1
|
Chen G, Zhang C, Zou J, Zhou Z, Zhang J, Yan Y, Liang Y, Tang G, Chen G, Xu X, Wang N, Feng Y. Coptidis rhizoma and berberine as anti-cancer drugs: A 10-year updates and future perspectives. Pharmacol Res 2025; 216:107742. [PMID: 40258505 DOI: 10.1016/j.phrs.2025.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Cancer continues to be among the most substantial health challenges globally. Among various natural compounds, berberine, an isoquinoline alkaloid obtained from Coptidis Rhizoma, has garnered considerable attention for its broad-spectrum biological activities, including anti-inflammatory, antioxidant, anti-diabetic, anti-obesity, and anti-microbial activities. Furthermore, berberine exhibits a broad spectrum of anti-cancer efficacy against various malignancies, such as ovarian, breast, lung, gastric, hepatic, colorectal, cervical, and prostate cancers. Its anti-cancer mechanisms are multifaceted, encompassing the inhibition of cancer cell proliferation, the prevention of metastasis, the induction of apoptosis, the facilitation of autophagy, the modulation of the tumor microenvironment and gut microbiota, and the enhancement of the efficacy of conventional therapeutic strategies. This paper offers an exhaustive overview of the cancer-fighting characteristics of Coptidis Rhizoma and berberine, while also exploring recent developments in nanotechnology aimed at enhancing the bioavailability of berberine. Furthermore, the side effects and safety of berberine are addressed as well. The potential role of artificial intelligence in optimizing berberine's therapeutic applications is also highlighted. This paper provides precious perspectives on the prospective application of Coptidis Rhizoma and berberine in the prevention and management of cancer.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Jiayi Zou
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zitian Zhou
- The Fourth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Yan
- The School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinglan Liang
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoyi Tang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Xiaoyu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Kim SK, Do JW, Lee SK, Park JH, Kim JH, Lim HB. Inhibitory Effects of Phellodendri Cortex Against Airway Inflammation and Hyperresponsiveness in Ovalbumin-Induced Murine Asthma Model. Molecules 2025; 30:1795. [PMID: 40333800 PMCID: PMC12029468 DOI: 10.3390/molecules30081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Phellodendri cortex (PC), the dried trunk bark of Phellodendron amurense RUPR, has traditionally been used to treat patients who suffer from gastroenteritis, abdominal pain or diarrhea. Its major bioactive compounds include alkaloids and limonin, and many physiological activities including anti-microbial, anti-ulcer and anti-cancer as well as anti-inflammation have been reported. Although PC is an effective anti-inflammatory natural substance that inhibits the inflammatory response, its effect on allergic asthma has not yet been investigated. The aim of this study was to evaluate the anti-asthmatic effects of PC in an ovalbumin (OVA)-induced murine model of asthma. As a result, PC inhibited airway eosinophil accumulation, the influx of inflammatory cells, airway hyperresponsiveness (AHR), production of Th2 cytokines (IL-4, IL-5 and IL-13) and tumor necrosis factor-α (TNF-α) in the bronchoalveolar lavage fluid and/or lung, as well as OVA-specific immunoglobulin E (IgE) in the serum. Furthermore, PC suppressed the gene expression of IL-4, IL-5, IL-13, TARC and CCR3, and attenuated unique histological changes that are associated with airway inflammatory reactions including the infiltration of various inflammatory cells, collagen deposition and goblet cell hyperplasia in lung tissues. These results indicate that PC may have preventive and/or therapeutic effects for allergic asthma via the inhibition of cytokines, chemokines and chemokine receptors associated with allergic inflammation.
Collapse
Affiliation(s)
- Seong-Kyeom Kim
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Ji-Won Do
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Seong-Kyun Lee
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Jae-Ho Park
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Ju-Hyoung Kim
- Bureau of Research & Development, Chungcheongbuk-do Agricultural Research and Extension Services, Cheongju 28130, Republic of Korea; (S.-K.K.); (J.-W.D.); (S.-K.L.); (J.-H.P.); (J.-H.K.)
| | - Heung-Bin Lim
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
3
|
Baidoo I, Sarbadhikary P, Abrahamse H, George BP. Metal-based nanoplatforms for enhancing the biomedical applications of berberine: current progress and future directions. Nanomedicine (Lond) 2025; 20:851-868. [PMID: 40110809 PMCID: PMC11999359 DOI: 10.1080/17435889.2025.2480051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The isoquinoline alkaloid berberine, a bioactive compound derived from various plants, has demonstrated extensive therapeutic potential. However, its clinical application is hindered by poor water solubility, low bioavailability, rapid metabolism, and insufficient targeting. Metal-based nanoplatforms offer promising solutions, enhancing drug stability, controlled release, and targeted delivery. This review comprehensively explores the synthesis, physicochemical properties, and biomedical applications of metal-based nanocarriers, including gold, silver, iron oxide, zinc oxide, selenium, and magnetic nanoparticles, for berberine delivery to improve berberine's therapeutic efficacy. Recent advancements in metal-based nanocarrier systems have significantly improved berberine delivery by enhancing cellular uptake, extending circulation time, and enabling site-specific targeting. However, metal-based nanoplatforms encounter several limitations of potential toxicity, limited large-scale productions, and regulatory constraints. Addressing these limitations necessitates extensive studies on biocompatibility, long-term safety, and clinical translation. By summarizing the latest innovations and clinical perspectives, this review aims to guide future research toward optimizing berberine-based nanomedicine for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Isaac Baidoo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
4
|
Piao M, Han YH, Lee KY. Berberine Derivative Compound 13 as a Potent Promoter of Osteoblast Differentiation via Akt and PKC Signaling Pathways. Int J Mol Sci 2025; 26:2984. [PMID: 40243591 PMCID: PMC11989097 DOI: 10.3390/ijms26072984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Berberine has been widely studied for its biological functions in various diseases, including cancer, diabetes, and cardiovascular diseases. Nevertheless, structural modifications of berberine have been demonstrated to augment its pharmacological efficacy in specific biological processes, particularly osteogenesis. In this study, we aimed to explore new berberine derivatives with pro-osteogenic activity and molecular mechanisms. Our results demonstrated that compound 13 is the most effective among the tested compounds. Compound 13 significantly enhanced BMP4-induced alkaline phosphatase (ALP) staining and increased the transcriptional activity of osteogenic markers such as ALP, Runt-related gene 2 (Runx2), and Osterix at both the mRNA and protein levels. Furthermore, we found that the Akt and PKC signaling pathways play crucial roles in compound 13-induced osteogenesis via treatment with specific inhibitors. The molecular docking results supported the potential interaction between compound 13 and these kinases. These findings highlighted the regulatory role of compound 13 in osteoblast differentiation via the Akt and PKC signaling pathways. Overall, our study provides compelling evidence that compound 13 is a promising therapeutic candidate for the treatment of osteoporosis, with the potential for further development and optimization to improve bone health and strength.
Collapse
Affiliation(s)
- Meiyu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Youn Ho Han
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kwang Youl Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
5
|
Shiri S, Gharanjig K, Tahghighi A, Hosseinnezhad M, Etezad M. Formulation and characterization of BBR loaded niosomes using saponin as a nonionic biosurfactant investigating synergistic effects to enhance antibacterial activity. Sci Rep 2025; 15:5231. [PMID: 39939626 PMCID: PMC11822194 DOI: 10.1038/s41598-025-87950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
This study aimed to enhance the antibacterial efficacy of BBR, a natural alkaloid with limited bioavailability and solubility, by encapsulating it in niosomes using saponin as a biosurfactant. Niosomes, non-ionic surfactant-based vesicles, improve drug stability and targeted delivery. The niosomes were synthesized using a ball milling-assisted method to optimize particle size and encapsulation efficiency. The formulation was characterized for particle size, zeta potential, encapsulation efficiency, and release kinetics. Niosomes with saponin had a particle size of 185 nm, a negative zeta potential, and the slowest release rate, following the Higuchi model. BBR-loaded niosomes achieved impressive entrapment efficiency (E.E%) of up to 93.7. The addition of saponin was expected to boost the antibacterial effects through synergistic mechanisms. The antibacterial efficacy of the formulation was assessed against Staphylococcus aureus and Escherichia coli. The resulting niosomal formulation exhibited significantly improved antibacterial activity compared to free BBR. The minimum bactericidal concentration (MIC) of the niosomes containing saponin (NSa2) and BBR against S. aureus and E. coli was found to be 0.08 ± 0.0 mg/ml. In contrast, the MBC of BBR alone against S. aureus was 0.24 ± 0.02 mg/ml, while for E. coli, it was 0.25 ± 0.02 mg/ml. These findings suggest that this niosomal formulation could be a promising approach for delivering BBR with improved therapeutic efficiency.
Collapse
Affiliation(s)
- Soudeh Shiri
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| | - Kamaladin Gharanjig
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran.
