. Inflammation 2025; 48:575-589. [PMID: 38918333 PMCID: PMC12053357 DOI: 10.1007/s10753-024-02048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 06/27/2024]
Abstract
This study aimed to investigate the therapeutic potential of scopoletin in ulcerative colitis, with a primary focus on its impact on crucial inflammatory pathways and immune responses. A male mouse model of DSS-induced colitis was employed with six distinct groups: a control group, a group subjected to DSS only, three groups treated with varying scopoletin doses, and the final group treated with dexamethasone. The investigation included an assessment of the effects of scopoletin on colitis symptoms, including alterations in body weight, Disease Activity Index (DAI), and histopathological changes in colonic tissue. Furthermore, this study scrutinized the influence of scopoletin on cytokine production, PPARγ and NF-κB expression, NLRP3 inflammasome, and the composition of intestinal bacteria. Scopoletin treatment yielded noteworthy improvements in DSS-induced colitis in mice, as evidenced by reduced weight loss and colonic shortening (p < 0.05, < 0.01, respectively). It effectively diminished TNF-α, IL-1β, and IL-12 cytokine levels (p < 0.01, p < 0.05), attenuated NLRP3 inflammasome activation and the associated cytokine release (p < 0.05, p < 0.01), and modulated the immune response by elevating PPARγ expression while suppressing NF-κB pathway activation (p < 0.05, p < 0.01). Additionally, scopoletin induced alterations in the gut microbiota composition, augmenting beneficial Lactobacillus and Bifidobacteria while reducing E. coli (p < 0.05). It also enhanced tight junction proteins, signifying an improvement in the intestinal barrier integrity (p < 0.05, < 0.01). Scopoletin is a promising therapeutic agent for managing ulcerative colitis, showing benefits that extend beyond mere anti-inflammatory actions to encompass regulatory effects on gut microbiota and restoration of intestinal integrity.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
33
|
Kobe B, Nanson JD, Hoad M, Blumenthal A, Gambin Y, Sierecki E, Stacey KJ, Ve T, Halfmann R. Signalling by co-operative higher-order assembly formation: linking evidence at molecular and cellular levels. Biochem J 2025; 482:275-294. [PMID: 40040472 DOI: 10.1042/bcj20220094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The concept of higher-order assembly signalling or signalling by co-operative assembly formation (SCAF) was proposed based on the structures of signalling assemblies formed by proteins featuring domains from the death-fold family and the Toll/interleukin-1 receptor domain family. Because these domains form filamentous assemblies upon stimulation and activate downstream pathways through induced proximity, they were envisioned to sharpen response thresholds through the extreme co-operativity of higher-order assembly. Recent findings demonstrate that a central feature of the SCAF mechanism is the nucleation barrier that allows a switch-like, digital or 'all-or-none' response to minute stimuli. In agreement, this signalling mechanism features in cell-death and innate immunity activation pathways where a binary decision is required. Here, we broaden the concept of SCAF to encapsulate the essential kinetic properties of open-ended assembly in signalling, compare properties of filamentous assemblies and other co-operative assemblies such as biomolecular condensates, and review how this concept operates in cells.
