1
|
Lapcik P, Stacey RG, Potesil D, Kulhanek P, Foster LJ, Bouchal P. Global Interactome Mapping Reveals Pro-tumorigenic Interactions of NF-κB in Breast Cancer. Mol Cell Proteomics 2024; 23:100744. [PMID: 38417630 PMCID: PMC10988130 DOI: 10.1016/j.mcpro.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - David Potesil
- Proteomics Core Facility, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kulhanek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Wang LH, Cao B, Li YL, Qiao BP. Potential prognostic and therapeutic value of ANXA8 in renal cell carcinoma: based on the comprehensive analysis of annexins family. BMC Cancer 2023; 23:674. [PMID: 37464398 PMCID: PMC10355003 DOI: 10.1186/s12885-023-11165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Annexins are a family of proteins involved in a wide variety of cellular processes such as inflammation, proliferation, differentiation, apoptosis, migration and membrane repair. However, the role of most Annexins in renal cell carcinoma (RCC) remained unclear. METHODS The differentially expressed Annexins in RCC compared with normal controls were screened applying the TCGA database. The correlation of differentially expressed Annexins with clinical stages, grades and overall survival was analyzed to explore the clinical significance of Annexins in RCC. Then ANXA8 was selected and further stained in the discover and validation RCC cohort. The correlation of ANXA8 expression with clinical parameter was verified at the protein level. To explore the potential function of ANXA8, ANXA8 was knockdown in the RCC cell line and further analyzed using transcriptome and bioinformatic analysis. RESULTS mRNA expression of ANXA1, ANXA2R, ANXA4, ANXA8, ANXA8L1 and ANXA13 were significantly upregulated in RCC compared with normal kidney tissues. In contrast, ANXA3 and ANXA9 mRNA expression was significantly downregulated. Higher expression of ANXA2R, ANXA8 and ANXA8L1 were correlated with worse overall survival, while lower expression of ANXA3, ANXA9 and ANXA13 were associated with worse clinical outcomes in RCC patients. We further demonstrated that ANXA8 expression was significantly increased in RCC compared with normal renal tissues at the protein level. And higher protein expression of ANXA8 was associated with higher clinical grades. Through the bioinformatics analysis and cell cycle analysis, we found knockdown of ANXA8 mainly influenced the cell cycle and DNA replication. The top ten hub genes consist of CDC6, CDK2, CHEK1, CCNB1, ORC1, CHEK2, MCM7, CDK1, PCNA and MCM3. CONCLUSIONS Multiple members of Annexins were abnormally expressed and associated with the prognosis of RCC. The expression of ANXA8 was significantly increased in RCC and associated with poor prognosis. ANXA8 might influence the cell cycle and could be a potential biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Li-Hui Wang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Bo Cao
- Department of Emergency Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, China
| | - Yun-Long Li
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bao-Ping Qiao
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
3
|
Kulik L, Renner B, Laskowski J, Thurman JM, Michael Holers V. Highly pathogenic natural monoclonal antibody B4-IgM recognizes a post-translational modification comprised of acetylated N-terminal methionine followed by aspartic or glutamic acid. Mol Immunol 2023; 157:112-128. [PMID: 37018938 PMCID: PMC11669889 DOI: 10.1016/j.molimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The natural monoclonal antibody B4-IgM recognizes murine annexin 4 (mAn4) and exacerbates ischemia-reperfusion injury in many mouse models. During apoptosis, the intracellular mAn4 protein translocates to the membrane surface, remaining attached to the outer membrane leaflet where it is recognized by the anti-mAn4 B4-IgM antibody. B4-IgM does not recognize human annexin 4 (hAn4). However, the B4-IgM antibody epitope was detected by Western blot of unknown human proteins and by flow cytometry on all studied human cell lines undergoing apoptosis and on a minor subset of healthy cells. The B4-IgM antibody also recognizes the epitope on necrotic cells in cytoplasmic proteins, apparently entering through pores large enough to allow natural antibodies to penetrate the cells and bind to the epitope expressed on self-proteins. Using proteomics and site-directed mutagenesis, we found that B4-IgM binds to an epitope with post-translationally modified acetylated N-terminal methionine, followed by either glutamic or aspartic acid. The epitope is not induced by apoptosis or injury because this modification can also occur during protein translation. This finding reveals an additional novel mechanism whereby injured cells are detected by natural antibodies that initiate pathogenic complement activation through the recognition of epitopes that are shared across multiple proteins found in variable cell lines.
Collapse
Affiliation(s)
- Liudmila Kulik
- Division of Rheumatology, University of Colorado Denver, USA.
| | - Brandon Renner
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Jennifer Laskowski
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | | |
Collapse
|
4
|
Hein T, Krammer PH, Weyd H. Molecular analysis of Annexin expression in cancer. BMC Cancer 2022; 22:994. [PMID: 36123610 PMCID: PMC9484247 DOI: 10.1186/s12885-022-10075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Uptake of apoptotic cells induces a tolerogenic phenotype in phagocytes and promotes peripheral tolerance. The highly conserved Annexin core domain, present in all members of the Annexin family, becomes exposed on the apoptotic cell-surface and triggers tolerogenic signalling in phagocytes via the Dectin-1 receptor. Consequently, Annexins exposed on tumour cells upon cell death are expected to induce tolerance towards tumour antigens, inhibiting tumour rejection. Methods Expression analysis for all Annexin family members was conducted in cancer cell lines of diverse origins. Presentation of Annexins on the cell surface during apoptosis of cancer cell lines was investigated using surface washes and immunoblotting. Expression data from the GEO database was analysed to compare Annexin levels between malignant and healthy tissue. Results Six Annexins at least were consistently detected on mRNA and protein level for each investigated cell line. AnxA1, AnxA2 and AnxA5 constituted the major part of total Annexin expression. All expressed Annexins translocated to the cell surface upon apoptosis induction in all cell lines. Human expression data indicate a correlation between immune infiltration and overall Annexin expression in malignant compared to healthy tissue. Conclusions This study is the first comprehensive analysis of expression, distribution and presentation of Annexins in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10075-8.
Collapse
Affiliation(s)
- Tobias Hein
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, 69120, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
6
|
Li L, Zhang R, Liu Y, Zhang G. ANXA4 Activates JAK-STAT3 Signaling by Interacting with ANXA1 in Basal-Like Breast Cancer. DNA Cell Biol 2020; 39:1649-1656. [PMID: 32552056 DOI: 10.1089/dna.2020.5570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Annexin A4 (encoded by the ANXA4 gene) is a calcium ion (Ca2+)- and phospholipid-binding protein of the Annexin family. In this study, we checked the expression profile of ANXA4 in basal-like breast cancer (BLBC) and its association with survival outcomes using pan-cancer data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Then, using MDA-MB-231 and MDA-MB-468 cells, we explored the functional role of ANXA4 in regulating a cancer-related signaling pathway and identified potential partners of ANXA4. The results showed that expression of total ANXA4 and the two dominant ANXA4 protein-coding transcripts (ENST00000409920.5 and ENST00000394295.4) was consistently upregulated in tumor tissues compared with normal breast tissues. BLBC patients with high ANXA4 expression had significantly worse overall survival, progression-free survival, and disease-free survival than those with low ANXA4 expression. ANXA4 could positively modulate cyclin D1 expression and G1/S progression in the two cell lines. An in vivo tumor model showed that ANXA4 inhibition significantly slowed the growth of tumors derived from the two BLBC cell lines. ANXA4 could increase JAK1 expression and STAT3 phosphorylation (Y705). ANXA4 colocalized with ANXA1 in some MDA-MB-231 cells. A co-immunoprecipitation assay confirmed direct binding between ANXA4 and ANXA1. Knockdown of ANXA1 reduced JAK1 expression and STAT3 phosphorylation and impaired ANXA4-induced upregulation of JAK1 and p-STAT3. In conclusion, this study revealed that aberrant ANXA4 upregulation is associated with poor survival in BLBC. ANXA4 could activate JAK-STAT3 signaling by elevating the expression of JAK1 and p-STAT3, which was mediated by direct interaction with ANXA1.
Collapse
Affiliation(s)
- Lei Li
- Department of Radiotherapy and People's Hospital of Shanxi Province, Taiyuan, China
| | - Rong Zhang
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi Province, Taiyuan, China
| | - Ying Liu
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gong Zhang
- Department of Radiotherapy and People's Hospital of Shanxi Province, Taiyuan, China
| |
Collapse
|
7
|
Cai H, Wei J, Shen H, Li J, Fan Q, Zhao Z, Deng J, Ming F, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Molecular cloning, characterization and expression profiles of Annexin family (ANXA1~A6) in yellow catfish (Pelteobagrus fulvidraco) and ANX regulation by CpG ODN responding to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:609-630. [PMID: 32088284 DOI: 10.1016/j.fsi.2020.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Up to now, many previous reports have emphasized that Annexins (ANX) family played an important role in immune responses. Aeromonas hydrophila (A. hydrophila), the most common zoonotic pathogenic bacteria of yellow catfish (Pelteobagrus fulvidraco), can cause serious economic loss, especially to yellow catfish with high economic value. In our previous work, we demonstrated that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) owned powerful immunostimulatory activity. However, the relationship among Pelteobagrus fulvidraco Annexins (Pf_ANX), CpG ODN and A. hydrophila is unknown. Therefore, we cloned Pf_ANX1-6 genes and analyzed its sequences, structures, genetic evolution, post-translation modifications (PTMs), Ca2+ ion binding sites and tissue distribution to reveal the relevance. In addition, we investigated the responses of ANXA1-6 and cytokines in intestine and spleen as well as morbidity/survival rate of fish post CpG ODN immunization and/or A. hydrophila infection. The results showed that compared with challenge alone (challenge-CK) group, the CpG immunization following challenge (CpG-challenge) group displayed relatively flat IL-1β level throughout in both organs. Meanwhile, the expression of IFN-γ and morbidity/survival rate of fish in CpG-challenge group showed a great improvement compared with the challenge-CK group. Our results indicated that CpG ODN could improve morbidity/survival by up-regulating Pf_ANXA 1, 2 and 5 in the intestine and spleen to ameliorate inflammatory responses and promote anti-infective responses. Our findings offer some important insights into ANX related to the immunity of fish infection and lay a theoretical basis for the prevention and treatment of fish infections.