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mozhgan Hosseinnezhad
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| | - Masoud Etezad
- Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran
| |
Collapse
|
6
|
Nguyen HT, Hoa-Tran TN, Tran HQ, Nguyen TTT. In Vitro Inhibitory Effect of Berberine Against Rotavirus. Chem Biodivers 2025; 22:e202400986. [PMID: 39400499 DOI: 10.1002/cbdv.202400986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Although berberine (BBR) is well known as an active constituent in traditional medicines used in the treatment of gastrointestinal diseases, its potential against viral gastroenteritis has not been specifically reported. This study aims to investigate the antiviral activity of BBR against rotavirus and evaluate its cytotoxicity and pharmacological efficacies, including antioxidant and anti-inflammatory activities in vitro. Using ultraviolet-visible absorption spectroscopy, the saturation concentration of BBR was determined as 2261 μg/mL, indicating that BBR is a poor water-soluble compound. The inhibition rate of nitric oxide (NO) production of BBR solution at a concentration of 283 μg/mL was similar to that of Cardamonin 0.3 μM with a cell viability of 92.46±0.35 %, revealing the anti-inflammatory activity of BBR. The cytotoxicity of the BBR solution depended on its concentration, whereby the 50 % cytotoxicity concentration (CC50) of BBR after 96 h exposure was 664 μg/mL. Investigation of cytopathic effects (CPEs) of MA104 cells treated with BBR and BBR-incubated rotavirus indicates that BBR could effectively inhibit the replication of rotavirus. CPEs were not observed in the cells inoculated with rotavirus (100TCID50) which was pre-incubated with BBR for 96 hours at a BBR concentration of 283 μg/mL. Therefore, the study provides reliable results to demonstrate the ability of BBR to inhibit the replication of rotavirus.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, 12116, Vietnam
| | - Thi Nguyen Hoa-Tran
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi, 12116, Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi, 12116, Vietnam
| |
Collapse
|
7
|
Helal AM, Yossef MM, Seif IK, Abd El-Salam M, El Demellawy MA, Abdulmalek SA, Ghareeb AZ, Holail J, Mohsen Al-Mahallawi A, El-Zahaby SA, Ghareeb DA. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int J Pharm 2024; 667:124892. [PMID: 39481813 DOI: 10.1016/j.ijpharm.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Despite the remarkable biological effects of berberine (BBR), particularly on fertility, its bioavailability is low. This study aims to test the effectiveness of novel nanostructured biloalbuminosomes (BILS) of BBR and its metabolite berberrubine (M1) in treatment of testicular and prostatic lesions. M1 was semi-synthesized from BBR using microwave-assisted reaction. The solvent evaporation method was used to prepare BBR-BILS and M1-BILS by three different concentrations of sodium cholate (SC) or glycocholate (SG), along with the incorporation of bovine serum albumin (BSA). The prepared BILS were fully characterized. Male infertility was induced by cadmium (Cd) at 5 mg/kg and lead (Pb) at 20 mg/kg contaminated water for 90 days, followed by treatment with BBR, M1, and their BILS (BBR-BILS and M1-BILS) for 45 days. Blood male infertility markers, testicular and prostatic oxidative stress status, autophagy, inflammation, along with testicular and prostatic concentrations of Cd and Pb, and histopathology of both tested tissues were determined using standardized protocols. The optimal BBR-BILS and M1-BILS nano-preparations, containing 30 mg SC, were chosen based on the best characterization properties of the preparations. Both nano-preparations improved heavy metals-induced testicular and prostatic deformities, as they reduced Bax and elevated Bcl-2 expressions in both tissues. Moreover, they activated the mTOR/PI3K pathway with a marked reduction in AMPK and activated LC-3II protein levels. Consequently, testicular and prostatic architecture and functions were improved. This study is the first to report the preparation of BBR and M1 BILS nano-preparations and proved their superior efficacy compared to free drugs against testicular and prostatic deformities by attenuating oxidative stress-induced excessive autophagy, offering a new hope to manage male infertility.
Collapse
Affiliation(s)
- Aya M Helal
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Yossef
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Mohamed Abd El-Salam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 VN5, Ireland; Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| | - Maha A El Demellawy
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
8
|
Bakshi J, Lather P, Verma A, Lather D, Grewal S, Dhingra D, Kumari S. Potentiation and in vivo evaluation of anti-obesity activity of berberine through encapsulation in guar-acacia gum nanocomplexes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03695-3. [PMID: 39715881 DOI: 10.1007/s00210-024-03695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Berberine is a promising bioactive compound that has gained great attention against numerous diseases but its low solubility and poor systemic bioavailability hinders its clinical applicability. Therefore, this study attempted to enhance the therapeutic potential of berberine by its nanoencapsulation. Berberine loaded guar-acacia gum nanocomplexes (Ber/Gu-AGNCs) were prepared by ionic complexation method; characterized and evaluated for anti-obesity activity in high fat diet (HFD) induced obese rats. HFD was given to animals for 6 consecutive weeks. Orlistat (20 mg/kg, p.o.), berberine (10 mg/kg), Ber/Gu-AGNCs (10 and 20 mg/kg, p.o) and Gu-AGNCs (blank) were administered once a day after giving HFD for 6 weeks; and continued up to 12 weeks along with HFD. Obesity was evaluated by the measurement of morphological parameters, blood glucose, serum lipid profiles, liver enzymes and levels of oxidative stress markers. Moreover, histopathological studies of liver and adipose tissue were also carried out. The results showed that Ber/Gu-AGNCs exhibited spherical morphology and narrow size distribution. In addition, Ber/Gu-AGNCs were significantly more effective in controlling the body weight, body mass index (BMI), adiposity index, liver index, blood glucose levels, serum lipids and oxidative stress levels in comparison to berberine in HFD-induced obese rats. Furthermore, histopathological examination of liver and adipose tissue revealed the anti-obesity effect of Ber/Gu-AGNCs (10 and 20 mg/kg), as indicated by decrease in hepatosteatosis and inflammation in liver tissue; and decrease in the size of adipocytes in fat depots. Thus, nanoencapsulation of berberine into gum nanocomplexes displayed better anti-obesity activity when compared to free berberine.
Collapse
Affiliation(s)
- Jyoti Bakshi
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Prity Lather
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Assim Verma
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Dinesh Dhingra
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
9
|
Huang Y, Zhang J, You H, Ye F, Yang Y, Zhu C, Jiang YC, Tang ZX. Berberine ameliorates inflammation by inhibiting MrgprB2 receptor-mediated activation of mast cell in mice. Eur J Pharmacol 2024; 985:177109. [PMID: 39515562 DOI: 10.1016/j.ejphar.2024.177109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Berberine, an isoquinoline alkaloid, is known for anti-inflammatory activities. However, the research on the anti-inflammatory mechanism of berberine is not comprehensive. Recently, studies have shown that MrgprB2 (Mas-related G-protein-coupled receptor B2) in mice and MrgprX2 (Mas-related G-protein-coupled receptor X2) in humans play vital roles in inflammation. Therefore, this study aims to investigate whether the anti-inflammatory activity of berberine is related to MrgprB2 receptor. METHODS The anti-inflammatory activity of BH (berberine hydrochloride) was evaluated by hindpaw edema analysis, pathological analysis and RT-qPCR. Transgenic mice (MrgprB2-/- mice), HEK293T cell transfection, calcium imaging, electrophysiology, molecular docking and other methods were employed to investigate the potential relationship between the anti-inflammatory activity of BH and the MrgprB2 receptor. RESULTS The results demonstrated that BH significantly alleviated C48/80 (compound 48/80)-induced local inflammation in vivo. This was evidenced by a decrease in paw edema, reduced infiltration of inflammatory cells, inhibition of mast cell activation, and down-regulation of inflammatory factors such as CXCL13 (CXC subfamily 13) and TNF-α (tumor necrosis factor-α). It was also found that knockout of MrgprB2 receptor could block the anti-inflammatory activity of BH in mice. Furthermore, calcium imaging revealed that BH effectively inhibited the activity of MrgprB2 receptor in overexpressed HEK293T cells in vitro. Additionally, it was observed that BH also inhibited MrgprB2-mediated voltage-dependent current changes in mouse peritoneal mast cells. Molecular docking results further indicated that BH had affinity with MrgprX2 protein. CONCLUSIONS The anti-inflammatory mechanism of BH may be partially attributed to the inhibition of MrgprB2 receptor-mediated mast cell activation.
Collapse
Affiliation(s)
- Yun Huang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Jian Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Huan You
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Fan Ye
- School of Pharmacy, Jishou University, Jishou, 416000, China
| | - Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yu-Cui Jiang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zong-Xiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
10
|
Tamtaji Z, Sheikhsagha E, Behnam M, Nabavizadeh F, Shafiee Ardestani M, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR. Berberine and Lung Cancer: From Pure Form to Its Nanoformulations. Asia Pac J Clin Oncol 2024. [PMID: 39568275 DOI: 10.1111/ajco.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Lung cancer is the most fatal cancer worldwide. The etiology of lung cancer has yet to be fully characterized. Smoking and air pollution are several risk factors for lung cancer. Berberine, an isoquinoline alkaloid, is an antihyperglycemic, antidepressant, antioxidative, anti-inflammatory, and anticancer compound. Evidence substantiates that berberine has antitumor effects, exerting its effects by targeting a variety of cellular and molecular processes, such as apoptosis, autophagy, cell cycle arrest, migration, and metastasis. Although the beneficial effects of berberine have been reported, some limitations including low bioavailability and absorption as well as poor aqueous solubility have hindered its clinical application. Nanotechnology and nanodelivery bioformulation approaches may bypass these limitations. In addition, the combination of berberine with other therapies has been shown to result in greater treatment efficacy for lung cancer. Herein, we summarize cellular and molecular pathways that are affected by berberine, its clinical efficacy upon various combinations, and the potential for nanotechnology in lung cancer therapy.