Collapse
Affiliation(s)
- Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeffrey D Nanson
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Mikayla Hoad
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Antje Blumenthal
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Yann Gambin
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66103, U.S.A
| |
Collapse
|
34
|
Yuan NJ, Zhu WJ, Ma QY, Huang MY, Huo RR, She KJ, Pan JP, Wang JG, Chen JX. Luteolin ameliorates chronic stress-induced depressive-like behaviors in mice by promoting the Arginase-1 + microglial phenotype via a PPARγ-dependent mechanism. Acta Pharmacol Sin 2025; 46:575-591. [PMID: 39496862 PMCID: PMC11845711 DOI: 10.1038/s41401-024-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Accumulating evidence shows that neuroinflammation substantially contributes to the pathology of depression, a severe psychiatric disease with an increasing prevalence worldwide. Although modulating microglial phenotypes is recognized as a promising therapeutic strategy, effective treatments are still lacking. Previous studies have shown that luteolin (LUT) has anti-inflammatory effects and confers benefits on chronic stress-induced depression. In this study, we investigated the molecular mechanisms by which LUT regulates the functional phenotypes of microglia in mice with depressive-like behaviors. Mice were exposed to chronic restraint stress (CRS) for 7 weeks, and were administered LUT (10, 30, 40 mg· kg-1 ·day-1, i.g.) in the last 4 weeks. We showed that LUT administration significantly ameliorated depressive-like behaviors and decreased hippocampal inflammation. LUT administration induced pro-inflammatory microglia to undergo anti-inflammatory arginase (Arg)-1+ phenotypic polarization, which was associated with its antidepressant effects. Furthermore, we showed that LUT concentration-dependently increased the expression of PPARγ in LPS + ATP-treated microglia and the hippocampus of CRS-exposed mice, promoting the subsequent inhibition of the NLRP3 inflammasome. Molecular dynamics (MD) simulation and microscale thermophoresis (MST) analysis confirmed a direct interaction between LUT and peroxisome proliferator-activated receptor gamma (PPARγ). By using the PPARγ antagonist GW9662, we demonstrated that LUT-driven protection, both in vivo and in vitro, resulted from targeting PPARγ. First, LUT-induced Arg-1+ microglia were no longer detected when PPARγ was blocked. Next, LUT-mediated inhibition of the NLRP3 inflammasome and downregulation of pro-inflammatory cytokine production were reversed by the inhibition of PPARγ. Finally, the protective effects of LUT, which attenuated the microglial engulfment of synapses and prevented apparent synapse loss in the hippocampus of CRS-exposed mice, were eliminated by blocking PPARγ. In conclusion, this study showed that LUT ameliorates CRS-induced depressive-like behaviors by promoting the Arg-1+ microglial phenotype through a PPARγ-dependent mechanism, thereby alleviating microglial pro-inflammatory responses and reversing microglial phagocytosis-mediated synapse loss.
Collapse
Affiliation(s)
- Nai-Jun Yuan
- Department of Critical Care Medicine, Shenzhen Clinical Research Center for Geriatric, and Guangdong Provincial Clinical Research Center for Geriatrics, Integrated Chinese and Western Medicine Postdoctoral Research Station, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Min-Yi Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Rou-Rou Huo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai-Jie She
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Ping Pan
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Gang Wang
- Department of Critical Care Medicine, Shenzhen Clinical Research Center for Geriatric, and Guangdong Provincial Clinical Research Center for Geriatrics, Integrated Chinese and Western Medicine Postdoctoral Research Station, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
35
|
Mo B, Ding Y, Ji Q. NLRP3 inflammasome in cardiovascular diseases: an update. Front Immunol 2025; 16:1550226. [PMID: 40079000 PMCID: PMC11896874 DOI: 10.3389/fimmu.2025.1550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation. The NLRP3 inflammasome leads both to the release of IL-1 family cytokines and to a distinct form of programmed cell death called pyroptosis. Inflammation related to CVD has been extensively investigated in relation to the NLRP3 inflammasome. In this review, we describe the pathways triggering NLRP3 priming and activation and discuss its pathogenic effects on CVD. This study also provides an overview of potential therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Binhai Mo
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yudi Ding
- First People’s Hospital of Nanning, Nanning, Guangxi, China
| | - Qingwei Ji
