1
|
Schultz BJ, Walker S. Acyltransferases that Modify Cell Surface Polymers Across the Membrane. Biochemistry 2025. [PMID: 40171682 DOI: 10.1021/acs.biochem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface oligosaccharides and related polymers are commonly decorated with acyl esters that alter their structural properties and influence their interactions with other molecules. In many cases, these esters are added to polymers that are already positioned on the extracytoplasmic side of a membrane, presenting cells with a chemical challenge because the high-energy acyl donors used for these modifications are made in the cytoplasm. How activated acyl groups are passed from the cytoplasm to extra-cytoplasmic polymers has been a longstanding question. Recent mechanistic work has shown that many bacterial acyl transfer pathways operate by shuttling acyl groups through two covalent intermediates to their final destination on an extracellular polymer. Key to these and other pathways are cross-membrane acyltransferases─enzymes that catalyze transfer of acyl groups from a donor on one side of the membrane to a recipient on the other side. Here we review what has been learned recently about how cross-membrane acyltransferases in polymer acylation pathways function, highlighting the chemical and biosynthetic logic used by two key protein families, membrane-bound O-acyltransferases (MBOATs) and acyltransferase-3 (AT3) proteins. We also point out outstanding questions and avenues for further exploration.
Collapse
Affiliation(s)
- Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Wei H, Maul EC, Kyomuhangi A, Park S, Mutchler ML, Zhan CG, Zheng F. Effects of Fentanyl-Laced Cocaine on Circulating Ghrelin, Insulin, and Glucose Levels in Rats. Int J Mol Sci 2025; 26:2341. [PMID: 40076960 PMCID: PMC11899780 DOI: 10.3390/ijms26052341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Opioid mixed with cocaine has been increasingly implicated in overdose deaths, including both intentional co-use of opioid and cocaine and fentanyl-adulterated drug supply. As ghrelin plays an important role in drug reward and can also influence insulin, this study aimed to assess responses of the circulating ghrelin, insulin, and glucose levels to the combined use of fentanyl and cocaine (a polydrug) in rats by performing combined animal behavioral experiments and biochemical analysis. The experimental data consistently revealed that the fentanyl and cocaine co-use can significantly elevate both the acyl-ghrelin and desacyl-ghrelin levels and significantly decrease the insulin level without significant effects on the glucose level. These findings suggest that, like cocaine itself, the fentanyl-cocaine polydrug can self-promote its rewarding effects via elevating the ghrelin level, and that the ghrelin system might serve as a potential pharmacological target for treatment of substance use disorders caused by polysubstance use involving fentanyl and cocaine. Additionally, based on the insulin data obtained in this study, the insulin level was always downregulated significantly and considerably, implying that the fentanyl and cocaine polydrug might have a stronger cardiovascular toxicity to the patients with insulin resistance and diabetes. Further studies are required to examine this possibility.
Collapse
Affiliation(s)
- Huimei Wei
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Elise C. Maul
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Annet Kyomuhangi
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Shawn Park
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Maddilynn L. Mutchler
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Sun R, Wang Z, Li M, Du T, Jia S, Yang W, Yang L. Regulatory Effects of Copper on Ghrelin Secretion in Rat Fundic Glands. J Anim Physiol Anim Nutr (Berl) 2025; 109:521-532. [PMID: 39545633 DOI: 10.1111/jpn.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Copper (Cu) is an effective additive in feed for promoting growth. Growth dan axis comprising growth hormone (GH), somatostatin (SS) and GH-releasing hormone (GHRH), with ghrelin regulating their release. The growth-promoting effects of Cu are closely related to ghrelin, but the specific mechanism behind the relationship remains unknown. We investigated the adjustment of ghrelin synthesis and secretion by Cu. Sprague-Dawley rats were fed basal diets with an addition of 0, 120 or 240 mg/kg Cu sulfate for 28 day to establish a growth-promoting model. Signalling molecules relevant to ghrelin synthesis and secretion were detected and mechanistically explored using enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction and Western blot analysis. The 120 mg/kg supplement improved growth performance; significantly increased the serum levels of ghrelin, ghrelin O-acyltransferase (GOAT), acylated ghrelin (AG), GH, and reactive oxygen species (ROS) and decreased those of SS; significantly increased the mRNA and protein expression of ghrelin, GOAT, ghrelin receptor (GHS-R1α), and activator protein 1 (AP-1); increased the phosphorylation ratio of JNK and p38 MAPK; and inhibited the mRNA and protein expression of SS and SS receptor subtype 2 (SSTR2) in gastric fundic gland tissues. Thus, Cu may affect gastric ghrelin synthesis at the transcriptional level by activating the JNK/p38 MAPK pathway through increased ROS levels and regulating the activation of the downstream redox-sensitive transcription factor AP-1. SS plays a crucial determinant role in ghrelin regulation via intragastric Cu. Cu promotes GOAT activity and ghrelin secretion by inhibiting SS secretion, affecting AG levels, and promoting ghrelin acylation through ghrelin/GOAT/GHS-R1α system, modulating ghrelin secretion.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Meng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Tianyang Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Shuang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| |
Collapse
|
4
|
Ma Y, Zhang H, Yan Q, Wang P, Guo W, Yu L. The antidiabetic effect of safflower yellow by regulating the GOAT/ghrelin/GHS-R1a/cAMP/TRPM2 pathway. Sci Rep 2025; 15:5037. [PMID: 39934157 DOI: 10.1038/s41598-025-87201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Safflower yellow (SY), derived from Carthamus tinctorius L., is a valuable natural edible pigment that exhibits anti-type 2 diabetes mellitus (T2DM) efficacy; however, its mechanism of action is unclear, which hinders its effective use. In this study, we examined the impact of SY on glucose metabolism and insulin secretion both in vivo and in vitro and elucidated the possible underlying mechanism. First, molecular docking demonstrated a strong binding affinity between SY and ghrelin O-acyltransferase (GOAT) protein, which was validated by a cell heat transfer assay (CETSA) and drug affinity response target stability (DARTS) in MIN6 cells. In MIN6 cells, SY increased insulin secretion and showed time- and dose-dependent inhibition of GOAT expression and acyl ghrelin (AG) secretion without affecting the overall levels of ghrelin. Furthermore, ELISA revealed that SY enhanced high glucose (HG)-induced insulin secretion, and immunofluorescence revealed the co-localization of GOAT and ghrelin in MIN6 cells, which was suppressed by SY treatment. The mechanism analysis by Western blot demonstrated that SY downregulated the protein levels of GOAT and GHS-R1a in MIN6 cells while increasing HG-stimulated cAMP and activation of transient receptor potential melastatin 2 (TRPM2). In in vivo experiments, the intraperitoneal injection of SY significantly improved pathological damage to the pancreas, glucose tolerance, and insulin resistance in a mouse model of high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM in a dose-dependent manner. SY enhanced insulin secretion by inhibiting the GOAT/ghrelin system in vivo. In conclusion, we demonstrated that SY exhibits an observable protective effect on diabetes through the GOAT/ghrelin/GHS-R1a/cAMP/TRPM2 pathway. Our findings provide a basis for further investigation of the hypoglycemic mechanism of SY and its potential for further development and utilization.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Haifeng Zhang
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Qihui Yan
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Ping Wang
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China
| | - Weiying Guo
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| | - Lu Yu
- Department of Endocrinology, Interventional Therapy, and Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130000, China.
| |
Collapse
|
5
|
Ford AL, Taft CW, Sprague-Getsy AM, Carlson GC, Mate NA, Sieburg MA, Chisholm JD, Hougland JL. A Modular Customizable Ligand-Conjugate (LC) System Targeting Ghrelin O-Acyltransferase. Biomolecules 2025; 15:204. [PMID: 40001510 PMCID: PMC11852496 DOI: 10.3390/biom15020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
Ghrelin is a 28 amino acid peptide hormone that impacts a wide range of biological processes, including appetite regulation, glucose metabolism, growth hormone regulation, and cognitive function. To bind and activate its cognate receptor, ghrelin must be acylated on a serine residue in a post-translational modification performed by ghrelin O-acyltransferase (GOAT). GOAT is a membrane-bound O-acyltransferase (MBOAT) responsible for the catalysis of the addition of an octanoyl fatty acid to the third serine of desacyl ghrelin. Beyond its canonical role for ghrelin maturation in endocrine cells within the stomach, GOAT was recently reported to be overexpressed in prostate cancer (PCa) cells and detected at increased levels in the serum and urine of PCa patients. This suggests GOAT can serve as a potential route for the detection and therapeutic targeting of PCa and other diseases that exhibit GOAT overexpression. Building upon a ghrelin mimetic peptide with nanomolar affinity for GOAT, we developed an antibody-conjugate-inspired system for customizable ligand-conjugate (LC) synthesis allowing for the attachment of a wide range of cargoes. The developed synthetic scheme allows for the easy synthesis of the desired LCs and demonstrates that our ligand system tolerates an extensive palette of cargoes while maintaining nanomolar affinity against GOAT.