Collapse
Affiliation(s)
- Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Elham Sheikhsagha
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fatemeh Rahmati-Dehkordi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Omid R Tamtaji
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
11
|
Zarenezhad E, Hadi AT, Nournia E, Rostamnia S, Ghasemian A. A Comprehensive Review on Potential In Silico Screened Herbal Bioactive Compounds and Host Targets in the Cardiovascular Disease Therapy. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2023620. [PMID: 39502274 PMCID: PMC11537750 DOI: 10.1155/2024/2023620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/15/2024] [Accepted: 09/28/2024] [Indexed: 11/08/2024]
Abstract
Herbal medicines (HMs) have deciphered indispensable therapeutic effects against cardiovascular disease (CVD) (the predominant cause of death worldwide). The conventional CVD therapy approaches have not been efficient and need alternative medicines. The objective of this study was a review of herbal bioactive compound efficacy for CVD therapy based on computational and in silico studies. HM bioactive compounds with potential anti-CVD traits include campesterol, naringenin, quercetin, stigmasterol, tanshinaldehyde, Bryophyllin A, Bryophyllin B, beta-sitosterol, punicalagin, butein, eriodyctiol, butin, luteolin, and kaempferol discovered using computational studies. Some of the bioactive compounds have exhibited therapeutic effects, as followed by in vitro (tanshinaldehyde, punicalagin, butein, eriodyctiol, and butin), in vivo (gallogen, luteolin, chebulic acid, butein, eriodyctiol, and butin), and clinical trials (quercetin, campesterol, and naringenin). The main mechanisms of action of bioactive compounds for CVD healing include cell signaling and inhibition of inflammation and oxidative stress, decrease of lipid accumulation, and regulation of metabolism and immune cells. Further experimental studies are required to verify the anti-CVD effects of herbal bioactive compounds and their pharmacokinetic/pharmacodynamic features.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Tareq Hadi
- Womens Obstetrics & Gynecology Hospital, Ministry of Health, Al Samawah, Iraq
| | - Ensieh Nournia
- Cardiology Department, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group, Department of Chemistry, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
12
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
13
|
Maskey AR, Kopulos D, Kwan M, Reyes N, Figueroa C, Mo X, Yang N, Tiwari R, Geliebter J, Li XM. Berberine Inhibits the Inflammatory Response Induced by Staphylococcus aureus Isolated from Atopic Eczema Patients via the TNF-α/Inflammation/RAGE Pathways. Cells 2024; 13:1639. [PMID: 39404402 PMCID: PMC11475634 DOI: 10.3390/cells13191639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Atopic eczema patients exhibit high levels of Staphylococcus aureus (S. aureus) skin colonization. S. aureus can stimulate macrophages and the expression of proinflammatory cytokines. Berberine (BBR), an alkaloid, attenuates S. aureus toxin production. This study investigated if BBR suppressed bacterial growth and inflammatory response induced by eczema-patient-derived S. aureus using murine macrophage (RAW 264.7) and human monocyte cell lines (U937). RAW 264.7 and U937 were treated with BBR at different concentrations and stimulated with heat-killed S. aureus (ATCC #33591) or S. aureus derived from severe eczema patients (EC01-EC10), who were undergoing topical steroid withdrawal, for 24 h. TNF-α protein levels were determined by ELISA, gene expression by qRT-PCR, cell cytotoxicity by trypan blue excursion, and reactive oxygen species (ROS) levels by fluorometric assay. BBR showed a bacteriostatic effect in S. aureus (ATCC strain #33591 and clinical isolates (EC01-EC10) and suppressed TNF-α production in RAW 264.7 and U937 cells exposed to heat-killed S. aureus (ATCC and clinical isolates) dose-dependently without any cell cytotoxicity. BBR (20 µg/mL) suppressed >90% of TNF-α production (p < 0.001), downregulated genes involved in inflammatory pathways, and inhibited S. aureus ROS production in U937 and RAW 264.7 cells (p < 0.01). BBR suppresses S. aureus-induced inflammation via inhibition of TNF-α release, ROS production, and expression of key genes involved in the inflammatory pathway.
Collapse
Affiliation(s)
- Anish R. Maskey
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
| | - Daniel Kopulos
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
| | - Matthew Kwan
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
| | - Niradiz Reyes
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Genetics and Molecular Biology Research Group, School of Medicine, University of Cartagena, Cartagena 130001, Colombia
| | - Christian Figueroa
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Xian Mo
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, Guangzhou 510120, China
| | - Nang Yang
- General Nutraceutical Technology, Elmsford, NY 10523, USA;
| | - Raj Tiwari
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA; (A.R.M.); (D.K.); (M.K.); (N.R.); (C.F.); (X.M.); (R.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
14
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
15
|
Bizzoca ME, Caponio VCA, Lo Muzio L, Claudio PP, Cortese A. Methods for Overcoming Chemoresistance in Head and Neck Squamous Cell Carcinoma: Keeping the Focus on Cancer Stem Cells, a Systematic Review. Cancers (Basel) 2024; 16:3004. [PMID: 39272862 PMCID: PMC11394389 DOI: 10.3390/cancers16173004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
According to the "cancer stem cell" (CSCs) theory, tumors are a diverse and expanding group of malignant cells that originate from a small number of CSCs. Despite treatment, these cells can still become active and proliferate, which can result in distant metastasis and local recurrences. A new paradigm in cancer treatment involves targeting both CSCs and the cancer cells in a tumor. This review aims to examine the literature on methods published to overcome chemoresistance due to the presence of CSCs in head and neck cancers. The review was registered with PROSPERO (ID# CRD42024512809). After Pub Med, Scopus, and WoS database searches, 31 relevant articles on oral squamous cell carcinoma (OSCC) were selected. Compounds that increased chemosensitivity by targeting CSCs in head and neck squamous cell carcinoma (HNSCC) were divided into (1) natural products, (2) adjuvant molecules to traditional chemotherapy, and (3) CSCs targeting patient-specific fresh biopsies for functional precision medicine.
Collapse
Affiliation(s)
- Maria Eleonora Bizzoca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Antonio Cortese
- Unit of Maxillofacial Surgery, Department of Medicine, Surgery, and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
16
|
Lee EB, Lee K. Coptis rhizome extract influence on Streptococcus pneumoniae through autolysin activation. AMB Express 2024; 14:79. [PMID: 38965154 PMCID: PMC11224187 DOI: 10.1186/s13568-024-01736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
This study investigated the antibacterial properties of Coptis rhizome, a plant traditionally used for respiratory infections, against Streptoccus pneumonia (S. pneumoniae), for which there has been minimal empirical evidence of effectiveness. The study particularly examined autolysis, indirectly associated with antibacterial resistance, when using Coptis rhizome for bacterial infections. In our methodology, Coptis rhizome was processed with ethanol and distilled water to produce four different extracts: CRET30, CRET50, CRET70, and CRDW. The antibacterial activity of these extracts were tested through Minimum Inhibitory Concentration (MIC) assays, disk diffusion tests, and time-kill assays, targeting both standard (ATCC 49619) and resistant (ATCC 70067) strains. The study also evaluated the extracts' biofilm inhibition properties and monitored the expression of the lyt gene, integral to autolysis. The results prominently showed that the CRET70 extract demonstrated remarkable antibacterial strength. It achieved an MIC of 0.125 µg/mL against both tested S. pneumoniae strains. The disk diffusion assay recorded inhibition zones of 22.17 mm for ATCC 49619 and 17.20 mm for ATCC 70067. Impressively, CRET70 resulted in a 2-log decrease in bacterial numbers for both strains, showcasing its potent bactericidal capacity. The extract was also effective in inhibiting 77.40% of biofilm formation. Additionally, the significant overexpression of the lytA gene in the presence of CRET70 pointed to a potential mechanism of action for its antibacterial effects. The outcomes provided new perspectives on the use of Coptis rhizome in combating S. pneumoniae, especially significant in an era of escalating antibiotic resistance.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
17
|
Kim SH, Lee R, Yoon JW, Cheong HT, Ra CS, Rhee KJ, Park J, Jung BD. Anti-Inflammatory Effects of Zinc Oxide and Berberine in Rats with Dextran Sulfate Sodium (DSS)-Induced Colitis. Animals (Basel) 2024; 14:1919. [PMID: 38998031 PMCID: PMC11240726 DOI: 10.3390/ani14131919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Zinc oxide (ZnO) is frequently used in high concentrations to prevent diarrhea in weaning pigs. However, it can produce environmental pollution, because it is not absorbed by the intestines and is excreted in the feces. In studies to identify an alternative substance to ZnO, we used a model of colitis induced by dextran sulfate sodium (DSS) in rats to compare the anti-inflammatory effects of berberine with ZnO. DSS-treated rats displayed weight loss, shortening of the colon, increased fecal water content, and an increase in the disease activity index (DAI). In contrast, DSS + ZnO- and DSS + berberine-treated rats exhibited reduced colon shortening, decreased fecal water content, and a decrease in the DAI. Histological analysis revealed that both ZnO and berberine treatment reduced epithelial cell damage, crypt destruction, and infiltration of inflammatory cells. Moreover, the liver damage index was not significantly different between ZnO and berberine-treated rats. This study indicated that both ZnO and berberine can improve DSS-induced colitis in rats and suggests berberine as an alternative treatment to ZnO that would not cause environmental pollution.
Collapse
Affiliation(s)
- Seon-Hyoung Kim
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jang-Won Yoon
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Tae Cheong
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chang-Six Ra
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bae-Dong Jung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
18
|
Meng Q, Tan Y, Sang EE, Teng Q, Chen P, Wang Y. C9-Aryl-substituted berberine derivatives with tunable AIE properties for cell imaging application. Org Biomol Chem 2024; 22:4739-4747. [PMID: 38804062 DOI: 10.1039/d4ob00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Berberine (BBR), a widely used isoquinoline alkaloid derived from natural sources, exhibits aggregation-induced emission (AIE) characteristics and has biological applications such as in selective lipid droplet imaging and photodynamic therapy. However, natural BBR suffers from low fluorescence quantum yield (ΦF) and monotonous emission wavelength. In this paper, a series of C9-position-aryl-substituted berberine derivatives with a D-A structure were designed and synthesized. The electronic effect of the substitution groups can tune the intramolecular charge transfer (ICT) effect of the berberine derivatives, resulting in bluish green to NIR (508-682 nm) luminescence with AIE characteristics and enhanced ΦF up to 36% in the solid state. Interestingly, berberine derivatives containing an amino or a pyridyl group can exhibit fluorescence response to TFA. Cell imaging of the berberine derivatives was conducted using Caco-2 cancer cells, demonstrating their multi-color and efficient wash-free imaging capabilities. This work presents a new strategy for developing novel berberine derivatives with tunable AIE properties for application in biological imaging.