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
36
|
Trebicka J, Aguilar F, Queiroz Farias A, Lozano JJ, Sánchez-Garrido C, Usón-Raposo E, de la Peña-Ramirez C, Sidorova J, Curto-Vilalta A, Sierra-Casas P, Momoyo Zitelli P, Papp M, Pereira G, Caraceni P, Goncalves LL, Alessandria C, Torre A, Laleman W, Gadano A, Piano S, Mattos AZ, Gu W, Brol MJ, Schierwagen R, Uschner FE, Fischer J, Mendes LSC, Vargas V, Alvares-da-Silva MR, Mookerjee R, Bittencourt PL, Benitez C, Albillos A, Couto C, Mendizabal M, Bañares R, Toledo CL, Mazo DF, Janicko M, Castillo-Barradas M, Padilla Machaca PM, Gatti P, Miranda AZL, Malé-Velázquez R, Zipprich A, Castro-Lyra A, Gustot T, Bernal W, Gerbes AL, Jalan R, Fernández J, Angeli P, Carrilho FJ, Claria J, Moreau R, Arroyo V. Gene score to quantify systemic inflammation in patients with acutely decompensated cirrhosis. Gut 2025:gutjnl-2024-333876. [PMID: 40011033 DOI: 10.1136/gutjnl-2024-333876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND AIMS Quantifying systemic inflammation (SI) in acutely decompensated cirrhosis (ADC) is of major importance because SI is a driver of the most severe forms of ADC, including acute-on-chronic liver failure (ACLF). Blood biomarkers of SI already evaluated in ADC failed to appropriately assess SI in ADC. We aimed to investigate whether gene expression related to circulating immune cells could quantify SI in ADC. METHODS Standard biomarkers (white cell count, C reactive protein, cytokines) and genome-wide RNA expression (RNA-sequencing) were obtained in blood from 700 patients with ADC at the time of their hospital admission. A composite score based on standard biomarkers of SI (Chronic Liver Failure-Standard Biomarkers Composite (CLIF-SBC) score) and a gene score (CLIF-Systemic Inflammation Gene (SIG) score) composed of the 28 top differentially expressed immune cell-related genes in the comparison between high-severity and low-severity clinical phenotypes were computed. Among the 700 patients, the CLIF-SIG score was repeated once during follow-up in 375 patients, and 3 times or more in 46 patients. RESULTS The CLIF-SIG score was more accurate in reflecting clinical severity induced by SI than the CLIF-SBC score (area under the curve 0.803 vs 0.658). A CLIF-SIG score of 0.386 (Youden Index) was the best cut-off level discriminating patients with poor outcomes from the others, in all clinical scenarios. Sequential measurement of the CLIF-SIG score showed that 78% of patients were admitted at the peak or descending part of the SI-wave. ACLF developed during hospitalisation in 80% of patients with a CLIF-SIG score >0.386 on admission. CONCLUSIONS In patients with ADC, the CLIF-SIG score is an accurate estimator of SI, clinical course severity and prognosis.
Collapse
Affiliation(s)
- Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Munster, Germany
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Alberto Queiroz Farias
- Department of Gastroenterology, Hospital das Clinicas, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Juan-José Lozano
- Liver Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | | | - Eva Usón-Raposo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | | | - Julia Sidorova
- Liver Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Anna Curto-Vilalta
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Patricia Sierra-Casas
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Patricia Momoyo Zitelli
- Department of Gastroenterology, Hospital das Clinicas, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Maria Papp
- Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gustavo Pereira
- Gastroenterology and Hepatology Unit, Bonsucesso Federal Hospital, Rio de Janeiro, Brazil
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Semeiotics, Liver and Alcohol-related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luciana L Goncalves
- Gastroenterology and Hepatology Unit, Cassiano Antonio Moraes University Hospital, Vitoria, Brazil
| | - Carlo Alessandria
- Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Torino, Italy
| | - Aldo Torre
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Wim Laleman
- Department of Internal Medicine B, University of Münster, Munster, Germany
- Division of Liver and Biliopanreatic Disorders, KU Leuven, University of Leuven, Leuven, Belgium
| | - Adrián Gadano
- Liver Unit and Department of Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Salvatore Piano
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Angelo Z Mattos
- Gastroenterology and Hepatology Unit, Federal University of Health Sciences, Porto Alegre, Brazil
| | - Wenyi Gu
- Department of Internal Medicine B, University of Münster, Munster, Germany
- Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Munster, Germany
| | - Frank Erhard Uschner