Collapse
Affiliation(s)
- Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiatian Wei
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
8
|
Amor S, Châlons P, Aires V, Delmas D. Polyphenol Extracts from Red Wine and Grapevine: Potential Effects on Cancers. Diseases 2018; 6:diseases6040106. [PMID: 30453669 PMCID: PMC6313659 DOI: 10.3390/diseases6040106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/24/2022] Open
Abstract
Wine has been popular worldwide for many centuries and currently remains an important component of our diet. Scientific interest in wine and its health effects has grown considerably since the 1990s with the emergence of the “French Paradox” concept, correlating moderate wine consumption, a characteristic of the Mediterranean diet, and low incidence of coronary heart diseases. Since then, the positive effects on health, health promotion, disease prevention, and disease prognosis of moderate wine consumption, in particular red wine, have been attributed to its polyphenolic compounds such as resveratrol, quercetin, and other flavonoids acting as antioxidants. Several epidemiological, in vivo and in vitro, studies have reported that moderate red wine or red wine polyphenolic extract consumption may be active in the prevention and treatment of chronic diseases such as cardiovascular disease, metabolic syndrome, degenerative pathologies, and cancer. The aim of this review is to summarize the current findings about the effects of red wine polyphenols on cancer and to discuss how the polyphenolic composition of red wine may influence its chemopreventive properties.
Collapse
Affiliation(s)
- Souheila Amor
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Pauline Châlons
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Virginie Aires
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Dominique Delmas
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| |
Collapse
|
9
|
Amor S, Châlons P, Aires V, Delmas D. Polyphenol Extracts from Red Wine and Grapevine: Potential Effects on Cancers. DISEASES (BASEL, SWITZERLAND) 2018. [PMID: 30453669 DOI: 10.3390/diseases6040106]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wine has been popular worldwide for many centuries and currently remains an important component of our diet. Scientific interest in wine and its health effects has grown considerably since the 1990s with the emergence of the "French Paradox" concept, correlating moderate wine consumption, a characteristic of the Mediterranean diet, and low incidence of coronary heart diseases. Since then, the positive effects on health, health promotion, disease prevention, and disease prognosis of moderate wine consumption, in particular red wine, have been attributed to its polyphenolic compounds such as resveratrol, quercetin, and other flavonoids acting as antioxidants. Several epidemiological, in vivo and in vitro, studies have reported that moderate red wine or red wine polyphenolic extract consumption may be active in the prevention and treatment of chronic diseases such as cardiovascular disease, metabolic syndrome, degenerative pathologies, and cancer. The aim of this review is to summarize the current findings about the effects of red wine polyphenols on cancer and to discuss how the polyphenolic composition of red wine may influence its chemopreventive properties.
Collapse
Affiliation(s)
- Souheila Amor
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Pauline Châlons
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Virginie Aires
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| | - Dominique Delmas
- Université de Bourgogne-Franche Comté, Dijon F-21000, France.
- Centre de Recherche INSERM U1231-Cancer and Adaptative Immune Response Team⁻Bioactive Molecules and Health research group, Dijon F-21000, France.
| |
Collapse
|
10
|
Gaudio E, Paduano F, Ngankeu A, Ortuso F, Lovat F, Pinton S, D'Agostino S, Zanesi N, Aqeilan RI, Campiglia P, Novellino E, Alcaro S, Croce CM, Trapasso F. A Fhit-mimetic peptide suppresses annexin A4-mediated chemoresistance to paclitaxel in lung cancer cells. Oncotarget 2017; 7:29927-36. [PMID: 27166255 PMCID: PMC5058653 DOI: 10.18632/oncotarget.9179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023] Open
Abstract
We recently reported that Fhit is in a molecular complex with annexin A4 (ANXA4); following to their binding, Fhit delocalizes ANXA4 from plasma membrane to cytosol in paclitaxel-resistant lung cancer cells, thus restoring their chemosensitivity to the drug. Here, we demonstrate that Fhit physically interacts with A4 through its N-terminus; molecular dynamics simulations were performed on a 3D Fhit model to rationalize its mechanism of action. This approach allowed for the identification of the QHLIKPS heptapeptide (position 7 to 13 of the wild-type Fhit protein) as the smallest Fhit sequence still able to preserve its ability to bind ANXA4. Interestingly, Fhit peptide also recapitulates the property of the native protein in inhibiting Annexin A4 translocation from cytosol to plasma membrane in A549 and Calu-2 lung cancer cells treated with paclitaxel. Finally, the combination of Tat-Fhit peptide and paclitaxel synergistically increases the apoptotic rate of cultured lung cancer cells and blocks in vivo tumor formation. Our findings address to the identification of chemically simplified Fhit derivatives that mimic Fhit tumor suppressor functions; intriguingly, this approach might lead to the generation of novel anticancer drugs to be used in combination with conventional therapies in Fhit-negative tumors to prevent or delay chemoresistance.
Collapse
Affiliation(s)
- Eugenio Gaudio
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.,Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Francesco Paduano
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Apollinaire Ngankeu
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Francesca Lovat
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Sandra Pinton
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Sabrina D'Agostino
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Nicola Zanesi
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Rami I Aqeilan
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.,The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, The Hebrew University, Jerusalem, Israel
| | - Pietro Campiglia
- Dipartimento di Farmacia, Università di Salerno, Fisciano, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| | - Carlo M Croce
- Department of Molecular Immunology, Virology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University Magna Græcia, Campus "S. Venuta", Catanzaro, Italy
| |
Collapse
|
11
|
Song Y, Zhong L, Zhou J, Lu M, Xing T, Ma L, Shen J. Data-Independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Biomarkers of Kidney Cancer. Proteomics Clin Appl 2017; 11. [PMID: 28975715 DOI: 10.1002/prca.201700066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/27/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) is a malignant and metastatic cancer with 95% mortality, and clear cell RCC (ccRCC) is the most observed among the five major subtypes of RCC. Specific biomarkers that can distinguish cancer tissues from adjacent normal tissues should be developed to diagnose this disease in early stages and conduct a reliable prognostic evaluation. EXPERIMENTAL DESIGN Data-independent acquisition (DIA) strategy has been widely employed in proteomic analysis because of various advantages, including enhanced protein coverage and reliable data acquisition. In this study, a DIA workflow is constructed on a quadrupole-Orbitrap LC-MS platform to reveal dysregulated proteins between ccRCC and adjacent normal tissues. RESULTS More than 4000 proteins are identified, 436 of these proteins are dysregulated in ccRCC tissues. Bioinformatic analysis reveals that multiple pathways and Gene Ontology items are strongly associated with ccRCC. The expression levels of L-lactate dehydrogenase A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 examined through RT-qPCR, Western blot, and immunohistochemistry confirm the validity of the proteomic analysis results. CONCLUSIONS AND CLINICAL RELEVANCE The proposed DIA workflow yields optimum time efficiency and data reliability and provides a good choice for proteomic analysis in biological and clinical studies, and these dysregulated proteins might be potential biomarkers for ccRCC diagnosis.
Collapse
Affiliation(s)
- Yimeng Song
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Lijun Zhong
- Medical and Health Analytical Center, Peking University Health Science Center, Beijing, China
| | - Juntuo Zhou
- Department of Pathology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Min Lu
- Department of Pathology, School of Basic Medical Science, Peking University Health Science Center, Beijing, China
| | - Tianying Xing
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Jing Shen
- Key Laboratory of Carcinogenesis and Translational Research Ministry of Education/Beijing, Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| |
Collapse
|
12
|
Dai Y, Zhang Q, Jiang Y, Yin L, Zhang X, Chen Y, Cai X. Screening of differentially expressed proteins in psoriasis vulgaris by two-dimensional gel electrophoresis and mass spectrometry. Exp Ther Med 2017; 14:3369-3374. [PMID: 29042920 PMCID: PMC5639297 DOI: 10.3892/etm.2017.5012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/22/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to elucidate differentially expressed proteins in lesional tissues of psoriasis vulgaris (PV) and normal tissues. Lesional skin tissues were collected from PV patients, along with normal skin tissues from healthy individuals. The protein content of the samples was extracted and then separated by two-dimensional gel electrophoresis (2-DGE). Any proteins that were differentially expressed in the lesional skin of PV patients compared with the healthy controls were analyzed by mass spectrometry and bioinformatics. In the stratum corneum and dermis of PV patients, the total number of proteins identified by 2-DGE was 1,969±21 and 1,928±49, respectively. Of these, 30 proteins were differentially expressed in the PV patients, of which 14 were identified as: Type 1 keratin cytoskeleton proteins (including K1C10, K1C14, K1C15 and K1C16); the type 2 keratin cytoskeleton protein, K2C1; actin-associated proteins (including ARP3, ACTA and ACTBM); prohibitin; heat shock proteins (HSPB1 and CH60); centrosome protein, CP135; and membrane associated proteins (including ANXA4 and ANXA5). The differential expression of protein between PV lesions and normal tissue can be considered as pathological biomarker. Elucidating the abnormal regulation of these proteins can provide mechanism of the development of PV and may contribute to significant approaches for PV treatments.