Collapse
Affiliation(s)
- Qi Meng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Ye Tan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - E E Sang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Qiaoqiao Teng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Pei Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuxiang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
19
|
Ivan IM, Olaru OT, Popovici V, Chițescu CL, Popescu L, Luță EA, Ilie EI, Brașoveanu LI, Hotnog CM, Nițulescu GM, Boscencu R, Gîrd CE. Antioxidant and Cytotoxic Properties of Berberis vulgaris (L.) Stem Bark Dry Extract. Molecules 2024; 29:2053. [PMID: 38731544 PMCID: PMC11085362 DOI: 10.3390/molecules29092053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.
Collapse
Affiliation(s)
- Ionuț Mădălin Ivan
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Violeta Popovici
- Center for Mountain Economics, “Costin C. Kiriţescu” National Institute of Economic Research (INCE-CEMONT), Romanian Academy, 725700 Vatra-Dornei, Romania
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galați, A.I. Cuza 35, 800010 Galați, Romania;
| | - Liliana Popescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Emanuela Alice Luță
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Elena Iuliana Ilie
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Lorelei Irina Brașoveanu
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - Camelia Mia Hotnog
- Center of Immunology, “Stefan S. Nicolau” Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania; (L.I.B.); (C.M.H.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Rica Boscencu
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, Traian Vuia 6, 020956 Bucharest, Romania; (I.M.I.); (L.P.); (E.A.L.); (E.I.I.); (G.M.N.); (R.B.); (C.E.G.)
| |
Collapse
|
20
|
Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Oral treatment with Berberine reduces peripheral nociception: Possible interaction with different nociceptive pathways activated by different allogeneic substances. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117504. [PMID: 38061440 DOI: 10.1016/j.jep.2023.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine was identified in extracts of Berberis ruscifolia Lam., a plant used in traditional medicine as an analgesic. Its presence may be involved in the reported pharmacological activity of this species. However, there is still a lack of scientific research concerning its analgesic activity in the peripheral nervous system. AIM OF THE STUDY To investigate Berb-induced antinociception in the formalin test and to evaluate several pathways related to its pharmacological antinociceptive effects in chemical models of nociception in mice. MATERIALS AND METHODS The antinociceptive activity of Berb was assessed by inducing the paw licking in mice with different allodynic agents. In the formalin test, the antiedematous and antithermal effect of Berb was evaluated simultaneously in the same experiment. Other nociceptive behavior produced by endogenous [prostaglandin E2 (PGE2), histamine (His), glutamate (Glu) or bradykinin (BK)] or exogenous [capsaicin (Caps) and cinnamaldehyde (Cin)] chemical stimuli, and activators as protein kinase A (PKA) and C (PKC), were also evaluated.The in vivo doses for p.o. were 3 and 30 mg/kg. RESULTS Berb, at 30 mg/kg p.o., showed a significant inhibition of the nociceptive action in formalin in both phases being stronger at the inflammatory phase (59 ± 9%) and more active than Asp (positive control) considering the doses evaluated. Moreover, Berb inhibited the edema (34 ± 10%), but not the temperature in the formalin test. Regarding the different nociceptive signaling pathways evaluated, the most relevant data were that the administration of p.o. of Berb, at 30 mg/kg, caused significant inhibition of nociception induced by endogenous [His (72 ± 11%), PGE2 (78 ± 4%), and BK (51 ± 7%)], exogenous [Cap (68 ± 4%) and Cinn (57 ± 5%)] compounds, and activators of the PKA [(FSK (86 ± 3%)] and PKC [(PMA(86 ± 6%)] signaling pathway. Berb did not inhibit the nociceptive effect produced by Glu. CONCLUSION The present study demonstrated, for the first time, the potential of Berb in several nociceptive tests, with the compound present in B. ruscifolia contributing to the analgesic effect reported for this species.
Collapse
Affiliation(s)
- Micaela Paula Del Gaudio
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thayza Martins Melzer
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina.
| |
Collapse
|
21
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
22
|
Fan Y, Zhou Z, Zhang L. Effect of Oregon grape root extracts on P-glycoprotein mediated transport in in vitro cell lines. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 26:11927. [PMID: 38304488 PMCID: PMC10830684 DOI: 10.3389/jpps.2023.11927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Purpose: This study aims to investigate the potential of Oregon grape root extracts to modulate the activity of P-glycoprotein. Methods: We performed 3H-CsA or 3H-digoxin transport experiments in the absence or presence of two sources of Oregon grape root extracts (E1 and E2), berberine or berbamine in Caco-2 and MDCKII-MDR1 cells. In addition, real time quantitative polymerase chain reaction (RT-PCR) was performed in Caco-2 and LS-180 cells to investigate the mechanism of modulating P-glycoprotein. Results: Our results showed that in Caco-2 cells, Oregon grape root extracts (E1 and E2) (0.1-1 mg/mL) inhibited the efflux of CsA and digoxin in a dose-dependent manner. However, 0.05 mg/mL E1 significantly increased the absorption of digoxin. Ten µM berberine and 30 µM berbamine significantly reduced the efflux of CsA, while no measurable effect of berberine was observed with digoxin. In the MDCKII-MDR1 cells, 10 µM berberine and 30 µM berbamine inhibited the efflux of CsA and digoxin. Lastly, in real time RT-PCR study, Oregon grape root extract (0.1 mg/mL) up-regulated mRNA levels of human MDR1 in Caco-2 and LS-180 cells at 24 h. Conclusion: Our study showed that Oregon grape root extracts modulated P-glycoprotein, thereby may affect the bioavailability of drugs that are substrates of P-glycoprotein.
Collapse
Affiliation(s)
- Ying Fan
- Division of Clinical Review, Office of Safety and Clinical Evaluation, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zhu Zhou
- York College, The City University of New York, Jamaica, NY, United States
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
23
|
Abd El-Hamid MI, Ibrahim D, Elazab ST, Gad WM, Shalaby M, El-Neshwy WM, Alshahrani MA, Saif A, Algendy RM, AlHarbi M, Saleh FM, Alharthi A, Mohamed EAA. Tackling strong biofilm and multi-virulent vancomycin-resistant Staphylococcus aureus via natural alkaloid-based porous nanoparticles: perspective towards near future eradication. Front Cell Infect Microbiol 2024; 13:1287426. [PMID: 38282617 PMCID: PMC10811083 DOI: 10.3389/fcimb.2023.1287426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction As a growing direction, nano-based therapy has become a successful paradigm used to address the phytogenic delivery-related problems in overcoming multivirulent vancomycin-resistant Staphylococcus aureus (VRSA) infection. Methods Hence, our aim was to develop and assess a novel nanocarrier system (mesoporous silica nanoparticles, MPS-NPs) for free berberine (Free-BR) as an antimicrobial alkaloid against strong biofilm-producing and multi-virulent VRSA strains using in vitro and in vivo mouse model. Results and discussion Our outcomes demonstrated vancomycin resistance in 13.7% of Staphylococcus aureus (S. aureus) strains categorized as VRSA. Notably, strong biofilm formation was observed in 69.2% of VRSA strains that were all positive for icaA gene. All strong biofilm-producing VRSA strains harbored a minimum of two virulence genes comprising clfA and icaA with 44.4% of them possessing all five virulence genes (icaA, tst, clfA, hla, and pvl), and 88.9% being multi-virulent. The study findings affirmed excellent in vitro antimicrobial and antibiofilm properties of BR-loaded MPS-NPs. Real-time quantitative reverse transcription PCR (qRT-PCR) assay displayed the downregulating role of BR-loaded MPS-NPs on strong biofilm-producing and multi-virulent VRSA strains virulence and agr genes in both in vitro and in vivo mice models. Additionally, BR-loaded MPS-NPs supplementation has a promising role in attenuating the upregulated expression of pro-inflammatory cytokines' genes in VRSA-infected mice with attenuation in pro-apoptotic genes expression resulting in reduced VRSA-induced apoptosis. In essence, the current study recommends the future scope of using BR-loaded MPS-NPs as auspicious alternatives for antimicrobials with tremendous antimicrobial, antibiofilm, anti-quorum sensing (QS), and anti-virulence effectiveness against problematic strong biofilm-producing and multi-virulent VRSA-associated infections.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa M. Gad
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Marwa Shalaby
- Department of Bacteriology, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center, Mansoura, Egypt
| | - Wafaa M. El-Neshwy
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reem M. Algendy
- Food Hygiene, Safety and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fayez M. Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Eman A. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
24
|
Ruiz-Herrera VV, Navarro-Lara SA, Andrade-Villanueva JF, Alvarez-Zavala M, Sánchez-Reyes K, Toscano-Piña M, Méndez-Clemente AS, Martínez-Ayala P, Valle-Rodríguez A, González-Hernández LA. Pilot study on the efficacy and safety of berberine in people with metabolic syndrome and human immunodeficiency virus infection. Int J STD AIDS 2023; 34:1042-1052. [PMID: 37611246 DOI: 10.1177/09564624231196600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND Antiretroviral therapy has increased the life expectancy of people living with HIV. However, this increase is not free of comorbidities, and metabolic syndrome is one of the most prevalent. Berberine is an alkaloid nutraceutical that has been shown to ameliorate metabolic disorders such as prediabetes, polycystic ovary syndrome, and non-alcoholic fatty liver disease. However, it has not been tested in HIV infection. Therefore, we conducted a randomized controlled trial to evaluate the efficacy of berberine in improving metabolic syndrome. METHODS AND RESULTS In this double-blind, placebo-controlled trial, adults living with HIV under virological suppression and metabolic syndrome received either berberine 500 mg TID or placebo for 20 weeks. The primary outcomes were a composite of weight reduction, insulin resistance decrease, and lipid profile improvement. A total of 43 participants were randomized (22 in the berberine group and 21 in the placebo group); 36 participants completed the follow-up and were analyzed. The berberine group showed a reduction in weight and body mass index, lower insulin resistance, and a reduction in TNF-alpha. The control group had higher total cholesterol, c-LDL, and IL-6 concentration. CONCLUSION In people living with HIV under virological suppression, berberine was safe and improves clinical and biochemical components of metabolic syndrome. However, further studies with more participants and longer intervention periods need to be explored.