- Department of Internal Medicine B, University of Münster, Munster, Germany
- Hospital of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Fischer
- Department of Internal Medicine B, University of Münster, Munster, Germany
| | | | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Raj Mookerjee
- Institute of Liver and Digestive Health, University College London Medical School, London, UK
| | | | - Carlos Benitez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Cláudia Couto
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Manuel Mendizabal
- Hepatology and Liver Unit, Hospital Universitario Austral, Pilar, Argentina
| | - Rafael Bañares
- Gastroenterology, IRYCIS, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Claudio L Toledo
- Gastroenterology Unit, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel F Mazo
- Gastroenterology Unit, State University of Campinas, Campinas, Brazil
| | - Martin Janicko
- Pavol Jozef Stafarik University in Kosice Faculty of Medicine, Kosice, Slovakia
| | | | | | - Pietro Gatti
- Internal Medicine PO Ostuni, ASL Brindisi, Brindisi, Italy
| | | | | | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - André Castro-Lyra
- Hospital Universitario Professor Edgard Santos, Salvador, Brazil
- Hospital Sao Rafael, Salvador, Brazil
| | | | - William Bernal
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | - Rajiv Jalan
- Institute of Liver and Digestive Health, University College London Medical School, London, UK
| | - Javier Fernández
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| | - Paolo Angeli
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
- Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Flair Jose Carrilho
- Gastroenterology, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Joan Claria
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
- Department of Biochemistry/Molecular Genetics, Hospital Clinic/University of Barcelona, Barcelona, Spain
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
- INSERM, Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Beaujon, Service d'Hépatologie, Clichy, France
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain
| |
Collapse
|
37
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 PMCID: PMC11874512 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J. Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Saratoga High School, Saratoga, CA95070
| | - Ankita T. Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| | - Julian F. Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Alexander B. Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Biology, College of Science, Northeastern University, Boston, MA02115
| |
Collapse
|
38
|
Chen K, Ying J, Zhu J, Chen L, Liu R, Jing M, Wang Y, Zhou K, Wu L, Wu C, Xiao J, Ni W. Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury. Int Immunopharmacol 2025; 148:114057. [PMID: 39827665 DOI: 10.1016/j.intimp.2025.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health. Yet, its effects on acute inflammation following SCI remain unclear. In this study, we developed an impact-induced mouse model for SCI and treated the injured mice with UA (50 mg/kg/d, till 8 weeks) via intragastric administration. Furthermore, we subjected BV2 cells to lipopolysaccharide and adenosine 5'-triphosphate to simulate the post-injury inflammatory response. Our results demonstrated that pre-treatment with UA (10 μM) effectively inhibited NLRP3 inflammasome activation in LPS-primed BV2 cells. This inhibition was evidenced by reduced cleaved Caspase-1 and mature IL-1β release, diminished ASC speck formation, and decreased gasdermin D (GSDMD)-mediated pyroptosis. Additionally, UA treatment restored mitochondrial activity and ROS production attenuated by NLRP3 activation, increased LC3-II expression, and enhanced LC3 co-localization with mitochondria. 3-Methyladenine (3-MA), an autophagy inhibitor, can partially reverse the stimulatory effect of UA on mitophagy, as well as the inhibitory effect of UA on pyroptosis. This study highlighted the protective role of UA against SCI through its promotion of mitophagy, which in turn inhibits NLRP3 inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Kongbin Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiahao Ying
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiangwei Zhu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Liang Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Rongjie Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Mengqi Jing
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Yuchao Wang
- Department of Orthopedic, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116600, China
| | - Kailiang Zhou
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Long Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China.