Collapse
Affiliation(s)
- Yinan Dai
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Qingrui Zhang
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China.,Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Jiang
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Yin
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Xiaodong Zhang
- Department of Dermatology, 202 Hospital of PLA, Shenyang, Liaoning 110001, P.R. China
| | - Yang Chen
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinze Cai
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
13
|
Katano M, Kurokawa MS, Matsuo K, Masuko K, Suematsu N, Okamoto K, Kamada T, Nakamura H, Kato T. Phosphoproteome analysis of synoviocytes from patients with rheumatoid arthritis. Int J Rheum Dis 2017; 20:708-721. [DOI: 10.1111/1756-185x.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Masayoshi Katano
- Research and Development, Clinical Department; LSI Medience Corporation; Tokyo Japan
- Clinical Proteomics and Molecular Medicine; St. Marianna University Graduate School of Medicine; Kawasaki Japan
| | - Manae S. Kurokawa
- Disease Biomarker Analysis and Molecular Regulation; St. Marianna University Graduate School of Medicine; Kawasaki Japan
| | - Kosuke Matsuo
- Department of Orthopaedic Surgery; Yokohama City University School of Medicine; Yokohama Japan
| | - Kayo Masuko
- Preventive Medical Center; Sanno Hospital Medical Center; Tokyo Japan
| | - Naoya Suematsu
- Clinical Proteomics and Molecular Medicine; St. Marianna University Graduate School of Medicine; Kawasaki Japan
| | - Kazuki Okamoto
- Clinical Proteomics and Molecular Medicine; St. Marianna University Graduate School of Medicine; Kawasaki Japan
| | | | - Hiroshi Nakamura
- Department of Orthopedic Surgery; International University of Health and Welfare; Tokyo Japan
| | - Tomohiro Kato
- Clinical Proteomics and Molecular Medicine; St. Marianna University Graduate School of Medicine; Kawasaki Japan
| |
Collapse
|
14
|
Burton LJ, Rivera M, Hawsawi O, Zou J, Hudson T, Wang G, Zhang Q, Cubano L, Boukli N, Odero-Marah V. Muscadine Grape Skin Extract Induces an Unfolded Protein Response-Mediated Autophagy in Prostate Cancer Cells: A TMT-Based Quantitative Proteomic Analysis. PLoS One 2016; 11:e0164115. [PMID: 27755556 PMCID: PMC5068743 DOI: 10.1371/journal.pone.0164115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023] Open
Abstract
Muscadine grape skin extract (MSKE) is derived from muscadine grape (Vitis rotundifolia), a common red grape used to produce red wine. Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) that serves as a survival mechanism to relieve ER stress and restore ER homeostasis. However, when persistent, ER stress can alter the cytoprotective functions of the UPR to promote autophagy and cell death. Although MSKE has been documented to induce apoptosis, it has not been linked to ER stress/UPR/autophagy. We hypothesized that MSKE may induce a severe ER stress response-mediated autophagy leading to apoptosis. As a model, we treated C4-2 prostate cancer cells with MSKE and performed a quantitative Tandem Mass Tag Isobaric Labeling proteomic analysis. ER stress response, autophagy and apoptosis were analyzed by western blot, acridine orange and TUNEL/Annexin V staining, respectively. Quantitative proteomics analysis indicated that ER stress response proteins, such as GRP78 were greatly elevated following treatment with MSKE. The up-regulation of pro-apoptotic markers PARP, caspase-12, cleaved caspase-3, -7, BAX and down-regulation of anti-apoptotic marker BCL2 was confirmed by Western blot analysis and apoptosis was visualized by increased TUNEL/Annexin V staining upon MSKE treatment. Moreover, increased acridine orange, and LC3B staining was detected in MSKE-treated cells, suggesting an ER stress/autophagy response. Finally, MSKE-mediated autophagy and apoptosis was antagonized by co-treatment with chloroquine, an autophagy inhibitor. Our results indicate that MSKE can elicit an UPR that can eventually lead to apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Liza J. Burton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Mariela Rivera
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
| | - Tamaro Hudson
- Department of Medicine, Howard University, Washington, DC, 20060, United States of America
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, United States of America
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, United States of America
| | - Luis Cubano
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Nawal Boukli
- Department of Microbiology and Immunology, School of Medicine, Universidad Central del Caribe, Bayamon, PR, 00956, United States of America
| | - Valerie Odero-Marah
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen ZJ, Zhang KS, Ge LC, Liu H, Chen LK, Du J, Wang HS. Signals involved in the effects of bisphenol A (BPA) on proliferation and motility of Leydig cells: a comparative proteomic analysis. Toxicol Res (Camb) 2016; 5:1573-1584. [PMID: 30090458 DOI: 10.1039/c6tx00258g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
Recent studies indicated that bisphenol A (BPA) can disrupt spermatogenesis and then cause male infertility. The present study revealed that BPA greater than 10-6 M inhibited the proliferation of Leydig TM3 cells via a concentration dependent manner. The proteomic study revealed that 50 proteins were modulated in TM3 cells following exposure to BPA, which was relevant to structure, motility, cell metabolism, protein and nucleotide processing, and cell proliferation. Furthermore, BPA increased the in vitro migration and invasion of Leydig TM3 cells, which might be due to the BPA's modulation of proteins related to cell structure and motility such as actin and heat shock protein (HSP). Silencing of galectin-1, which was up regulated by BPA, significantly abolished the BPA-induced migration of TM3 cells. BPA treatment obviously increased the phosphorylation of ERK1/2 and Akt, while only PD98509 (ERK1/2 inhibitor) significantly attenuated BPA induced up regulation of galectin-1. Furthermore, PD98509 also reversed BPA induced migration of TM3 cells. Our study demonstrated that xenoestrogen BPA at micromolar or greater concentrations can modulate protein profiles, inhibit cell proliferation, and promote the in vitro migration and invasion of Leydig TM3 cells. It provided new insight into the mechanisms responsible for BPA induced male infertility.
Collapse
Affiliation(s)
- Zhuo-Jia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| | - Kun-Shui Zhang
- Department of Pharmacy , Sun Yat-sen Memorial Hospital , Sun Yat-sen University , 107 Yanjiang West Road , Guangzhou 510120 , China
| | - Li-Chen Ge
- Department of Microbial and Biochemical Pharmacy , School of Pharmaceutical Sciences , Sun Yat-sen University , No. 132 Waihuandong Road , University Town , Guangzhou 510006 , China . ;
| | - Hao Liu
- Cancer Research Institute and Cancer Hospital , Guangzhou Medical University , Guangzhou 510095 , China
| | - Li-Kun Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy , School of Pharmaceutical Sciences , Sun Yat-sen University , No. 132 Waihuandong Road , University Town , Guangzhou 510006 , China . ;
| | - Hong-Sheng Wang
- Department of Microbial and Biochemical Pharmacy , School of Pharmaceutical Sciences , Sun Yat-sen University , No. 132 Waihuandong Road , University Town , Guangzhou 510006 , China . ;
| |
Collapse
|
16
|
Nagappan A, Venkatarame Gowda Saralamma V, Hong GE, Lee HJ, Shin SC, Kim EH, Lee WS, Kim GS. Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells. Mol Med Rep 2016; 14:3814-22. [PMID: 27573346 DOI: 10.3892/mmr.2016.5666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 06/29/2016] [Indexed: 11/05/2022] Open
Abstract
Citrus platymamma Hort. ex Tanaka (Byungkyul in Korean) has been used in Korean folk medicine for the treatment of inflammatory disorders and cancer. However, the molecular mechanism underlying the anticancer properties of flavonoids isolated from C. platymamma (FCP) remains to be elucidated. Therefore, the present study attempted to identify the key proteins, which may be important in the anticancer effects of FCP on A549 cells using a proteomic approach. FCP showed a potent cytotoxic effect on the A549 human lung cancer cells, however, it had no effect on WI‑38 human fetal lung fibroblasts at the same concentrations. Furthermore, 15 differentially expressed protein spots (spot intensities ≥2‑fold change; P<0.05) were obtained from comparative proteome analysis of two‑dimensional gel electrophoresis maps of the control (untreated) and FCP‑treated A549 cells. Finally, eight differentially expressed proteins, one of which was upregulated and seven of which were downregulated, were successfully identified using matrix‑assisted laser desorption/ionization time‑of‑flight/time‑of‑flight tandem mass spectrometry and peptide mass fingerprinting analysis. Specifically, proteins involved in signal transduction were significantly downregulated, including annexin A1 (ANXA1) and ANXA4, whereas 14‑3‑3ε was upregulated. Cytoskeletal proteins, including cofilin‑1 (CFL1), cytokeratin 8 (KRT8) and KRT79, and molecular chaperones/heat shock proteins, including endoplasmin, were downregulated. Proteins involved in protein metabolism, namely elongation factor Ts were also downregulated. Consistent with results of the proteome analysis, the immunoblotting results showed that 14‑3‑3ε was upregulated, whereas CFL1, ANXA4 and KRT8 were downregulated in the FCP‑treated A549 cells. The majority of the proteins were involved in tumor growth, cell cycle, apoptosis, migration and signal transduction. These findings provide novel insights into the molecular mechanisms underlying FCP-induced anticancer effects on A549 cells.
Collapse
Affiliation(s)
- Arulkumar Nagappan
- Department of Internal Medicine, Institute of Health Sciences and Gyeongnam Regional Cancer Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 660‑702, Republic of Korea
| | - Venu Venkatarame Gowda Saralamma
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Jinju, Gyeongnam 660‑701, Republic of Korea
| | - Gyeong Eun Hong
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Jinju, Gyeongnam 660‑701, Republic of Korea
| | - Ho Jeong Lee
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Jinju, Gyeongnam 660‑701, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju, Gyeongnam 660‑701, Republic of Korea
| | - Eun Hee Kim
- Department of Nursing Science, International University of Korea, Jinju, Gyeongnam 660‑759, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences and Gyeongnam Regional Cancer Center, Gyeongsang National University School of Medicine, Jinju, Gyeongnam 660‑702, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine (BK21 Plus Project), Gyeongsang National University, Jinju, Gyeongnam 660‑701, Republic of Korea
| |
Collapse
|
17
|
Annexin A4-nuclear factor-κB feedback circuit regulates cell malignant behavior and tumor growth in gallbladder cancer. Sci Rep 2016; 6:31056. [PMID: 27491820 PMCID: PMC4974512 DOI: 10.1038/srep31056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system. However, the mechanisms underlying its tumor initiation, progression, and metastasis are not yet fully understood. The annexin A4 (ANXA4) gene is highly expressed in GBC tissues and may play an important role in the initiation and progression of this disease. In this study, we examined the up-regulation of ANXA4 in human GBC tissues and cell lines. Elevated ANXA4 correlated well with invasion depth in GBC patients and predicted a poor prognosis. In vitro, GBC-SD and NOZ cells with ANXA4 knockdown demonstrated increased apoptosis and inhibited cell growth, migration, and invasion. Interactions between ANXA4 and nuclear factor-κB (NF-κB) p65 proteins were detected. In vivo, ANXA4 knockdown inhibited tumor growth of GBC cells in nude mice and down-regulated the expression of downstream factors in the NF-κB signaling pathway. Taken together, these data indicate that up-regulation of ANXA4 leads to activation of the NF-κB pathway and its target genes in a feedback regulatory mechanism via the p65 subunit, resulting in tumor growth in GBC.