Collapse
Affiliation(s)
- Vida V Ruiz-Herrera
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Unidad de VIH, Guadalajara, Mexico
| | - Shaúl A Navarro-Lara
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Servicio de Medicina Interna, Guadalajara, México
| | - Jaime F Andrade-Villanueva
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Unidad de VIH, Guadalajara, Mexico
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Guadalajara, México
| | - Monserrat Alvarez-Zavala
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Guadalajara, México
| | - Karina Sánchez-Reyes
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Guadalajara, México
| | - Marcela Toscano-Piña
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Unidad de VIH, Guadalajara, Mexico
| | | | - Pedro Martínez-Ayala
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Unidad de VIH, Guadalajara, Mexico
| | | | - Luz A González-Hernández
- Hospital Civil de Guadalajara "Fray Antonio Alcalde", Unidad de VIH, Guadalajara, Mexico
- Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Inmunodeficiencias y VIH (InIVIH), Guadalajara, México
| |
Collapse
|
25
|
Rahemi M, Mohtadi S, Rajabi Vardanjani H, Khodayar MJ. The role of l -arginine/NO/cGMP/K ATP channel pathway in the local antinociceptive effect of berberine in the rat formalin test. Behav Pharmacol 2023; 34:449-456. [PMID: 36939560 DOI: 10.1097/fbp.0000000000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Berberine is an isoquinoline alkaloid naturally produced by several types of plants. Berberine has extensive pharmacological effects, such as anti-diabetic, anti-inflammatory, and antioxidant effects. In the current study, we assess the antinociceptive effects of berberine and its association with the l -arginine ( l -Arg)/NO/cGMP/K ATP channel pathway via intraplantar administration in rats. To examine the antinociceptive properties of berberine, the formalin test was conducted. The number of rat paw flinches was counted for an h. l -Arg (precursor of nitric oxide, 3-30 μ g/paw), l -NAME (NO synthase inhibitor, 10 and 100 μ g/paw), methylene blue (guanylyl cyclase inhibitor, 100 and 200 μ g/paw), and glibenclamide (ATP-sensitive potassium channel blocker, 10 and 30 μ g/paw) were locally injected, respectively, into the right hind paws of rats as a pre-treatment before berberine injection to understand how the l -Arg/NO/cGMP/K ATP pathway plays a role in the antinociceptive effect of berberine. The ipsilateral injection of berberine into the right paw (0.1-10 0 μ g/paw) showed a dose-dependent antinociceptive effect in both the first and second phases of the formalin test, almost similar to morphine (25 μ g/paw). Intraplantar injection of l -Arg (30 µg/paw) increased the antinociceptive effect of berberine in the second phase. In addition, injection of l -NAME, methylene blue, and glibenclamide caused a reduction in the antinociceptive effect of berberine throughout the second phase in a dose-dependent manner. However, the antinociceptive effects of berberine in the first phase of the rat formalin test were not affected by this pathway. As a novel local antinociceptive agent, berberine can exert a peripheral antinociceptive effect via the l -Arg/NO/cGMP/K ATP channel pathway.
Collapse
Affiliation(s)
| | | | | | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
27
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
28
|
De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, Singh SK, Adams J, Nammi S, Chellappan DK, Oliver BGG, Hansbro PM, Dua K. Berberine-loaded engineered nanoparticles attenuate TGF-β-induced remodelling in human bronchial epithelial cells. Toxicol In Vitro 2023; 92:105660. [PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, H91 HE94 Galway, Connacht, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Leinster, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Leinster, Ireland
| | | | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Srinivas Nammi
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
29
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
30
|
Gravina AG, Pellegrino R, Palladino G, Coppola A, Brandimarte G, Tuccillo C, Ciardiello F, Romano M, Federico A. Hericium erinaceus, in combination with natural flavonoid/alkaloid and B 3/B 8 vitamins, can improve inflammatory burden in Inflammatory bowel diseases tissue: an ex vivo study. Front Immunol 2023; 14:1215329. [PMID: 37465689 PMCID: PMC10350490 DOI: 10.3389/fimmu.2023.1215329] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
Hericium erinaceus, berberine, and quercetin are effective in experimental colitis. It is unknown whether they can ameliorate inflammatory bowel diseases in humans. This ex vivo study aimed to evaluate the anti-inflammatory potential of a nutraceutical compound of HBQ-Complex® (H. erinaceus, berberine, and quercetin), biotin, and niacin in inflammatory bowel disease patients. Tissue specimens were obtained either from Normal-Appearing Mucosa (NAM) or from Inflamed Mucosa (IM) in 20 patients with inflammatory bowel disease. mRNA and protein expression of COX-2, IL-10, and TNF-α were determined in NAM and IM biopsy samples (T0). IM samples were then incubated in HBQ-Complex® (with the addition of niacin and biotin), and COX-2, IL-10, and TNF-α tissue levels were evaluated at 120 minutes (T1) and 180 minutes (T2). Incubation with this compound resulted in a progressive decrease in gene and protein COX-2 and TNF-α expression at T1/T2 in the IM. IL-10 showed an opposite trend, with a progressive increase of mRNA and protein expression over the same time window. HBQ-Complex® (with the addition of niacin and biotin) decreased the expression of proinflammatory cytokines at the mRNA and protein levels in IBD tissue. On the contrary, mRNA and protein expression of the anti-inflammatory cytokine IL-10 showed a progressive increase.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Annachiara Coppola
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Brandimarte
- Division of Internal Medicine and Gastroenterology, Cristo Re Hospital, Rome, Italy
| | - Concetta Tuccillo
- Medical Oncology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marco Romano
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
31
|
Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem Biol Drug Des 2023; 102:177-200. [PMID: 36905314 DOI: 10.1111/cbdd.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Berberine (BBR) is a potential plant metabolite and has remarkable anticancer properties. Many kinds of research are being focused on the cytotoxic activity of berberine in in vitro and in vivo studies. A variety of molecular targets which lead to the anticancer effect of berberine ranges from p-53 activation, Cyclin B expression for arresting cell cycles; protein kinase B (AKT), MAP kinase and IKB kinase for antiproliferative activity; effect on beclin-1 involved in autophagy; reduced expression of MMP-9 and MMP-2 for the inhibition of invasion and metastasis etc. Berberine also interferes with transcription factor-1 (AP-1) activity responsible for the expression of oncogenes and neoplastic transformation of the cell. It also leads to the inhibition of various enzymes which are directly or indirectly involved in carcinogenesis like N acetyl transferase, Cyclo-oxygenase-2, Telomerase and Topoisomerase. In addition to these actions, Berberine plays a role in, the regulation of reactive oxygen species and inflammatory cytokines in preventing cancer formation. Berberine anticancer properties are demonstrated due to the interaction of berberine with micro-RNA. The summarized information presented in this review article may help and lead the researchers, scientists/industry persons to use berberine as a promising candidate against cancer.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, 281 46, Uttar Pradesh, India
| |
Collapse
|
32
|
Mahami S, Salehi M, Mehrabi M, Vahedi H, Hassani MS, Bitaraf FS, Omri A. pH-sensitive HPMCP-chitosan nanoparticles containing 5-aminosalicylic acid and berberine for oral colon delivery in a rat model of ulcerative colitis. Int J Biol Macromol 2023:125332. [PMID: 37302632 DOI: 10.1016/j.ijbiomac.2023.125332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Ulcerative colitis (UC) with continuous and extensive inflammation is limited to the colon mucosa and can lead to abdominal pain, diarrhea, and rectal bleeding. Conventional therapies are associated with several limitations, such as systemic side effects, drug degradation, inactivation, and limited drug uptake, leading to poor bioavailability. These restrictions necessitate drug delivery to the colon so that the drug passes through the stomach unchanged and has selective access to the colon. The present study aimed to formulate 5-aminosalicylic acid (5-ASA) and berberine (BBR) in chitosan nanoparticles cross-linked by HPMCP (hydroxypropyl methylcellulose phthalate) as a colon drug delivery system for UC. Spherical nanoparticles were prepared. They showed appropriate drug release in the simulated intestinal fluid (SIF), while the release did not occur in the simulated gastric fluid (SGF). They improved disease activity parameters (DAI) and ulcer index, increased the length of the colon, and decreased the wet weight of the colon. Furthermore, histopathological colon studies showed an improved therapeutic effect of 5-ASA/HPMCP/CSNPs and BBR/HPMCP/CSNPs. In conclusion, although 5-ASA/HPMCP/CSNPs showed the best effect in the treatment of UC, BBR/HPMCP/CSNPs, and 5-ASA/BBR/HPMCP/CSNPs were also effective in vivo study, and this study anticipated they could be helpful in future clinical applications for the management of UC.
Collapse
Affiliation(s)
- Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran.