| | - Chenyu Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Jian Xiao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Wenfei Ni
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| |
Collapse
|
39
|
Jin Y, Fleishman JS, Ma Y, Jing X, Guo Q, Shang W, Wang H. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther 2025; 19:1025-1041. [PMID: 39967903 PMCID: PMC11834678 DOI: 10.2147/dddt.s506537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Cardiac or myocardial dysfunction induced by sepsis, known as sepsis-induced cardiomyopathy or sepsis-induced myocardial injury (SIMI), is a common complication of sepsis and is associated with poor outcomes. However, the pathogenesis and molecular mechanisms underlying SIMI remain poorly understood, requiring further investigations. Emerging evidence has shown that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to SIMI. Compounds that inhibit NLRP3-associated pyroptosis may exert therapeutic effects against SIMI. In this review, we first outlined the principal elements of the NLRP3 signaling cascade and summarized the recent studies highlighting how NLRP3 activation contributes to the pathogenesis of SIMI. We outlined selective small-molecule modulators that function as NLRP3 inhibitors and delineated their mechanisms of action to attenuate SIMI. Finally, we discuss the major limitations of the current therapeutic paradigm and propose possible strategies to overcome them. This review highlights the pharmacological inhibition of SIMI as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, 11439, USA
| | - Yudong Ma
- Department of Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Qin Guo
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Weiguang Shang
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, People’s Republic of China
| |
Collapse
|
40
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Zhu W, Bao X, Yang Y, Xing M, Xiong S, Chen S, Zhong Y, Hu X, Lu Q, Wang K, Ling Q, Cui S. Peripheral Evolution of Tanshinone IIA and Cryptotanshinone for Discovery of a Potent and Specific NLRP3 Inflammasome Inhibitor. J Med Chem 2025; 68:3460-3479. [PMID: 39847657 DOI: 10.1021/acs.jmedchem.4c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Natural products (NPs) continue to serve as an invaluable source in drug discovery, and peripheral evolution of NPs is a highly efficient evolution strategy. Herein, we describe a unified "methyl to amide" peripheral evolution of Tanshinone IIA and Cryptotanshinone for discovery of NLRP3 inflammasome inhibitors. There were 54 compounds designed and prepared, while the chemoinformatic analysis revealed that these evolved NP analogues occupy a unique chemical space. Biological evaluation identified 5m as an NLRP3 inflammasome inhibitor, and 5m could directly bind to the NACHT domain of the NLRP3 protein and block the interaction of NLRP3 and ASC, thus suppressing ASC oligomerization and NLRP3 inflammasome assembly. Molecular dynamic stimulations revealed that the amide moiety played a vital role in the binding mode. Moreover, 5m exhibited therapeutical efficacy in sepsis and the NASH mouse model. In conclusion, this protocol provides a new vision of NPs' peripheral evolution and a novel NLRP3 inflammasome inhibitor.
Collapse
Affiliation(s)
- Wenqi Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Muqiong Xing
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Sijie Xiong
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Siyu Chen
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Qianrang Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Kairong Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Care, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
42
|
Mandal S, Ramesh M, Govindaraju T. Strategic Mutations in Designer Native Peptides Combat NLRP3 Inflammasome Activation in Neurodegenerative Disorders. J Med Chem 2025; 68:2890-2902. [PMID: 39874459 DOI: 10.1021/acs.jmedchem.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that NP3, derived from NLRP3, inhibits inflammasome activation. Furthermore, a strategic mutation (F → L) in native peptide NP3 results in MNP2 that selectively binds to PYD of ASC with nanomolar affinity, inhibiting NLRP3 inflammasome formation, interleukin-1β (IL-1β) release, and caspase-1 maturation. MNP2 also reduced potassium (K) and chloride (Cl) ion efflux, key signals in NLRP3 activation, and prevented mitochondrial damage and reactive oxygen species (ROS) production. MNP2 significantly reduced NLRP3 inflammasome formation in neurodegenerative conditions triggered by amyloid-β (Aβ), Tau, and α-Synuclein (α-Syn), suggesting a promising therapeutic strategy for NLRP3-related inflammatory diseases, including neurodegenerative disorders.