Collapse
|
18
|
Liu W, Zeng L, Li N, Wang F, Jiang C, Guo F, Chen X, Su T, Xu C, Zhang S, Fang C. Quantitative proteomic analysis for novel biomarkers of buccal squamous cell carcinoma arising in background of oral submucous fibrosis. BMC Cancer 2016; 16:584. [PMID: 27485544 PMCID: PMC4971621 DOI: 10.1186/s12885-016-2650-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 07/28/2016] [Indexed: 12/28/2022] Open
Abstract
Background In South and Southeast Asian, the majority of buccal squamous cell carcinoma (BSCC) can arise from oral submucous fibrosis (OSF). BSCCs develop in OSF that are often not completely resected, causing local relapse. The aim of our study was to find candidate protein biomarkers to detect OSF and predict prognosis in BSCCs by quantitative proteomics approaches. Methods We compared normal oral mucosa (NBM) and paired biopsies of BSCC and OSF by quantitative proteomics using isobaric tags for relative and absolute quantification (iTRAQ) to discover proteins with differential expression. Gene Ontology and KEGG networks were analyzed. The prognostic value of biomarkers was evaluated in 94 BSCCs accompanied with OSF. Significant associations were assessed by Kaplan-Meier survival and Cox-proportional hazards analysis. Results In total 30 proteins were identified with significantly different expression (false discovery rate < 0.05) among three tissues. Two consistently upregulated proteins, ANXA4 and FLNA, were validated. The disease-free survival was negatively associated with the expression of ANXA4 (hazard ratio, 3.4; P = 0.000), FLNA (hazard ratio, 2.1; P = 0.000) and their combination (hazard ratio, 8.8; P = 0.002) in BSCCs. Conclusion The present study indicates that iTRAQ quantitative proteomics analysis for tissues of BSCC and OSF is a reliable strategy. A significantly up-regulated ANXA4 and FLNA could be not only candidate biomarkers for BSCC prognosis but also potential targets for its therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2650-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Liu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Lijuan Zeng
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China.
| | - Fei Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Xinqun Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Tong Su
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Chunjiao Xu
- Department of Oral Medicine, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Shanshan Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| | - Changyun Fang
- Department of Oral Medicine, Xiangya Hospital, Central South University, No. 88, Xiangya Road, Changsha, China
| |
Collapse
|
19
|
Choi CH, Chung JY, Chung EJ, Sears JD, Lee JW, Bae DS, Hewitt SM. Prognostic significance of annexin A2 and annexin A4 expression in patients with cervical cancer. BMC Cancer 2016; 16:448. [PMID: 27402115 PMCID: PMC4940752 DOI: 10.1186/s12885-016-2459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/23/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The annexins (ANXs) have diverse roles in tumor development and progression, however, their clinical significance in cervical cancer has not been elucidated. The present study was to investigate the clinical significance of annexin A2 (ANXA2) and annexin A4 (ANXA4) expression in cervical cancer. METHODS ANXA2 and ANXA4 immunohistochemical staining were performed on a cervical cancer tissue microarray consisting of 46 normal cervical epithelium samples and 336 cervical cancer cases and compared the data with clinicopathological variables, including the survival of cervical cancer patients. RESULTS ANXA2 expression was lower in cancer tissue (p = 0.002), whereas ANXA4 staining increased significantly in cancer tissues (p < 0.001). ANXA2 expression was more prominent in squamous cell carcinoma (p < 0.001), whereas ANXA4 was more highly expressed in adeno/adenosquamous carcinoma (p < 0.001). ANXA2 overexpression was positively correlated with advanced cancer phenotypes, whereas ANXA4 expression was associated with resistance to radiation with or without chemotherapy (p = 0.029). Notably, high ANXA2 and ANXA4 expression was significantly associated with shorter disease-free survival (p = 0.004 and p = 0.033, respectively). Multivariate analysis indicated that ANXA2+ (HR = 2.72, p = 0.003) and ANXA2+/ANXA4+ (HR = 2.69, p = 0.039) are independent prognostic factors of disease-free survival in cervical cancer. Furthermore, a random survival forest model using combined ANXA2, ANXA4, and clinical variables resulted in improved predictive power (mean C-index, 0.76) compared to that of clinical-variable-only models (mean C-index, 0.70) (p = 0.006). CONCLUSIONS These findings indicate that detecting ANXA2 and ANXA4 expression may aid the evaluation of cervical carcinoma prognosis.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - John D Sears
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Annexin A4 fucosylation enhances its interaction with the NF-kB p50 and promotes tumor progression of ovarian clear cell carcinoma. Oncotarget 2016; 8:108093-108107. [PMID: 29296226 PMCID: PMC5746128 DOI: 10.18632/oncotarget.10226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Objective To study the structural relationship between annexin A4 and the Lewis y antigen and compare their expression and significance in ovarian clear cell carcinoma, and to explore how annexin A4 fucose glycosylation effects the interaction between annexin A4 and NF-kB p50, and how it promotes tumour progression of ovarian clear cell carcinoma. Methods Structural relationships between annexin A4 and Lewis y antigen were detected using immunoprecipitation. Annexin A4 and Lewis y antigen expression in various subtypes of ovarian cancer tissues was detected by immunohistochemistry, and the relation between their expression was examined. Any interactions between annexin A4 and NF-kB p50 in ovarian clear cell carcinoma were detected by co-immunoprecipitation. Then looked for changes in expression of Lewis y antigen, annexin A4, NF-kB p50 and a number of downstream related molecules before and after transfection annexin A4 or FUT1, and also analyzed changes in biological processes. Results Lewis y antigen is a part of annexin A4 structure. The expression rate of both annexin A4 and Lewis y antigen was significantly higher in ovarian clear cell carcinoma than in other subtypes of epithelial ovarian cancer, and are associated with the clinical stages, chemotherapy resistance and poor prognostic. The interaction between annexin A4 and NF-kB p50 promoted cell proliferation, adhesion, invasion, metastasis ability and autophagy, and inhibits apoptosis, Lewis y enhanced this interaction. Conclusion Annexin A4 contains Lewis y structure, Lewis y antigen modification of annexin A4 enhances its interaction with NF-kB p50, which promotes ovarian clear cell carcinoma malignancy progression.
Collapse
|
21
|
English DP, Menderes G, Black J, Schwab CL, Santin AD. Molecular diagnosis and molecular profiling to detect treatment-resistant ovarian cancer. Expert Rev Mol Diagn 2016; 16:769-82. [PMID: 27169329 DOI: 10.1080/14737159.2016.1188692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer remains the gynecologic tumor with the highest rate of recurrence after initial optimal cytoreductive surgery followed by adjuvant chemotherapy. Unfortunately, with the development of recurrent ovarian cancer often comes the discovery of chemo-resistant disease. The absence of improvement in long term survival, notwithstanding the use of newer agents as is seen in other cancers, emphasizes the need for improved understanding of the processes that lead to chemo-resistant disease. AREAS COVERED This review will cover the following topics: 1. Molecular and cellular mechanisms in platinum and paclitaxel resistance 2. Other molecular mediators of chemo-resistance 3. Expression of stem cell markers in ovarian cancer and relationship to chemo-resistance 4. MicroRNA and long non-coding RNA expression in chemo-resistant ovarian cancer 5. Determination of chromosomal aberrations as markers of chemo-resistance 6. Molecular profiling in chemo-resistant disease. A standard MEDLINE search was performed using the key words; ovarian cancer, chemo-resistant disease, molecular profiling, cancer stem cells and chemotherapy. Expert Commentary: Over the next few years the challenge remains to precisely determine the mechanisms responsible for the onset and maintenance of chemo-resistance and to effectively target these mechanisms.
Collapse
Affiliation(s)
- Diana P English
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Gulden Menderes
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics and Gynecology, Division of Gynecologic Oncology , Stanford University , Stanford , CA , USA
| | - Carlton L Schwab
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- b Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
22
|
Overexpression of annexin A4 indicates poor prognosis and promotes tumor metastasis of hepatocellular carcinoma. Tumour Biol 2016; 37:9343-55. [PMID: 26779633 DOI: 10.1007/s13277-016-4823-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) after surgical resection remains unsatisfactory for the majority of HCC patients who developed early recurrence or metastasis. There is still a lack of reliable biomarkers that can be used to predict the possibility of recurrence/metastasis in HCC patients after operation. In the current study, annexin A4, a calcium-dependent phospholipid-binding protein, has been found to be significantly elevated in HCC patients with early recurrence/metastasis, and had a strong correlation with portal vein tumor thrombosis (p = 0.03) and advanced BCLC stage (p = 0.002). Cox proportional hazards regression analysis revealed that annexin A4 was an independent prognostic predictor for both early recurrence/metastasis (HR = 1.519, p = 0.032) and overall survival (HR = 1.827, p = 0.009) after surgical resection. Meanwhile, Kaplan-Meier analysis showed that Patients with high-expression levels of annexin A4 had higher recurrence rate and shorter overall survival than those with low expression (log-rank test, p < 0.001). Furthermore, in vitro studies have demonstrated that overexpression of annexin A4 facilitated HCC cell migration and invasion via regulating epithelial-mesenchymal transition (EMT). In conclusion, annexin A4 has played important roles in the progression of HCC, and might act as a potential prognostic biomarker for HCC.
