1
|
Li J, Wu J, Chen Q, Yu H, Liu M, Wang Y, Zhang Y, Wang T. 7'-Hydroxyl substituted xanthones from Gentianella acuta revert hepatic steatosis in obese diabetic mice through preserving mitochondrial homeostasis. Biochem Pharmacol 2025; 236:116878. [PMID: 40118286 DOI: 10.1016/j.bcp.2025.116878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Mitochondrial dysfunction is a key contributor to the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Xanthones, bioactive flavonoids derived from various herbal medicines, are renowned for their anti-inflammatory, antioxidant, and anti-tumor properties. This study aimed to investigate the effects of xanthones isolated from Gentianella acuta on hepatic steatosis and the underlying mechanisms regulating mitochondrial function. We report that a xanthone fraction (400 mg/kg/day) effectively prevented obesity and hepatic steatosis in obese diabetic db/db mice in vivo. In vitro, xanthones inhibited lipid accumulation and mitochondrial dysfunction induced by high glucose (20 mM) and high palmitic acid (200 µM) in HepG2 cells. Mechanistically, norathyriol (NTR), a major in vivo metabolite of Gentianella acuta, inhibited the activity of dynamin-related protein 1 (Drp1), a protein associated with mitochondrial fission, and prevented its translocation from the cytoplasm to the mitochondria by inhibiting the orphan nuclear receptor (Nur77). Additionally, NTR increased the expression of the mitochondrial outer membrane protein FUN14 domain containing 1 (FUNDC1), which stimulated mitophagy to clear damaged or dysfunctional mitochondria under overnutrition conditions. We also discovered that reactive oxygen species (ROS) targeted FUNDC1, leading to mitochondrial damage, but this effect could be reversed by 7'-hydroxyl substituted xanthones. Collectively, 7'-hydroxyl substituted xanthones inhibited mitochondrial fission while promoting mitophagy, ultimately improving mitochondrial and liver function in diabetic hepatic steatosis. The modulation of mitochondrial function by 7'-hydroxyl substituted xanthones presents a novel approach for treating hepatic steatosis, particularly in diabetic conditions.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Jiaqi Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yadong Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
2
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
4
|
Chiang CH, Hsu PS, Lin SP, Chen CY. High-fat diet restriction to adult male mice maintains normal body weight but leads to liver impairment by disrupting mitochondrial oxidative phosphorylation. J Nutr Biochem 2025; 143:109941. [PMID: 40316032 DOI: 10.1016/j.jnutbio.2025.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Dietary restriction (DR) delays aging and supports health primarily through its effects on mitochondrial function. Conversely, a high-fat diet (HFD) with excess calories promotes obesity and health risks via mitochondrial dysfunction. However, the role of an HFD in the benefits of DR remains unclear. This study investigated whether sustainable and intermittent DR with an HFD positively affects liver and heart health. Mice were assigned to four groups: chow diet ad libitum (CTR), HFD ad libitum (H), 60% HFD intake (HDR), and intermittent HFD restriction with weight cycling (WC). The results showed that the mice in the HDR and WC groups had reduced body weight, while animals in neither group had lower blood glucose levels compared to the H group. Hepatic steatosis, fibrosis, and NAFLD activity scores were similar in H, HDR, and WC mice but were higher than in CTR mice. The livers of mice in the HDR and WC groups also showed reduced ATP content and altered protein expressions related to mitochondrial dynamics. Liver in animals from the H group exhibited reduced LC3I expression and an increased LC3II to LC3I ratio compared with liver CTR. In contrast, livers of animals in the HDR and WC groups showed lower levels of p62, LC3I, and LC3II expression. Fibrosis was observed in the hearts of mice in the CTR and H groups, and DR did not reverse this damage. In conclusion, although HFD restriction maintained body weight, it adversely affected liver health by disrupting mitochondrial function. These findings emphasize the critical role of dietary fat in liver health when adopting calorie-restricted therapy.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Martínez DI, Muñoz Nieto IA, Hernández Marín DA, Ventura Juárez J, Martínez Hernández SL, Sánchez Alemán E, Guerrero Alba R, Muñoz Ortega M. ACC-1 as a Possible Biochemical Indicator of Lipoapoptosis in In Vivo and In Vitro Models of MAFLD. Int J Mol Sci 2025; 26:3459. [PMID: 40331948 PMCID: PMC12026828 DOI: 10.3390/ijms26083459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/08/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging condition with a worldwide prevalence ranging from 6% to 35% and is very frequent among patients with obesity, diabetes, or metabolic syndrome. One of the main challenges in the treatment of this disease is the identification of a reliable and direct biomarker to diagnose the stage of hepatic steatosis before it progresses to steatohepatitis. This is especially important as many patients remain asymptomatic until cirrhosis develops. The aim of this study was to analyze the expression of the enzyme acetyl-CoA carboxylase 1 (ACC-1) in vitro in a model of lipocytotoxicity using HepG2 cells as well as in vivo in Wistar rats. Our results demonstrate an accumulation of lipid inclusions in hepatocytes observed both in vitro and in experimental models of hepatic steatosis, leading to membrane damage. This allows for the detection of ACC-1 enzyme in the extracellular medium at short induction times, in contrast to the appearance of AST and ALT, which become detectable only once the damage becomes more invasive. ACC-1 could potentially serve as a clinical indicator to detect fatty liver disease before it progresses to steatohepatitis and fibrosis, allowing for timely and non-invasive treatment for patients.
Collapse
Affiliation(s)
- David Ibarra Martínez
- Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.I.M.); (I.A.M.N.)
| | - Israel Alejandro Muñoz Nieto
- Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.I.M.); (I.A.M.N.)
| | - David Alejandro Hernández Marín
- Departamento de Microbiología e Inmunología, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.A.H.M.); (S.L.M.H.)
| | - Javier Ventura Juárez
- Departamento de Morfología, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.V.J.); (E.S.A.)
| | - Sandra Luz Martínez Hernández
- Departamento de Microbiología e Inmunología, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.A.H.M.); (S.L.M.H.)
| | - Esperanza Sánchez Alemán
- Departamento de Morfología, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.V.J.); (E.S.A.)
| | - Raquel Guerrero Alba
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Martín Muñoz Ortega
- Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (D.I.M.); (I.A.M.N.)
| |
Collapse
|
6
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
7
|
Brothwell MJ, Cao G, Maschek JA, Poss AM, Peterlin AD, Wang L, Baker TB, Shahtout JL, Siripoksup P, Pearce QJ, Johnson JM, Finger FM, Prola A, Pellizzari SA, Hale GL, Manuel AM, Watanabe S, Miranda ER, Affolter KE, Tippetts TS, Nikolova LS, Choi RH, Decker ST, Patil M, Catrow JL, Holland WL, Nowinski SM, Lark DS, Fisher-Wellman KH, Mimche PN, Evason KJ, Cox JE, Summers SA, Gerhart-Hines Z, Funai K. Cardiolipin deficiency disrupts electron transport chain to drive steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.10.617517. [PMID: 39416056 PMCID: PMC11482932 DOI: 10.1101/2024.10.10.617517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disorder marked by lipid accumulation, leading to metabolic dysfunction-associated steatohepatitis (MASH). A key feature of the transition to MASH involves oxidative stress resulting from defects in mitochondrial oxidative phosphorylation (OXPHOS). Here, we show that pathological alterations in the lipid composition of the inner mitochondrial membrane (IMM) directly instigate electron transfer inefficiency to promote oxidative stress. Specifically, mitochondrial cardiolipin (CL) was downregulated with MASLD/MASH in humans and in mice. Hepatocyte-specific CL synthase knockout (CLS-LKO) led to spontaneous and robust MASH with extensive steatotic and fibrotic phenotype. Loss of CL paradoxically increased mitochondrial respiratory capacity but also reduced the formation of I+III2+IV respiratory supercomplex, promoted electron leak primarily at sites IIIQO and IIF of the electron transport chain, and disrupted the propensity of coenzyme Q (CoQ) to become reduced. Thus, low mitochondrial CL disrupts electron transport chain to promote oxidative stress and contributes to pathogenesis of MASH.