Collapse
Affiliation(s)
- Sabyasachi Mandal
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
43
|
Liu Y, Liu B, Shi M, Ye T, Li H. NLRP3 Inflammasome Activation Is Involved in Geniposide-Induced Hepatotoxicity. Mediators Inflamm 2025; 2025:4112856. [PMID: 39949920 PMCID: PMC11824841 DOI: 10.1155/mi/4112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 10/03/2024] [Accepted: 12/12/2024] [Indexed: 02/16/2025] Open
Abstract
Background: Geniposide, a prominent iridoid glycoside derived from Gardenia jasminoides J. Ellis, has garnered attention due to its association with hepatotoxicity despite its well-documented pharmacological efficacy in preclinical and clinical contexts. The NOD-like receptor protein 3 (NLRP3) inflammasome is implicated in numerous pathological conditions, including drug-induced liver injury. This study aims to explore the involvement of the NLRP3 inflammasome in geniposide-induced liver toxicity. Methods: Rats were administered geniposide for 5 days, concurrently treated with or without glibenclamide (GLY), an in vivo inhibitor of NLRP3. In vitro, HL-7702 cells were exposed to genipin (a metabolite of geniposide via hepatointestinal circulation), with or without GLY supplement. Liver tissue was examined through pathological sections. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transpeptidase (γ-GT), and total bilirubin (T-Bil) levels were determined using the enzyme plate method. IL-1β and IL-18 levels in the supernatant and serum were quantified through ELISA. Apoptosis-associated speck-like protein (ASC), NLRP3, caspase-1, pro-IL-1β, and pro-IL-18 mRNA levels in cells or the liver were assessed by RT-PCR. Protein levels of ASC, NLRP3, caspase-1, pro-IL-1β, and pro-IL-18 in cells or the liver were analyzed by Western blot. Results: Rats treated with geniposide displayed notable liver damage characterized by inflammatory infiltration, elevated serum transaminases, and heightened levels of inflammatory factors IL-1β and IL-18. This liver damage was concomitant with NLRP3 inflammasome activation within the liver. Furthermore, genipin induction led to reduced cell viability, increased transaminases in the cell supernatant, and an upsurge in inflammatory factors, resulting in heightened NLRP3 inflammasome expression within the cells. However, GLY effectively curtailed excessive NLRP3 activation, dampened the production of inflammatory factors IL-1β and IL-18, and ameliorated liver damage caused by geniposide. Conclusions: Our findings collectively elucidate that geniposide induces hepatotoxicity by triggering NLRP3 inflammasome signaling. Inhibition of the inflammasome presents a promising novel therapeutic target for mitigating geniposide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Baoyue Liu
- School of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Mingzhu Shi
- School of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Tianxiang Ye
- School of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| | - Huifang Li
- School of Chinese Medicine and Food Engineering, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China
| |
Collapse
|
44
|
Kawasaki H. A mechanistic review-regulation of silica-induced pulmonary inflammation by IL-10 and exacerbation by Type I IFN. Inhal Toxicol 2025; 37:59-73. [PMID: 39955624 DOI: 10.1080/08958378.2025.2465378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Occupational exposure to crystalline silica (CS) is known to induce silicosis, a chronic lung disease characterized by the formation of granulomas and severe lung fibrosis. Specifically, individuals exposed to low doses of CS may develop silicosis after a decade or more of exposure. Similarly, in rat silicosis models exposed to occupationally relevant doses of α-quartz, there is an initial phase characterized by minimal and well-controlled pulmonary inflammation, followed by the development of robust and persistent inflammation. During the initial phase, the inflammation provoked by α-quartz is subdued by two mechanisms. Firstly, α-quartz particles are engulfed by alveolar macrophages (AMs) of the alternatively activated (M2) subtype and interstitial macrophages (IMs), limiting their interaction with other lung cells. Secondly, the anti-inflammatory cytokine, interleukin (IL)-10, is constitutively expressed by these macrophages, further dampening the inflammatory response. In the later inflammatory phase, IL-10-dependent anti-inflammatory state is disrupted by Type I interferons (IFNs), leading to the production of pro-inflammatory cytokines in response to α-quartz, aided by lipopolysaccharides (LPS). This review delves into the complex pathways involving IL-10, LPS, and Type I IFNs in α-quartz-induced pulmonary inflammation, offering a detailed analysis of the underlying mechanisms and identifying areas for future research.