Collapse
Affiliation(s)
- Amber L. Ford
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Caine W. Taft
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Andrea M. Sprague-Getsy
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Gracie C. Carlson
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Nilamber A. Mate
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - Michelle A. Sieburg
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
| | - John D. Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; (A.L.F.); (C.W.T.); (A.M.S.-G.); (G.C.C.); (N.A.M.); (M.A.S.); (J.D.C.)
- BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Sixten HJ, Rønnestad I, Bogevik AS, Aspevik T, Oterhals Å, Gomes AS, Lai F, Tolås I, Gelebard V, Hillestad M, Kousoulaki K. Side-Stream Based Marine Solubles From Atlantic Cod ( Gadus morhua) Modulate Appetite and Dietary Nutrient Utilization in Atlantic Salmon ( Salmo salar L.) and can Replace Fish Meal. AQUACULTURE NUTRITION 2025; 2025:4872889. [PMID: 39949357 PMCID: PMC11824393 DOI: 10.1155/anu/4872889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025]
Abstract
Whitefish fisheries' side-stream biomass is an abundant underutilized resource that can be valorized to benefit future aquaculture sustainability. Four novel ingredients based on side-streams from Atlantic cod (Gadus morhua) fileting were produced. FM-hb, a fish meal (FM), and FPH-hb, a fish protein hydrolysate based on heads (h) and backbones (b); FM-hbg, a FM based on heads, backbones, and viscera/guts (g); and FPC-g, a fish protein concentrate based on viscera preserved in formic acid. Four diets were prepared containing one of the ingredients replacing 50% of the dietary FM protein, in addition to a positive (FM10) and a negative (FM5) control. The six diets were fed to triplicate tanks with Atlantic salmon (Salmo salar L.; 113 ± 1 g) over 8 weeks. Besides general performance, gut and brain gene expression for selected hormones and key neuropeptides involved in the control of appetite and digestive processes were studied during feeding and postprandial, and possible reference levels for Atlantic salmon were established. All side-stream-added diets performed well, with no significant differences in performance and biometrics between the treatments. Some gene expression differences were observed, but no well-defined patterns emerged supporting clear dietary effects related to digestive performance or appetite. However, in the brain, a short-time upregulation of agouti-related protein-1 (agrp1), corresponded to higher cumulative feed intake (FI) for the FM10 diet supporting notions that this may be a candidate biomarker for appetite in salmon. Expression of stomach ghrelin-1 (ghrl1) was higher than ghrelin-2 (ghrl2) and membrane-bound O-acyltransferase domain-containing 4 (mboat4), and midgut peptide YYa-2 (pyya2) and glucagon-a (gcga) were higher than peptide YYb-1 (pyyb1). A comparison showed that midgut peptide YYa-1 (pyya1), pyya2, and gcga expressions were higher than in the hindgut, which is opposite of what is found in mammals. In conclusion, this study shows that sustainable side-stream raw materials with different characteristics can partly replace high-quality commercial FMs giving similar performance.
Collapse
Affiliation(s)
- Hanne Jorun Sixten
- Department of Research and Development, BioMar AS, Trondheim, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - André S. Bogevik
- Department of Nutrition and Feed Technology, NOFIMA, Fyllingsdalen, Norway
| | - Tone Aspevik
- Department of Nutrition and Feed Technology, NOFIMA, Fyllingsdalen, Norway
| | - Åge Oterhals
- Department of Nutrition and Feed Technology, NOFIMA, Fyllingsdalen, Norway
| | - Ana S. Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Institute of Marine Research, Tromsø, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ingvill Tolås
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Biological Sciences, NTNU Ålesund, Ålesund, Norway
| | - Virginie Gelebard
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Marie Hillestad
- Department of Research and Development, BioMar AS, Trondheim, Norway
| | | |
Collapse
|
7
|
Sosinski O, Pruszynska-Oszmalek E, Leciejewska N, Sassek M, Kolodziejski PA. LEAP2 in Physiology-A Narrative Review. Int J Mol Sci 2025; 26:377. [PMID: 39796232 PMCID: PMC11722547 DOI: 10.3390/ijms26010377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Liver Enriched Antimicrobial Peptide 2 (LEAP2) is a fascinating peptide that has gained significant attention since its discovery in 2003. Initially identified as an antimicrobial peptide, LEAP2 has more recently been found to play a key role in the regulation of energy metabolism. One of the most notable functions of LEAP2 is its interaction with the ghrelin hormone, which is known for stimulating hunger. LEAP2 acts as an inhibitor of ghrelin, thereby reducing food intake and influencing energy balance. The physiological roles of LEAP2 extend beyond appetite suppression. Studies have shown that LEAP2 has an impact on insulin secretion, suggesting its potential involvement in glucose metabolism and possibly insulin sensitivity, which is crucial in managing conditions like type 2 diabetes. Moreover, LEAP2 levels appear to fluctuate based on factors such as gender, developmental stage, and even interventions like bariatric surgery, which is known for its role in managing obesity and diabetes. Given these findings, LEAP2 shows potential as a therapeutic target, particularly for addressing obesity and metabolic diseases such as type 2 diabetes. Its ability to influence food intake and energy balance makes it a promising candidate for further research into therapies aimed at weight regulation and glycemic control. In the future, LEAP2 could become an important agent in the development of treatments aimed at curbing obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | - Ewa Pruszynska-Oszmalek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35 Street, 60-637 Poznan, Poland; (O.S.); (N.L.); (M.S.)
| | | | | | - Pawel Antoni Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35 Street, 60-637 Poznan, Poland; (O.S.); (N.L.); (M.S.)
| |
Collapse
|
8
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
McCarthy SF, Finch MS, MacPherson REK, Hazell TJ. Physiologically relevant lactate accumulation from exercise or peripheral injection does not alter central or peripheral appetite signaling in mice. Neuropeptides 2024; 108:102473. [PMID: 39332138 DOI: 10.1016/j.npep.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Lactate has been implicated in exercise-induced appetite suppression though little work has explored the mechanisms underpinning its role. Recent work suggests lactate accumulation via exercise and intracerebroventricular injection can alter central appetite regulating pathways, though a supraphysiological dose of lactate was administered centrally and there was no assessment of peripheral appetite markers. Therefore, we examined how physiologically relevant lactate accumulation via exercise or intraperitoneal injection altered central and peripheral appetite signaling pathways and whether the lactate dehydrogenase inhibitor oxamate could blunt any exercise effect. Forty 10-week-old C57BL/6 J male mice (n = 10/group) were assigned to either: 1) sedentary (SED + SAL; saline); 2) exercise (EX+SAL; saline); 3) exercise with oxamate (EX+OX; 750 mg‧kg-1 body mass); or 4) lactate (SED + LAC; 1.0 g‧kg-1 body mass). Blood, stomach, and hypothalamus samples were collected ∼2 h post-exercise/injection. Though oxamate blunted exercise-induced lactate accumulation compared to the EX+SAL condition (P = 0.044, d = 0.73), there were no differences in circulating acylated ghrelin or stomach ghrelin O-acyltransferase content between groups (P > 0.213, ηp2<0.125). There were also no differences in hypothalamic content for neuropeptide Y, proopiomelanocortin, agouti-related peptide, and alpha melanocyte-stimulating hormone (P > 0.150, ηp2<0.170). Exercise did increase phosphorylated-total signal transducer and activator of transcription 3 (pSTAT3) compared to EX+OX (p = 0.065, d = 1.23) but there were no differences in other markers of lactate signaling: phosphorylated-total adenosine monophosphate activated protein kinase, and protein kinase b (P > 0.121, ηp2<0.160). Our results suggest that lactate accumulation due to exercise or peripheral injection does not alter central or peripheral appetite signaling when measured 2 h post-exercise/injection, though pSTAT3 was blunted with oxamate.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada.
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catherines, Ontario, Canada; Centre for Neuroscience, Brock University, St. Catherines, Ontario, Canada.
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada.
