1
|
Yang X, Gao X, Jiang X, Yue K, Luo P. Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases. Neural Regen Res 2025; 20:3076-3094. [PMID: 39435635 PMCID: PMC11881733 DOI: 10.4103/nrr.nrr-d-24-00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases. Owing to their therapeutic properties and ability to cross the blood-brain barrier, extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions, including ischemic stroke, traumatic brain injury, neurodegenerative diseases, glioma, and psychosis. However, the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body. To address these limitations, multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles, thereby enabling the delivery of therapeutic contents to specific tissues or cells. Therefore, this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles, exploring their applications in treating traumatic brain injury, ischemic stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, glioma, and psychosis. Additionally, we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases. This review offers new insights for developing highly targeted therapies in this field.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Lu Z, Lyu Z, Dong P, Liu Y, Huang L. N6-methyladenosine RNA modification in stomach carcinoma: Novel insights into mechanisms and implications for diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167793. [PMID: 40088577 DOI: 10.1016/j.bbadis.2025.167793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) RNA methylation is crucially involved in the genesis and advancement of gastric cancer (GC) by controlling various pathobiological aspects including gene expression, signal transduction, metabolism, cell death, epithelial-mesenchymal transition, angiogenesis, and exosome function. Despite its importance, the exact mechanisms by which m6A modification influences GC biology remain inadequately explored. This review consolidates the latest advances in uncovering the mechanisms and diverse roles of m6A in GC and proposes new research and translational directions. Key regulators (writers, readers, and erasers) of m6A, such as METTL3/14/16 and WTAP, significantly affect cancer progression, anticancer immune response, and treatment outcomes. m6A modification also impacts immune cell infiltration and the tumor microenvironment, highlighting its potential as a diagnostic and prognostic marker. Interactions between m6A methylation and non-coding RNAs offer further novel insights into GC development and therapeutic targets. Targeting m6A regulators could enhance immunotherapy response, overcome treatment resistance, and improve oncological and clinical outcomes. Models based on m6A can precisely predict treatment response and prognosis in GC. Additional investigation is needed to fully understand the mechanisms of m6A methylation and its potential clinical applications and relevance (e.g., as precise markers for early detection, prediction of outcome, and response to therapy and as therapeutic targets) in GC. Future research should focus on in vivo studies, potential clinical trials, and the examination of m6A modification in other types of cancers.
Collapse
Affiliation(s)
- Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaojie Lyu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
3
|
Ma J, Zhao J, Zhang C, Tan J, Cheng A, Niu Z, Lin Z, Pan G, Chen C, Ding Y, Zhong M, Zhuang Y, Xiong Y, Zhou H, Zhou S, Xu M, Ye W, Li F, Song Y, Wang Z, Hong X. Cleavage of CAD by caspase-3 determines the cancer cell fate during chemotherapy. Nat Commun 2025; 16:5006. [PMID: 40442064 PMCID: PMC12123037 DOI: 10.1038/s41467-025-60144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Abstract
Metabolic heterogeneity resulting from the intra-tumoral heterogeneity mediates massive adverse outcomes of tumor therapy, including chemotherapeutic resistance, but the mechanisms inside remain largely unknown. Here, we find that the de novo pyrimidine synthesis pathway determines the chemosensitivity. Chemotherapeutic drugs promote the degradation of cytosolic Carbamoyl-phosphate synthetase II, Aspartate transcarbamylase, and Dihydroorotase (CAD), an enzyme that is rate-limiting for pyrimidine synthesis, leading to apoptosis. We also find that CAD needs to be cleaved by caspase-3 on its Asp1371 residue, before its degradation. Overexpressing CAD or mutating Asp1371 to block caspase-3 cleavage confers chemoresistance in xenograft and Cldn18-ATK gastric cancer models. Importantly, mutations related to Asp1371 of CAD are found in tumor samples that failed neoadjuvant chemotherapy and pharmacological targeting of CAD-Asp1371 mutations using RMY-186 ameliorates chemotherapy efficacy. Our work reveals the vulnerability of de novo pyrimidine synthesis during chemotherapy, highlighting CAD as a promising therapeutic target and biomarker.