Collapse
|
23
|
Peiris D, Ossondo M, Fry S, Loizidou M, Smith-Ravin J, Dwek MV. Identification of O-Linked Glycoproteins Binding to the Lectin Helix pomatia Agglutinin as Markers of Metastatic Colorectal Cancer. PLoS One 2015; 10:e0138345. [PMID: 26495974 PMCID: PMC4619703 DOI: 10.1371/journal.pone.0138345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer. METHODOLOGY In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens. RESULTS Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002). CONCLUSION Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Diluka Peiris
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Marlène Ossondo
- Universite des Antilles et de la Guyane, Département Scientifique Interfacultaire, EA929 AIHP-GEODE (BIOSPHERES), Campus de Schœlcher, Martinique
| | - Simon Fry
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London School of Life and Medical Sciences, Royal Free Campus, Pond Street, London, United Kingdom
| | - Juliette Smith-Ravin
- Universite des Antilles et de la Guyane, Département Scientifique Interfacultaire, EA929 AIHP-GEODE (BIOSPHERES), Campus de Schœlcher, Martinique
| | - Miriam V. Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, United Kingdom
| |
Collapse
|
24
|
Abstract
Platinum resistance has long been a major issue in the treatment of various cancers. We previously reported that enhanced annexin A4 (ANXA4) expression, a Ca2+-regulated phospholipid-binding protein, induces chemoresistance to platinum-based drugs. In this study, we investigated the role of annexin repeats, a conserved structure of all the annexin family, responsible for platinum-resistance as well as the effect of knockdown of ANXA4. ANXA4 knockdown increased sensitivity to platinum-based drugs both in vitro and in vivo. To identify the domain responsible for chemoresistance, ANXA4 deletion mutants were constructed by deleting annexin repeats one by one from the C terminus. Platinum resistance was induced both in vitro and in vivo in cells expressing either full-length ANXA4 or the deletion mutants, containing at least one intact annexin repeat. However, cells expressing the mutant without any calcium-binding sites in the annexin repeated sequence, which is essential for ANXA4 translocation from the cytosol to plasma membrane, failed to acquire platinum resistance. After cisplatin treatment, the intracellular chloride ion concentration, whose channel is partly regulated by ANXA4, significantly increased in the platinum-resistant cells. These findings indicate that the calcium-binding site in the annexin repeat induces chemoresistance to the platinum-based drug by elevating the intracellular chloride concentration.
Collapse
|
25
|
Weißer J, Lai ZW, Bronsert P, Kuehs M, Drendel V, Timme S, Kuesters S, Jilg CA, Wellner UF, Lassmann S, Werner M, Biniossek ML, Schilling O. Quantitative proteomic analysis of formalin-fixed, paraffin-embedded clear cell renal cell carcinoma tissue using stable isotopic dimethylation of primary amines. BMC Genomics 2015. [PMID: 26220445 PMCID: PMC4518706 DOI: 10.1186/s12864-015-1768-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Formalin-fixed, paraffin-embedded (FFPE) tissues represent the most abundant resource of archived human specimens in pathology. Such tissue specimens are emerging as a highly valuable resource for translational proteomic studies. In quantitative proteomic analysis, reductive di-methylation of primary amines using stable isotopic formaldehyde variants is increasingly used due to its robustness and cost-effectiveness. Results In the present study we show for the first time that isotopic amine dimethylation can be used in a straightforward manner for the quantitative proteomic analysis of FFPE specimens without interference from formalin employed in the FFPE process. Isotopic amine dimethylation of FFPE specimens showed equal labeling efficiency as for cryopreserved specimens. For both FFPE and cryopreserved specimens, differential labeling of identical samples yielded highly similar ratio distributions within the expected range for dimethyl labeling. In an initial application, we profiled proteome changes in clear cell renal cell carcinoma (ccRCC) FFPE tissue specimens compared to adjacent non–malignant renal tissue. Our findings highlight increased levels of glyocolytic enzymes, annexins as well as ribosomal and proteasomal proteins. Conclusion Our study establishes isotopic amine dimethylation as a versatile tool for quantitative proteomic analysis of FFPE specimens and underlines proteome alterations in ccRCC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1768-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Weißer
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,Present address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090, Vienna, Austria.
| | - Z W Lai
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - P Bronsert
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Kuehs
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - V Drendel
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Timme
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany.
| | - S Kuesters
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | - C A Jilg
- Urologische Klinik und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, 79106, Germany.
| | - U F Wellner
- Clinic for General and Visceral Surgery, University Medical Center Freiburg, Freiburg, Germany. .,Present address: Clinic for Surgery, University Clinic of Schleswig-Holstein Campus Lübeck, Lübeck, Germany.
| | - S Lassmann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M Werner
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany.
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Wei B, Guo C, Liu S, Sun MZ. Annexin A4 and cancer. Clin Chim Acta 2015; 447:72-8. [PMID: 26048190 DOI: 10.1016/j.cca.2015.05.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/30/2023]
Abstract
Annexin A4 (Anxa4) is one of the Ca(2+)-regulated and phospholipid-binding annexin superfamily proteins. Anxa4 has a potential role in diagnosis, prognosis, and treatment of certain cancers. Studies indicate that Anxa4 up-regulation promotes the progression of tumor and chemoresistance of colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), endometrial carcinoma (EC), gastric cancer (GC), chemoresistant lung cancer (LC), malignant mesothelioma (MM), renal cell carcinoma (RCC), ovarian clear cell carcinoma (OCCC), cholangiocarcinoma, hepatocellular carcinoma (HCC), breast cancer (BC), and laryngeal cancer. Interestingly, Anxa4 also might specifically function as a tumor suppressor for prostate cancer (PCa) and have a paradoxical role for pancreatic cancer (PCC). Differential expression of Anxa4 may distinguish major salivary gland tumor (MSGT) from thyroid cancer. In addition, its differential expression was linked to Sirt1-induced cisplatin resistance of oral squamous cell carcinoma (OSCC) and miR-7-induced migration and invasion inhibition of glioma. This current review summarizes and discusses the clinical significance of Anxa4 in cancer as well as its potential mechanisms of action. It may provide new integrative understanding for future studies on the exact role of Anxa4 in cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
27
|
Parodi M, Pedrazzi M, Cantoni C, Averna M, Patrone M, Cavaletto M, Spertino S, Pende D, Balsamo M, Pietra G, Sivori S, Carlomagno S, Mingari MC, Moretta L, Sparatore B, Vitale M. Natural Killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment. Oncoimmunology 2015; 4:e1052353. [PMID: 26587323 DOI: 10.1080/2162402x.2015.1052353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
In this study we characterize a new mechanism by which Natural Killer (NK) cells may amplify their recruitment to tumors. We show that NK cells, upon interaction with melanoma cells, can release a chemotactic form of High Mobility Group Box-1 (HMGB1) protein capable of attracting additional activated NK cells. We first demonstrate that the engagement of different activating NK cell receptors, including those mainly involved in tumor cell recognition can induce the active release of HMGB1. Then we show that during NK-mediated tumor cell killing two HMGB1 forms are released, each displaying a specific electrophoretic mobility possibly corresponding to a different redox status. By the comparison of normal and perforin-defective NK cells (which are unable to kill target cells) we demonstrate that, in NK/melanoma cell co-cultures, NK cells specifically release an HMGB1 form that acts as chemoattractant, while dying tumor cells passively release a non-chemotactic HMGB1. Finally, we show that Receptor for Advanced Glycation End products is expressed by NK cells and mediates HMGB1-induced NK cell chemotaxis. Proteomic analysis of NK cells exposed to recombinant HMGB1 revealed that this molecule, besides inducing immediate chemotaxis, also promotes changes in the expression of proteins involved in the regulation of the cytoskeletal network. Importantly, these modifications could be associated with an increased motility of NK cells. Thus, our findings allow the definition of a previously unidentified mechanism used by NK cells to amplify their response to tumors, and provide additional clues for the emerging role of HMGB1 in immunomodulation and tumor immunity.
Collapse
Affiliation(s)
- Monica Parodi
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy
| | - Marco Pedrazzi
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova, Italy ; Istituto Giannina Gaslini ; Genova, Italy
| | - Monica Averna
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova, Italy
| | - Mauro Patrone
- Department of Sciences and Technological Innovation (DiSIT); University of Piemonte Orientale ; Alessandria, Italy
| | - Maria Cavaletto
- Department of Sciences and Technological Innovation (DiSIT); University of Piemonte Orientale ; Alessandria, Italy
| | - Stefano Spertino
- Department of Sciences and Technological Innovation (DiSIT); University of Piemonte Orientale ; Alessandria, Italy
| | | | - Mirna Balsamo
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; IRCCS AOU San Martino-IST ; Genova, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova, Italy ; IRCCS AOU San Martino-IST ; Genova, Italy
| | | | - Bianca Sparatore
- Department of Experimental Medicine (DIMES); University of Genova ; Genova, Italy ; Center of Excellence for Biomedical Research (CEBR); University of Genova ; Genova, Italy
| | | |
Collapse
|
28
|
Takaya A, Peng WX, Ishino K, Kudo M, Yamamoto T, Wada R, Takeshita T, Naito Z. Cystatin B as a potential diagnostic biomarker in ovarian clear cell carcinoma. Int J Oncol 2015; 46:1573-81. [PMID: 25633807 DOI: 10.3892/ijo.2015.2858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Epithelial ovarian cancer (EOC) consists of four major subtypes: clear cell carcinoma (CCC), endometrioid adenocarcinoma (EA), mucinous adenocarcinoma (MA) and serous adenocarcinoma (SA). Relative to the other subtypes, the prognosis of CCC is poor due to a high recurrence rate and chemotherapy resistance, but CCC-specific biomarkers have yet to be identified. With the aim of identifying diagnostic and treatment biomarkers for CCC, we analyzed 96 cases of EOC (32 CCC, 13 EA, 19 MA, 32 SA) using liquid chromatography/mass spectrometry (LC/MS) followed by immunohistochemistry (IHC) and quantitative reverse transcription PCR (RT-qPCR). Semi-quantification of protein differences between subtypes showed upregulation of 150 proteins and downregulation of 30 proteins in CCC relative to the other subtypes. Based on hierarchical clustering that revealed a marked distinction in the expression levels of cystatin B (CYTB) and Annexin A4 (ANXA4) in CCC relative to the other subtypes, we focused the study on CYTB and ANXA4 expression in EOCs by IHC, RT-qPCR and western blot analyses using tissue specimens and cultured cells. As a result, compared to the other subtypes, CCC showed significantly high expression levels of CYTB and ANXA4 in the analyses. To examine the possibility of CYTB and ANXA4 as serum diagnostic biomarkers of CCC, we checked the protein levels in conditioned media and cell lysates using culture cells. Compared with the other subtypes, CCC cell lines showed a significantly higher level of expression of CYTB in both conditioned media and cell lysates, while ANXA4 showed a higher level of expression in cell lysates only. Our results demonstrate that CYTB and ANXA4 overexpression may be related to carcinogenesis and histopathological differentiation of CCC. CYTB may be a secreted protein, and may serve as a potential serum diagnostic biomarker of CCC, while ANXA4 may be useful as an intracellular marker.