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Maryam Sadat Hassani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
33
|
Sang S, Wang S, Wu J, Zhang X. Sprayable Berberine-Silk Fibroin Microspheres with Extracellular Matrix Anchoring Function Accelerate Infected Wound Healing through Antibacterial and Anti-inflammatory Effects. ACS Biomater Sci Eng 2023. [PMID: 37142304 DOI: 10.1021/acsbiomaterials.3c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The conventional method of applying local medications for treating wound infections is often ineffective because of the dilution of drugs by the excess wound exudate. In addition, there have been insufficient studies investigating the adhesion between drug-loaded nanomaterials and cells or tissue. To address this intractable problem, berberine-silk fibroin microspheres (Ber@MPs) with an extracellular matrix-anchoring function were developed in this study. The microspheres were prepared from silk fibroin using the polyethylene glycol emulsion precipitation method. Subsequently, berberine was loaded onto the microspheres. Our results revealed that Ber@MPs firmly anchored to cells, continuously releasing berberine in the microenvironment. Moreover, both Ber@MPs and Ber@MPs-cell complexes exerted a strong and long-lasting antibacterial effect against Staphylococcus aureus and Staphylococcus epidermidis in the microenvironment, despite the large amount of wound exudate. In addition, Ber@MPs effectively resisted the inflammatory response induced by lipopolysaccharides and accelerated the migration of fibroblasts and neovascularization of endothelial cells cultured in inflammation-induced media. Finally, the in vivo experiments confirmed that the Ber@MP spray accelerated the healing of infected wounds via its antibacterial and anti-inflammatory effects. Therefore, this study provides a novel strategy for treating infected wounds in the presence of excess exudate.
Collapse
Affiliation(s)
- Shang Sang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| | - Shengjie Wang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| | - Jianbing Wu
- College of Textile, Garment and Design, Changshu Institute of Technology, Suzhou 215500, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Sixth People' Hospital, Shanghai 200233, China
| |
Collapse
|
34
|
Agarwood Oil Nanoemulsion Attenuates Cigarette Smoke-Induced Inflammation and Oxidative Stress Markers in BCi-NS1.1 Airway Epithelial Cells. Nutrients 2023; 15:nu15041019. [PMID: 36839377 PMCID: PMC9959783 DOI: 10.3390/nu15041019] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
Collapse
|
35
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Esmaeilzadeh M, Moradkhani S, Daneshyar F, Arabestani MR, Soleimani Asl S, Tayebi S, Farhadian M. Antimicrobial and cytotoxic properties of calcium-enriched mixture cement, Iranian propolis, and propolis with herbal extracts in primary dental pulp stem cells. Restor Dent Endod 2023; 48:e2. [PMID: 36875811 PMCID: PMC9982242 DOI: 10.5395/rde.2023.48.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives In this study, natural substances were introduced as primary dental pulp caps for use in pulp therapy, and the antimicrobial and cytotoxic properties of these substances were investigated. Materials and Methods In this in vitro study, the antimicrobial properties of calcium-enriched mixture (CEM) cement, propolis, and propolis individually combined with the extracts of several medicinal plants were investigated against Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Then, the cytotoxicity of each substance or mixture against pulp stem cells extracted from 30 primary healthy teeth was evaluated at 4 concentrations. Data were gathered via observation, and optical density values were obtained using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) test and recorded. SPSS software version 23 was used to analyze the data. Data were evaluated using 2-way analysis of variance and the Tukey test. Results Regarding antimicrobial properties, thyme alone and thyme + propolis had the lowest minimum inhibitory concentrations (MICs) against the growth of S. aureus, E. coli, and P. aeruginosa bacteria. For E. faecalis, thyme + propolis had the lowest MIC, followed by thyme alone. At 24 and 72 hours, thyme + propolis, CEM cement, and propolis had the greatest bioviability in the primary dental pulp stem cells, and lavender + propolis had the lowest bioviability. Conclusions Of the studied materials, thyme + propolis showed the best results in the measures of practical performance as a dental pulp cap.
Collapse
Affiliation(s)
- Mohammad Esmaeilzadeh
- Department of Pediatrics, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Moradkhani
- Medicinal Plants and Natural Products Research Center, Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fahimeh Daneshyar
- Department of Pediatrics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Endometrium and Endometriosis Research Center, Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soudeh Tayebi
- Department of Pediatrics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Yuan R, Tan Y, Sun PH, Qin B, Liang Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front Pharmacol 2023; 14:1122890. [PMID: 36937842 PMCID: PMC10021304 DOI: 10.3389/fphar.2023.1122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cancer, also known as a malignant tumor, is caused by the activation of oncogenes, which leads to the uncontrolled proliferation of cells that results in swelling. According to the World Health Organization (WHO), cancer is one of the main causes of death worldwide. The main variables limiting the efficacy of anti-tumor treatments are side effects and drug resistance. The search for natural, safe, low toxicity, and efficient chemical compounds in tumor research is essential. Berberine is a pentacyclic isoquinoline quaternary ammonium alkaloid isolated from Berberis and Coptis that has long been used in clinical settings. Studies in recent years have reported the use of berberine in cancer treatment. In this study, we performed a bibliometric analysis of berberine- and tumor-related research. Materials and methods: Relevant articles from January 1, 2002, to December 31, 2021, were identified from the Web of Science Core Collection (WOSCC) of Clarivate Analytics. Microsoft Excel, CiteSpace, VOSviewer, and an online platform were used for the literary metrology analysis. Results: A total of 1368 publications had unique characteristics. Publications from China were the most common (783 articles), and Y. B. Feng (from China) was the most productive author, with the highest total citations. China Medical University (Taiwan) and Sun Yat-sen University (China) were the two organizations with the largest numbers of publications (36 each). Frontiers in Pharmacology was the most commonly occurring journal (29 articles). The present body of research is focused on the mechanism, molecular docking, and oxidative stress of berberine in tumors. Conclusion: Research on berberine and tumors was thoroughly reviewed using knowledge map and bibliometric methods. The results of this study reveal the dynamic evolution of berberine and tumor research and provide a basis for strategic planning in cancer research.
Collapse
Affiliation(s)
- Runzhu Yuan
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ping-Hui Sun
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| |
Collapse
|
38
|
Nguyen VH, Le KNM, Nguyen MCN. Spray-dried Solid Lipid Nanoparticles for Enhancing Berberine Bioavailability via Oral Administration. Curr Pharm Des 2023; 29:3050-3059. [PMID: 37961862 DOI: 10.2174/0113816128263982231102062745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Berberine (BBR), an Eastern traditional medicine, has expressed novel therapeutic activities, especially for chronic diseases like diabetes, hyperlipemia, hypertension, and Alzheimer's disease. However, the low oral bioavailability of BBR has limited the applications of these treatments. Hence, BBRloaded solid lipid nanoparticles (BBR-SLNs) were prepared to improve BBR absorption into systemic circulations via this route. METHODS BBR-loaded solid lipid nanoparticles (BBR-SLNs) were prepared by ultrasonication and then transformed into solid form via spray drying technique. The size morphology of BBR-SLNs was evaluated by dynamic light scattering (DLS) and scanning electron microscope (SEM). Crystallinity of BBR and interaction of BBR with other excipients were checked by spectroscopic methods. Entrapment efficiency of BBR-SLNs as well as BBR release in gastrointestinal conditions were also taken into account. Lastly, SLN's cytotoxicity for loading BBR was determined with human embryonic kidney cells (HEK293). RESULTS Stearic acid (SA), glyceryl monostearate (GMS), and poloxamer 407 (P407) were selected for BBRSLNs fabrication. BBR-SLNs had homogenous particle sizes of less than 200 nm, high encapsulation efficiency of nearly 90% and loading capacity of above 12%. BBR-SLN powder could be redispersed without significant changes in physicochemical properties and was stable for 30 days. Spray-dried BBR-SLNs showed a better sustained in vitro release profile than BBR-SLNs suspension and BBR during the initial period, followed by complete dissolution of BBR over 24 hours. Notably, cell viability on HEK293 even increased up to 150% compared to the control sample at 100 μg/mL BBR-unloaded SLNs. CONCLUSION Hence, SLNs may reveal a promising drug delivery system to broaden BBR treatment for oral administration.
Collapse
Affiliation(s)
- Van Hong Nguyen
- Department of Life Sciences, Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18- Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | | | - Mai Chau Ngoc Nguyen
- USM Healthcare Medical Devices Factory JSC, Lot I-4b-1.3, N3 Street, Saigon Hi-tech Park, District 9, HCMC, Vietnam
| |
Collapse
|
39
|
Fu K, Chen H, Mei L, Wang J, Gong B, Li Y, Cao R. Berberine enhances autophagic flux by activating the Nrf2 signaling pathway in bovine endometrial epithelial cells to resist LPS-induced apoptosis. Anim Sci J 2023; 94:e13847. [PMID: 37427761 DOI: 10.1111/asj.13847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 07/11/2023]
Abstract
Berberine exerts many beneficial effects on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (BEECs). Recently, we also found that berberine shows significant antiapoptotic and autophagy-promoting activities, but the underlying mechanism has not been elucidated. This research explored the association between the antiapoptotic and autophagy-promoting activities of berberine in LPS-treated BEECs. BEECs were first preconditioned with an inhibitor of autophagic flux (chloroquine [CQ]) for 1 h, treated with berberine for 2 h, and then incubated with LPS for 3 h. Cell apoptosis was assessed by flow cytometry, and autophagy activities were assessed by immunoblot analysis of LC3II and p62. The results indicated that the antiapoptotic activity of berberine was notably inhibited in LPS-treated BEECs after preconditioning with CQ for 1 h. Furthermore, to determine whether berberine promoted autophagy by activating the nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway, we assessed autophagy in LPS-treated BEECs after preconditioning with a signaling pathway inhibitor of Nrf2 (ML385). The results indicated that the enhanced autophagy activity induced by berberine was partially reversed in LPS-treated BEECs after the Nrf2 signaling pathway was disturbed by ML385. In conclusion, berberine enhances autophagic flux to allow resistance to LPS-induced apoptosis by activating the Nrf2 signaling pathway in BEECs. The present study may provide new insight into the antiapoptotic mechanism of berberine in LPS-induced BEECs.