Collapse
Affiliation(s)
- Jingsong Ma
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Jiabao Zhao
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chensong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signalling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jinshui Tan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Ao Cheng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhuo Niu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zeyang Lin
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangchao Pan
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mengya Zhong
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yubo Xiong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Huiwen Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Shengyi Zhou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Meijuan Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Wenjie Ye
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China
| | - Funan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen, China.
| |
Collapse
|
4
|
Guo C, Tang H, Ren M, Zhang Y. BHLHE40-mediated RGS16 upregulation: a driver propelling gastric cancer progression via ferroptosis suppression. Hereditas 2025; 162:87. [PMID: 40413527 PMCID: PMC12102885 DOI: 10.1186/s41065-025-00447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Gastric cancer (GC), a malignant neoplasm that arises from the epithelium of the gastric mucosa, endangers patients' lives and health severely. Regulator of G-protein signaling 16 (RGS16) has been found to be correlated with the malignant progression of various cancers, and BHLHE40 is highly expressed in GC. However, it remains unclear whether there is a regulatory mechanism between the them. METHODS The bioinformatics tools were applied to assess the differentially expressed genes in GC. Next, the expression levels of mRNA and protein were evaluated by qRT-PCR and Western blot. Cellular behaviors were assessed using CCK-8, EdU, Transwell, and flow cytometry assays. Meanwhile, the ferroptosis-related indicators were measured. Subsequently, the xenograft models were set up to estimate the role of RGS16 in vivo. Besides, the interaction between BHLHE40 and RGS16 was determined using ChIP assay and dual-luciferase reporter assay. RESULTS RGS16 exhibited an upregulated pattern in GC. In addition, silencing RGS16 impeded the proliferation, migration and invasion of GC cells while reinforcing apoptosis and ferroptosis. Moreover, RGS16 boosted the growth of tumors in vivo. Furthermore, BHLHE40 could bind to RGS16 and positively regulate its expression. Overexpression of RGS16 reversed the effects of silencing BHLHE40 on GC cells. CONCLUSION BHLHE40 curbed ferroptosis and oxidative stress of GC cells by modulating the expression of RGS16, thereby facilitating the malignant progression of GC.
Collapse
Affiliation(s)
- Caiyun Guo
- Department of Gastroenterology, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, China
| | - Hua Tang
- Department of Gastroenterology, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, China.
| | - Maifang Ren
- Department of Gastroenterology, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, China
| | - Yongli Zhang
- Department of Gastroenterology, Tongchuan People's Hospital, Tongchuan, 727100, Shaanxi, China.
| |
Collapse
|
5
|
Yu K, Cao Y, Zhang Z, Wang L, Gu Y, Xu T, Zhang X, Guo X, Shen Z, Qin J. Blockade of CLEVER-1 restrains immune evasion and enhances anti-PD-1 immunotherapy in gastric cancer. J Immunother Cancer 2025; 13:e011080. [PMID: 40404204 PMCID: PMC12096977 DOI: 10.1136/jitc-2024-011080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/16/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) remains a major global health burden. Despite the advancements in immunotherapy for patients with GC, the heterogeneity of GC limits response rates, especially in immune "cold" subtypes, including genomically stable and epithelial-mesenchymal transition GC. Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1), a newly recognized immune checkpoint molecule predominantly expressed on tumor-associated macrophages (TAMs), remains poorly understood in GC. This study aims to explore the clinical significance of CLEVER-1+TAM infiltration, elucidate its role in modulating the tumor immune landscape, and investigate the therapeutic potential of CLEVER-1 blockade in enhancing immunotherapy. METHODS This study analyzed two independent GC cohorts and single-cell RNA sequencing data (GSE183904). CLEVER-1 expression in TAMs was assessed via multiplex immunofluorescence, flow cytometry, and RNA sequencing. The clinical relevance of CLEVER-1+TAM infiltration was evaluated in relation to tumor, node, metastases staging, molecular subtypes, prognosis, and immunochemotherapy response. Transcriptomic and pathway analyses characterized the immunophenotype of CLEVER-1+TAMs. Functional assays examined their suppression on CD8+T cells, while interventional experiments assessed the impact of CLEVER-1 blockade alone or with programmed cell death protein-1 (PD-1) inhibition. RESULTS CLEVER-1 was predominantly expressed on TAMs in GC and was associated with worse clinical outcomes. Transcriptomic and phenotypic analyses revealed that CLEVER-1+TAMs display a dynamic immunophenotype and critically suppress T-cell function, fostering an immunosuppressive microenvironment. High CLEVER-1+TAM infiltration was linked to poor response or adaptive resistance to PD-1 blockade therapy. CLEVER-1 blockade reprogrammed TAMs toward a pro-inflammatory phenotype, resulting in enhanced CD8+T cell cytotoxicity and proliferation. Co-targeting CLEVER-1 and PD-1 synergistically enhanced antitumor responses. CONCLUSIONS High infiltration of CLEVER-1+TAMs indicates immune suppression and poor prognosis in GC. The combination of CLEVER-1 and PD-1 blockade emerges as a dual-pronged strategy to boost immune-mediated tumor control and prevent treatment relapse in GC.