Collapse
Affiliation(s)
- Marisa J. Brothwell
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Guoshen Cao
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Annelise M. Poss
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Alek D. Peterlin
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Liping Wang
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Talia B. Baker
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Division of Transplantation and Advanced Hepatobiliary Surgery, Department of Surgery; University of Utah; Salt Lake City, UT; USA
| | - Justin L. Shahtout
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
| | - Piyarat Siripoksup
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
| | - Quentinn J. Pearce
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Jordan M. Johnson
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Fabian M. Finger
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen; DK
- Center for Adipocyte Signaling (ADIPOSIGN); University of Southern Denmark; Odense; DK
| | - Alexandre Prola
- Laboratory of Fundamental and Applied Bioenergetics; University of Grenoble Alpes, Inserm U1055; Grenoble; FR
| | - Sarah A. Pellizzari
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - Gillian L. Hale
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - Allison M. Manuel
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Shinya Watanabe
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Edwin R. Miranda
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Kajsa E. Affolter
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Laboratory of Fundamental and Applied Bioenergetics; University of Grenoble Alpes, Inserm U1055; Grenoble; FR
| | - Trevor S. Tippetts
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
| | - Linda S. Nikolova
- Electron Microscopy Core Facility; University of Utah; Salt Lake City, UT; USA
| | - Ran Hee Choi
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Stephen T. Decker
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Mallikarjun Patil
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - J. Leon Catrow
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - William L. Holland
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Sara M. Nowinski
- Department of Metabolism and Nutritional Programming; Van Andel Institute; Grand Rapids, MI; USA
| | - Daniel S. Lark
- College of Health and Human Sciences; Colorado State University; Fort Collins, CO; USA
- Columbine Health Systems Center for Healthy Aging; Colorado State University; Fort Collins, CO; USA
| | - Kelsey H. Fisher-Wellman
- Department of Cancer Biology, Wake Forest University School of Medicine; Atrium Health Wake Forest Baptist Comprehensive Cancer Center; Winston-Salem, NC; USA
| | - Patrice N. Mimche
- Departments of Dermatology and Medicine; Division of Gastroenterology and Hepatology, Indiana University School of Medicine; Indianapolis, IN; USA
| | - Kimberley J. Evason
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Pathology; University of Utah; Salt Lake City, UT; USA
| | - James E. Cox
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Metabolomics Core Research Facility; University of Utah; Salt Lake City, UT; USA
| | - Scott A. Summers
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research; University of Copenhagen; Copenhagen; DK
- Center for Adipocyte Signaling (ADIPOSIGN); University of Southern Denmark; Odense; DK
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center; University of Utah; Salt Lake City, UT; USA
- Department of Nutrition and Integrative Physiology; University of Utah; Salt Lake City, UT; USA
- Department of Biochemistry; University of Utah; Salt Lake City, UT; USA
- Huntsman Cancer Institute; University of Utah, Salt Lake City, UT; USA
- Department of Physical Therapy and Athletic Training; University of Utah; Salt Lake City, UT; USA
- Molecular Medicine Program; University of Utah; Salt Lake City, UT; USA
| |
Collapse
|
8
|
Lai S, Tang D, Feng J. Mitochondrial targeted therapies in MAFLD. Biochem Biophys Res Commun 2025; 753:151498. [PMID: 39986088 DOI: 10.1016/j.bbrc.2025.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a clinical-pathological syndrome primarily characterized by excessive accumulation of fat in hepatocytes, independent of alcohol consumption and other well-established hepatotoxic agents. Mitochondrial dysfunction is widely acknowledged as a pivotal factor in the pathogenesis of various diseases, including cardiovascular diseases, cancer, neurodegenerative disorders, and metabolic diseases such as obesity and obesity-associated MAFLD. Mitochondria are dynamic cellular organelles capable of modifying their functions and structures to accommodate the metabolic demands of cells. In the context of MAFLD, the excess production of reactive oxygen species induces oxidative stress, leading to mitochondrial dysfunction, which subsequently promotes metabolic disorders, fat accumulation, and the infiltration of inflammatory cells in liver and adipose tissue. This review aims to systematically analyze the role of mitochondria-targeted therapies in MAFLD, evaluate current therapeutic strategies, and explore future directions in this rapidly evolving field. We specifically focus on the molecular mechanisms underlying mitochondrial dysfunction, emerging therapeutic approaches, and their clinical implications. This is of significant importance for the development of new therapeutic approaches for these metabolic disorders.
Collapse
Affiliation(s)
- Sien Lai
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medicine, Foshan University, 528000, Foshan, China.
| |
Collapse
|
9
|
Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med 2025; 229:312-332. [PMID: 39341301 DOI: 10.1016/j.freeradbiomed.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of liver transplantation and hepatocellular carcinoma (HCC). Regrettably, its pathological mechanisms are still not fully comprehended. GTP-binding protein 8 (GTPBP8), belonging to the GTP-binding protein superfamily, assumes a crucial role in RNA metabolism, cell proliferation, differentiation, and signal transduction. Its aberrant expression is associated with oxidative stress and mitochondrial dysfunctions. Nevertheless, its specific functions and mechanisms of action, particularly in NASH, remain elusive. In our current study, we initially discovered that human hepatocytes L02 displayed evident mitochondrial respiratory anomaly, mitochondrial damage, and dysfunction upon treatment with palmitic acids and oleic acids (PO), accompanied by significantly reduced GTPBP8 expression levels through RNA-Seq, RT-qPCR, western blotting, and immunofluorescence assays. We then demonstrated that GTPBP8 overexpression mediated by adenovirus vector (Ad-GTPBP8) markedly attenuate lipid accumulation, inflammatory response, and mitochondrial impair and dysfunction in hepatocytes stimulated by PO. Conversely, adenovirus vector-mediated GTPBP8 knockdown (Ad-shGTPBP8) significantly accelerated lipid deposition, inflammation and mitochondrial damage in PO-treated hepatocytes in vitro. Furthermore, we constructed an in vivo NASH murine model by giving a 16-week high fat high cholesterol diet (HFHC) diet to hepatocyte specific GTPBP8-knockout (GTPBP8HKO) mice. We firstly found that HFHC feeding led to metabolic disorder in mice, including high body weight, blood glucose and insulin levels, and liver dysfunctions, which were accelerated in these NASH mice with GTPBP8 deficiency in hepatocytes. Consistently, GTPBP8HKO remarkably exacerbated the progression of NASH phenotypes induced by HFHC, as proved by the anabatic lipid accumulation, inflammation, fibrosis and reactive oxygen species (ROS) production in liver tissues, which could be largely attributed to the severe mitochondrial damage and dysfunction. Mechanistically, we further identified that GTPBP8 interacted with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in hepatocytes. Importantly, the hepaprotective effects of GTPBP8 against mitochondrial dysfunction, oxidative stress and inflammation was largely dependent on PGC-1α expression. Collectively, GTPBP8 may exert a protective role in the progression of NASH, and targeting the GTPBP8/PGC-1α axis may represent a potential strategy for NASH treatment by improving mitochondrial functions.
Collapse
Affiliation(s)
- Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Minghui Chang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China.
| |
Collapse
|
10
|
Tsai WT, Situmorang JH, Kuo WW, Kuo CH, Lin SZ, Huang CY, Ho TJ. Protective effects of Cordyceps militaris against hepatocyte apoptosis and liver fibrosis induced by high palmitic acid diet. Front Pharmacol 2025; 15:1438997. [PMID: 39850574 PMCID: PMC11755097 DOI: 10.3389/fphar.2024.1438997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
Background Fatty Liver Disease (FLD) progresses from steatosis to steatohepatitis and, if left untreated, can lead to irreversible conditions such as cirrhosis and hepatocarcinoma. The etiology of FLD remains unclear, but factors such as overconsumption, poor diet, obesity, and diabetes contribute to its development. Palmitic acid (PA) plays a significant role in FLD progression by inducing apoptosis, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in hepatocytes. Cordyceps militaris (CM), a fungus with various biological activities, including antioxidant properties is examined both in vitro and in vivo to assess its effectiveness in mitigating PA-induced hepatocyte apoptosis and preventing FLD progression. Purpose This study aims to investigate the potential and mechanism of CM in combating FLD, particularly in inhibiting hepatocyte apoptosis. Methods In vitro studies utilized Clone9 hepatocytes treated with PA to simulate FLD conditions. The effects of CM ethyl acetate extract (EAECM) on apoptosis, mitochondrial function, ER stress, inflammation, and oxidative stress were evaluated. In vivo experiments involved FVB mice fed a NASH diet containing high levels of PA to induce FLD, with powdered CM administered orally to assess its impact on body weight, fasting blood glucose level, liver health, fibrosis, and markers of ER stress, inflammation, and oxidative stress. Results EAECM demonstrated protective effects against PA-induced apoptosis, mitochondrial dysfunction, ER stress, inflammation, and oxidative stress in vitro. In vivo, powdered CM supplementation attenuated body weight gain, improved fasting blood glucose level, prevented hepatomegaly, reduced serum triglycerides, and inhibited liver fibrosis. Furthermore, powdered CM treatment mitigated ER stress, inflammation, and oxidative stress in the liver of mice receiving a NASH diet. Conclusion C. militaris holds promise as a therapeutic agent for FLD, as evidenced by its ability to alleviate PA-induced hepatocytes damage and hinder FLD progression in mice. Further research is warranted to identify the active compounds responsible for its beneficial effects and to explore its potential clinical applications in treating FLD.