Collapse
Affiliation(s)
- Akane Takaya
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Wei-Xia Peng
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | | | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Toshiyuki Takeshita
- Division of Reproductive Medicine, Perinatology and Gynecologic Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113‑8603, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| |
Collapse
|
29
|
Zhang D, Golubkov VS, Han W, Correa RG, Zhou Y, Lee S, Strongin AY, Dong PDS. Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival. Dev Biol 2014; 395:96-110. [PMID: 25176043 DOI: 10.1016/j.ydbio.2014.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing ß-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic ß-cell apoptosis and cancer cell chemoresistance.
Collapse
Affiliation(s)
- Danhua Zhang
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Vladislav S Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Wenlong Han
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricardo G Correa
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ying Zhou
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Sunyoung Lee
- NCI-Designated Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - P Duc Si Dong
- Sanford Children's Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
30
|
Huang HL, Yao HS, Wang Y, Wang WJ, Hu ZQ, Jin KZ. Proteomic identification of tumor biomarkers associated with primary gallbladder cancer. World J Gastroenterol 2014; 20:5511-5518. [PMID: 24833881 PMCID: PMC4017066 DOI: 10.3748/wjg.v20.i18.5511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify potential biomarkers of primary gallbladder cancer (PGC).
METHODS: Fresh PGC, cholecystitis and normal gallbladder tissue specimens collected from 10 patients, respectively, were subjected to comparative proteomic analysis. The proteomic patterns of PGC were compared with those of cholecystitis and normal gallbladder tissues using two-dimensional gel electrophoresis (2-DE). The differentially expressed proteins were then identified using a MALDI-TOF mass spectrometer (MS) and database searches. To further validate these proteins, 20 samples of PGC tissues and normal tumor-adjacent tissues were collected for Western blot, quantitative real-time PCR, and immunohistochemical staining assay.
RESULTS: Seven differentially expressed protein spots were detected by 2-ED analysis by comparing the average maps of PGC, cholecystitis and normal gallbladder tissues. Six of the seven differentially expressed proteins were identified using MALDI-TOF MS, with three overexpressed and three underexpressed in PGC tissue. Protein levels of annexin A4 (ANXA4) were significantly elevated, and heat shock protein 90-beta (Hsp90β) and dynein cytoplasmic 1 heavy chain 1 (Dync1h1) were decreased in PGC tissues relative to the normal tumor-adjacent tissues as shown by Western blot analysis. However, levels of actin, aortic smooth muscle and gamma-actin were unchanged. In addition, the mRNA levels of all 5 proteins showed similar changes to those of the protein levels (P < 0.01). Further validation by immunohistochemical analysis showed the upregulated expression of ANXA4 and decreased expression of Hsp90β and Dync1h1 in the cytoplasm of PGC tissues relative to the normal tumor-adjacent tissues.
CONCLUSION: Three proteins are identified as potential biomarkers of PGC using proteomic analysis. The functions of these proteins in the carcinogenesis of PGC remain to be studied.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Blotting, Western
- Case-Control Studies
- Databases, Protein
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gallbladder Neoplasms/chemistry
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Proteins/genetics
- Predictive Value of Tests
- Proteomics/methods
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
|
31
|
Wu Y, Jin Y, Pan W, Ye C, Sun X, Sun Y, Hu B, Zhou J. Comparative proteomics analysis of host cells infected with Brucella abortus A19. Electrophoresis 2014; 35:1130-43. [PMID: 24519676 DOI: 10.1002/elps.201300378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
Abstract
We carried out a proteomic analysis of THP-1-derived macrophages with and without Brucella abortus A19 (B. abortus A19) infection in order to study the cellular responses to B. abortus A19. The proteins were analyzed at different time points after infection with 2DE followed by MALDI-TOF/TOF identification. Comparative analysis of multiple 2DE gels revealed that the majority of changes in protein abundance appeared between 48 and 96 h after infection. MS identified 44 altered proteins, including 20 proteins increased in abundance and 24 proteins decreased in abundance, which were found to be involved in cytoskeleton, signal transduction, energy metabolism, host macromolecular biosynthesis, and stress response. Moreover, 22 genes corresponding to the altered proteins were quantified by real-time RT-PCR to examine the transcriptional profiles between infected and uninfected THP-1-derived macrophages. Finally, we mapped the altered pathways and networks using ingenuity pathway analysis, which suggested that the altered protein species were heavily favored germ cell-Sertoli cell junction signaling as the primary pathway. Furthermore, mechanisms of viral exit from host cell and macrophage stimulating protein-recepteur d'origine nantais signaling appeared to be major pathways modulated in infected cells. This study effectively provides useful dynamic protein-related information concerning B. abortus infection in macrophages.
Collapse
Affiliation(s)
- Yongping Wu
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, P.R. China; Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Matsuzaki S, Serada S, Morimoto A, Ueda Y, Yoshino K, Kimura T, Naka T. Annexin A4 is a promising therapeutic target for the treatment of platinum-resistant cancers. Expert Opin Ther Targets 2014; 18:403-14. [PMID: 24479491 DOI: 10.1517/14728222.2014.882323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Platinum drugs are widely used for the treatment of testicular, bladder, ovarian, colorectal, lung and prostate cancers. With regard to ovarian cancer in particular, the prognosis is poor for tumours that are (or have become) platinum-resistant. Determining the mechanism underlying platinum resistance may aid in the identification of therapeutic targets for the treatment of platinum-resistant tumours. AREAS COVERED This review gives an overview of the characteristics and functions of Annexin (Anx) A4, the mechanism of Anx A4-induced platinum resistance, the association between platinum resistance and platinum transporters, recent reports that Anx A4 overexpression promotes the efflux of platinum drugs via platinum transporters and the association between other Anxs and chemoresistance. The reader will gain an understanding of recent studies on the mechanism of Anx A4-induced chemoresistance. Anx A4 represents a therapeutic target for the treatment of Anx A4-overexpressing platinum-resistant tumours. EXPERT OPINION Anx A4 is overexpressed in ovarian clear cell carcinoma (CCC), and enhanced Anx A4 expression induces platinum resistance. Recent studies showed that Anx A4 is also associated with platinum resistance in cancers other than ovarian CCC. Furthermore, other Anxs are reportedly associated with chemoresistance, suggesting a relationship between the Anx family and chemoresistance.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Osaka University Graduate School of Medicine, Department of Obstetrics and Gynecology , 2-2 Yamadaoka Suita, Osaka 565-0871 , Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Chiang SC, Han CL, Yu KH, Chen YJ, Wu KP. Prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas. PLoS One 2013; 8:e81079. [PMID: 24303032 PMCID: PMC3841220 DOI: 10.1371/journal.pone.0081079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/.
Collapse
Affiliation(s)
- Su-Chien Chiang
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan
| | - Chia-Li Han
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kun-Hsing Yu
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
34
|
Annexin A4 is involved in proliferation, chemo-resistance and migration and invasion in ovarian clear cell adenocarcinoma cells. PLoS One 2013; 8:e80359. [PMID: 24244679 PMCID: PMC3823662 DOI: 10.1371/journal.pone.0080359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022] Open
Abstract
Ovarian clear cell adenocarcinoma (CCC) is the second most common subtype of ovarian cancer after high-grade serous adenocarcinomas. CCC tends to develop resistance to the standard platinum-based chemotherapy, and has a poor prognosis when diagnosed in advanced stages. The ANXA4 gene, along with its product, a Ca++-binding annexin A4 (ANXA4) protein, has been identified as the CCC signature gene. We reported two subtypes of ANXA4 with different isoelectric points (IEPs) that are upregulated in CCC cell lines. Although several in vitro investigations have shown ANXA4 to be involved in cancer cell proliferation, chemoresistance, and migration, these studies were generally based on its overexpression in cells other than CCC. To elucidate the function of the ANXA4 in CCC cells, we established CCC cell lines whose ANXA4 expressions are stably knocked down. Two parental cells were used: OVTOKO contains almost exclusively an acidic subtype of ANXA4, and OVISE contains predominantly a basic subtype but also a detectable acidic subtype. ANXA4 knockdown (KO) resulted in significant growth retardation and greater sensitivity to carboplatin in OVTOKO cells. ANXA4-KO caused significant loss of migration and invasion capability in OVISE cells, but this effect was not seen in OVTOKO cells. We failed to find the cause of the different IEPs of ANXA4, but confirmed that the two subtypes are found in clinical CCC samples in ratios that vary by patient. Further investigation to clarify the mechanism that produces the subtypes is needed to clarify the function of ANXA4 in CCC, and might allow stratification and improved treatment strategies for patients with CCC.
Collapse
|
35
|
Matsuzaki S, Enomoto T, Serada S, Yoshino K, Nagamori S, Morimoto A, Yokoyama T, Kim A, Kimura T, Ueda Y, Fujita M, Fujimoto M, Kanai Y, Kimura T, Naka T. Annexin A4-conferred platinum resistance is mediated by the copper transporter ATP7A. Int J Cancer 2013; 134:1796-809. [PMID: 24150977 DOI: 10.1002/ijc.28526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/26/2013] [Indexed: 11/10/2022]
Abstract
Although platinum drugs are often used for the chemotherapy of human cancers, platinum resistance is a major issue and may preclude their use in some cases. We recently reported that enhanced expression of Annexin A4 (Anx A4) increases chemoresistance to carboplatin through increased extracellular efflux of the drug. However, the precise mechanisms underlying that chemoresistance and the relationship of Anx A4 to platinum resistance in vivo remain unclear. In this report, the in vitro mechanism of platinum resistance induced by Anx A4 was investigated in endometrial carcinoma cells (HEC1 cells) with low expression of Anx A4. Forced expression of Anx A4 in HEC1 cells resulted in chemoresistance to platinum drugs. In addition, HEC1 control cells were compared with Anx A4-overexpressing HEC1 cells in xenografted mice. Significantly greater chemoresistance to cisplatin was observed in vivo in Anx A4-overexpressing xenografted mice. Immunofluorescence analysis revealed that exposure to platinum drugs induced relocation of Anx A4 from the cytoplasm to the cellular membrane, where it became colocalized with ATP7A, a copper transporter also well known as a mechanism of platinum efflux. ATP7A expression suppressed by small interfering RNA had no effect on HEC1 control cells in terms of chemosensitivity to platinum drugs. However, suppression of ATP7A in Anx A4-overexpressing platinum-resistant cells improved chemosensitivity to platinum drugs (but not to 5-fluorouracil) to a level comparable to that of control cells. These results indicate that enhanced expression of Anx A4 confers platinum resistance by promoting efflux of platinum drugs via ATP7A.