Collapse
Affiliation(s)
- Kuan Yu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zihao Zhang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Leihao Wang
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yichao Gu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tianwei Xu
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xinxin Guo
- Department of Pathology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital Fudan University, Shanghai, China
- Gastric Cancer Center, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wu Y, Liu J, Yin T, Li X, Liu X, Peng X, Zhan X. SELP can affect the immune microenvironment of gastric cancer and is associated with poor prognosis. Discov Oncol 2025; 16:846. [PMID: 40397261 PMCID: PMC12095770 DOI: 10.1007/s12672-025-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
The tumor microenvironment (TME) plays a crucial role in the occurrence and progression of gastric cancer. Yet, we still don't understand how immune and stromal components of TMEs are modulated. In this study, we applied the ESTIMATE algorithm to calculate the number of immune and stromal components in 410 STAD cases in the Cancer Genome Atlas (TCGA) database. COX regression analysis and protein-protein interaction (PPI) network construction were used to analyze differentially expressed genes (DEGs). Then, P-selectin (SELP) was identified as a predictor by cross-analysis of univariate COX and PPI. After verifying the clinical significance of SELP for study, we performed an immune infiltration analysis and identified 54 immunomodulators associated with SELP through public data. Immunomodulation associated with gastric cancer prognosis was then confirmed by LASSO regression, and the previous results were further validated with single-cell data. Finally, we verified that SELP can promote EMT on gastric cancer cells. In conclusion, we validated that SELP may affect the biological phenotype of gastric cancer with the immune microenvironment alteration of gastric cancer.
Collapse
Affiliation(s)
- Yue Wu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Jingyu Liu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Tong Yin
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Xiaoxiao Li
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Xian Liu
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China
| | - Xiaobo Peng
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Yang F, Shaibu Z, Liu Q, Zhu W. Cytokine profiles as predictive biomarkers for treatment outcomes in advanced gastric cancer patients undergoing PD-1 blockade immunochemotherapy: a meta-analysis. Clin Exp Med 2025; 25:136. [PMID: 40317367 PMCID: PMC12049293 DOI: 10.1007/s10238-025-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
Immunotherapy, specifically PD-1 blockade, is a promising treatment for advanced gastric cancer (AGC). However, predicting patient response is challenging. Cytokines, key immune response regulators, could be important biomarkers for forecasting patient outcomes and susceptibility to PD-1 blockade immunochemotherapy in AGC. This meta-analysis aims to evaluate the potential of cytokine profiles as predictive biomarkers for treatment outcomes in patients with AGC undergoing immunochemotherapy. Meta-analysis. Original studies on the evaluation of various serum samples of cytokines in AGC patients after immunochemotherapy were searched in PubMed, Google Scholar, Embase, Cochrane Library, and Web of Science, with a focus on literature published up to October 31, 2023. Data from multiple studies were pooled to analyze the impact of IL-2, IL-4, IL-6, IL-8, IL-10, and IFN-γ expression on treatment outcomes using RevMan 5.4.1. Prospero ID: CRD42024557837. Five studies were included. In AGC patients receiving immunochemotherapy, high levels of IL-4 were correlated with enhanced PFS following therapy. In contrast, there were no significant differences observed in the expression of IL-2, IL-6, IL-10, and IFN-γ for PFS in AGC after treatment. Notably, elevated IL-6 expression was significantly associated with poorer OS in AGC patients undergoing immunochemotherapy. The findings suggest that expression levels of cytokines, particularly IL-4 and IL-6, play a significant role in predicting treatment outcomes in AGC patients undergoing immunochemotherapy. Further research is warranted to validate these results and elucidate the underlying mechanisms driving these associations.