Collapse
Affiliation(s)
- Wan-Ting Tsai
- Office of Superintendent, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jiro Hasegawa Situmorang
- Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Tsung-Jung Ho
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
Tang S, Wu S, Zhang W, Ma L, Zuo L, Wang H. Immunology and treatments of fatty liver disease. Arch Toxicol 2025; 99:127-152. [PMID: 39692857 DOI: 10.1007/s00204-024-03920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
Collapse
Affiliation(s)
- Sainan Tang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shanshan Wu
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wenzhe Zhang
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Lili Ma
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for College Students, Anhui Medical University, Hefei, Anhui, China.
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
12
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
13
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
14
|
Zhang G, Huang J, Sun Z, Guo Y, Lin G, Zhang Z, Zhao J. Effects of Trace Mineral Source on Growth Performance, Antioxidant Activity, and Meat Quality of Pigs Fed an Oxidized Soy Oil Supplemented Diet. Antioxidants (Basel) 2024; 13:1227. [PMID: 39456480 PMCID: PMC11505604 DOI: 10.3390/antiox13101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the effects of oil quality and trace mineral source on the growth performance, antioxidant activity, and meat quality of growing-finishing pigs. A total of 180 crossbred pigs (Duroc × Landrace × Large White [64.4 ± 1.95]) were randomly allocated five dietary treatments based on body weight (BW) and sex in a 30 d trial. Pigs were fed five diets: (i) fresh soy oil + inorganic trace minerals (ITMs) + inorganic selenium (FISI), (ii) oxidized soy oil + ITMs + inorganic selenium (OISI), (iii) fresh soy oil + ITMs + selenium yeast (FISY), (iv) oxidized soy oil + ITMs + selenium yeast (OISY), and (v) oxidized soy oil + organic trace minerals (OTMs) + selenium yeast (OOSY). Each dietary treatment included six replicates and six pigs per replicate (three barrows and three gilts). Feeding OISI resulted in lower average daily gain (ADG) and dressing percentage (p < 0.05). The OOSY group had a higher dressing percentage and activities of serum CAT and GSH-Px in growing-finishing pigs (p < 0.05). In addition, the relative abundance of Campylobacterota in the colonic digesta varied with the quality of soy oil and source of trace minerals (p < 0.05), but no significant differences in short-chain fatty acid concentrations were observed among all dietary groups. In conclusion, adding oxidized soy oil to the diet negatively impacted the ADG and dressing percentage of growing-finishing pigs, and replacing ITMs with OTMs and SY alleviated these negative impacts. A combination of OTMs and SY can support antioxidant capacity to mitigate the negative impacts of oxidized oil on the growth performance and dressing percentage of growing-finishing pigs.
Collapse
Affiliation(s)
- Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Yuhan Guo
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (Y.G.); (G.L.)
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.Z.); (J.H.); (Z.S.); (Z.Z.)
| |
Collapse
|
15
|
Li Y, Zhang J, Chen S, Ke Y, Li Y, Chen Y. Growth differentiation factor 15: Emerging role in liver diseases. Cytokine 2024; 182:156727. [PMID: 39111112 DOI: 10.1016/j.cyto.2024.156727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Growth differentiation factor 15 (GDF15) is a cell stress-response cytokine within the transforming growth factor-β (TGFβ) superfamily. It is known to exert diverse effects on many metabolic pathways through its receptor GFRAL, which is expressed in the hindbrain, and transduces signals through the downstream receptor tyrosine kinase Ret. Since the liver is the core organ of metabolism, summarizing the functions of GDF15 is highly important. In this review, we assessed the relevant literature regarding the main metabolic, inflammatory, fibrogenic, tumorigenic and other effects of GDF15 on different liver diseases, including Metabolic dysfunction-associated steatotic liver disease(MASLD), alcohol and drug-induced liver injury, as well as autoimmune and viral hepatitis, with a particular focus on the pathogenesis of MASLD progression from hepatic steatosis to MASH, liver fibrosis and even hepatocellular carcinoma (HCC). Finally, we discuss the prospects of the clinical application potential of GDF15 along with its research and development progress. With better knowledge of GDF15, increasing in-depth research will lead to a new era in the field of liver diseases.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Zhang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shurong Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yini Ke
- Department of Rheumatology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
16
|
Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother 2024; 178:117084. [PMID: 39088967 DOI: 10.1016/j.biopha.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024] Open
Abstract
The accumulation of excess reactive oxygen species (ROS) can lead to oxidative stress (OS), which can induce gene mutations, protein denaturation, and lipid peroxidation directly or indirectly. The expression is reduced ATP level in cells, increased cytoplasmic Ca2+, inflammation, and so on. Consequently, ROS are recognized as significant risk factors for human aging and various diseases, including diabetes, cardiovascular diseases, and neurodegenerative diseases. Mitochondria are involved in the production of ROS through the respiratory chain. Abnormal mitochondrial characteristics, including mitochondrial OS, mitochondrial fission, mitochondrial fusion, and mitophagy, play an important role in various tissues. However, previous excellent reviews focused on OS-induced diseases. In this review, we focus on the latest progress of OS-induced mitochondrial dynamics, discuss OS-induced mitochondrial damage-related diseases, and summarize the OS-induced mitochondrial dynamics-related signaling pathways. Additionally, it elaborates on potential therapeutic methods aimed at preventing oxidative stress from further exacerbating mitochondrial disorders.
Collapse
Affiliation(s)
- Sisi Chen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanjing Shi
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro⁃Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Wang S, Zhang W, Wang Z, Liu Z, Yi X, Wu J. Mettl3-m6A-YTHDF1 axis promotion of mitochondrial dysfunction in metabolic dysfunction-associated steatotic liver disease. Cell Signal 2024; 121:111303. [PMID: 39019337 DOI: 10.1016/j.cellsig.2024.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) mRNA modification and mitochondrial function hold paramount importance in the advancement of metabolic dysfunction-associated steatotic liver disease (MASLD). AIM The aim of this study was to elucidate the impact of m6A on hepatic mitochondrial dysfunction and provide a novel perspective for a more comprehensive understanding of the pathogenesis of MASLD. METHODS High-throughput screening methods were used to identify the underlying transcriptome and proteome changes in MASLD model mice. Western blotting, blue native gel electrophoresis (BNGE), dot blot, and Seahorse analyses were conducted to identify and validate the underlying regulatory mechanisms of m6A on mitochondria. RESULTS In vivo, abnormal m6A modification in MASLD was attributed to the upregulation of methyltransferase like 3 (Mettl3) and the downregulation of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) induced by high-fat foods. In vitro, knockdown of Mettl3 inhibited hepatic oxidative phosphorylation (OXPHOS) and the mitochondrial respiratory chain (MRC), while overexpression of Mettl3 promoted these processes. However, knockout of the reader protein YTHDF1, which plays a crucial role in the m6A modification process, counteracted the effect of Mettl3 and suppressed mitochondrial OXPHOS. CONCLUSIONS In MASLD, damage to the MRC may be regulated by the Mettl3-m6A-YTHDF1 axis, particularly by the role of YTHDF1. Modulation of the Mettl3-m6A-YTHDF1 axis has the potential to improve mitochondrial function, alleviate MASLD symptoms, and decrease the likelihood of disease progression.
Collapse
Affiliation(s)
- Shuowen Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China
| | - Wanyu Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhuo Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoyu Yi
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianxin Wu
- Beijing Tongren Hospital, Capital Medical University, Beijing 100176, China; Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
18
|
Fernández-Tussy P, Cardelo MP, Zhang H, Sun J, Price NL, Boutagy NE, Goedeke L, Cadena-Sandoval M, Xirouchaki CE, Brown W, Yang X, Pastor-Rojo O, Haeusler RA, Bennett AM, Tiganis T, Suárez Y, Fernández-Hernando C. miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression. JCI Insight 2024; 9:e168476. [PMID: 39190492 PMCID: PMC11466198 DOI: 10.1172/jci.insight.168476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The complexity of the mechanisms underlying metabolic dysfunction-associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction-associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.