Collapse
Affiliation(s)
- Shinya Matsuzaki
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan; Laboratory for Immune Signal, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang JJ, Liu Y, Zheng Y, Lin F, Cai GF, Yao XQ. Comparative proteomics analysis of colorectal cancer. Asian Pac J Cancer Prev 2013; 13:1663-6. [PMID: 22799385 DOI: 10.7314/apjcp.2012.13.4.1663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Protein expression in colon and rectal cancer (CRC) and paired normal tissues was examined by two-dimensional gel electrophoresis (2-DE) to identify differentially expressed proteins. MATERIALS AND METHODS Five fresh colorectal cancer and paired adjacent normal tissues were obtained and differentially expressed protein spots were determined using PDQuest software, with identification on the basis of MALDI- TOF mass spectra. RESULTS Compared with normal colorectal mucosa, protein abnormal expression of 65 spots varying more than 1.5 times were found in 2-DE gels from colorectal cancer samples (P<0.05); forty-two proteins were up-regulated and 23 were down-regulated; twelve protein spots were identified using mass spectrometry, of which 8 were up-regulated, including HSPB1 and Annexin A4, while 4 were down-regulated, the results being consistent with Western blot findings. CONCLUSIONS Two-dimensional electrophoresis reference maps for CRC tissues and adjacent normal mucosa (NMC) were established and 12 differentially expressed proteins were identified. Up-regulated HSPB1 and Annexin A4 may play many important roles in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Jun-Jiang Wang
- Department of Gastrointestinal Surgery, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Choi CH, Sung CO, Kim HJ, Lee YY, Song SY, Song T, Kim J, Kim TJ, Lee JW, Bae DS, Kim BG. Overexpression of annexin A4 is associated with chemoresistance in papillary serous adenocarcinoma of the ovary. Hum Pathol 2013; 44:1017-23. [PMID: 23290009 DOI: 10.1016/j.humpath.2012.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/26/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Annexin A4 study in ovarian cancer has been primarily focused on clear cell carcinoma, which exhibits strong resistance to chemotherapy. The aim of this study was to examine the expression and cellular localization of annexin A4 in serous ovarian carcinomas. We evaluated the expression of annexin A4 with real-time polymerase chain reaction in 40 ovarian serous carcinoma tissues. Furthermore, the distribution of the protein within the tumor was studied by immunohistochemistry in 70 epithelial ovarian carcinoma tissues. The levels of annexin A4 transcripts were higher in 14 chemoresistant tumors than those in 26 chemosensitive tumors (P = .013). Immunohistochemical expressions showed that nuclear expression was detected in 14 (20.0%) of 70 samples, and cytoplasmic expression was detected in 17 (24.3%) of 70 samples. The results showed that 35.7% of women with nuclear expression were resistant to platinum-based chemotherapy, whereas only 14.3% of women without expression were chemoresistant (P = .065). In addition, patients with nuclear staining had significantly shorter disease-free survival than did patients who showed negative staining. Multivariate proportional hazards model revealed that the stage and nuclear annexin A4 expression were independent prognostic factors (hazard ratios, 6.34 [P = .001] and 2.85 [P = .011], respectively). This study showed that overexpression and nuclear localization of annexin A4 are related to chemoresistance and poor survival in patients with serous papillary ovarian carcinomas. Future studies are required to develop new therapies targeting annexin A4 in patients with ovarian epithelial adenocarcinoma.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Massé KL, Collins RJ, Bhamra S, Seville RA, Jones EA. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved. Organogenesis 2012; 3:83-92. [PMID: 19279706 DOI: 10.4161/org.3.2.4945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 11/12/2007] [Indexed: 11/19/2022] Open
Abstract
Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis.
Collapse
Affiliation(s)
- Karine L Massé
- Molecular Physiology Group; Department of Biological Sciences; University of Warwick; Coventry, UK
| | | | | | | | | |
Collapse
|
39
|
Lin LL, Huang HC, Juan HF. Revealing the molecular mechanism of gastric cancer marker annexin A4 in cancer cell proliferation using exon arrays. PLoS One 2012; 7:e44615. [PMID: 22970268 PMCID: PMC3436854 DOI: 10.1371/journal.pone.0044615] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer is a malignant disease that arises from the gastric epithelium. A potential biomarker for gastric cancer is the protein annexin A4 (ANXA4), an intracellular Ca2+ sensor. ANXA4 is primarily found in epithelial cells, and is known to be involved in various biological processes, including apoptosis, cell cycling and anticoagulation. In respect to cancer, ANXA4-overexpression has been observed in cancers of various origins, including gastric tumors associated with Helicobacter pylori infection. H. pylori induces ANXA4 expression and intracellular [Ca2+]i elevation, and is an important risk factor for carcinogenesis that results in gastric cancer. Despite this correlation, the role of ANXA4 in the progression of gastric tumors remains unclear. In this study, we have investigated whether ANXA4 can mediate the rate of cell growth and whether ANXA4 downstream signals are involved in tumorigenesis. After observing the rate of cell growth in real-time, we determined that ANXA4 promotes cell proliferation. The transcription gene profile of ANXA4-overexpressing cells was measured and analyzed by human exon arrays. From this transcriptional gene data, we show that overexpression of ANXA4 regulates genes that are known to be related to cancer, for example the activation of hyaluronan mediated motility receptor (RHAMM), AKT, and cyclin-dependent kinase 1 (CDK1) as well as the suppression of p21. The regulation of these genes further induces cancer cell proliferation. We also found Ca2+ could regulate the transmission of downstream signals by ANXA4. We suggest that ANXA4 triggers a signaling cascade, leading to increased epithelial cell proliferation, ultimately promoting carcinogenesis. These results might therefore provide a new insight for gastric cancer therapy, specifically through the modification of ANXA4 activity.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (HCH); (HFJ)
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (HCH); (HFJ)
| |
Collapse
|
40
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012. [PMID: 22949854 DOI: 10.3390/ijms13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca(2+) influx. Ca(2+)-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|
41
|
Helicobacter pylori disrupts host cell membranes, initiating a repair response and cell proliferation. Int J Mol Sci 2012; 13:10176-10192. [PMID: 22949854 PMCID: PMC3431852 DOI: 10.3390/ijms130810176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.
Collapse
|
42
|
Singh SV, Kim SH, Sehrawat A, Arlotti JA, Hahm ER, Sakao K, Beumer JH, Jankowitz RC, Chandra-Kuntal K, Lee J, Powolny AA, Dhir R. Biomarkers of phenethyl isothiocyanate-mediated mammary cancer chemoprevention in a clinically relevant mouse model. J Natl Cancer Inst 2012; 104:1228-39. [PMID: 22859850 DOI: 10.1093/jnci/djs321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phenethyl isothiocyanate (PEITC) is a natural plant compound with chemopreventative potential against some cancers and the ability to induce apoptosis in breast cancer cells. METHODS Female mouse mammary tumor virus-neu mice were fed a control AIN-76A diet (n = 35) or the same diet supplemented with 3 µmol PEITC/g diet (n = 33) for 29 weeks, at which time they were killed. Breast tissue sections were stained with hematoxylin and eosin for histopathological assessments, and incidence and size of macroscopic mammary tumors were assessed. Cell proliferation (Ki-67 staining), apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick-labeling), and neoangiogenesis (CD31 staining) were determined in tumor sections. Plasma levels of transthyretin were measured in treated and control mice. Expression of proteins in mammary tumor sections was determined by immunohistochemistry. Proteomic profiling was performed by two-dimensional gel electrophoresis followed by mass spectrometry. All statistical tests were two-sided. RESULTS Administration of PEITC for 29 weeks was associated with 53.13% decreased incidence of macroscopic mammary tumors (mean tumor incidence, PEITC-supplemented diet vs control diet, 18.75% vs 40.00%, difference = -21.25%, 95% confidence interval [CI] = -43.19% to 0.69%, P = .07) and with a 56.25% reduction in microscopic mammary carcinoma lesions greater than 2 mm(2) (mean incidence, PEITC-supplemented diet vs control diet, 18.75% vs 42.86%, difference = -24.11%, 95% CI = -46.35% to -1.86%, P = .04). PEITC-mediated mammary cancer growth inhibition was not because of suppression of human epidermal growth factor receptor-2 expression but was associated with reduced cellular proliferation and neoangiogenesis, increased apoptosis, and altered expression of several proteins, including decreased ATP synthase in the tumor and increased plasma levels of transthyretin. CONCLUSIONS PEITC inhibits the growth of mammary cancers in a mouse model with similarities to human breast cancer progression. ATP synthase and transthyretin appear to be novel biomarkers associated with PEITC exposure.