Collapse
Affiliation(s)
- Kaiqiang Fu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Han Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Lian Mei
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Jifang Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| | - Benzhi Gong
- Academy of Agricultural Sciences, Shandong, Jining, China
| | - Yan Li
- Animal Disease Prevention and Control Center, Shandong, Junan, China
| | - Rongfeng Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, Qingdao, China
| |
Collapse
|
40
|
Zhang L, Ye X, Liu Y, Zhang Z, Xia X, Dong S. Research progress on the effect of traditional Chinese medicine on the activation of PRRs-mediated NF-κB signaling pathway to inhibit influenza pneumonia. Front Pharmacol 2023; 14:1132388. [PMID: 37089926 PMCID: PMC10119400 DOI: 10.3389/fphar.2023.1132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Influenza pneumonia has challenged public health and social development. One of the hallmarks of severe influenza pneumonia is overproduction of pro-inflammatory cytokines and chemokines, which result from the continuous activation of intracellular signaling pathways, such as the NF-κB pathway, mediated by the interplay between viruses and host pattern recognition receptors (PRRs). It has been reported that traditional Chinese medicines (TCMs) can not only inhibit viral replication and inflammatory responses but also affect the expression of key components of PRRs and NF-κB signaling pathways. However, whether the antiviral and anti-inflammatory roles of TCM are related with its effects on NF-κB signaling pathway activated by PRRs remains unclear. Here, we reviewed the mechanism of PRRs-mediated activation of NF-κB signaling pathway following influenza virus infection and summarized the influence of anti-influenza TCMs on inflammatory responses and the PRRs/NF-κB signaling pathway, so as to provide better understanding of the mode of action of TCMs in the treatment of influenza pneumonia.
Collapse
Affiliation(s)
- Ling Zhang
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Ye
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Xueshan Xia
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| | - Shuwei Dong
- The Affiliated Anning First Hospital, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Zhongde Zhang, ; Xueshan Xia, ; Shuwei Dong,
| |
Collapse
|
41
|
Effects of Berberine against Pancreatitis and Pancreatic Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238630. [PMID: 36500723 PMCID: PMC9738201 DOI: 10.3390/molecules27238630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The pancreas is a glandular organ with endocrine and exocrine functions necessary for the maintenance of blood glucose homeostasis and secretion of digestive enzymes. Pancreatitis is characterized by inflammation of the pancreas leading to temporary or permanent pancreatic dysfunction. Inflammation and fibrosis caused by chronic pancreatitis exacerbate malignant transformation and significantly increase the risk of developing pancreatic cancer, the world's most aggressive cancer with a 5-year survival rate less than 10%. Berberine (BBR) is a naturally occurring plant-derived polyphenol present in a variety of herbal remedies used in traditional medicine to treat ulcers, infections, jaundice, and inflammation. The current review summarizes the existing in vitro and in vivo evidence on the effects of BBR against pancreatitis and pancreatic cancer with a focus on the signalling mechanisms underlying the effects of BBR.
Collapse
|
42
|
Alnuqaydan AM, Almutary AG, Azam M, Manandhar B, De Rubis G, Madheswaran T, Paudel KR, Hansbro PM, Chellappan DK, Dua K. Phytantriol-Based Berberine-Loaded Liquid Crystalline Nanoparticles Attenuate Inflammation and Oxidative Stress in Lipopolysaccharide-Induced RAW264.7 Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4312. [PMID: 36500935 PMCID: PMC9737637 DOI: 10.3390/nano12234312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Inflammation and oxidative stress are interrelated processes that represent the underlying causes of several chronic inflammatory diseases that include asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), allergies, diabetes, and cardiovascular diseases. Macrophages are key initiators of inflammatory processes in the body. When triggered by a stimulus such as bacterial lipopolysaccharides (LPS), these cells secrete inflammatory cytokines namely TNF-α that orchestrate the cellular inflammatory process. Simultaneously, pro-inflammatory stimuli induce the upregulation of inducible nitric oxide synthase (iNOS) which catalyzes the generation of high levels of nitric oxide (NO). This, together with high concentrations of reactive oxygen species (ROS) produced by macrophages, mediate oxidative stress which, in turn, exacerbates inflammation in a feedback loop, resulting in the pathogenesis of several chronic inflammatory diseases. Berberine is a phytochemical embedded with potent in vitro anti-inflammatory and antioxidant properties, whose therapeutic application is hindered by poor solubility and bioavailability. For this reason, large doses of berberine need to be administered to achieve the desired pharmacological effect, which may result in toxicity. Encapsulation of such a drug in liquid crystalline nanoparticles (LCNs) represents a viable strategy to overcome these limitations. We encapsulated berberine in phytantriol-based LCNs (BP-LCNs) and tested the antioxidant and anti-inflammatory activities of BP-LCNs in vitro on LPS-induced mouse RAW264.7 macrophages. BP-LCNs showed potent anti-inflammatory and antioxidant activities, with significant reduction in the gene expressions of TNF-α and iNOS, followed by concomitant reduction of ROS and NO production at a concentration of 2.5 µM, which is lower than the concentration of free berberine concentration required to achieve similar effects as reported elsewhere. Furthermore, we provide evidence for the suitability for BP-LCNs both as an antioxidant and as an anti-inflammatory agent with potential application in the therapy of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Mohd Azam
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 51452, Saudi Arabia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
43
|
Naz I, Masoud MS, Chauhdary Z, Shah MA, Panichayupakaranant P. Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers. J Food Biochem 2022; 46:e14389. [PMID: 36121315 DOI: 10.1111/jfbc.14389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Berberine-rich extract (BRE) prepared from Berberis lycium root bark using green extraction approach and its marker compound berberine has a broad spectrum of clinical applications. Berberine's potential pharmacological effects include anticancer, antidiarrheal, antidiabetic, antimicrobial and anti-inflammatory activities. In current work, BRE and berberine were evaluated for their therapeutic prospects in inflammation models. The comparative effect of BRE and berberine against inflammation was determined through in vitro chemiluminescence technique. The in vivo anti-inflammatory evaluation of BRE and berberine (25, 75, and 125 mg/kg) compared to diclofenac (10 mg/kg) was performed in carrageenan and formaldehyde-induced inflammation in Wistar rats. Histopathological and biochemical studies were conducted to find the comparative anti-inflammatory potential of BRE and berberine on pathological hallmarks induced by formaldehyde. Moreover, the modulatory effects on inflammatory biomarkers were also investigated through qPCR. ELISA (enzyme-linked immunoassay test assay) was performed to investigate the expression of pathological protein biomarkers like TNF-α and IL-6 and levels of antioxidant enzymes were estimated in liver homogenates. Both BRE and berberine markedly (p < .001) reduced paw diameter and inflammation in carrageenan and formaldehyde-induced inflammation. The levels of antioxidant enzymes were recovered (p < .001) by BRE and berberine treatments, and compared to the formaldehyde-treated inflammation model. Both BRE and berberine remarkably downregulated the mRNA and protein expression of inflammatory biomarkers. BRE similar to berberine mitigated the level of antioxidant enzymes in liver homogenate. The undertaken study suggests that BRE, a natural, green, and therapeutically bioequivalent to berberine could be used as an economical phytomedicine in the treatment of inflammatory disorders. PRACTICAL APPLICATIONS: Anti-inflammatory drugs like NSAIDS are associated with serious adverse effects like gastrointestinal ulcer, worsening of preexisting cardiovascular disorders, and renal failure. Therefore, there is a constant demand to develop novel, inexpensive therapeutic strategies to treat the inflammatory disorder with the least harmful effects. Pure phytochemicals with anti-inflammatory potential are costly and hard to isolate, therefore green microwave-assisted extraction technique is developed to get the rich bioequivalent extract. Berberis lycium a medicinal plant with berberine as a major bioactive constituent, has wide acceptance in traditionally used medicine and as food. Pharmacological studies revealed its hepatoprotective, anticancer, antidiabetic, and antihypertensive activities. BRE was prepared by green microwave-assisted extraction and enrichment by resin column to get a higher yield of berberine. The comparative anti-inflammatory effect of BRE and berberine was determined by in vitro and in vivo studies. Results obtained from this experimental work contribute beneficial guidance that reinforces the use of the BRE to treat inflammatory disorders.
Collapse
Affiliation(s)
- Iram Naz
- Department of Bioinformatics & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.,Department of Pharmacy, Hazara University, Mansehra, Pakistan
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Thailand
| |
Collapse
|
44
|
Carbonized π-conjugated polymer-coated porous silica: preparation and evaluating its extraction ability for berberine. Mikrochim Acta 2022; 189:401. [PMID: 36190563 DOI: 10.1007/s00604-022-05496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 10/10/2022]
Abstract
In view of the limitations of existing berberine solid-phase extraction adsorbents, this paper proposes a novel carbonized π-conjugated polymer-coated porous silica (SiO2@C-π-CP) adsorbent with simple process and low cost for efficient extraction of berberine by multiple interactions. Characterization methods, including Brunner-Emmet-Teller measurement, thermogravimetric analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques, were used to verify the successful modification of carbonized π-conjugated polymer on the surface of porous silica. The berberine was selected as target molecule, and the adsorption mechanism and process were investigated through adsorption kinetics, adsorption isotherms, and thermodynamic studies. The fitting results show that the adsorption of berberine by SiO2@C-π-CP well conforms to the pseudo-second-order and Langmuir models. By optimizing the main SPE parameters, the SPE method based on SiO2@C-π-CP was developed. Excellent results were obtained, including low limit of detection (0.75 ng mL-1) and limit of quantification (2 ng mL-1), wide linearity (2-13,000 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (1.5%) and intra-day (6.2%). Finally, the SiO2@C-π-CP also has been successfully used to the enrichment of berberine in real urine samples. This research makes clear that SiO2@C-π-CP has outstanding potential for trace enrichment of berberine alkaloids.