| |
Collapse
|
10
|
McCarthy SF, Bornath DPD, Tucker JAL, Cohen TR, Medeiros PJ, Hazell TJ. Greater lactate accumulation does not alter peripheral concentrations of key appetite-regulating neuropeptides. J Appl Physiol (1985) 2024; 137:1397-1408. [PMID: 39359185 DOI: 10.1152/japplphysiol.00559.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
The potential mechanisms involved in lactate's role in exercise-induced appetite suppression require further examination. We used sodium bicarbonate (NaHCO3) supplementation in a double-blind, placebo-controlled, randomized crossover design to explore lactate's role on neuropeptide Y (NPY), agouti-related peptide (AgRP), and alpha-melanocyte-stimulating hormone (α-MSH) concentrations. Twelve adults (7 males; 24.2 ± 3.4 kg·m-2; 42.18 ± 8.56 mL·kg-1·min-1) completed two identical high-intensity interval training sessions following ingestion of NaHCO3 (BICARB) or sodium chloride (PLACEBO) pre-exercise. Blood lactate, acylated ghrelin, NPY, AgRP, α-MSH, and appetite perceptions were measured pre-exercise, 0-, 30-, 60-, and 90-min postexercise. Free-living energy intake (electronic food diaries) was measured the day before, of, and after each experimental session. In BICARB, blood lactate was greater postexercise (P < 0.002, d > 0.70), though acylated ghrelin was similar (P = 0.075, [Formula: see text] = 0.206) at all time points postexercise (P > 0.034, d < 0.22). NPY (P = 0.006, [Formula: see text] > 0.509) and AgRP (P < 0.001, [Formula: see text] > 0.488) had main effects of time increasing following exercise and returning to baseline, with no differences between sessions (NPY: P = 0.0.192, [Formula: see text] = 0.149; AgRP: P = 0.422, [Formula: see text] = 0.060). α-MSH had no main effect of time (P = 0.573, [Formula: see text] = 0.063) or session (P = 0.269, [Formula: see text] = 0.110). Appetite perceptions were similar during BICARB and PLACEBO (P = 0.007, d = 0.28), increasing in both sessions postexercise (P < 0.088, d > 0.57). Energy intake had a main effect of day (P = 0.025, [Formula: see text] = 0.825), where the experimental session day was greater than the day before (P = 0.010, d = 0.59) with no other differences between days (P > 0.260, d < 0.38). The lower accumulation of lactate than our previous work did not generate exercise-induced appetite suppression as there were no differences in acylated ghrelin, appetite perceptions, or peripheral concentrations of neuropeptides.NEW & NOTEWORTHY Current evidence supports lactate's role in exercise-induced appetite suppression. Here, we demonstrate a smaller degree of lactate accumulation with sodium bicarbonate ingestion and HIIT than our previous work and no subsequent suppression of acylated ghrelin concentrations, subjective appetite perceptions, or peripheral concentrations of neuropeptides. These results suggest either changes in central appetite-regulating neuropeptides are not reflected peripherally or the smaller magnitude of lactate accumulation did not generate exercise-induced appetite suppression as seen previously.
Collapse
Affiliation(s)
- Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tamara R Cohen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip J Medeiros
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Garcia-Rendueles MER, Varela L, Horvath TL. Ghrelin. Trends Endocrinol Metab 2024; 35:1021-1022. [PMID: 39048461 DOI: 10.1016/j.tem.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Affiliation(s)
| | - Luis Varela
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro_Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Sturaro C, Ruzza C, Ferrari F, Pola P, Argentieri M, Frezza A, Marzola E, Bettegazzi B, Cattaneo S, Pietra C, Malfacini D, Calò G. In vitro pharmacological characterization of growth hormone secretagogue receptor ligands using the dynamic mass redistribution and calcium mobilization assays. Eur J Pharmacol 2024; 981:176880. [PMID: 39128804 DOI: 10.1016/j.ejphar.2024.176880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Ghrelin modulates several biological functions via selective activation of the growth hormone secretagogue receptor (GHSR). GHSR agonists may be useful for the treatment of anorexia and cachexia, while antagonists and inverse agonists may represent new drugs for the treatment of metabolic and substance use disorders. Thus, the identification and pharmacodynamic characterization of new GHSR ligands is of high interest. In the present work the label-free dynamic mass redistribution (DMR) assay has been used to evaluate the pharmacological activity of a panel of GHSR ligands. This includes the endogenous peptides ghrelin, desacyl-ghrelin and LEAP2(1-14). Among synthetic compounds, the agonists anamorelin and HM01, the antagonists HM04 and YIL-781, and the inverse agonist PF-05190457 have been tested, together with HM03, R011, and H1498 from patent literature. The DMR results have been compared to those obtained in parallel experiments with the calcium mobilization assay. Ghrelin, anamorelin, HM01, and HM03 behaved as potent full GHSR agonists. YIL-781 behaved as a partial GHSR agonist and R011 as antagonist in both the assays. LEAP2(1-14) resulted a GHSR inverse agonist in DMR but not in calcium mobilization assay. PF-05190457, HM04, and H1498 behaved as GHSR inverse agonists in DMR experiments, while they acted as antagonists in calcium mobilization studies. In conclusion, this study provided a systematic pharmacodynamic characterization of several GHSR ligands in two different pharmacological assays. It demonstrated that the DMR assay can be successfully used particularly to discriminate between antagonists and inverse agonists. This study may be useful for the selection of the most appropriate compounds to be used in future studies.
Collapse
Affiliation(s)
- Chiara Sturaro
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, Ferrara, Italy.
| | - Federica Ferrari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pietro Pola
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Michela Argentieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia Frezza
- U.O. Neurological Clinic of the University Hospital of Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
13
|
Anderson AC, Schultz BJ, Snow ED, Brott AS, Stangherlin S, Malloch T, London JR, Walker S, Clarke AJ. The mechanism of peptidoglycan O-acetylation in Gram-negative bacteria typifies bacterial MBOAT-SGNH acyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613324. [PMID: 39345430 PMCID: PMC11429678 DOI: 10.1101/2024.09.17.613324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bacterial cell envelope polymers are commonly modified with acyl groups that provide fitness advantages. Many polymer acylation pathways involve pairs of membrane-bound O-acyltransferase (MBOAT) and SGNH family proteins. As an example, the MBOAT protein PatA and the SGNH protein PatB are required in Gram-negative bacteria for peptidoglycan O-acetylation. The mechanism for how MBOAT-SGNH transferases move acyl groups from acyl-CoA donors made in the cytoplasm to extracellular polymers is unclear. Using the peptidoglycan O-acetyltransferase proteins PatAB, we explore the mechanism of MBOAT-SGNH pairs. We find that the MBOAT protein PatA catalyzes auto-acetylation of an invariant Tyr residue in its conserved C-terminal hexapeptide motif. We also show that PatB can use a synthetic hexapeptide containing an acetylated tyrosine to donate an acetyl group to a peptidoglycan mimetic. Finally, we report the structure of PatB, finding that it has structural features that shape its activity as an O-acetyltransferase and distinguish it from other SGNH esterases and hydrolases. Taken together, our results support a model for peptidoglycan acylation in which a tyrosine-containing peptide at the MBOAT's C-terminus shuttles an acyl group from the MBOAT active site to the SGNH active site, where it is transferred to peptidoglycan. This model likely applies to other systems containing MBOAT-SGNH pairs, such as those that O-acetylate alginate, cellulose, and secondary cell wall polysaccharides. The use of an acyl-tyrosine intermediate for MBOAT-SGNH acyl transfer is also shared with AT3-SGNH proteins, a second major group of acyltransferases that modify cell envelope polymers.
Collapse
Affiliation(s)
- Alexander C. Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Bailey J. Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D. Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ashley S. Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Stefen Stangherlin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
| | - Tyler Malloch
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| | - Jalen R. London
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada N1G 2W1
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, Ontario Canada N2L 3C5
| |
Collapse
|
14
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Rubinić I, Kurtov M, Likić R. Novel Pharmaceuticals in Appetite Regulation: Exploring emerging gut peptides and their pharmacological prospects. Pharmacol Res Perspect 2024; 12:e1243. [PMID: 39016695 PMCID: PMC11253306 DOI: 10.1002/prp2.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 06/22/2024] [Indexed: 07/18/2024] Open
Abstract
Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.
Collapse
Affiliation(s)
- Igor Rubinić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of RijekaRijekaCroatia
- Clinical Pharmacology unitClinical Hospital Center RijekaRijekaCroatia
| | - Marija Kurtov
- Division of Clinical Pharmacology and Toxicology, Department of Internal MedicineUniversity Hospital “Sveti Duh”ZagrebCroatia
| | - Robert Likić
- Department of Internal MedicineSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
16
|
McCarthy SF, Tucker JAL, Hazell TJ. Exercise-induced appetite suppression: An update on potential mechanisms. Physiol Rep 2024; 12:e70022. [PMID: 39187396 PMCID: PMC11347021 DOI: 10.14814/phy2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
The first systematic reviews of the effects of exercise on appetite-regulation and energy intake demonstrated changes in appetite-regulating hormones consistent with appetite suppression and decreases in subsequent relative energy intake over a decade ago. More recently, an intensity-dependent effect and several potential mechanisms were proposed, and this review aims to highlight advances in this field. While exercise-induced appetite suppression clearly involves acylated ghrelin, glucagon-like peptide-1 may also be involved, though recent evidence suggests peptide tyrosine tyrosine may not be relevant. Changes in subjective appetite perceptions and energy intake continue to be equivocal, though these results are likely due to small sample sizes and methodological inconsistencies. Of the proposed mechanisms responsible for exercise-induced appetite suppression, lactate has garnered the most support through in vitro and in vivo rodent studies as well as a growing amount of work in humans. Other potential modulators of exercise-induced appetite suppression may include sex hormones, growth-differentiation factor 15, Lac-Phe, brain-derived neurotrophic factor, and asprosin. Research should focus on the mechanisms responsible for the changes and consider these other modulators (i.e., myokines/exerkines) of appetite to improve our understanding of the role of exercise on appetite regulation.