Collapse
Affiliation(s)
- Fumeng Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University & The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu, China
| | - Zakari Shaibu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qian Liu
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University & The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Shatila M, Sperling G, Machado AP, Vohra M, Baerman E, Toni END, Török HP, Zhao D, Zhou Y, Shafi MA, Thomas AS, Alasadi M, Wang Y. Helicobacter pylori infection negatively affects response of gastric cancer to immunotherapy. Ann Gastroenterol 2025; 38:262-269. [PMID: 40371204 PMCID: PMC12070332 DOI: 10.20524/aog.2025.0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Helicobacter pylori (H. pylori) is a known risk factor for gastric cancer, possibly via the PD-1/L1 pathway, and this infection may reduce the efficacy of immune checkpoint inhibitors (ICIs). This study explored the effects of H. pylori infection status on survival outcomes in patients with gastric cancer. Methods This single-center, retrospective study included patients with gastric adenocarcinoma between June 1985 and August 2022. Patients with different histological subtypes were excluded. Primary variables of interest included H. pylori infection status and treatment with ICIs. Other clinical information included demographics, cancer histology, the presence of other cancers, and vital status. Results A total of 2930 patients were included, of whom 206 (7.0%) received ICIs, 196 (6.7%) had prior H. pylori infection, and 1037 (35.4%) had a diffuse subtype. Diffuse cancer subtypes were associated with better survival (P<0.05) at 3 and 5 years compared to intestinal-type adenocarcinomas. Diffuse cancers demonstrated better survival outcomes than intestinal cancers at 10 years, but only among H. pylori-positive patients (P=0.013). H. pylori positivity was associated with worse survival at 3 years (P=0.041) among patients taking ICIs, but not in those not receiving ICIs (P=0.325). Conclusions These findings suggest H. pylori infection may be an obstacle to successful immunotherapy, and may interact with cancer subtypes to differentially impact survival. Future studies are needed to validate the potential prognostic value of H. pylori positivity in gastric cancer.
Collapse
Affiliation(s)
- Malek Shatila
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Gabriel Sperling
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA (Gabriel Sperling)
| | - Antonio Pizuorno Machado
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA (Antonio Pizuorno Machado, Muhammad Vohra)
| | - Muhammad Vohra
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA (Antonio Pizuorno Machado, Muhammad Vohra)
| | - Elliot Baerman
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA (Elliot Baerman)
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany (Enrico N. De Toni, Helga-Paula Török)
| | - Helga-Paula Török
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany (Enrico N. De Toni, Helga-Paula Török)
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Dan Zhao)
| | - Yan Zhou
- Department of Hospital Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Yan Zhou)
| | - Mehnaz A. Shafi
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Anusha Shirwaikar Thomas
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Mazen Alasadi
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA (Malek Shatila, Mehnaz A. Shafi, Anusha Shirwaikar Thomas, Mazen Alasadi, Yinghong Wang)
| |
Collapse
|
9
|
Lou Y, Wang Y, Lu J, Chen X. MicroRNA-targeted nanoparticle delivery systems for cancer therapy: current status and future prospects. Nanomedicine (Lond) 2025; 20:1181-1194. [PMID: 40231694 PMCID: PMC12068351 DOI: 10.1080/17435889.2025.2492542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/09/2025] [Indexed: 04/16/2025] Open
Abstract
Recently, the regulatory effects of microRNAs (miRNAs) on gene expression have been exploited for applications in the diagnosis and treatment of cancer, neurological diseases, and cardiovascular diseases. However, the susceptibility of miRNAs to degradation during somatic circulation and the challenges associated with their delivery to target tissues and cells have limited the clinical application of miRNAs. For application in tumor therapy, it is essential for miRNAs to specifically target cancer cells. Therefore, various novel miRNA delivery systems that protect miRNA against the activity of serum nuclease and deliver miRNA to target cells have been developed and optimized. This review introduces the passive and active targeting strategies of nanoparticles, summarizes the recent progress of miRNA nanocarriers with tumor-targeting ability, and discusses various nanoparticle delivery systems and their antitumor applications. Additionally, this review focuses on the translational challenges and potential strategies for advancing miRNA-based therapies into the clinic.