Collapse
|
45
|
Lee JH. ATM in immunobiology: From lymphocyte development to cancer immunotherapy. Transl Oncol 2025; 52:102268. [PMID: 39752906 PMCID: PMC11754496 DOI: 10.1016/j.tranon.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
Ataxia Telangiectasia Mutated (ATM) is a protein kinase traditionally known for its role in DNA damage response and cell cycle regulation. However, emerging research has revealed its multifaceted and crucial functions in the immune system. This comprehensive review explores the diverse roles of ATM in immune regulation, from lymphocyte development to its involvement in cancer immunotherapy. The review describes ATM's critical functions in V(D)J recombination and class switch recombination, highlighting its importance in adaptive immunity. It examines ATM's role in innate immunity, particularly in NF-κB signaling and cytokine production. Furthermore, the review analyzes the impact of ATM deficiency on oxidative stress and mitochondrial function in immune cells, providing insights into the immunological defects observed in Ataxia Telangiectasia (A-T). The article explores ATM's significance in maintaining hematopoietic stem cell function and its implications for bone marrow transplantation and gene therapy. Additionally, it addresses ATM's involvement in inflammation and immune senescence, linking DNA damage response to age-related immune decline. Finally, this review highlights the emerging role of ATM in cancer immunotherapy, where its inhibition shows promise in enhancing immune checkpoint blockade therapy. This review synthesizes current knowledge on ATM's functions in the immune system, offering insights into the pathophysiology of ATM-related disorders and potential therapeutic strategies for immune-related conditions and cancer immunotherapy.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
46
|
Williams DM, Peden AA. Greasing the wheels of inflammasome formation: regulation of NLRP3 function by S-linked fatty acids. Biochem Soc Trans 2025:BST20241738. [PMID: 39838868 DOI: 10.1042/bst20241738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025]
Abstract
NLRP3 is an inflammasome seeding pattern recognition receptor that initiates a pro-inflammatory signalling cascade in response to changes in intracellular homeostasis that are indicative of bacterial infection or tissue damage. Several types of post-translational modification (PTM) have been identified that are added to NLRP3 to regulate its activity. Recent progress has revealed that NLRP3 is subject to a further type of PTM, S-acylation (or palmitoylation), which involves the reversible addition of long-chain fatty acids to target cysteine residues by opposing sets of enzymes. This review provides an overview of recent studies that have identified S-acylation as an important modifier of NLRP3 function. The essential role of S-acylation in the recruitment of NLRP3 to intracellular membranes and the consequences of S-acylation-dependent membrane recruitment on NLRP3 localisation and activation are discussed in detail.
Collapse
Affiliation(s)
- Daniel M Williams
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Andrew A Peden
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
47
|
Sun Y, Zhou Y, Peng T, Huang Y, Lu H, Ying X, Kang M, Jiang H, Wang J, Zheng J, Zeng C, Liu W, Zhang X, Ai L, Peng Q. Preventing NLRP3 inflammasome activation: Therapeutic atrategy and challenges in atopic dermatitis. Int Immunopharmacol 2025; 144:113696. [PMID: 39608174 DOI: 10.1016/j.intimp.2024.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder characterized by its chronic, persistent, and recurrent nature. The pathophysiology of this condition is complex, involving various factors including cell-mediated immune responses, compromised skin barrier function, and alterations in hypersensitivity reactions. These components synergistically contribute to the perpetuation of the bothersome "itch-scratch-itch" cycle. Recent research has highlighted the significant role of the NLRP3 inflammasome in the development of AD and other inflammatory conditions. Current research indicates that the NLRP3 inflammasome plays a pivotal role in both the acute and chronic phases of AD by modulating the Th2/Th1 immune deviation. Moreover, the pharmacological suppression of NLRP3 has shown promising results in mitigating the pathological aspects of AD. This review outlines potential drug development strategies that target the NLRP3 inflammasome as a therapeutic approach for AD and the challenges faced in this endeavor.