Collapse
Affiliation(s)
- Seth F. McCarthy
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jessica A. L. Tucker
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Tom J. Hazell
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
17
|
Golshan M, Alavi SMH, Hatef A, Kazori N, Socha M, Milla S, Sokołowska-Mikołajczyk M, Unniappan S, Butts IAE, Linhart O. Impact of absolute food deprivation on the reproductive system in male goldfish exposed to sex steroids. J Comp Physiol B 2024; 194:411-426. [PMID: 38880793 DOI: 10.1007/s00360-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
There is a link between metabolism and reproduction as metabolic hormones affect hypothalamus-pituitary-testis (HPT) hormonal functions and vice versa. The aim of the present study was to investigate the effects of negative energy balance on the reproductive system in male goldfish exposed to testosterone (T) and 17β-estradiol (E2). Following 7 days of food deprivation (FD), ANOVA models showed significant FD × sex steroid interactions on sperm quality and circulating sex steroid levels. When FD effects were investigated, 11-ketotestosterone (11-KT) level and sperm motility and velocity decreased in food-deprived goldfish in the control group. In E2-exposed goldfish, FD decreased sperm production in addition to sperm motility and velocity that coincided with an elevation of circulating E2 level. However, FD did not significantly impact sex steroids and sperm quality in T-exposed goldfish. ANOVA models showed non-significant FD × sex steroid interactions for HSI, GSI, circulating luteinizing hormone (Lh) level, and metabolic (preproghrelin, goat and nucb2) and reproductive (kiss1, gpr54 and gnrh3) mRNAs. Furthermore, results showed that FD decreased HSI, and increased Lh levels and testicular preproghrelin and goat mRNAs, while sex steroids increased mid-brain nucb2, kiss1 and gpr54 mRNAs. Together, our results suggest that FD-induced inhibition of androgenesis resulted in diminished sperm quality associated with activation of the testicular ghrelinergic system, and negative feedback of 11-KT increased Lh level. The FD-induced testicular metabolic and hormonal system was impacted in goldfish exposed to sex steroids. However, the negative effects of FD on sperm quality were accelerated in E2-exposed goldfish due to estrogenic activity. This study provides novel information to better understand metabolic-associated reproductive disorders in fish.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Azadeh Hatef
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
- Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Science, University of Agriculture in Kraków, Kraków, Poland
| | - Sylvain Milla
- Research Unit Animal and Functionalities of Animal Products, INRA, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
18
|
Mabilleau G, Bouvard B. Gut hormone analogues and skeletal health in diabetes and obesity: Evidence from preclinical models. Peptides 2024; 177:171228. [PMID: 38657908 DOI: 10.1016/j.peptides.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Département de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers F-49933, France.
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Service de Rhumatologie, Angers F-49933, France
| |
Collapse
|
19
|
Lin CE, Chen CY. Impacts of Central Administration of the Novel Peptide, LEAP-2, in Different Food Intake Models in Conscious Rats. Nutrients 2024; 16:1946. [PMID: 38931301 PMCID: PMC11206331 DOI: 10.3390/nu16121946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) has mutual antagonism with ghrelin, which evokes food intake under a freely fed state. Nevertheless, the impact of LEAP-2 on ghrelin under time-restricted feeding (TRF), which has benefits in the context of metabolic disease, is still unknown. This study aims to explore the impact of central administration of LEAP-2 on the ingestion behavior of rats, which was evaluated using their cumulative food intake in the TRF state. Before intracerebroventricular (ICV) administration of O-n-octanoylated ghrelin (0.1 nmol/rat), as a food-stimulatory model, the rats received various doses of LEAP-2 (0.3, 1, 3 nmol/rat, ICV). Cumulative food intake was recorded at 1, 2, 4, 8, 12, and 24 h after ICV injection under 12 h freely fed and TRF states in a light phase. In 12 h freely fed and TRF states, central administration of ghrelin alone induced feeding behavior. Pre-treatment with LEAP-2 (1 and 3 nmol/rat, ICV) suppressed ghrelin-induced food intake in a dose-dependent manner in a 12 h freely fed state instead of a TRF state, which may have disturbed the balance of ghrelin and LEAP-2. This study provides neuroendocrine-based evidence that may explain why TRF sometimes fails in fighting obesity/metabolic dysfunction-associated steatotic liver disease in clinics.
Collapse
Affiliation(s)
- Chia-En Lin
- Department of Pharmacy, Tajen University, No. 20, Weixin Rd., Yanpu Township, Pingtung County 907101, Taiwan;
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Emergency and Critical Medicine, and School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Chinese Taipei Society for the Study of Obesity, Taipei 110301, Taiwan
| |
Collapse
|
20
|
Katayama H, Kaiya H. Identification, chemical synthesis, and receptor binding of a reptilian gecko ghrelin. J Pept Sci 2024; 30:e3567. [PMID: 38268104 DOI: 10.1002/psc.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Ghrelin is known to be a gastrointestinal peptide hormone in vertebrates. It has a unique posttransrational modification, octanoylation, at the Ser side chain of the third position. In this study, we identified the genes encoding ghrelin and its receptor from the Schlegel's Japanese gecko Gekko japonicus. The C-terminal residue of gecko ghrelin was His, although the chemical synthesis method for the O-octanoyl peptide with a C-terminal His residue has not yet been well-established. Acyl-ghrelin has been synthesized using a Ser derivative without side chain protecting group in the solid-phase peptide synthesis, although this synthetic strategy has not yet been well-established. Here we show the efficient synthetic method with minimal side reactions, and G. japonicus ghrelin could be obtained in good yield. This would be useful and applicable to the synthesis of ghrelin from other animal species. The gecko ghrelin receptor was expressed in HEK 293 cells, which was fully responsive to the synthetic gecko ghrelin. These results indicate that the ghrelin system similar to mammals also exists in a reptilian gecko, G. japonicus.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Research Division of Drug Discovery, Grandsoul Research Institute for Immunology Inc., Nara, Japan
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Kaneko K, Taniguchi E, Funatsu Y, Nakamura Y, Iwakura H, Ohinata K. Human milk-specific fat components enhance the secretion of ghrelin by MGN3-1 cells. Biosci Biotechnol Biochem 2024; 88:671-678. [PMID: 38453432 DOI: 10.1093/bbb/zbae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Triacylglycerols (TAGs) are a major fat component in human milk. Since gastric lipase produces 1,2-diacylglycerol from TAGs, we focused on the bioactivity of human milk-derived diacylglycerols in stomach cells. Ghrelin is produced in the stomach and acts as an important regulator of growth hormone secretion and energy homeostasis. In this study, we showed that 1-oleoyl-2-palmitoylglycerol (OP) increased ghrelin secretion, whereas 1,3-dioleoyl-2-palmitoylglycerol (OPO), a major component of human milk TAGs, did not increase ghrelin secretion in the ghrelin-secreting cell line, MGN3-1. Therefore, diacylglycerol OP may directly contribute to the regulation of ghrelin secretion. We also found that 2-palmitoylglycerol and 1- and 2-oleoylglycerol increased ghrelin secretion. Finally, we demonstrated that intracellular cAMP levels and preproghrelin and ghrelin O-acyl transferase expression levels were enhanced by OP treatment in MGN3-1 cells. This may represent an example of a novel mother-infant interaction mediated by fat components derived from human breast milk.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Eriko Taniguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yui Funatsu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachiouji, Tokyo, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Ida T, Tominaga H, Iwamoto E, Kurogi A, Okura A, Shimada K, Kato J, Kuwano A, Ode H, Nagata S, Kitamura K, Yazawa T, Sato-Hashimoto M, Yasuda M, Miyazato M, Shiimura Y, Sato T, Kojima M. Acyl modifications in bovine, porcine, and equine ghrelins. Front Endocrinol (Lausanne) 2024; 15:1411483. [PMID: 38828411 PMCID: PMC11140078 DOI: 10.3389/fendo.2024.1411483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Ghrelin is a peptide hormone with various important physiological functions. The unique feature of ghrelin is its serine 3 acyl-modification, which is essential for ghrelin activity. The major form of ghrelin is modified with n-octanoic acid (C8:0) by ghrelin O-acyltransferase. Various acyl modifications have been reported in different species. However, the underlying mechanism by which ghrelin is modified with various fatty acids remains to be elucidated. Herein, we report the purification of bovine, porcine, and equine ghrelins. The major active form of bovine ghrelin was a 27-amino acid peptide with an n-octanoyl (C8:0) modification at Ser3. The major active form of porcine and equine ghrelin was a 28-amino acid peptide. However, porcine ghrelin was modified with n-octanol (C8:0), whereas equine ghrelin was modified with n-butanol (C4:0) at Ser3. This study indicates the existence of structural divergence in ghrelin and suggests that it is necessary to measure the minor and major forms of ghrelin to fully understand its physiology.