Collapse
Affiliation(s)
- Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yutian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Wang M, Guo Y, Xu Y, Yu Y, Lin J, Lin Y, Ge L, Zhang Y, Chi L, Xue F, Wang Q. Unraveling the Role of Programmed Cell Death Gene Signature and THBS1 in Gastric Cancer Progression and Therapy Response. J Gastroenterol Hepatol 2025. [PMID: 40294913 DOI: 10.1111/jgh.16987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Programmed cell death (PCD) genes play crucial roles in cancer progression and response to therapies, yet their impact on gastric cancer remains inadequately elucidated. This study aimed to create a prognostic cell death signature (PCDs) for gastric cancer, providing insights into potential therapeutic targets and survival predictors. METHODS We utilized TCGA-STAD and five GEO datasets, representing thousands of gastric cancer samples, for a comprehensive analysis of PCD genes. Differential gene expression, functional enrichment, survival, and machine learning analyses were conducted to construct a PCD-based prognostic model. RESULTS A total of 249 differentially expressed PCD genes were identified between cancerous and noncancerous gastric tissues. Subsequently, a PCD signature based on seven genes was developed and cross-validated across multiple cohorts. The high-PCD subtype correlated with poorer survival outcomes, lower tumor mutational burden, higher infiltration of M2 macrophages, lower levels of immune checkpoint expression, and decreased response to immunotherapy. A nomogram incorporating the PCDs provided accurate survival rate predictions. Additionally, nine machine learning algorithms were implemented for recurrence prediction, with the random forest model displaying high effectiveness. In this model, thrombospondin 1 (THBS1) showed the highest weight, and its knockdown significantly reduced gastric cancer cell proliferation and invasion. CONCLUSION This study underscores the significance of PCD genes, particularly THBS1, in gastric cancer progression and highlights their value as potential therapeutic targets. The predictive models developed here can aid in assessing patient prognosis and tailoring personalized treatment strategies.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Province Engineering Research Center of Traditional Chinese Medicine Health Preservation, Nanjing, Jiangsu Province, China
| | - YinChao Guo
- Jiangsu Province Engineering Research Center of Traditional Chinese Medicine Health Preservation, Nanjing, Jiangsu Province, China
| | - YiNing Xu
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yan Yu
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jia Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - LiLin Ge
- Jiangsu Province Engineering Research Center of Traditional Chinese Medicine Health Preservation, Nanjing, Jiangsu Province, China
| | - Yitong Zhang
- University of Newcastle, Callaghan, New South Wales, Australia
| | - LiangJie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - FangQin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - QingShui Wang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
11
|
Dai H, Ren J, Wang C, Huang J, Wang X. Prognostic molecular subtype reveals the heterogeneity of tumor immune microenvironment in gastric cancer. Sci Rep 2025; 15:14453. [PMID: 40281016 PMCID: PMC12032113 DOI: 10.1038/s41598-025-96686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related deaths and exhibits considerable heterogeneity among patients. Thus, accurate classifications are essential for predicting prognosis and developing personalized therapeutic strategies. To address this, we retrospectively analyzed multi-omics data from 359 GC samples, incorporating transcriptomic RNA (mRNA), DNA methylation, mutation data, and clinical parameters. Using ten clustering algorithms, we integrated these datasets to classify GC into molecular subtypes. The robustness of our clustering approach was externally validated using an independent cohort generated from different sequencing technologies, and we characterized the heterogeneity of each subtype. Our analysis identified three distinct molecular subtypes of GC, designated CS1, CS2, and CS3. These subtypes exhibited significant differences in survival outcomes, activation of cancer-related pathways, immune microenvironment composition, genomic alterations, and responses to immunotherapy and chemotherapy. Notably, Cathepsin V (CTSV) was significantly downregulated in the immunologically active and highly responsive CS3 subtype, while it was upregulated in the immunologically exhausted CS2 subtype. These findings suggest that CTSV could serve as both a prognostic marker and a molecular classifier. Furthermore, this study provides the first evidence of CTSV's high expression in GC and its potential role in tumor progression. The novel clustering approach, based on ten clustering algorithms and comprehensive analysis of multi-omics data in gastric cancer, can guide prognosis, characterize different clinical and biological features, and elucidate the tumor immune microenvironment, providing insights into the intratumor heterogeneity of GC and potential novel therapeutic strategies. Additionally, CTSV emerges as a prognostic marker linked to tumor immunity and disease progression, which lays the foundation for improved stratification strategies and the development of targeted therapeutic approaches in GC.