Collapse
Affiliation(s)
- Pablo Fernández-Tussy
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Magdalena P. Cardelo
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Nabil E. Boutagy
- Vascular Biology and Therapeutics Program
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Leigh Goedeke
- Cardiovascular Research Institute and Division of Cardiology, Department of Medicine; and
- Diabetes, Obesity and Metabolism Institute and Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Martí Cadena-Sandoval
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Chrysovalantou E. Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Wendy Brown
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Xiaoyong Yang
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Oscar Pastor-Rojo
- Vascular Biology and Therapeutics Program
- Servicio de Bioquímica Clínica, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Rebecca A. Haeusler
- Department of Pathology & Cell Biology and Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA
| | - Anton M. Bennett
- Yale Center for Molecular and System Metabolism, and
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program
- Department of Comparative Medicine
- Yale Center for Molecular and System Metabolism, and
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Yuan XM, Xiang MQ, Ping Y, Zhang PW, Liu YT, Liu XW, Wei J, Tang Q, Zhang Y. Beneficial Effects of High-Intensity Interval Training and Dietary Changes Intervention on Hepatic Fat Accumulation in HFD-Induced Obese Rats. Physiol Res 2024; 73:273-284. [PMID: 38710057 PMCID: PMC11081183 DOI: 10.33549/physiolres.935195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2025] Open
Abstract
Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.
Collapse
Affiliation(s)
- X-M Yuan
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Du X, Wang Y, Amevor FK, Ning Z, Deng X, Wu Y, Wei S, Cao X, Xu D, Tian Y, Ye L, Shu G, Zhao X. Effect of High Energy Low Protein Diet on Lipid Metabolism and Inflammation in the Liver and Abdominal Adipose Tissue of Laying Hens. Animals (Basel) 2024; 14:1199. [PMID: 38672347 PMCID: PMC11047412 DOI: 10.3390/ani14081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to evaluate the effects of a high-energy low-protein (HELP) diet on lipid metabolism and inflammation in the liver and abdominal adipose tissue (AAT) of laying hens. A total of 200 Roman laying hens (120 days old) were randomly divided into two experimental groups: negative control group (NC group) and HELP group, with 100 hens per group. The chickens in the NC group were fed with a basic diet, whereas those in the HELP group were given a HELP diet. Blood, liver, and AAT samples were collected from 20 chickens per group at each experimental time point (30, 60, and 90 d). The morphological and histological changes in the liver and AAT were observed, and the level of serum biochemical indicators and the relative expression abundance of key related genes were determined. The results showed that on day 90, the chickens in the HELP group developed hepatic steatosis and inflammation. However, the diameter of the adipocytes of AAT in the HELP group was significantly larger than that of the NC group. Furthermore, the results showed that the extension of the feeding time significantly increased the lipid contents, lipid deposition, inflammatory parameters, and peroxide levels in the HELP group compared with the NC group, whereas the antioxidant parameters decreased significantly. The mRNA expression levels of genes related to lipid synthesis such as fatty acid synthase (FASN), stearoyl-coA desaturase (SCD), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor gamma (PPARγ) increased significantly in the liver and AAT of the HELP group, whereas genes related to lipid catabolism decreased significantly in the liver. In addition, the expression of genes related to lipid transport and adipokine synthesis decreased significantly in the AAT, whereas in the HELP group, the expression levels of pro-inflammatory parameters such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) increased significantly in the liver and AAT. Conversely, the expression level of the anti-inflammatory parameter interleukin-10 (IL-10) decreased significantly in the liver. The results indicated that the HELP diet induced lipid peroxidation and inflammation in the liver and AAT of the laying hens. Hence, these results suggest that chicken AAT may be involved in the development of fatty liver.
Collapse
Affiliation(s)
- Xiaxia Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinuo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Felix Kwame Amevor
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Zifan Ning
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Youhao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuo Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueqing Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaofu Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.D.); (Y.W.); (F.K.A.); (Z.N.); (X.D.); (Y.W.); (S.W.); (X.C.); (D.X.); (Y.T.); (L.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
22
|
Kunlayawutipong T, Apaijai N, Tepmalai K, Kongkarnka S, Leerapun A, Pinyopornpanish K, Soontornpun A, Chattipakorn SC, Chattipakorn N, Pinyopornpanish K. Imbalance of mitochondrial fusion in peripheral blood mononuclear cells is associated with liver fibrosis in patients with metabolic dysfunction-associated steatohepatitis. Heliyon 2024; 10:e27557. [PMID: 38496899 PMCID: PMC10944232 DOI: 10.1016/j.heliyon.2024.e27557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Mitochondrial dysfunction and inflammation contribute to the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the potential association between mitochondrial dynamics and cell death markers from peripheral blood mononuclear cells (PBMCs) and the presence of MASH with significant liver fibrosis among metabolic dysfunction-associated steatotic liver disease (MASLD) patients. Consecutive patients undergoing bariatric surgery from January to December 2022 were included. Patients with histologic steatosis were classified into MASH with significant fibrosis (F2-4) group or MASLD/MASH without significant fibrosis group (F0-1). Mitochondrial dynamic proteins and cell death markers were extracted from PBMCs. A total of 23 MASLD/MASH patients were included (significant fibrosis group, n = 7; without significant fibrosis group, n = 16). Of the mitochondrial dynamics and cell death markers evaluated, OPA1 protein, a marker of mitochondrial fusion is higher in MASH patients with significant fibrosis compared to those without (0.861 ± 0.100 vs. 0.560 ± 0.260 proportional to total protein, p = 0.001). Mitochondrial fusion/fission (OPA1/DRP1) ratio is significantly higher in MASH patients with significant fibrosis (1.072 ± 0.307 vs. 0.634 ± 0.313, p = 0.009). OPA1 (per 0.01 proportional to total protein) was associated with the presence of significant liver fibrosis with an OR of 1.08 (95%CI, 1.01-1.15, p = 0.035), and adjusted OR of 1.10 (95%CI, 1.00-1.21, p = 0.042). OPA1 from PBMCs is associated with MASH and substantial fibrosis. Future studies should explore if OPA1 could serve as a novel non-invasive liver fibrosis marker.
Collapse
Affiliation(s)
- Thanaput Kunlayawutipong
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokkan Tepmalai
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Leerapun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Atiwat Soontornpun
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
23
|
Ghrir S, Ben Abbes W, Chourabi A, Abid G, Jallouli S, Elkahoui S, Limam F, Aouani E, Charradi K. Grape seed extract prevents chlorpyrifos-induced toxicity in rat liver through the modulation of phase I detoxification pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18566-18578. [PMID: 38349500 DOI: 10.1007/s11356-024-32201-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Chlorpyrifos (CPF) poisoning is a public health problem for which there is not currently any effective prophylaxis. In this study, we investigated the protective effect of grape seed extract (GSE) against CPF-induced hepatotoxicity. Rats were daily treated either with CPF (2 mg/kg) or CPF and GSE (20 mg/kg) for 1 week, sacrificed, and their livers dissected for biochemical, molecular, and histopathological analyses. CPF generated liver dysfunction by altering carbohydrate, lipid, amino acid, ammonia and urea metabolism, and provoked mitochondrial impairment through disturbing tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and mitochondrial viability. CPF also induced cholinergic excitotoxicity along with oxidative stress and histopathological alterations. Interestingly, treatment with GSE prevented all the detrimental effects of CPF through the regulation of cytochrome P450 (CYP450) gene expression. Molecular docking analysis indicated that GSE-containing polyphenols acted as epigenetic modulators through inhibiting DNA (cytosine-5)-methyltransferase 1 (DNMT1), thus favoring the CYP2C6 detoxification pathway. Thereby, GSE might be a promising strategy in the protection of the liver against CPF toxicity.
Collapse
Affiliation(s)
- Slim Ghrir
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Wassim Ben Abbes
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Adam Chourabi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj-Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Salem Elkahoui
- Department of Biology, College of Science, University of Ha'il, 81451, Ha'il, Kingdom, Saudi Arabia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Kamel Charradi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
24
|
Jakubek P, Kalinowski P, Karkucinska-Wieckowska A, Kaikini A, Simões ICM, Potes Y, Kruk B, Grajkowska W, Pinton P, Milkiewicz P, Grąt M, Pronicki M, Lebiedzinska-Arciszewska M, Krawczyk M, Wieckowski MR. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J 2024; 38:e23466. [PMID: 38318780 DOI: 10.1096/fj.202302447r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Aakruti Kaikini
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Inês C M Simões
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Wang F, Liu Y, Dong Y, Zhao M, Huang H, Jin J, Fan L, Xiang R. Haploinsufficiency of Lipin3 leads to hypertriglyceridemia and obesity by disrupting the expression and nucleocytoplasmic localization of Lipin1. Front Med 2024; 18:180-191. [PMID: 37776435 DOI: 10.1007/s11684-023-1003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 10/02/2023]
Abstract
Lipin proteins including Lipin 1-3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yuxing Liu
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Meifang Zhao
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Hao Huang
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Jieyuan Jin
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China
| | - Liangliang Fan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| | - Rong Xiang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cellular Biology, School of Life Sciences, Key Laboratory of Pediatric Rare Diseases, Ministry of Education, Central South University, Changsha, 410013, China.