Collapse
Affiliation(s)
- Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hatsumi Tominaga
- Miyazaki Prefecture Industrial Technology Center, Miyazaki, Japan
| | - Eri Iwamoto
- Clinical Research Center, Kurume University Hospital, Fukuoka, Japan
| | - Akito Kurogi
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Ayaka Okura
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Kengo Shimada
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Johji Kato
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Atsutoshi Kuwano
- Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Hirotaka Ode
- Racehorse Clinic, Ritto Training Center, Japan Racing Association, Shiga, Japan
| | - Sayaka Nagata
- Department of Food Science and Technology, Faculty of Health and Nutrition, Minami Kyushu University, Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido, Japan
| | - Miho Sato-Hashimoto
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Sciences, Kyusyu University of Medical Science, Miyazaki, Japan
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mikiya Miyazato
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Yuki Shiimura
- Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, Japan
| | - Takahiro Sato
- Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, Japan
| |
Collapse
|
23
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
24
|
Banahene N, Peters-Clarke TM, Biegas KJ, Shishkova E, Hart EM, McKitterick AC, Kambitsis NH, Johnson UG, Bernhardt TG, Coon JJ, Swarts BM. Chemical Proteomics Strategies for Analyzing Protein Lipidation Reveal the Bacterial O-Mycoloylome. J Am Chem Soc 2024; 146:12138-12154. [PMID: 38635392 PMCID: PMC11066868 DOI: 10.1021/jacs.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Trenton M. Peters-Clarke
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Kyle J. Biegas
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Evgenia Shishkova
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
| | - Elizabeth M. Hart
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Amelia C. McKitterick
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Nikolas H. Kambitsis
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
| | - Ulysses G. Johnson
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| | - Thomas G. Bernhardt
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115 United States
- Howard
Hughes Medical Institute, Chevy
Chase, Maryland 20815, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53562, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin, Madison, Wisconsin 53562, United States
- National
Center for Quantitative Biology of Complex Systems, University of Wisconsin, Madison, Wisconsin 53562, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53562, United States
| | - Benjamin M. Swarts
- Department
of Chemistry and Biochemistry, Central Michigan
University, Mount
Pleasant, Michigan 48859, United States
- Biochemistry,
Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount
Pleasant, Michigan 48859, United States
| |
Collapse
|
25
|
Holliday A, Warner J, Hulston CJ, Corfe BM, Crabtree DR. Anorexia of ageing is associated with elevated fasted and lower post-prandial ghrelin, independent of ghrelin O-acyltransferase. Appetite 2024; 196:107259. [PMID: 38341037 DOI: 10.1016/j.appet.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The role of ghrelin metabolism in anorexia of ageing is unclear. The aim of this study was to determine acyl-ghrelin, total ghrelin, and ghrelin O-acyltransferase concentrations when fasted and in responses to feeding in older adults exhibiting anorexia of ageing. Twenty-five older adults (OA; 15f, 74 ± 7 years, 24.5 kg·m-2) and twelve younger adults (YA; 6f, 21 ± 2 years, 24.4 kg·m-2) provided a fasted measure of subjective appetite and fasted blood sample (0 min) before consuming a standardised porridge breakfast meal (450 kcal). Appetite was measured every 30 min for 240 min and blood was sampled at 30, 60, 90, 120, 180 and 240 min while participants rested. At 240 min, an ad libitum pasta-based lunch meal was consumed. Older adults were identified as those with healthy appetite (HA-OA) or low appetite (LA-OA), based on habitual energy intake, self-report appetite, BMI, and ad libitum lunch intake. YA ate more at lunch (1108 ± 235 kcal) than HA-OA (653 ± 133 kcal, p = 0.007) and LA-OA (369 ± 168 kcal; p < 0.001). LA-OA, but not HA-OA, had higher fasted concentrations of acyl- and total ghrelin than YA (acyl-ghrelin: 621 ± 307 pg·mL-1 vs. 353 ± 166 pg·mL-1, p = 0.047; total ghrelin: 1333 ± 702 pg·mL-1 vs. 636 ± 251 pg·mL-1, p = 0.006). Acyl-ghrelin (60 min and 90 min) and total ghrelin (90 min) were suppressed to a greater extent for LA-OA than for YA (p < 0.05). No differences were observed in subjective appetite, acyl-to-total ghrelin ratio, or plasma GOAT content (p > 0.1). Higher fasting ghrelin and an augmented ghrelin response to feeding in LA-OA, but not HA-OA, suggests that alterations to ghrelin metabolism are not functions of ageing per se and may be independent causal mechanisms of anorexia of ageing.
Collapse
Affiliation(s)
- Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Jordan Warner
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Carl J Hulston
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bernard M Corfe
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel R Crabtree
- The Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
26
|
Notaro NM, Dyck DJ. Regulation of peripheral tissue substrate metabolism by the gut-derived hormone ghrelin. Metabol Open 2024; 21:100279. [PMID: 38487670 PMCID: PMC10937159 DOI: 10.1016/j.metop.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Ghrelin increases in the circulation prior to entrained mealtimes, with the acylated (AG) form functioning to stimulate food intake and growth hormone release. Acutely, AG induces whole-body insulin resistance, potentially to maintain glycemia between meals. Alternatively, chronic administration of both AG and the unacylated isoform of ghrelin (unAG) is associated with improved skeletal muscle insulin sensitivity as well as reduced intramuscular lipids and inflammation. This may be due to effects on lipid metabolism, with ghrelin promoting storage of fat in adipose and liver while stimulating oxidation in skeletal muscle, preventing ectopic lipid accumulation. This is of specific relevance in the handling of meal-derived lipids, as ghrelin rises preprandially with effects persisting for 2-3 h following exposure in skeletal muscle, coinciding with elevated plasma FFAs. We hypothesize that ghrelin acts as a preparatory signal for incoming lipids, as well as a regulatory hormone for their use and storage. The effects of ghrelin on skeletal muscle are lost with high fat diet feeding and physical inactivity, potentially being implicated in the pathogenesis of metabolic disease. This review summarizes the metabolic effects of both ghrelin isoforms on peripheral tissues including the pancreas, adipose, liver, and skeletal muscle. Additionally, we speculate on the physiological relevance of these effects in vivo and suggest that ghrelin may be a key regulatory hormone for nutrient handling in the postprandial state.
Collapse
Affiliation(s)
- Nicole M. Notaro
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David J. Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
27
|
Camerino C. The Pivotal Role of Oxytocin's Mechanism of Thermoregulation in Prader-Willi Syndrome, Schaaf-Yang Syndrome, and Autism Spectrum Disorder. Int J Mol Sci 2024; 25:2066. [PMID: 38396741 PMCID: PMC10888953 DOI: 10.3390/ijms25042066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt's mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt's regulation of thermogenesis to advance the knowledge on these diseases.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
28
|
Esteban JJ, Mason JR, Kaminski J, Ramachandran R, Luyt LG. A survey of stapling methods to increase affinity, activity, and stability of ghrelin analogues. RSC Med Chem 2024; 15:254-266. [PMID: 38283230 PMCID: PMC10809362 DOI: 10.1039/d3md00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor which regulates various important physiological and pathophysiological processes in the body such as energy homeostasis, growth hormone secretion and regulation of appetite. As a result, it has been postulated as a potential therapeutic target for the treatment of cancer cachexia and other metabolic disorders, as well as a potential imaging agent target for cancers and cardiovascular diseases. Ghrelin is the primary high affinity endogenous ligand for GHSR and has limited secondary structure in solution, which makes it proteolytically unstable. This inherent instability in ghrelin can be overcome by incorporating helix-inducing staples that stabilize its structure and improve affinity and activity. We present an analysis of different stapling methods at positions 12 and 16 of ghrelin(1-20) analogues with the goal of increasing proteolytic stability and to retain or improve affinity and activity towards the GHSR. Ghrelin(1-20) analogues were modified with a wide range of chemical staples, including a lactam staple, triazole staple, hydrocarbon staple, Glaser staple, and xylene-thioether staple. Once synthesized, the receptor affinity and α-helicity were measured using competitive binding assays and circular dichroism spectroscopy, respectively. Generally, an increase in alpha-helicity using a flexible staple linker led to improved affinity towards GHSR. Ghrelin(1-20) analogues with a lactam, triazole, and hydrocarbon staple resulted in helical analogues with stronger affinity towards GHSR than unstapled ghrelin(1-20), a compound that lacks helical character. Compounds were also investigated for their agonist activity through β-arrestin 1 & 2 recruitment BRET assays and for their metabolic stability through serum stability analysis.