Collapse
Affiliation(s)
- Hui Dai
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jing Ren
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chun Wang
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Bao Z, Jia N, Zhang Z, Hou C, Yao B, Li Y. Prospects for the application of pathological response rate in neoadjuvant therapy for gastric cancer. Front Oncol 2025; 15:1528529. [PMID: 40291912 PMCID: PMC12021903 DOI: 10.3389/fonc.2025.1528529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
With the annual increase in the incidence and mortality rates of gastric cancer, it has gradually become one of the significant threats to human health. Approximately 90% of gastric cancer patients are diagnosed with adenocarcinoma. Although the 5-year survival rate for early-stage gastric cancer can exceed 90%, due to its concealed symptoms, less than half of the patients are eligible for radical surgical treatment upon diagnosis. For gastric cancer patients receiving palliative treatment, the current expected survival time is only about one year. In China, the majority of gastric cancer patients, accounting for about 80% of the total, are in the locally advanced stage. For these patients, radical surgery remains the primary treatment option; however, surgery alone is often inadequate in controlling tumor progression. In the pivotal MAGIC study, the recurrence rate was as high as 75%, and similar results were obtained in the French ACCORD07-FFCD9703 study. Numerous clinical trials are currently exploring preoperative neoadjuvant therapy for patients with locally advanced gastric cancer. Data indicates that preoperative neoadjuvant therapy can not only reduce the size of the local tumor but also shrink surrounding lymph nodes, thereby downstaging the tumor and improving the R0 resection rate. Additionally, it can decrease tumor cell activity and eliminate potential micrometastases. The emergence of various immunotherapies has ushered in a new era for neoadjuvant treatment options for gastric cancer.
Collapse
Affiliation(s)
| | | | - Zhidong Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | |
Collapse
|
13
|
Zhou D, Cui Y, Liang T, Wu Z, Yan H, Li Y, Yin W, Lin Y, You Q. Pan-cancer analysis identifies CLEC12A as a potential biomarker and therapeutic target for lung adenocarcinoma. Cancer Cell Int 2025; 25:128. [PMID: 40181336 PMCID: PMC11967068 DOI: 10.1186/s12935-025-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
C-type lectin domain family 12 member A (CLEC12A) is a type II transmembrane glycoprotein widely expressed in innate immune cells, where it plays a crucial role in immune modulation and has been implicated in cancer progression. However, its precise function in oncogenesis and immune infiltration remains incompletely understood. To investigate this, we utilized multiple databases to assess the mRNA and protein expression levels of CLEC12A across normal tissues and a broad spectrum of cancers. We also evaluated its prognostic and diagnostic significance in pan-cancer contexts. Furthermore, the relationship between CLEC12A expression and immune cell infiltration, immune checkpoints, and immune predictors was explored. In addition, Weighted Gene Co-Expression Network Analysis (WGCNA) and differential expression analysis were performed to examine the biological relevance of CLEC12A in lung adenocarcinoma (LUAD). We also leveraged various databases to predict CLEC12A's response to immunotherapy and drug sensitivity. Finally, in vitro experiments validated the functional role of CLEC12A in LUAD. Our comprehensive pan-cancer analysis revealed that CLEC12A exhibited distinct expression patterns across different cancer types, suggesting its potential as both a diagnostic and prognostic biomarker. Notably, CLEC12A expression was strongly correlated with immune cell infiltration, immune checkpoints, and immune predictors. Functional enrichment analysis highlighted that increased CLEC12A expression in LUAD was associated with a variety of immune-related biological processes and pathways. Moreover, CLEC12A showed significant predictive value for immunotherapy outcomes, and several drugs targeting CLEC12A were identified. In vitro experiments further demonstrated that CLEC12A overexpression inhibited the proliferation, migration, and invasion of LUAD cells. Taken together, our findings position CLEC12A as a promising candidate for cancer detection, prognosis, and as a therapeutic target, particularly in LUAD, where it may serve as a potential target for both immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Desheng Zhou
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianxiang Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhenpeng Wu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haiping Yan
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingchang Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Yunen Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Qiang You
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Biotherapy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Wang S, Huang J, Zeng T, Chen Y, Xu Y, Zhang B. Parps in immune response: Potential targets for cancer immunotherapy. Biochem Pharmacol 2025; 234:116803. [PMID: 39965743 DOI: 10.1016/j.bcp.2025.