| |
Collapse
|
27
|
Hong L, Sun Z, Xu D, Li W, Cao N, Fu X, Huang Y, Tian Y, Li B. Transcriptome and lipidome integration unveils mechanisms of fatty liver formation in Shitou geese. Poult Sci 2024; 103:103280. [PMID: 38042038 PMCID: PMC10711516 DOI: 10.1016/j.psj.2023.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023] Open
Abstract
Geese evolved from migratory birds, and when they consume excessive high-energy feed, glucose is converted into triglycerides. A large amount of triglyceride deposition can induce incomplete oxidation of fatty acids, leading to lipid accumulation in the liver and the subsequent formation of fatty liver. In the Chaoshan region of Guangdong, China, Shitou geese develop a unique form of fatty liver through 24 h overfeeding of brown rice. To investigate the mechanisms underlying the formation of fatty liver in Shitou geese, we collected liver samples from normally fed and overfed geese. The results showed that the liver size in the treatment group was significantly larger, weighing 3.5 times more than that in the control group. Extensive infiltration of lipid droplets was observed in the liver upon staining of tissue sections. Biochemical analysis revealed that compared to the control group, the treatment group showed significantly elevated levels of total cholesterol (T-CHO), triglycerides (TG), and glycogen in the liver. However, no significant differences were observed in the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which are common indicators of liver damage. Furthermore, we performed a combined transcriptomic and lipidomic analysis of the liver samples and identified 1,510 differentially expressed genes (DEGs) and 1,559 significantly differentially abundant metabolites (SDMs). The enrichment analysis of the DEGs revealed their enrichment in metabolic pathways, cellular process-related signaling pathways, and specific lipid metabolism pathways. We also conducted KEGG enrichment analysis of the SDMs and compared them with the enriched signaling pathways obtained from the DEGs. In this study, we identified 3 key signaling pathways involved in the formation of fatty liver in Shitou geese, namely, the biosynthesis of unsaturated fatty acids, glycerol lipid metabolism, and glycerophospholipid metabolism. In these pathways, genes such as glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), diacylglycerol O-acyltransferase 2 (DGAT2), lipase, endothelial (LIPG), lipoprotein lipase (LPL), phospholipase D family member 4 (PLD4), and phospholipase A2 group IVF (PLA2G4F) may regulate the synthesis of metabolites, including triacylglycerol (TG), phosphatidate (PA), 1,2-diglyceride (DG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). These genes and metabolites may play a predominant role in the development of fatty liver, ultimately promoting the accumulation of TG in the liver and leading to the progression of fatty liver.
Collapse
Affiliation(s)
- Longsheng Hong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zongyi Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinliang Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
28
|
Xie W, Shi H, Zuo R, Zhou S, Ma N, Zhang H, Chang G, Shen X. Conjugated Linoleic Acid Ameliorates Hydrogen Peroxide-Induced Mitophagy and Inflammation via the DRP1-mtDNA-STING Pathway in Bovine Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2120-2134. [PMID: 38235560 DOI: 10.1021/acs.jafc.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Oxidative stress is tightly associated with liver dysfunction and injury in dairy cows. Previous studies have shown that cis-9, trans-11 conjugated linoleic acid (CLA) possesses anti-inflammatory and antioxidative abilities. In this study, the bovine hepatocytes were pretreated with CLA for 6 h, followed by treatment with hydrogen peroxide (H2O2) for another 6 h to investigate the antioxidative effect of CLA and uncover the underlying mechanisms. The results demonstrated that H2O2 treatment elevated the level of mitophagy, promoted mitochondrial DNA (mtDNA) leakage into the cytosol, and activated the stimulator of interferon genes (STING)/nuclear factor kappa B (NF-κB) signaling pathway to trigger an inflammatory response in bovine hepatocytes. In addition, the dynamin-related protein 1(DRP1)-mtDNA-STING-NF-κB axis contributed to the H2O2-induced oxidative injury of bovine hepatocytes. CLA could reduce mitophagy and the inflammatory response to attenuate oxidative damage via the DRP1/mtDNA/STING pathway in bovine hepatocytes. These findings offer a theoretical foundation for the hepatoprotective effect of CLA against oxidative injury in dairy cows.
Collapse
Affiliation(s)
- Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Huimin Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Rankun Zuo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
29
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
30
|
Chalifoux O, Faerman B, Mailloux RJ. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress. J Biol Chem 2023; 299:105399. [PMID: 37898400 PMCID: PMC10692731 DOI: 10.1016/j.jbc.2023.105399] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.
Collapse
Affiliation(s)
- Olivia Chalifoux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ben Faerman
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
31
|
Norouzi G, Nikdel S, Pirayesh E, Salimi Y, Amoui M, Haghighatkhah H, Ghodsi Rad MA, Javanijouni E, Khoshbakht S. Utility of 99mTc-Sestamibi Heart/Liver Uptake Ratio in Screening Nonalcoholic Fatty Liver Disease During Myocardial Perfusion Imaging. Cancer Biother Radiopharm 2023; 38:663-669. [PMID: 36576502 DOI: 10.1089/cbr.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic hepatic disease worldwide, with functional impairment of the mitochondria occurring from early stages. Technetium-99m methoxy-isobutyl-isonitrile (99mTc-MIBI) is a lipophilic agent trapped in the mitochondria. This study aims to evaluate the utility of 99mTc-MIBI heart/liver uptake ratio in screening for NAFLD during myocardial perfusion imaging (MPI). Methods: Seventy eligible patients underwent a 2-d rest/stress 99mTc-MIBI scan with a 2-min planar image acquired in rest phase, at 30, 60, and 120 min postradiotracer administration. Heart/liver uptake ratio was calculated by placing identical regions of interest on the heart and liver dome. All patients underwent liver ultrasound and were allocated into groups A, having NAFLD; and B, healthy individuals without NAFLD. Results: Mean count per pixel heart/liver ratios gradually increased over time in either group; nonetheless the values were significantly higher in group A, regardless of acquisition timing; with the p-value equal to 0.007, 0.014, and 0.010 at 30, 60, and 120 min, respectively. Conclusion: Determining 99mTc-MIBI heart/liver uptake ratio during rest phase in patients undergoing MPI may be a useful, noninvasive screening method for NAFLD; with no additional cost, radiation burden, or adverse effects in these patients. Trial registration number: IR.SBMU.MSP.REC.1398.308.
Collapse
Affiliation(s)
- Ghazal Norouzi
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nikdel
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Pirayesh
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Salimi
- Biomedical Engineering and Medical Physics Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Haghighatkhah
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Diagnostic Imaging, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ghodsi Rad
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Javanijouni
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Khoshbakht
- Department of Nuclear Medicine, Shohada-e Tajrish Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shohada-e Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
La Colla A, Cámara CA, Campisano S, Chisari AN. Mitochondrial dysfunction and epigenetics underlying the link between early-life nutrition and non-alcoholic fatty liver disease. Nutr Res Rev 2023; 36:281-294. [PMID: 35067233 DOI: 10.1017/s0954422422000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of 'developmental programming'. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review, we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD.
Collapse
Affiliation(s)
- Anabela La Colla
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carolina Anahí Cámara
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sabrina Campisano
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrea Nancy Chisari
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
33
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
34
|
You T, Li Y, Li B, Wu S, Jiang X, Fu D, Xin J, Huang Y, Jin L, Hu C. Caveolin-1 protects against liver damage exacerbated by acetaminophen in non-alcoholic fatty liver disease by inhibiting the ERK/HIF-1α pathway. Mol Immunol 2023; 163:104-115. [PMID: 37769575 DOI: 10.1016/j.molimm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Acetaminophen (APAP) is a common antipyretic and analgesic drug that can cause long-term liver damage after an overdose. Non-alcoholic fatty liver disease (NAFLD) increases susceptibility to APAP. In NAFLD, excessive accumulation of lipids leads to an abnormal increase in hypoxia-inducible factor-1α (HIF-1α). Caveolin-1 (CAV1) may protect against NAFLD by inhibiting HIF-1α. This research aimed to determine whether CAV1 could attenuate APAP-exacerbated liver injury in NAFLD by inhibiting oxidative stress involving HIF-1α. In this study, 7-week-old C57BL/6 mice were fed a high-fat diet (HFD) for eight weeks, followed by the instillation of APAP. Levels of oxidative stress and liver lipid deposition were determined, and p-ERK1/2 and HIF-1α protein expression were measured by the Western blot (WB) method. In the APAP-treated group, the level of CAV1 was decreased, while the levels of HIF-1α and reactive oxygen species (ROS) were significantly increased. AML12 cells were treated with a mixture of palmitic acid (PA) and oleic acid (OA) (1:2 mix) for 48 h, and APAP was added for the last 24 h. Overexpression of CAV1 in AML12 cells significantly inhibited the expression of ROS and HIF-1α. And the results of immunofluorescence after treatment with CAV1-SiRNA showed that the HIF-1α levels were significantly increased in mitochondria. In conclusion, our experimental results suggest that CAV1 has a protective function in the fatty liver based on preventing oxidative stress, which involves HIF-1α. Thus, upregulation of CAV1 may attenuate APAP-exacerbated liver injury in NAFLD.