Collapse
Affiliation(s)
- Juan J Esteban
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Julia R Mason
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Jakob Kaminski
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario 1151 Richmond Street London Ontario N6A 5C1 Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Departments of Medical Imaging and Oncology, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- London Regional Cancer Program, Lawson Health Research Institute 800 Commissioners Road East London Ontario N6A 4L6 Canada
| |
Collapse
|
29
|
Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol 2024; 13:1324134. [PMID: 38259969 PMCID: PMC10800934 DOI: 10.3389/fcimb.2023.1324134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Ghrelin widely exists in the central nervous system and peripheral organs, and has biological activities such as maintaining energy homeostasis, regulating lipid metabolism, cell proliferation, immune response, gastrointestinal physiological activities, cognition, memory, circadian rhythm and reward effects. In many benign liver diseases, it may play a hepatoprotective role against steatosis, chronic inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress and apoptosis, and improve liver cell autophagy and immune response to improve disease progression. However, the role of Ghrelin in liver Echinococcosis is currently unclear. This review systematically summarizes the molecular mechanisms by which Ghrelin regulates liver growth metabolism, immune-inflammation, fibrogenesis, proliferation and apoptosis, as well as its protective effects in liver fibrosis diseases, and further proposes the role of Ghrelin in liver Echinococcosis infection. During the infectious process, it may promote the parasitism and survival of parasites on the host by improving the immune-inflammatory microenvironment and fibrosis state, thereby accelerating disease progression. However, there is currently a lack of targeted in vitro and in vivo experimental evidence for this viewpoint.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tanfang Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Meng Menggen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Hepatobiliary and Hydatid Disease, Digestive and Vascular Surgery Center Therapy Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
30
|
Pierce M, Ji J, Novak SX, Sieburg MA, Nangia S, Nangia S, Hougland JL. Combined Computational-Biochemical Approach Offers an Accelerated Path to Membrane Protein Solubilization. J Chem Inf Model 2023; 63:7159-7170. [PMID: 37939203 PMCID: PMC10685452 DOI: 10.1021/acs.jcim.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Membrane proteins are difficult to isolate and purify due to their dependence on the surrounding lipid membrane for structural stability. Detergents are often used to solubilize these proteins, with this approach requiring a careful balance between protein solubilization and denaturation. Determining which detergent is most appropriate for a given protein has largely been done empirically through screening, which requires large amounts of membrane protein and associated resources. Here, we describe an alternative to conventional detergent screening using a computational modeling approach to identify the most likely candidate detergents for solubilizing a protein of interest. We demonstrate our approach using ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase family of integral membrane enzymes that has not been solubilized or purified in active form. A computationally derived GOAT structural model provides the only structural information required for this approach. Using computational analysis of detergent ability to penetrate phospholipid bilayers and stabilize the GOAT structure, a panel of common detergents were rank-ordered for their proposed ability to solubilize GOAT. The simulations were performed at all-atom resolution for a combined simulation time of 24 μs. Independently, we biologically screened these detergents for their solubilization of fluorescently tagged GOAT constructs. We found computational prediction of protein structural stabilization was the better predictor of detergent solubilization ability, but neither approach was effective for predicting detergents that would support GOAT enzymatic function. The current rapid expansion of membrane protein computational models lacking experimental structural information and our computational detergent screening approach can greatly improve the efficiency of membrane protein detergent solubilization, supporting downstream functional and structural studies.
Collapse
Affiliation(s)
- Mariah
R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
31
|
Sarkar K, Das B, Das RK. Discovery of new oxadiazolo pyridine derivatives as potent ghrelin O-acyltransferase inhibitors using molecular modeling techniques. In Silico Pharmacol 2023; 11:35. [PMID: 37954893 PMCID: PMC10632319 DOI: 10.1007/s40203-023-00167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Diabesity is a major global health concern, and ghrelin O-acyltransferase (GOAT) acts as an important target for the development of new inhibitors of this disease. The present work highlights a detailed QSAR study using QSARINS software, which provides an excellent model equation using descriptors. Here, the best model equation developed has two variables, namely MLFER_E and XlogP, with statistical parameters R2 = 0.8433, LOF = 0.0793, CCCtr = 0.915, Q2LOO = 0.8303, Q2LMO = 0.8275, CCCcv = 0.9081, R2ext = 0.7712, and CCCext = 0.8668. A higher correlation of the key structural fragments with activity is validated by the developed QSAR model. Furthermore, molecular docking helped us identify the binding interactions. Thirty four new molecules with better predicted biological activity (pIC50) were designed. The binding energy of four compounds have shown higher binding activity into the membrane protein (PDB Id: 6BUG). Molecular dynamics simulation has established the stability of the protein-ligand complex over 100 ns. DFT and ADME-toxicity analyses also confirmed their drug-like properties. Based on our findings, we report that these new oxadiazolo pyridine derivatives lead to the development of potent candidates for further development. Graphical abstract METTL3-mediated HOTAIRM1 promotes vasculogenic mimicry in glioma via regulating IGFBP2 expression. METTL3 expression is high in glioma cells and tissues that stabilize and enhance HOTAIRM1 expression. This HOTAIRM1 then interacts with IGFBP2 which in turn promotes glioma cell malignancy and vasculogenic mimicry (VM) formation, thus providing a new direction for glioma therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00167-z.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, 734013 West Bengal India
| | - Bipasha Das
- Department of Chemistry, University of North Bengal, Darjeeling, 734013 West Bengal India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, 734013 West Bengal India
| |
Collapse
|
32
|
López M, Nogueiras R. Ghrelin. Curr Biol 2023; 33:R1133-R1135. [PMID: 37935121 DOI: 10.1016/j.cub.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
López and Nogueiras introduce the peptide ghrelin and its physiological functions, including its roles in stimulating appetite and growth hormone release.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
35
|
Li HZ, Wang YF, Zheng YS, Liu YL, Xu ZG, Guo ZY. The ghrelin receptor GHSR has two efficient agonists in the lobe-finned fish Latimeria chalumnae. Biochem Biophys Res Commun 2023; 679:110-115. [PMID: 37677979 DOI: 10.1016/j.bbrc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
The peptide hormone ghrelin (an agonist) and LEAP2 (an antagonist) play important functions in energy metabolism via their receptor GHSR, an A-class G protein-coupled receptor. Ghrelin, LEAP2, and GHSR are widely present from fishes to mammals. However, our recent study suggested that fish GHSRs have different binding properties to ghrelin: a GHSR from the lobe-finned fish Latimeria chalumnae (coelacanth) is efficiently activated by ghrelin, but GHSRs from the ray-finned fish Danio rerio (zebrafish) and Larimichthys crocea (large yellow croaker) have lost binding to ghrelin. Do fish GHSRs use another peptide as their agonist? In the present study we tested to two fish motilins from D. rerio and L. chalumnae because motilin is distantly related to ghrelin. In ligand binding and activation assays, the fish GHSRs from D. rerio and L. crocea displayed no detectable or very low binding to all tested motilins; however, the fish GHSR from L. chalumnae bound to its motilin with high affinity and was efficiently activated by it. Therefore, it seemed that motilin is not a ligand for GHSR in the ray-finned fish D. rerio and L. crocea, but is an efficient agonist for GHSR in the lobe-finned fish L. chalumnae, one of the closest fish relatives of tetrapods. The results of present study suggested that GHSR might have two efficient agonists, ghrelin and motilin, in ancient fishes; however, this feature might be only preserved in some extant fishes with ancient evolutionary origins.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Fen Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong-Shan Zheng
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
36
|
Gajewska A, Strzelecki D, Gawlik-Kotelnicka O. Ghrelin as a Biomarker of "Immunometabolic Depression" and Its Connection with Dysbiosis. Nutrients 2023; 15:3960. [PMID: 37764744 PMCID: PMC10537261 DOI: 10.3390/nu15183960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Ghrelin, a gastrointestinal peptide, is an endogenous ligand of growth hormone secretagogue receptor 1a (GHSR1a), which is mainly produced by X/A-like cells in the intestinal mucosa. Beyond its initial description as a growth hormone (GH) secretagogue stimulator of appetite, ghrelin has been revealed to have a wide range of physiological effects, for example, the modulation of inflammation; the improvement of cardiac performance; the modulation of stress, anxiety, taste sensation, and reward-seeking behavior; and the regulation of glucose metabolism and thermogenesis. Ghrelin secretion is altered in depressive disorders and metabolic syndrome, which frequently co-occur, but it is still unknown how these modifications relate to the physiopathology of these disorders. This review highlights the increasing amount of research establishing the close relationship between ghrelin, nutrition, microbiota, and disorders such as depression and metabolic syndrome, and it evaluates the ghrelinergic system as a potential target for the development of effective pharmacotherapies.
Collapse
Affiliation(s)
- Agata Gajewska
- Faculty of Medicine, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
37
|
Okamura E, Ikeda K, Mano-Usui F, Kawashima S, Kondo A, Inagaki N. Augmentation of Growth Hormone by Chewing in Females. Nutrients 2023; 15:3628. [PMID: 37630818 PMCID: PMC10458618 DOI: 10.3390/nu15163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcopenia is an age-related condition characterized by progressive loss of muscle mass and strength. Age-related decline in the secretion of growth hormone (GH), a condition called somatopause, is thought to play a role in sarcopenia. As pharmacological GH has adverse effects, we attempted to increase physiological GH. While the relationship between chewing and ghrelin levels has been studied, there are no reports on the relationship between chewing and GH. The aim of this study was to clarify the effects of chewing on the muscle anabolic hormones serum GH and plasma ghrelin. Thirteen healthy adults ingested a chewy nutrition bar containing 5.56 g of protein, 12.71 g of carbohydrate, and 0.09 g of fat on two different days, chewing before swallowing in one trial and swallowing without chewing in the other. Blood samples were taken before and after ingestion (0, 15, 30, and 60 min); GH, acylated ghrelin, glucose, insulin, amino acids, and lactate were measured. Two-way repeated ANOVA revealed a significant difference in the GH concentrations between the "Chew trial" and "Swallow trial" in females (p = 0.0054). However, post-hoc analyses found no statistically significant difference at each time point. The area under the curve of the percentage increase in GH was significantly increased in the "Chew trial" compared with the "Swallow trial" in females (12,203 ± 15,402% min vs. 3735 ± 988% min, p = 0.0488). Chewing had no effect on glucose, insulin, amino acids, or lactate concentrations. Thus, we found that chewing a protein supplement rather than swallowing it without chewing elevates the blood GH concentration. These results serve as a rationale for larger research and longitudinal studies to confirm the impacts of chewing on GH secretion.