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy in clinical application faces numerous challenges pertaining to both effectiveness and safety. Poly(ADP-ribose) polymerases (PARPs) exhibit multifunctional characteristics by transferring ADP-ribose units to target proteins or nucleic acids. In recent years, more and more attention has been paid to the biological function of PARPs in immune response. This article reviews the relationship between PARP family members and immune response. PARP1 and PARP2 inhibit anti-tumor immune activity by regulating immune checkpoint expression and the cGAS/STING signaling pathway. PARP7 and PARP11 play an important role in promoting immunosuppressive tumor microenvironment. PARP9 promotes the production of Type I interferon and the infiltration of macrophages. PARP13 is a key tumor suppressor that promotes anti-tumor immune response. PARP14 plays a crucial role in promoting the differentiation of macrophages towards the M2 pro-tumor phenotype. Summarizing the molecular mechanisms of PARP7, PARP9, PARP11, PARP13 and PARP14 in regulating immune response is helpful to deepen our comprehension of the role of PARPs in immune function regulation. This provides a reference and basis for targeted PARP-based cancer treatment strategies and drug development. PARP1, PARP7 inhibitors or other PARP inhibitors in combination with immune checkpoint inhibitors or other immunotherapy strategies may be a more effective cancer therapy.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tingyu Zeng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yali Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of New Drug Design and Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
15
|
Ye Z, Wu X, Wei Z, Sun Q, Wang Y, Li T, Yuan Y, Jing J. Microsatellite-Stable Gastric Cancer Can be Classified into 2 Molecular Subtypes with Different Immunotherapy Response and Prognosis Based on Gene Sequencing and Computational Pathology. J Transl Med 2025; 105:104101. [PMID: 39894411 DOI: 10.1016/j.labinv.2025.104101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
Most patients with gastric cancer (GC) exhibit microsatellite stability, yet comprehensive subtyping for prognostic prediction and clinical treatment decisions for microsatellite-stable GC is lacking. In this work, RNA-sequencing gene expression data and clinical information of patients with microsatellite-stable GC were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. We employed several machine learning methods to develop and validate a signature based on immune-related genes (IRGs) for subtyping patients with microsatellite-stable GC. Moreover, 2 deep learning models based on the Vision Transformer (ViT) architecture were developed to predict GC tumor tiles and identify microsatellite-stable GC subtypes from digital pathology slides. Microsatellite status was evaluated by immunohistochemistry, and prognostic data as well as hematoxylin and eosin whole-slide images were collected from 105 patients with microsatellite-stable GC to serve as an independent validation cohort. A signature comprising 5 IRGs was established and validated, stratifying patients with microsatellite-stable GC into high-risk (microsatellite-stable-HR) and low-risk (microsatellite-stable-LR) groups. This signature demonstrated consistent performance, with areas under the receiver operating characteristic curve (AUC) of 0.65, 0.70, and 0.70 at 1, 3, and 5 years in the TCGA cohort, and 0.70, 0.60, and 0.62 in the GEO cohort, respectively. The microsatellite-stable-HR subtype exhibited higher levels of tumor immune dysfunction and exclusion, suggesting a greater potential for immune escape compared with the microsatellite-stable-LR subtype. Moreover, the microsatellite-stable-HR/LR subtypes showed differential sensitivities to various therapeutic drugs. Leveraging morphologic differences, the tumor recognition segmentation model achieved an impressive AUC of 0.97, whereas the microsatellite-stable-HR/LR identification model effectively classified microsatellite-stable-HR/LR subtypes with an AUC of 0.94. Both models demonstrated promising results in classifying patients with microsatellite-stable GC in the external validation cohort, highlighting the strong ability to accurately differentiate between microsatellite-stable GC subtypes. The IRG-related microsatellite-stable-HR/LR subtypes had the potential to enhance outcome prediction accuracy and guide treatment strategies. This research may optimize precision treatment and improve the prognosis for patients with microsatellite-stable GC.
Collapse
Affiliation(s)
- Zhiyi Ye
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoyang Wu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Zheng Wei
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Yanli Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Ziogou A, Giannakodimos A, Giannakodimos I, Schizas D, Charalampakis N. Effect of Helicobacter Pylori infection on immunotherapy for gastrointestinal cancer: a narrative review. Immunotherapy 2025; 17:355-368. [PMID: 40087147 PMCID: PMC12045566 DOI: 10.1080/1750743x.2025.2479410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Immunotherapy for gastrointestinal cancers has elicited considerable amount of attention as a viable therapeutic option for several cancer types. Gut microbiome as a whole plays a critical role in shaping immune responses and influencing cancer progression. Recent evidence suggests that Helicobacter pylori (H. pylori), may influence immunotherapy efficacy by modulating the tumor microenvironment. Infection with H. pylori is common as it affects approximately 50% of the global population and remains the leading risk factor for gastric cancer. Interestingly, recent clinical and preclinical data has associated H. pylori with colorectal cancer carcinogenesis. Gut microbiome appears to be a modulator of the relationship between the immune system, gastrointestinal cancer development and existing therapies. Infection with H. pylori may affect immunotherapy results in both gastroesophageal and colorectal cancer; favorable results were noticed in H. pylori positive patients with gastric cancer, while in colorectal cancer patients the pathogen seemed to impede immunotherapy's action. This article aims to review current data on the role of H. pylori in triggering gastric inflammation and cancer, as well as its potential involvement in colorectal cancer development. Additionally, it seeks to highlight the impact of H. pylori infection on the response to immunotherapy in gastrointestinal cancers.