Collapse
|
45
|
Liu Q, Tang J, Chen S, Hu S, Shen C, Xiang J, Chen N, Wang J, Ma X, Zhang Y, Zeng J. Berberine for gastric cancer prevention and treatment: Multi-step actions on the Correa's cascade underlie its therapeutic effects. Pharmacol Res 2022; 184:106440. [PMID: 36108874 DOI: 10.1016/j.phrs.2022.106440] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Gastric carcinoma (GC) is a complex multifactorial disease occurring as sequential events commonly referred to as the Correa's cascade, a stepwise progression from non-active or chronic active gastritis, to gastric precancerous lesions, and finally, adenocarcinoma. Therefore, the identification of novel agents with multi-step actions on the Correa's cascade and those functioning as multiple phenotypic regulators are the future direction for drug discovery. Recently, berberine (BBR) has gained traction owing to its pharmacological properties, including anti-inflammatory, anti-cancer, anti-ulcer, antibacterial, and immunopotentiation activities. In this article, we investigated and summarized the multi-step actions of BBR on Correa's cascade and its underlying regulatory mechanism in gastric carcinogenesis for the first time, along with a discussion on the strength of BBR to prevent and treat GC. BBR was found to suppress H. pylori infection, control mucosal inflammation, and promote ulcer healing. In the gastric precancerous lesion phase, BBR could reverse mucosal atrophy and prevent lesions in intestinal metaplasia and dysplasia by regulating inflammatory cytokines, promoting cell apoptosis, regulating macrophage polarization, and regulating autophagy. Additionally, the therapeutic action of BBR on GC was partly realized through the inhibition of cell proliferation, migration, and angiogenesis; induction of apoptosis and autophagy, and enhancement of chemotherapeutic drug sensitivity. BBR exerted multi-step actions on the Correa's cascade, thereby halting and even reversing gastric carcinogenesis in some cases. Thus, BBR could be used to prevent and treat GC. In conclusion, the therapeutic strategy underlying BBR's multi-step action in the trilogy of Correa's cascade may include "prevention of gastric mucosal inflammation (Phase 1); reversal of gastric precancerous lesions (Phase 2), and rescue of GC (Phase 3)". The NF-κB, PI3K/Akt, and MAPK signaling pathways may be the key signaling transduction pathways underlying the treatment of gastric carcinogenesis using BBR. The advantage of BBR over conventional drugs is its multifaceted and long-term effects. This review is expected to provide preclinical evidence for using BBR to prevent gastric carcinogenesis and treat gastric cancer.
Collapse
Affiliation(s)
- Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Shuanglan Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Shuangyuan Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Caifei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Juyi Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China
| | - Jundong Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China.
| | - Yi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China.
| |
Collapse
|
46
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
47
|
Sandenon Seteyen AL, Girard-Valenciennes E, Septembre-Malaterre A, Gasque P, Guiraud P, Sélambarom J. Anti-Alphaviral Alkaloids: Focus on Some Isoquinolines, Indoles and Quinolizidines. Molecules 2022; 27:molecules27165080. [PMID: 36014321 PMCID: PMC9416297 DOI: 10.3390/molecules27165080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery and the development of safe and efficient therapeutics against arthritogenic alphaviruses (e.g., chikungunya virus) remain a continuous challenge. Alkaloids are structurally diverse and naturally occurring compounds in plants, with a wide range of biological activities including beneficial effects against prominent pathogenic viruses and inflammation. In this short review, we discuss the effects of some alkaloids of three biologically relevant structural classes (isoquinolines, indoles and quinolizidines). Based on various experimental models (viral infections and chronic diseases), we highlight the immunomodulatory effects of these alkaloids. The data established the capacity of these alkaloids to interfere in host antiviral and inflammatory responses through key components (antiviral interferon response, ROS production, inflammatory signaling pathways and pro- and anti-inflammatory cytokines production) also involved in alphavirus infection and resulting inflammation. Thus, these data may provide a convincing perspective of research for the use of alkaloids as immunomodulators against arthritogenic alphavirus infection and induced inflammation.
Collapse
Affiliation(s)
- Anne-Laure Sandenon Seteyen
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, 97400 Saint-Denis, France
| | - Axelle Septembre-Malaterre
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Jimmy Sélambarom
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
48
|
Modulatory effect of berberine on plasma lipoprotein (or lipid) profile: a review. Mol Biol Rep 2022; 49:10885-10893. [PMID: 35941413 DOI: 10.1007/s11033-022-07623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 10/15/2022]
Abstract
Berberine is a bioactive isoquinoline alkaloid compound extracted from various medicinal plants, such as Barberry. Berberine shows various pharmacological properties that are mainly attributed to its anti-inflammatory and antioxidant effects. A growing body of evidence has shown that berberine influences cholesterol metabolism, and consequently, may ameliorate dyslipidemias and atherosclerosis. Plasma high-density lipoprotein cholesterol (HDL-C) is known to have an independent negative association with incident cardiovascular disease (CVD). However, several outcomes trials and genetic studies have failed to meet expecting the beneficial effects of elevating plasma HDL-C concentrations. Hence, investigations are currently focused on enhancing the functionality of HDL particles, independent of their plasma concentrations. HDL particles show various qualities because of a heterogeneous composition. Consistent with complex metabolism and composition, various biological functions are found for HDL, such as anti-inflammatory, antioxidant, anti-apoptotic, and anti-thrombotic activities. Protective effects of berberine may impact the functionality of HDL; therefore, the present literature review was intended to determine whether berberine can amplify HDL function. It was concluded that berberine may regulate markers of HDL activity, such as apo-AI, cholesterol efflux, LCAT, PON1, and S1P activities and levels. Consequently, berberine may recuperate conditions with dysfunctional HDL and, therefore, have the potential to emerge as a therapeutic agent. However, further human trials of berberine are warranted to evaluate its impact on HDL function and cholesterol metabolism.
Collapse
|
49
|
Dadgostar E, Moghanlou M, Parvaresh M, Mohammadi S, Khandan M, Aschner M, Mirzaei H, Tamtaji OR. Can Berberine Serve as a New Therapy for Parkinson's Disease? Neurotox Res 2022; 40:1096-1102. [PMID: 35666433 DOI: 10.1007/s12640-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurodegeneration and deposition of alpha-synuclein. Mechanisms associated with PD etiology include oxidative stress, apoptosis, autophagy, and abnormalities in neurotransmission, to name a few. Drugs used to treat PD have shown significant limitations in their efficacy. Therefore, recent focus has been placed on the potential of active plant ingredients as alternative, complementary, and efficient treatments. Berberine is an isoquinoline alkaloid that has shown promise as a pharmacological treatment in PD, given its ability to modulate several molecular pathway associated with the disease. Here, we review contemporary knowledge supporting the need to further characterize berberine as a potential treatment for PD.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Salimeh Mohammadi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadali Khandan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. .,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
50
|
Miwa T, Kanemaru SI. Effects of Kampo medicine hangebyakujutsutemmato on persistent postural-perceptual dizziness: A retrospective pilot study. World J Clin Cases 2022; 10:6811-6824. [PMID: 36051127 PMCID: PMC9297410 DOI: 10.12998/wjcc.v10.i20.6811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Persistent postural-perceptual dizziness (PPPD) is a functional disorder, typically preceded by acute vestibular disorders. It is characterized by a shift in processing spatial orientation information, to favor visual over vestibular and somatosensory inputs, and a failure of higher cortical mechanisms. To date, no therapies for PPPD have been approved. Kampo medicine hangebyakujutsutemmato (HBT) has been reported to alleviate disturbances of equilibrium. We hypothesized that HBT would be a beneficial treatment for PPPD.
AIM To examine the efficacy of HBT for the treatment of PPPD.
METHODS Patients with PPPD were enrolled and divided into two groups: The HBT group (n = 24) and the non-HBT group (n = 14). The participants completed questionnaire surveys [Niigata PPPD questionnaire (NPQ), dizziness handicap inventory, hospital anxiety and depression scale (HADS), orthostatic dysregulation questionnaire, pittsburg sleep quality index (PSQI), and motion sickness scores] before and after HBT treatment. Additionally, to identify HBT responders, multivariate regression analysis was performed using the results of the questionnaire surveys and equilibrium tests; including stabilometry, and caloric, vestibular evoked myogenic response, and head-up tilt tests.
RESULTS Thirty-eight outpatients were included in this study, of which 14 patients (3 men, 11 women; mean age, 63.5 ± 15.9 years) received treatment without HBT, and 24 (1 man, 23 women; mean age, 58.2 ± 18.7 years) received combination treatment with HBT. Following HBT treatment, NPQ scores decreased significantly (baseline 40.1 ± 10.0 vs 2 mo 24.6 ± 17.7, P < 0.001). No statistically significant changes were observed in the NPQ scores in the non-HBT group (baseline 38.6 ± 12.2 vs 2 mo 39.4 ± 14.4, P = 0.92). Multivariable regression analysis revealed that the results of stabilometry (P = 0.02) and the caloric (P = 0.03), and head-up tilt tests (P < 0.001), HADS (P = 0.003), and PSQI (P = 0.01) were associated with HBT responsiveness in PPPD patients.
CONCLUSION HBT may be an effective adjunct therapy for PPPD. Patients with autonomic dysfunction, unstable balance, semicircular canal paresis, anxiety, and poor sleep quality may be high responders to HBT.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Osaka Metropolitan University, Osaka 5458585, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka 5308480, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto 7507501, Japan
| | - Shin-ichi Kanemaru
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka 5308480, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto 7507501, Japan
| |
Collapse
|