Collapse
Affiliation(s)
- Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangang Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tong Peng
- Department of R&D, Keystonecare Technology (Chengdu) Co., Ltd, Chengdu 610094, China
| | - Yuhang Huang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Lu
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Xiran Ying
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Mingsheng Kang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Jiang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jingying Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chenyu Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lin Ai
- Department of Dermatology and Venereology, Nanbu County People's Hospital, Nanchong 637399, China
| | - Quekun Peng
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
48
|
Kimbrough H, Jensen J, Weber C, Miller T, Maddera LE, Babu V, Redwine WB, Halfmann R. A tool to dissect heterotypic determinants of homotypic protein phase behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631016. [PMID: 39803489 PMCID: PMC11722427 DOI: 10.1101/2025.01.01.631016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Proteins commonly self-assemble to create liquid or solid condensates with diverse biological activities. The mechanisms of assembly are determined by each protein's sequence and cellular context. We previously developed distributed amphifluoric FRET (DAmFRET) to analyze sequence determinants of self-assembly in cells. Here, we extend DAmFRET by creating a nanobody (mEosNb) against the fluorescent protein mEos3 to physically tether and thereby recruit candidate modifier proteins to mEos3-fused query proteins. This accessorization allows us to rapidly screen for effects on the phase behavior of query proteins by modulating the expression level and valency of mEosNb-fused modifiers. We show that our system recapitulates known effects of multivalency on liquid-liquid phase separation and can discriminate between nucleation mechanisms of amyloid and amyloid-like assemblies. Our approach adds a new experimental dimension for interrogating the mechanisms of intracellular phase transitions.
Collapse
Affiliation(s)
| | - Jacob Jensen
- Stowers Institute for Medical Research, Kansas City, MO
| | - Caleb Weber
- Stowers Institute for Medical Research, Kansas City, MO
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Vignesh Babu
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
49
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2025; 329:e13365. [PMID: 38989642 PMCID: PMC11724017 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C. Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Abigail H. Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public HealthUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
50
|
Li L, Xu T, Qi X. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Immunol Rev 2025; 329:e13417. [PMID: 39523732 DOI: 10.1111/imr.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) production and inflammasome activation are the key components of the innate immune response to microbial infection and sterile insults. ROS are at the intersection of inflammation and immunity during cancer development. Balanced regulation of ROS production and inflammasome activation serves as the central hub of innate immunity, determining whether a cell will survive or undergo cell death. However, the mechanisms underlying this balanced regulation remain unclear. Mitochondria and NADPH oxidases are the two major sources of ROS production. Recently, NCF4, a component of the NADPH oxidase complex that primarily contributes to ROS generation in phagocytes, was reported to balance ROS production and inflammasome activation in macrophages. The phosphorylation and puncta distribution of NCF4 shifts from the membrane-bound NADPH complex to the perinuclear region, promoting ASC speck formation and inflammasome activation, which triggers downstream IL-18-IFN-γ signaling to prevent the progression of colorectal cancer (CRC). Here, we review ROS signaling and inflammasome activation studies in colitis-associated CRC and propose that NCF4 acts as a ROS sensor that balances ROS production and inflammasome activation. In addition, NCF4 is a susceptibility gene for Crohn's disease (CD) and CRC. We discuss the evidence demonstrating NCF4's crucial role in facilitating cell-cell contact between immune cells and intestinal cells, and mediating the paracrine effects of inflammatory cytokines and ROS. This coordination of the signaling network helps create a robust immune microenvironment that effectively prevents epithelial cell mutagenesis and tumorigenesis during the early stage of colitis-associated CRC.
Collapse
Affiliation(s)
- Longjun Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|