Collapse
Affiliation(s)
- Emi Okamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
| | - Kaori Ikeda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
- Department of Clinical Research Facilitation, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Fumika Mano-Usui
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
| | - Sachiko Kawashima
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
- Preemptive Medicine and Lifestyle Related Disease Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Aki Kondo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (E.O.)
- Medical Research Institute KITANO HOSPITAL, P.I.I.F. Tazuke-Kofukai, Osaka 530-8480, Japan
| |
Collapse
|
38
|
Campaña M, Davis TR, Novak SX, Cleverdon ER, Bates M, Krishnan N, Curtis ER, Childs MD, Pierce MR, Morales-Rodriguez Y, Sieburg MA, Hehnly H, Luyt LG, Hougland JL. Cellular Uptake of a Fluorescent Ligand Reveals Ghrelin O-Acyltransferase Interacts with Extracellular Peptides and Exhibits Unexpected Localization for a Secretory Pathway Enzyme. ACS Chem Biol 2023; 18:1880-1890. [PMID: 37494676 PMCID: PMC10442857 DOI: 10.1021/acschembio.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Ghrelin O-acyltransferase (GOAT) plays a central role in the maturation and activation of the peptide hormone ghrelin, which performs a wide range of endocrinological signaling roles. Using a tight-binding fluorescent ghrelin-derived peptide designed for high selectivity for GOAT over the ghrelin receptor GHSR, we demonstrate that GOAT interacts with extracellular ghrelin and facilitates ligand cell internalization in both transfected cells and prostate cancer cells endogenously expressing GOAT. Coupled with enzyme mutagenesis, ligand uptake studies support the interaction of the putative histidine general base within GOAT with the ghrelin peptide acylation site. Our work provides a new understanding of GOAT's catalytic mechanism, establishes that GOAT can interact with ghrelin and other peptides located outside the cell, and raises the possibility that other peptide hormones may exhibit similar complexity in their intercellular and organismal-level signaling pathways.
Collapse
Affiliation(s)
- Maria
B. Campaña
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Tasha R. Davis
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sadie X. Novak
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michael Bates
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Nikhila Krishnan
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Erin R. Curtis
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| | - Marina D. Childs
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
| | - Mariah R. Pierce
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | | | - Michelle A. Sieburg
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Heidi Hehnly
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Leonard G. Luyt
- Department
of Chemistry, University of Western Ontario, London, Ontario N6A 2K7, Canada
- Department
of Oncology and Department of Medical Imaging, London Regional Cancer
Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
39
|
Li P, Gong X, Yuan L, Mu L, Zheng Q, Xiao H, Wang H. Palmitoylation in apoptosis. J Cell Physiol 2023; 238:1641-1650. [PMID: 37260091 DOI: 10.1002/jcp.31047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Palmitoylation, a critical lipid modification of proteins, is involved in various physiological processes such as altering protein localization, transport, and stability, which perform essential roles in protein function. Palmitoyltransferases are specific enzymes involved in the palmitoylation modification of substrates. S-palmitoylation, as the only reversible palmitoylation modification, is able to be deacylated by deacyltransferases. As an important mode of programmed cell death, apoptosis functions in the maintenance of organismal homeostasis as well as being associated with inflammatory and immune diseases. Recently, studies have found that palmitoylation and apoptosis have been demonstrated to be related in many human diseases. In this review, we will focus on the role of palmitoylation modifications in apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyi Gong
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Yuan
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lina Mu
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
40
|
Vu JP, Luong L, Sanford D, Oh S, Kuc A, Pisegna R, Lewis M, Pisegna JR, Germano PM. PACAP and VIP Neuropeptides' and Receptors' Effects on Appetite, Satiety and Metabolism. BIOLOGY 2023; 12:1013. [PMID: 37508442 PMCID: PMC10376325 DOI: 10.3390/biology12071013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The overwhelming increase in the prevalence of obesity and related disorders in recent years is one of the greatest threats to the global healthcare system since it generates immense healthcare costs. As the prevalence of obesity approaches epidemic proportions, the importance of elucidating the mechanisms regulating appetite, satiety, body metabolism, energy balance and adiposity has garnered significant attention. Currently, gastrointestinal (GI) bariatric surgery remains the only approach capable of achieving successful weight loss. Appetite, satiety, feeding behavior, energy intake and expenditure are regulated by central and peripheral neurohormonal mechanisms that have not been fully elucidated yet. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Vasoactive Intestinal Polypeptide (VIP) are members of a family of regulatory peptides that are widely distributed in parallel with their specific receptors, VPAC1R, VPAC2R and PAC1R, in the central nervous system (CNS) and in the periphery, such as in the gastrointestinal tract and its associated organs and immune cells. PACAP and VIP have been reported to play an important role in the regulation of body phenotype, metabolism and homeostatic functions. The purpose of this review is to present recent data on the effects of PACAP, VIP, VPAC1R, VPAC2R and PAC1R on the modulation of appetite, satiety, metabolism, calorie intake and fat accumulation, to evaluate their potential use as therapeutic targets for the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- John P Vu
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Leon Luong
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Daniel Sanford
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Suwan Oh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
| | - Alma Kuc
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Rita Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Michael Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90078, USA
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Joseph R Pisegna
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine, Los Angeles, CA 90073, USA
- Division of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Patrizia M Germano
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California, Los Angeles, CA 90073, USA
- Division of Pulmonary and Critical Care, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
41
|
Schultz BJ, Snow ED, Walker S. Mechanism of D-alanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers. Nat Microbiol 2023; 8:1318-1329. [PMID: 37308592 PMCID: PMC10664464 DOI: 10.1038/s41564-023-01411-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023]
Abstract
Bacterial cell envelope polymers are often modified with acyl esters that modulate physiology, enhance pathogenesis and provide antibiotic resistance. Here, using the D-alanylation of lipoteichoic acid (Dlt) pathway as a paradigm, we have identified a widespread strategy for how acylation of cell envelope polymers occurs. In this strategy, a membrane-bound O-acyltransferase (MBOAT) protein transfers an acyl group from an intracellular thioester onto the tyrosine of an extracytoplasmic C-terminal hexapeptide motif. This motif shuttles the acyl group to a serine on a separate transferase that moves the cargo to its destination. In the Dlt pathway, here studied in Staphylococcus aureus and Streptococcus thermophilus, the C-terminal 'acyl shuttle' motif that forms the crucial pathway intermediate is found on a transmembrane microprotein that holds the MBOAT protein and the other transferase together in a complex. In other systems, found in both Gram-negative and Gram-positive bacteria as well as some archaea, the motif is fused to the MBOAT protein, which interacts directly with the other transferase. The conserved chemistry uncovered here is widely used for acylation throughout the prokaryotic world.
Collapse
Affiliation(s)
- Bailey J Schultz
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eric D Snow
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
43
|
Wittekind DA, Kratzsch J, Mergl R, Wirkner K, Baber R, Sander C, Witte AV, Villringer A, Kluge M. Childhood sexual abuse is associated with higher total ghrelin serum levels in adulthood: results from a large, population-based study. Transl Psychiatry 2023; 13:219. [PMID: 37349303 DOI: 10.1038/s41398-023-02517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Ghrelin is an orexigenic peptide hormone synthesized in times of stress and hunger and alterations of the ghrelin system following acute stressors could be repeatedly shown in humans. However, little data exists on long-term effects of trauma on the ghrelin system. We aimed to investigate the influence of childhood trauma on total ghrelin serum levels in a large, population-based study. Total serum ghrelin was measured in 1666 participants of a population-based cross-sectional study ('LIFE study'). The Childhood Trauma Screener (CTS) was used for the assessment of childhood trauma in the final sample (n = 1086; mean age: 57.10 ± 16.23 years; 632 males, 454 females). Multiple linear regression analyses and generalized linear models were chosen to examine the association between childhood trauma and total serum ghrelin concentrations. Childhood sexual abuse went along with significantly higher ghrelin serum levels in the total sample (β = 0.114, t = 3.958; p = 0.00008) and in women (β = 0.142, t = 3.115; p = 0.002), but not in men (β = 0.055; t = 1.388; p = 0.166). Women with severe emotional neglect in the childhood had higher ghrelin levels than those without (odds ratio = 1.204; p = 0.018). For the CTS Sum Score and other CTS sub-scale scores, no significant association with ghrelin serum levels was found. Our study is the first to show associations between childhood sexual trauma and total ghrelin levels in adults in a large, community-based sample. Our results should initiate further research of the role of ghrelin in human stress response in prospective study designs.
Collapse
Affiliation(s)
- Dirk Alexander Wittekind
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany.