Collapse
Affiliation(s)
- Tingyu You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Bowen Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Shuai Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Xiangfu Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Dongdong Fu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Jiao Xin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China
| | - Lei Jin
- Department of Infectious diseases, The Second Affiliated Hospital of Anhui Medical University, China.
| | - Chengmu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
| |
Collapse
|
35
|
Tuero C, Becerril S, Ezquerro S, Neira G, Frühbeck G, Rodríguez A. Molecular and cellular mechanisms underlying the hepatoprotective role of ghrelin against NAFLD progression. J Physiol Biochem 2023; 79:833-849. [PMID: 36417140 DOI: 10.1007/s13105-022-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
The underlying mechanisms for the development and progression of nonalcoholic fatty liver disease (NAFLD) are complex and multifactorial. Within the last years, experimental and clinical evidences support the role of ghrelin in the development of NAFLD. Ghrelin is a gut hormone that plays a major role in the short-term regulation of appetite and long-term regulation of adiposity. The liver constitutes a target for ghrelin, where this gut-derived peptide triggers intracellular pathways regulating lipid metabolism, inflammation, and fibrosis. Interestingly, circulating ghrelin levels are altered in patients with metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome, which, in turn, are well-known risk factors for the pathogenesis of NAFLD. This review summarizes the molecular and cellular mechanisms involved in the hepatoprotective action of ghrelin, including the reduction of hepatocyte lipotoxicity via autophagy and fatty acid β-oxidation, mitochondrial dysfunction, endoplasmic reticulum stress and programmed cell death, the reversibility of the proinflammatory phenotype in Kupffer cells, and the inactivation of hepatic stellate cells. Together, the metabolic and inflammatory pathways regulated by ghrelin in the liver support its potential as a therapeutic target to prevent NAFLD in patients with metabolic disorders.
Collapse
Affiliation(s)
- Carlota Tuero
- Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gabriela Neira
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008, Pamplona, Irunlarrea 1, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
36
|
Myint M, Oppedisano F, De Giorgi V, Kim BM, Marincola FM, Alter HJ, Nesci S. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J Transl Med 2023; 21:757. [PMID: 37884933 PMCID: PMC10605416 DOI: 10.1186/s12967-023-04627-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Liver steatosis, inflammation, and variable degrees of fibrosis are the pathological manifestations of nonalcoholic steatohepatitis (NASH), an aggressive presentation of the most prevalent chronic liver disease in the Western world known as nonalcoholic fatty liver (NAFL). Mitochondrial hepatocyte dysfunction is a primary event that triggers inflammation, affecting Kupffer and hepatic stellate cell behaviour. Here, we consider the role of impaired mitochondrial function caused by lipotoxicity during oxidative stress in hepatocytes. Dysfunction in oxidative phosphorylation and mitochondrial ROS production cause the release of damage-associated molecular patterns from dying hepatocytes, leading to activation of innate immunity and trans-differentiation of hepatic stellate cells, thereby driving fibrosis in NASH.
Collapse
Affiliation(s)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | | | | | - Harvey J Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy.
| |
Collapse
|
37
|
Lee H, Lee TJ, Galloway CA, Zhi W, Xiao W, de Mesy Bentley KL, Sharma A, Teng Y, Sesaki H, Yoon Y. The mitochondrial fusion protein OPA1 is dispensable in the liver and its absence induces mitohormesis to protect liver from drug-induced injury. Nat Commun 2023; 14:6721. [PMID: 37872238 PMCID: PMC10593833 DOI: 10.1038/s41467-023-42564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are critical for metabolic homeostasis of the liver, and their dysfunction is a major cause of liver diseases. Optic atrophy 1 (OPA1) is a mitochondrial fusion protein with a role in cristae shaping. Disruption of OPA1 causes mitochondrial dysfunction. However, the role of OPA1 in liver function is poorly understood. In this study, we delete OPA1 in the fully developed liver of male mice. Unexpectedly, OPA1 liver knockout (LKO) mice are healthy with unaffected mitochondrial respiration, despite disrupted cristae morphology. OPA1 LKO induces a stress response that establishes a new homeostatic state for sustained liver function. Our data show that OPA1 is required for proper complex V assembly and that OPA1 LKO protects the liver from drug toxicity. Mechanistically, OPA1 LKO decreases toxic drug metabolism and confers resistance to the mitochondrial permeability transition. This study demonstrates that OPA1 is dispensable in the liver, and that the mitohormesis induced by OPA1 LKO prevents liver injury and contributes to liver resiliency.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Chad A Galloway
- Department of Pathology and Laboratory Medicine, and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Wei Xiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Karen L de Mesy Bentley
- Department of Pathology and Laboratory Medicine, and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
38
|
Chávez E, Aparicio-Cadena AR, Velasco-Loyden G, Lozano-Rosas MG, Domínguez-López M, Cancino-Bello A, Torres N, Tovar AR, Cabrera-Aguilar A, Chagoya-de Sánchez V. An adenosine derivative prevents the alterations observed in metabolic syndrome in a rat model induced by a rich high-fat diet and sucrose supplementation. PLoS One 2023; 18:e0292448. [PMID: 37796781 PMCID: PMC10553329 DOI: 10.1371/journal.pone.0292448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.
Collapse
Affiliation(s)
- Enrique Chávez
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Rusbel Aparicio-Cadena
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Velasco-Loyden
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Guadalupe Lozano-Rosas
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Domínguez-López
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Amairani Cancino-Bello
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Alejandro Cabrera-Aguilar
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Victoria Chagoya-de Sánchez
- Instituto de Fisiología Celular, Departamento de Biología Celular y del Desarrollo, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
39
|
Fernández-Sáez EM, Losarcos M, Becerril S, Valentí V, Moncada R, Martín M, Burrell MA, Catalán V, Gómez-Ambrosi J, Mugueta C, Colina I, Silva C, Escalada J, Frühbeck G, Rodríguez A. Uroguanylin prevents hepatic steatosis, mitochondrial dysfunction and fibrosis in obesity-associated NAFLD. Metabolism 2023; 147:155663. [PMID: 37517791 DOI: 10.1016/j.metabol.2023.155663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND The biological mediators supporting the resolution of liver steatosis, inflammation and fibrosis after bariatric surgery in patients with obesity and NAFLD remain unclear. We sought to analyze whether uroguanylin and guanylin, two gut hormones involved in the regulation of satiety, food preference and adiposity, are involved in the amelioration of obesity-associated NAFLD after bariatric surgery. METHODS Proguanylin (GUCA2A) and prouroguanylin (GUCA2B) were measured in 214 participants undergoing bariatric surgery with biopsy-proven NAFLD diagnosis. Pathways involved in lipid metabolism, mitochondrial network and fibrogenesis were evaluated in liver biopsies (n = 137). The effect of guanylin and uroguanylin on these metabolic functions was assessed in HepG2 hepatocytes and LX-2 hepatic stellate cells (HSC) under lipotoxic and profibrogenic conditions. RESULTS Plasma and hepatic expression of GUCA2B were decreased in obesity-associated NAFLD. Both GUCA2A and GUCA2B levels were increased after sleeve gastrectomy and Roux-en-Y gastric bypass in parallel to the improved liver function. The liver of patients with type 2 diabetes showed impaired mitochondrial β-oxidation, biogenesis, dynamics as well as increased fibrosis. Uroguanylin diminished the lipotoxicity in palmitate-treated HepG2 hepatocytes, evidenced by decresased steatosis and lipogenic factors, as well as increased mitochondrial network expression, AMPK-induced β-oxidation and oxygen consumption rate. Additionally, uroguanylin, but not guanylin, reversed HSC myofibroblast transdifferentiation as well as fibrogenesis after TGF-β1 stimulation. CONCLUSIONS Uroguanylin constitutes a protective factor against lipotoxicity, mitochondrial dysfunction and fibrosis. Increased GUCA2B levels might contribute to improve liver injury in patients with obesity-associated NAFLD after bariatric surgery.