Collapse
Affiliation(s)
- Shivendra V Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Toyama A, Suzuki A, Shimada T, Aoki C, Aoki Y, Umino Y, Nakamura Y, Aoki D, Sato TA. Proteomic characterization of ovarian cancers identifying annexin-A4, phosphoserine aminotransferase, cellular retinoic acid-binding protein 2, and serpin B5 as histology-specific biomarkers. Cancer Sci 2012; 103:747-55. [PMID: 22321069 DOI: 10.1111/j.1349-7006.2012.02224.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/28/2012] [Accepted: 01/04/2012] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have suggested that the different histological subtypes of ovarian carcinoma (i.e. clear cell, endometrioid, mucinous, and serous) have distinct clinical histories and characteristics; however, most studies that have aimed to determine biomarker have not performed comprehensive analyses based on subtype specificity. In the present study, we performed two-dimensional gel electrophoresis-based differential proteomic analysis of the different histological subtypes of ovarian carcinoma using tissue specimens from 39 patients. Seventy-seven protein spots (55 unique proteins) were found to be up- or downregulated in a subtype-specific manner. The most significant difference was observed for: (i) annexin-A4 (ANXA4) and phosphoserine aminotransferase (PSAT1), which are expressed strongly in clear cell carcinoma; (ii) cellular retinoic acid-binding protein 2 (CRABP2), which is expressed specifically in serous carcinoma; and (iii) serpin B5 (SPB5), which is upregulated in mucinous carcinoma. Validation of these candidates by western blotting using a 34 additional test sample set resulted in an expression pattern that was consistent with the screening and revealed that differential expression was independent of cancer stage or tumor grade within each subtype. Thus, the present study reinforces the notion that ovarian cancer subtypes can be clearly delineated on a molecular basis into four histopathological groups, and we propose that ANXA4, PSAT1, CRABP2, and SPB5 are candidate subtype-specific biomarkers that can help define the basis of tumor histology at a molecular level.
Collapse
Affiliation(s)
- Atsuhiko Toyama
- Life Science Research Center, Shimadzu Corporation, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu ZJ, Liu SY, Yao YQ, Zhou YJ, Zhang S, Dai L, Tian HW, Zhou Y, Deng HX, Yang JL, Luo F. The effect of miR-7 on behavior and global protein expression in glioma cell lines. Electrophoresis 2011; 32:3612-20. [PMID: 22120825 DOI: 10.1002/elps.201100230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 02/05/2023]
Abstract
Malignant glioma is a common cancer of the nervous system. Despite recent research efforts in cancer therapy, the prognosis of patients with malignant glioma has remained dismal. MicroRNAs are noncoding RNAs that inhibit the expression of their targets in a sequence-specific manner, and a few have been shown to act as oncogenes or tumor suppressors. Here, we aimed at exploring the precise biological role of microRNA-7 (miR-7) and the global protein changes in glioma cell lines transiently transfected with miR-7. Transfection of miR-7 into glioma cell lines causes inhibition of cell migration and invasion and suppression of tumorigenesis. Moreover, ectopic expression of miR-7 inhibits lung metastases of glioma in vivo. Among 65 protein spots with differential expression separated by 2-DE, 37 proteins were successfully identified by MS/MS analysis. Of those, the 25 downregulated proteins, which include 14-3-3ζ, eukaryotic translation initiation factor 5A (EIF5A), and annexin A4, may be downstream targets of miR-7, a finding that could elucidate some aspects of the behavior of glioma cells at the protein level. In conclusion, the absence of miR-7 function could cause downstream molecules to switch on or off, resulting in glioma development, invasion, and metastases. MiR-7-based gene treatment may be a novel anti-invasion therapeutic strategy for malignant glioma.
Collapse
Affiliation(s)
- Ze Jun Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P R China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Comparative proteomic and radiobiological analyses in human lung adenocarcinoma cells. Mol Cell Biochem 2011; 359:151-9. [PMID: 21822689 DOI: 10.1007/s11010-011-1008-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/29/2011] [Indexed: 10/17/2022]
Abstract
In clinic, many non-small cell lung cancer (NSCLC) patients receive radiation therapy after chemotherapy failure. However, whether the multidrug resistance (MDR) can elevate the radioresistance (RDR) remains unclear. To evaluate the MDR's effect on the RDR, screen MDR- and RDR-related proteins in human lung adenocarcinoma (HLA) cells and tissues A549, and A549/DDP cells after irradiation were analyzed by colony-forming assay and flow cytometry. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were utilized to identify differentially expressed proteins (DEPs) between them. The value of D0, Dq, and SF2 increased, the mean percentage in G2 phase and apoptosis rate significantly decreased in A549/DDP cells compared with A549 cells. 40 DEP points were found, and among them 27 were identified through proteomics. Four up-regulated proteins (HSPB1, Vimentin, Cofilin-1, and Annexin A4) in MDR cells compared with non-MDR cells, were confirmed by Western blot. Immuno-histochemistry showed that they were also over-expressed in MDR tissues compared with non-MDR counterparts of HLA. These results proved that the MDR in HLA cells and tissues increased the RDR. HSPB1, Vimentin, Cofilin-1, and Annexin A4 are potential biomarkers for predicting HLA response to MDR and RDR, and novel treatment targets of HLA.
Collapse
|
46
|
cDNA microarray analysis and immunohistochemistry reveal a distinct molecular phenotype in serous endometrial cancer compared to endometrioid endometrial cancer. Exp Mol Pathol 2011; 91:373-84. [PMID: 21540026 DOI: 10.1016/j.yexmp.2011.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 11/23/2022]
|
47
|
Junker H, Venz S, Zimmermann U, Thiele A, Scharf C, Walther R. Stage-related alterations in renal cell carcinoma--comprehensive quantitative analysis by 2D-DIGE and protein network analysis. PLoS One 2011; 6:e21867. [PMID: 21760917 PMCID: PMC3131398 DOI: 10.1371/journal.pone.0021867] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma accounts for about 3% of adult malignancies and 85% of neoplasms arising from the kidney. To identify potential progression markers for kidney cancer we examined non-neoplastic and neoplastic kidney tissue from three groups of patients, which represent different tumor stages (pT1, pT2, pT3) by a fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) approach combined with MALDI-ToF-MS/MS. Delta2D software package was used for gel image based quantification and statistical analysis. Thereby, a comprehensive Principal Component Analysis (PCA) could be performed and allowed a robust quality control of the experiment as well as a classification of the analyzed samples, which correlated with the predicted stages from the pathological examination. Additionally for selected candidate proteins we detected a correlation to the tumor grading as revealed by immunohistochemistry. On the 2D protein map 176 spots out of 989 were detected as at least 2-fold differentially expressed. These spots were analyzed by MALDI-ToF-MS/MS and 187 different proteins were identified. The functional clustering of the identified proteins revealed ten groups. Within these groups we found 86 enzymes, 63 proteins of unknown function, 14 transporter, 8 peptidases and 7 kinases. From the systems biology approach we could map many of these proteins in major pathways involved in remodelling of cytoskeleton, mitochondrial dysfunctions and changes in lipid metabolism. Due to complexity of the highly interconnected pathway network, further expression and functional validation of these proteins might provide new insights in kidney cancer progression to design novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Heike Junker
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University of Greifswald, Greifswald, Germany
| | - Andrea Thiele
- Department of Pathology, University of Greifswald, Greifswald, Germany
| | - Christian Scharf
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Greifswald, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
48
|
Seliger B, Jasinski S, Dressler SP, Marincola FM, Recktenwald CV, Wang E, Lichtenfels R. Linkage of microRNA and proteome-based profiling data sets: a perspective for the priorization of candidate biomarkers in renal cell carcinoma? J Proteome Res 2011; 10:191-9. [PMID: 21142213 DOI: 10.1021/pr1011137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the understanding of the biology of renal cell carcinoma (RCC) and the implementation of novel targeted therapies, the overall 5 years' survival rate for RCC patients remains disappointing. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection and classification represent major obstacles. Global, untargeted comparative analysis of RCC vs tumor adjacent renal epithelium (NN) samples by high throughput analyses both at the transcriptome and proteome level have identified signatures, which might further clarify the molecular differences of RCC subtypes and might allow the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers, but none thereof has yet been implemented in routine clinical use. The increasing knowledge regarding the functional role of noncoding microRNA (miR) in physiological, developmental, and pathophysiological processes by shaping the protein expression profile might provide an important link to improve the definition of disease-relevant regulatory networks. Taking into account that miR profiling of RCC and NN provides robust signatures discriminating between malignant and normal tissues, the concept of evaluating and scoring miR/protein pairs might represent a strategy for the selection and prioritization of potential biomarkers and their translation into practical use.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin-Luther-University Halle-Wittenberg, Institute of Medical Immunology, 06112 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Proteomic analysis of NME1/NDPK A null mouse liver: evidence for a post-translational regulation of annexin IV and EF-1Bα. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:407-19. [DOI: 10.1007/s00210-011-0639-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
|
50
|
Hancock AM, Witonsky DB, Alkorta-Aranburu G, Beall CM, Gebremedhin A, Sukernik R, Utermann G, Pritchard JK, Coop G, Di Rienzo A. Adaptations to climate-mediated selective pressures in humans. PLoS Genet 2011; 7:e1001375. [PMID: 21533023 PMCID: PMC3080864 DOI: 10.1371/journal.pgen.1001375] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/15/2011] [Indexed: 02/07/2023] Open
Abstract
Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans. Classical studies that examined the global distributions of human physiological traits such as pigmentation, basal metabolic rate, and body shape and size suggested that natural selection related to climate has been important during recent human evolutionary history. We scanned the human genome using data for about 650,000 variants in 61 worldwide populations to look for correlations between allele frequencies and 9 climate variables and found evidence for adaptations to climate at the genome-wide level. In addition, we detected compelling signals for individual SNPs involved in pigmentation and immune response, as well as for pathways related to UV radiation, infection and immunity, and cancer. A particularly appealing aspect of this approach is that we identify a set of candidate advantageous SNPs associated with specific biological hypotheses, which will be useful for follow-up testing. We developed an online resource to browse the results of our data analyses, allowing researchers to quickly assess evidence for selection in a particular genomic region and to compare it across several studies.
Collapse
Affiliation(s)
- Angela M. Hancock
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Gorka Alkorta-Aranburu
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia M. Beall
- Department of Anthropology, Case Western Research University, Cleveland, Ohio, United States of America
| | - Amha Gebremedhin
- Department of Internal Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rem Sukernik
- Laboratory of Human Molecular Genetics, Department of Molecular and Cellular Biology, Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Novosibirsk, Russia
| | - Gerd Utermann
- Institute for Medical Biology and Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonathan K. Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Graham Coop
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Evolution and Ecology and Center for Population Biology, University of California Davis, Davis, California, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|