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Roland Mergl
- Institute of Psychology, University of the Bundeswehr Munich, Neubiberg, Germany
| | - Kerstin Wirkner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - A Veronica Witte
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Clinic of Cognitive Neurology, University of Leipzig, and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Kluge
- Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Rudolf-Virchow-Hospital, Glauchau, Germany
| |
Collapse
|
44
|
Bhargava R, Luur S, Rodriguez Flores M, Emini M, Prechtl CG, Goldstone AP. Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. J Endocr Soc 2023; 7:bvad061. [PMID: 37287649 PMCID: PMC10243873 DOI: 10.1210/jendso/bvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background The novel liver-gut hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a centrally acting inverse agonist, and competitive antagonist of orexigenic acyl ghrelin (AG), at the GH secretagogue receptor, reducing food intake in rodents. In humans, the effects of LEAP2 on eating behavior and mechanisms behind the postprandial increase in LEAP2 are unclear, though this is reciprocal to the postprandial decrease in plasma AG. Methods Plasma LEAP2 was measured in a secondary analysis of a previous study. Twenty-two adults without obesity attended after an overnight fast, consuming a 730-kcal meal without or with subcutaneous AG administration. Postprandial changes in plasma LEAP2 were correlated with postprandial changes in appetite, high-energy (HE) or low-energy (LE) food cue reactivity using functional magnetic resonance imaging, ad libitum food intake, and plasma/serum AG, glucose, insulin, and triglycerides. Results Postprandial plasma LEAP2 increased by 24.5% to 52.2% at 70 to 150 minutes, but was unchanged by exogenous AG administration. Postprandial increases in LEAP2 correlated positively with postprandial decreases in appetite, and cue reactivity to HE/LE and HE food in anteroposterior cingulate cortex, paracingulate cortex, frontal pole, and middle frontal gyrus, with similar trend for food intake. Postprandial increases in LEAP2 correlated negatively with body mass index, but did not correlate positively with increases in glucose, insulin, or triglycerides, nor decreases in AG. Conclusions These correlational findings are consistent with a role for postprandial increases in plasma LEAP2 in suppressing human eating behavior in adults without obesity. Postprandial increases in plasma LEAP2 are unrelated to changes in plasma AG and the mediator(s) remain uncertain.
Collapse
Affiliation(s)
- Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Luur
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Christina G Prechtl
- School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Hospital, London, W2 1PG, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
45
|
Coupland CE, Ansell TB, Sansom MSP, Siebold C. Rocking the MBOAT: Structural insights into the membrane bound O-acyltransferase family. Curr Opin Struct Biol 2023; 80:102589. [PMID: 37040671 DOI: 10.1016/j.sbi.2023.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
The membrane-bound O-acyltransferase (MBOAT) superfamily catalyses the transfer of acyl chains to substrates implicated in essential cellular functions. Aberrant function of MBOATs is associated with various diseases and MBOATs are promising drug targets. There has been recent progress in structural characterisation of MBOATs, advancing our understanding of their functional mechanism. Integrating information across the MBOAT family, we characterise a common MBOAT fold and provide a blueprint for substrate and inhibitor engagement. This work provides context for the diverse substrates, mechanisms, and evolutionary relationships of protein and small-molecule MBOATs. Further work should aim to characterise MBOATs, as inherently lipid-associated proteins, within their membrane environment.
Collapse
Affiliation(s)
- Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - T Bertie Ansell
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
46
|
Vinod E, Lisha J J, Parasuraman G, Livingston A, Daniel AJ, Sathishkumar S. Evaluation of ghrelin as a distinguishing marker for human articular cartilage-derived chondrocytes and chondroprogenitors. J Clin Orthop Trauma 2023; 41:102175. [PMID: 37303495 PMCID: PMC10248861 DOI: 10.1016/j.jcot.2023.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/22/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of the study Cell-based therapeutics for articular cartilage repair primarily employed bone marrow-derived mesenchymal stem cells and chondrocytes. Research to overcome their limitation of formation of a functionally poor fibro-hyaline type of repair tissue led to the discovery of chondroprogenitors (CPCs), cartilage resident stem cells. These cells isolated by adhesion assay using fibronectin (FAA-CPs) and migration of progenitors from explants (MCPs) display higher chondrogenic and lower terminal differentiation potential. During in-vitro culture, chondrocytes tend to de-differentiate and acquire characteristics similar to stem cells, thus making it challenging to distinguish them from other cell groups. Ghrelin, a cytoplasmic growth hormone secretagogue, has been proposed to play a vital role in chondrogenesis, with reports of its higher expression in chondrocytes than BM-MSCs. The aim of this study was to compare the mRNA expression of Ghrelin between BM-MSCs, chondrocytes, FAA-CPs and MCP and the possibility of it serving as a distinguishing marker. Methods The four populations isolated from three human osteoarthritic knee joints were characterised by CD marker expression for positive (CD 90, CD73 and CD105) and negative (HLA-DR, CD34 and CD45) MSC markers and trilineage differentiation (adipogenic, osteogenic and chondrogenic) and subjected to qRT-PCR to assess Ghrelin's gene expression. Results This study showed that all groups exhibited similar expression of CD markers and multilineage potential. Though chondrocytes showed greater expression of Ghrelin, it was not statistically significant to classify it as a distinguishing marker between these cell populations. Conclusion Ghrelin does not serve to differentiate the subpopulations in terms of their mRNA expression. Further evaluation using their associated enzymes and receptors could provide valuable information to uncover their potential as unequivocal biomarkers.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Jeya Lisha J
- Department of Physiology, Christian Medical College, Vellore, India
| | - Ganesh Parasuraman
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India
| | - Alfred Job Daniel
- Department of Orthopaedics, Christian Medical College, Vellore, India
| | | |
Collapse
|
47
|
Sakamaki JI, Mizushima N. Cell biology of protein-lipid conjugation. Cell Struct Funct 2023; 48:99-112. [PMID: 37019684 PMCID: PMC10721952 DOI: 10.1247/csf.23016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Protein-lipid conjugation is a widespread modification involved in many biological processes. Various lipids, including fatty acids, isoprenoids, sterols, glycosylphosphatidylinositol, sphingolipids, and phospholipids, are covalently linked with proteins. These modifications direct proteins to intracellular membranes through the hydrophobic nature of lipids. Some of these membrane-binding processes are reversible through delipidation or by reducing the affinity to membranes. Many signaling molecules undergo lipid modification, and their membrane binding is important for proper signal transduction. The conjugation of proteins to lipids also influences the dynamics and function of organellar membranes. Dysregulation of lipidation has been associated with diseases such as neurodegenerative diseases. In this review, we first provide an overview of diverse forms of protein-lipid conjugation and then summarize the catalytic mechanisms, regulation, and roles of these modifications.Key words: lipid, lipidation, membrane, organelle, protein modification.
Collapse
Affiliation(s)
- Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
48
|
The exercise-induced suppression of acylated ghrelin is blunted in the luteal phase of the menstrual cycle compared to the follicular phase following vigorous-intensity exercise. Appetite 2023; 182:106425. [PMID: 36535367 DOI: 10.1016/j.appet.2022.106425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Limited work examining woman's appetite-regulatory response to exercise has been focused on the follicular phase (FP) of the menstrual cycle. This is an important limitation as estradiol (E2) and progesterone (P4) fluctuate across phases with greater concentrations in the luteal phase (LP). OBJECTIVE To examine the appetite-regulatory response to vigorous-intensity continuous exercise (VICT) in the FP and LP. METHODS Twelve women completed 30 min of VICT at 80% V˙O2max in the FP and LP. E2, P4, acylated ghrelin, active peptide tyrosine-tyrosine (PYY), active glucagon-like peptide-1 (GLP-1), and appetite perceptions were measured pre-exercise, 0-, 30-, and 90-min post-exercise. Energy intake was recorded for a 2-day period (day before and of each session). A series of two-way repeated measure ANOVA were used to compare all dependent variables. RESULTS Pre-exercise E2 (P = 0.005, d = 1.00) and P4 (P < 0.001, d = 1.41) concentrations were greater in the LP than the FP and exercise increased both at 0- and 30-min post-exercise (E2: P < 0.009; P4: P < 0.001, d = 0.63). Acylated ghrelin was lower in the FP versus LP at pre-exercise as well as 0-min (P = 0.006, d = 0.97) and 90-min (P = 0.029, d = 0.72) post-exercise. There were no differences of menstrual phase on PYY (P = 0.359, ηp2 = 0.092), GLP-1 (P = 0.226, ηp2 = 0.130), or overall appetite (P = 0.514, ηp2 = 0.066). Energy intake was greater on the day of in the LP versus the FP (P = 0.003, d = 1.2). CONCLUSION Acylated ghrelin was lower in the FP compared to the LP and though there were no differences in anorexigenic hormones or subjective appetite, energy intake was greater on the day of the session in the LP suggesting important differences across the menstrual cycle where greater concentrations of ovarian hormones in the LP may blunt the exercise response.
Collapse
|
49
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
50
|
Ghrelin system in Alzheimer's disease. Curr Opin Neurobiol 2023; 78:102655. [PMID: 36527939 PMCID: PMC10395051 DOI: 10.1016/j.conb.2022.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in seniors. Current efforts to understand the etiopathogenesis of this neurodegenerative disorder have brought forth questions about systemic factors in the development of AD. Ghrelin is a brain-gut peptide that is activated by ghrelin O-acyltransferase (GOAT) and signals via its receptor, growth hormone secretagogue receptor (GHSR). With increasing recognition of the neurotropic effects of ghrelin, the role of ghrelin system deregulation in the development of AD has been accentuated in recent years. In this review, we summarized recent research progress regarding the mechanisms of ghrelin signaling dysregulation and its contribution to AD brain pathology. In addition, we also discussed the therapeutic potential of strategies targeting ghrelin signaling for the treatment of this neurological disease.
Collapse
|