Collapse
Affiliation(s)
| | - Maite Losarcos
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Marina Martín
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - María A Burrell
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Carmen Mugueta
- Department of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Inmaculada Colina
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
40
|
Grilo LF, Martins JD, Diniz MS, Tocantins C, Cavallaro CH, Baldeiras I, Cunha-Oliveira T, Ford S, Nathanielsz PW, Oliveira PJ, Pereira SP. Maternal hepatic adaptations during obese pregnancy encompass lobe-specific mitochondrial alterations and oxidative stress. Clin Sci (Lond) 2023; 137:1347-1372. [PMID: 37565250 DOI: 10.1042/cs20230048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Maternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality. Understanding the role of MO on liver function and pathophysiology could be crucial for better understanding the altered pathways leading to PALD and liver disease, possibly paving the way to prevention and adequate management of disease. We investigated specific hepatic metabolic alterations in mitochondria and oxidative stress during MO at late-gestation. Maternal hepatic tissue was collected at 90% gestation in Control and MO ewes (fed 150% of recommended nutrition starting 60 days before conception). Maternal hepatic redox state, mitochondrial respiratory chain (MRC), and OS markers were investigated. MO decreased MRC complex-II activity and its subunits SDHA and SDHB protein expression, increased complex-I and complex-IV activities despite reduced complex-IV subunit mtCO1 protein expression, and increased ATP synthase ATP5A subunit. Hepatic MO-metabolic remodeling was characterized by decreased adenine nucleotide translocator 1 and 2 (ANT-1/2) and voltage-dependent anion channel (VDAC) protein expression and protein kinase A (PKA) activity (P<0.01), and augmented NAD+/NADH ratio due to reduced NADH levels (P<0.01). MO showed an altered redox state with increased OS, increased lipid peroxidation (P<0.01), decreased GSH/GSSG ratio (P=0.005), increased superoxide dismutase (P=0.03) and decreased catalase (P=0.03) antioxidant enzymatic activities, lower catalase, glutathione peroxidase (GPX)-4 and glutathione reductase protein expression (P<0.05), and increased GPX-1 abundance (P=0.03). MO-related hepatic changes were more evident in the right lobe, corroborated by the integrative data analysis. Hepatic tissue from obese pregnant ewes showed alterations in the redox state, consistent with OS and MRC and metabolism remodeling. These are hallmarks of PALD and hepatic disease, supporting MO as a risk-factor and highlighting OS and mitochondrial dysfunction as mechanisms responsible for liver disease predisposition.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João D Martins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Chiara H Cavallaro
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Inês Baldeiras
- Neurological Clinic, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Stephen Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, U.S.A
| | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun 2023; 14:5405. [PMID: 37669951 PMCID: PMC10480499 DOI: 10.1038/s41467-023-41145-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
Affiliation(s)
- Bin Qiu
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- University of Alabama, Department of Biological Sciences, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Chrysovalantou E Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jae-Sung Yi
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Marie Robert
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Lei Zhang
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Hospital, Melbourne, Victoria, 3004, Australia
| | - Carlos Fernández-Hernando
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Jin AH, Qian YF, Ren J, Wang JG, Qiao F, Zhang ML, Du ZY, Luo Y. PDK inhibition promotes glucose utilization, reduces hepatic lipid deposition, and improves oxidative stress in largemouth bass (Micropterus salmoides) by increasing pyruvate oxidative phosphorylation. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108969. [PMID: 37488039 DOI: 10.1016/j.fsi.2023.108969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In omnivorous fish, the pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis is essential in the regulation of carbohydrate oxidative catabolism. Among the existing research, the role of the PDKs-PDHE1α axis in carnivorous fish with poor glucose utilization is unclear. In the present study, we determined the effects of PDK inhibition on the liver glycolipid metabolism of largemouth bass (Micropterus salmoides). DCA is a PDK-specific inhibitor that inhibits PDK by binding the allosteric sites. A total of 160 juvenile largemouth bass were randomly divided into two groups, with four replicates of 20 fish each, fed a control diet and a control diet supplemented with dichloroacetate (DCA) for 8 weeks. The present results showed that DCA supplementation significantly decreased the hepatosomatic index, triglycerides in liver and serum, and total liver lipids of largemouth bass compared with the control group. In addition, compared with the control group, DCA treatment significantly down-regulated gene expression associated with lipogenesis. Furthermore, DCA supplementation significantly decreased the mRNA expression of pdk3a and increased PDHE1α activity. In addition, DCA supplementation improved glucose oxidative catabolism and pyruvate oxidative phosphorylation (OXPHOS) in the liver, as evidenced by low pyruvate content in the liver and up-regulated expressions of glycolysis-related and TCA cycle/OXPHOS-related genes. Moreover, DCA consumption decreased hepatic malondialdehyde (MDA) content, enhanced the activities of superoxide dismutase (SOD), and increased transforming growth factor beta (tgf-β), glutathione S-transferase (gst), and superoxide dismutase 1 (sod1) gene expression compared with the control diet. This study demonstrated that inhibition of PDKs by DCA promoted glucose utilization, reduced hepatic lipid deposition, and improved oxidative stress in largemouth bass by increasing pyruvate OXPHOS. Our findings contribute to the understanding of the underlying mechanism of the PDKs-PDHE1α axis in glucose metabolism and improve the utilization of dietary carbohydrates in farmed carnivorous fish.
Collapse
Affiliation(s)
- An-Hui Jin
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Fan Qian
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiong Ren
- HANOVE Research Center, Wuxi, PR China
| | - Jin-Gang Wang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- LANEH, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
43
|
Buntenbroich I, Anton V, Perez-Hernandez D, Simões T, Gaedke F, Schauss A, Dittmar G, Riemer J, Escobar-Henriques M. Docking and stability defects in mitofusin highlight the proteasome as a potential therapeutic target. iScience 2023; 26:107014. [PMID: 37416455 PMCID: PMC10320088 DOI: 10.1016/j.isci.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 04/23/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Defects in mitochondrial fusion are at the base of many diseases. Mitofusins power membrane-remodeling events via self-interaction and GTP hydrolysis. However, how exactly mitofusins mediate fusion of the outer membrane is still unclear. Structural studies enable tailored design of mitofusin variants, providing valuable tools to dissect this stepwise process. Here, we found that the two cysteines conserved between yeast and mammals are required for mitochondrial fusion, revealing two novel steps of the fusion cycle. C381 is dominantly required for the formation of the trans-tethering complex, before GTP hydrolysis. C805 allows stabilizing the Fzo1 protein and the trans-tethering complex, just prior to membrane fusion. Moreover, proteasomal inhibition rescued Fzo1 C805S levels and membrane fusion, suggesting a possible application for clinically approved drugs. Together, our study provides insights into how assembly or stability defects in mitofusins might cause mitofusin-associated diseases and uncovers potential therapeutic intervention by proteasomal inhibition.
Collapse
Affiliation(s)
- Ira Buntenbroich
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Vincent Anton
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Daniel Perez-Hernandez
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Tânia Simões
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Institute for Biochemistry, University of Cologne, Cologne 50931, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics,University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
44
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548263. [PMID: 37502892 PMCID: PMC10369865 DOI: 10.1101/2023.07.10.548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
|
45
|
Huang X, Chen H, Wen S, Dong M, Zhou L, Yuan X. Therapeutic Approaches for Nonalcoholic Fatty Liver Disease: Established Targets and Drugs. Diabetes Metab Syndr Obes 2023; 16:1809-1819. [PMID: 37366486 PMCID: PMC10290856 DOI: 10.2147/dmso.s411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a multisystemic disease, is the most prevalent chronic liver disease characterized by extremely complex pathogenic mechanisms and multifactorial etiology, which often develops as a consequence of obesity, metabolic syndrome. Pathophysiological mechanisms involved in the development of NAFLD include diet, obesity, insulin resistance (IR), genetic and epigenetic determinants, intestinal dysbiosis, oxidative/nitrosative stress, autophagy dysregulation, hepatic inflammation, gut-liver axis, gut microbes, impaired mitochondrial metabolism and regulation of hepatic lipid metabolism. Some of the new drugs for the treatment of NAFLD are introduced here. All of them achieve therapeutic objectives by interfering with certain pathophysiological pathways of NAFLD, including fibroblast growth factors (FGF) analogues, peroxisome proliferator-activated receptors (PPARs) agonists, glucagon-like peptide-1 (GLP-1) agonists, G protein-coupled receptors (GPCRs), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), farnesoid X receptor (FXR), fatty acid synthase inhibitor (FASNi), antioxidants, etc. This review describes some pathophysiological mechanisms of NAFLD and established targets and drugs.
Collapse
Affiliation(s)
- Xiaojing Huang
- Graduate School of Fudan University, Shanghai, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Abrigo J, Olguín H, Tacchi F, Orozco-Aguilar J, Valero-Breton M, Soto J, Castro-Sepúlveda M, Elorza AA, Simon F, Cabello-Verrugio C. Cholic and deoxycholic acids induce mitochondrial dysfunction, impaired biogenesis and autophagic flux in skeletal muscle cells. Biol Res 2023; 56:30. [PMID: 37291645 DOI: 10.1186/s40659-023-00436-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Skeletal muscle is sensitive to bile acids (BA) because it expresses the TGR5 receptor for BA. Cholic (CA) and deoxycholic (DCA) acids induce a sarcopenia-like phenotype through TGR5-dependent mechanisms. Besides, a mouse model of cholestasis-induced sarcopenia was characterised by increased levels of serum BA and muscle weakness, alterations that are dependent on TGR5 expression. Mitochondrial alterations, such as decreased mitochondrial potential and oxygen consumption rate (OCR), increased mitochondrial reactive oxygen species (mtROS) and unbalanced biogenesis and mitophagy, have not been studied in BA-induced sarcopenia. METHODS We evaluated the effects of DCA and CA on mitochondrial alterations in C2C12 myotubes and a mouse model of cholestasis-induced sarcopenia. We measured mitochondrial mass by TOM20 levels and mitochondrial DNA; ultrastructural alterations by transmission electronic microscopy; mitochondrial biogenesis by PGC-1α plasmid reporter activity and protein levels by western blot analysis; mitophagy by the co-localisation of the MitoTracker and LysoTracker fluorescent probes; mitochondrial potential by detecting the TMRE probe signal; protein levels of OXPHOS complexes and LC3B by western blot analysis; OCR by Seahorse measures; and mtROS by MitoSOX probe signals. RESULTS DCA and CA caused a reduction in mitochondrial mass and decreased mitochondrial biogenesis. Interestingly, DCA and CA increased LC3II/LC3I ratio and decreased autophagic flux concordant with raised mitophagosome-like structures. In addition, DCA and CA decreased mitochondrial potential and reduced protein levels in OXPHOS complexes I and II. The results also demonstrated that DCA and CA decreased basal, ATP-linked, FCCP-induced maximal respiration and spare OCR. DCA and CA also reduced the number of cristae. In addition, DCA and CA increased the mtROS. In mice with cholestasis-induced sarcopenia, TOM20, OXPHOS complexes I, II and III, and OCR were diminished. Interestingly, the OCR and OXPHOS complexes were correlated with muscle strength and bile acid levels. CONCLUSION Our results showed that DCA and CA decreased mitochondrial mass, possibly by reducing mitochondrial biogenesis, which affects mitochondrial function, thereby altering potential OCR and mtROS generation. Some mitochondrial alterations were also observed in a mouse model of cholestasis-induced sarcopenia characterised by increased levels of BA, such as DCA and CA.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile.
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Abdelraheem KM, Younis NN, Shaheen MA, Elswefy SE, Ali SI. Raspberry ketone improves non-alcoholic fatty liver disease induced in rats by modulating sphingosine kinase/sphingosine-1-phosphate and toll-like receptor 4 pathways. J Pharm Pharmacol 2023:7160323. [PMID: 37167472 DOI: 10.1093/jpp/rgad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To investigate the therapeutic role of calorie-restricted diet (CR) and raspberry ketone (RK) in non-alcoholic fatty liver disease (NAFLD) and the implication of sphingosine kinase-1 (SphK1)/sphingosine-1-phosphate (S1P) and toll-like receptor 4 (TLR4) signalling. METHODS NAFLD was induced by feeding rats high-fat-fructose-diet (HFFD) for 6 weeks. Rats were then randomly assigned to three groups (n = 6 each); NAFLD group continued on HFFD for another 8 weeks. CR group was switched to CR diet (25% calorie restriction) for 8 weeks and RK group was switched to normal diet and received RK (55 mg/kg/day; orally) for 8 weeks. Another six rats were used as normal control. KEY FINDINGS HFFD induced a state of NAFLD indicated by increased fat deposition in liver tissue along with dyslipidemia, elevated liver enzymes, oxidative stress and inflammation. Either CR diet or RK reversed these changes and decreased HFFD-induced elevation of hepatic SphK1, S1P, S1PR1 and TLR4. Of notice, RK along with a normal calorie diet was even better than CR alone in most studied parameters. CONCLUSIONS SphK1/S1P and TLR4 are interconnected and related to the establishment of HFFD-induced NAFLD and can be modulated by RK. Supplementation of RK without calorie restriction to patients with NAFLD unable to follow CR diet to achieve their treatment goals would be a promising therapeutic modality.
Collapse
Affiliation(s)
- Kareem M Abdelraheem
- Biochemistry Department, Faculty of Pharmacy, Sinai University - Qantara Branch, Ismailia, Egypt
| | - Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Sahar E Elswefy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Biochemistry Department, Faculty of Pharmacy, Delta University for Sciences and Technology, Gamasa, Egypt
| | - Sousou I Ali
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
49
|
Meng Z, Gao M, Wang C, Guan S, Zhang D, Lu J. Apigenin Alleviated High-Fat-Diet-Induced Hepatic Pyroptosis by Mitophagy-ROS-CTSB-NLRP3 Pathway in Mice and AML12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7032-7045. [PMID: 37141464 DOI: 10.1021/acs.jafc.2c07581] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Apigenin is considered the most-known natural flavonoid and is abundant in a wide variety of fruits and vegetables. A high fat diet (HFD) can induce liver injury and hepatocyte death in multiple ways. Pyroptosis is an innovative type of programmed cell death. Moreover, excessive pyroptosis of hepatocytes leads to liver injury. We used HFD to induce liver cell pyroptosis in C57BL/6J mice in this work. After gavage of apigenin, apigenin can significantly reduce the level of lactate dehydrogenase (LDH) in liver tissue ignited by HFD and reduce the levels of NLRP3 (NOD-like receptor family pyrin domain containing 3), the N-terminal domain of GSDMD (GSDMD-N), cleaved-caspase 1, cathepsin B (CTSB), interleukin-1β (IL-1β) and interleukin-18 (IL-18) protein expression and the colocalization of NLRP3 and CTSB and increase the level of lysosomal associated membrane protein-1 (LAMP-1) protein expression, thus alleviating cell pyroptosis. In a further in vitro mechanism study, we find that palmitic acid (PA) can induce pyroptosis in AML12 cells. After adding apigenin, apigenin can clear the damaged mitochondria through mitophagy and reduce the generation of intracellular reactive oxygen species (ROS), thus alleviating CTSB release caused by lysosomal membrane permeabilization (LMP), reducing the LDH release caused by PA and reducing the levels of NLRP3, GSDMD-N, cleaved-caspase 1, CTSB, IL-1β, and IL-18 protein expression. By adding the mitophagy inhibitor cyclosporin A (CsA), LC3-siRNA, the CTSB inhibitor CA-074 methyl ester (CA-074 Me), and the NLRP3 inhibitor MCC950, the aforementioned results were further confirmed. Therefore, our results show that HFD-fed and PA can damage mitochondria, promote the production of intracellular ROS, enhance the lysosomal membrane permeabilization (LMP), and cause the leakage of CTSB, thus activating the NLRP3 inflammatory body and inducing pyroptosis in C57BL/6J mice and AML12 cells, while apigenin alleviates this phenomenon through the mitophagy-ROS-CTSB-NLRP3 pathway.
Collapse
Affiliation(s)
- Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Min Gao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Chunyun Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
50
|
Xu X, Wang L, Zhang K, Zhang Y, Fan G. Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomed Pharmacother 2023; 161:114538. [PMID: 36931026 DOI: 10.1016/j.biopha.2023.114538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolic diseases have become a public health problem worldwide. Effective, novel and natural therapies are urgently needed to treat metabolic diseases. As natural bioactive compounds, polysaccharides have many physiological and medicinal properties. Recently, herb-derived polysaccharides have shown beneficial effects in the treatment of metabolic diseases, but the underlying mechanisms remain unclear. This review comprehensively summarizes the pharmacological progress and clinical evidence of herb-derived polysaccharides in the treatment of three metabolic diseases, namely type 2 diabetes mellitus, nonalcoholic fatty liver disease and obesity, and more importantly, discusses the molecular mechanism involved. Existing evidence has proved that herb-derived polysaccharides can maintain glucose homeostasis, promote insulin secretion, improve insulin resistance, reduce weight gain and hepatic steatosis, inhibit lipogenesis, alleviate oxidative stress and inflammation, and improve gut microbiota disorders in rodents with metabolic diseases. Notably, so far, human clinical trials of herb-derived polysaccharides for these three metabolic diseases remain rare. All in all, herb-derived polysaccharides may have good potential as drug candidates for the prevention and management of metabolic diseases. More high-quality clinical trials are needed to further validate its effectiveness and safety in human subjects.
Collapse
Affiliation(s)
- Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|