Collapse
Affiliation(s)
- Afroditi Ziogou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece
| | | | - Ilias Giannakodimos
- Departement of Urology, Attikon University Hospital of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
17
|
Huang X, Hong L, Lv Y, Li K, Zhang Z, Deng J, Shen L. Peptide hydrogel platform encapsulating manganese ions and high-density lipoprotein nanoparticle-mimicking nanovaccines for the prevention and treatment of gastric cancer. J Transl Med 2025; 23:371. [PMID: 40134018 PMCID: PMC11938608 DOI: 10.1186/s12967-025-06088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/07/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Advanced gastric cancer remains a significant global health challenge, with limited therapeutic options available. In contrast, immunotherapy have emerged as promising alternatives, offering greater potency in treating advanced gastric cancer. However, the development of novel and efficient immunotherapeutic strategy is crucial to enhance the body's immune response against gastric cancer. METHODS This study developed a single-injection peptide hydrogel-based nanovaccine therapy for gastric cancer treatment. The therapy utilizes a RADA32 peptide hydrogel, which is sensitive to metal ion concentration, to encapsulate manganese ions and HPPS nanovaccines. The HPPS nanovaccines contain antigen peptide and CpG-ODN, designed to activate both the toll-like receptor 9 (TLR9) and cGAS-STING signaling pathways in antigen-presenting cells. This design aims to facilitate a stable and sustained release of the nanovaccine, thereby enhancing the body's effective recognition and response to antigens. RESULTS The efficacy of the system was confirmed using the model antigen OVA and the gastric cancer-specific antigen MG7-related peptide. The results demonstrated that the nanovaccine effectively activated the immune response, leading to enhanced recognition and response to the antigens. This activation of both TLR9 and cGAS-STING pathways in antigen-presenting cells was crucial for the observed immune response, highlighting the potential of this approach to stimulate a robust and sustained immune response against gastric cancer. CONCLUSIONS This study presents a novel strategy for clinical anti-tumor vaccine administration, offering a promising approach for the prevention and treatment of gastric cancer. The single-injection peptide hydrogel-based nanovaccine system provides a convenient and effective method to enhance the body's immune response against gastric cancer. This approach could potentially be expanded to other types of cancer, providing a versatile platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
| | - Lin Hong
- cancer center, Qichun Country People's hospital, Caohe town, Caohe Road No.198, Qichun County, Huanggang City, 430060, Hubei Province, China
| | - Yufan Lv
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
| | - Kejun Li
- cancer center, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
| | - Zengxing Zhang
- cancer center, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China
| | - Junjian Deng
- cancer center, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China.
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Hubei Zhang Road (formerly Ziyang Road), Wuchang District No. 99, Jiefang Road 238, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
18
|
Li R, Li J, Wang Y, Liu X, Xu W, Sun R, Xue B, Zhang X, Ai Y, Du Y, Jiang J. The artificial intelligence revolution in gastric cancer management: clinical applications. Cancer Cell Int 2025; 25:111. [PMID: 40119433 PMCID: PMC11929235 DOI: 10.1186/s12935-025-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
Collapse
Affiliation(s)
- Runze Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Jingfan Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yuman Wang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xiaoyu Liu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Weichao Xu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Runxue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Binqing Xue
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xinqian Zhang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yikun Ai
- North China University of Science and Technology, Tanshan 063000, China
| | - Yanru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, 050011, China.
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, 050011, China.
| | - Jianming Jiang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
| |
Collapse
|
19
|
Chen P, Chen Z, Sui W, Han W. Recent advances in the mechanisms of PD-L1 expression in gastric cancer: a review. Biol Res 2025; 58:16. [PMID: 40091086 PMCID: PMC11912799 DOI: 10.1186/s40659-025-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
In the progression of gastric cancer (GC), various cell types in the tumor microenvironment (TME) exhibit upregulated expression of programmed death ligand 1 (PD-L1), leading to impaired T-cell function and evasion of immune surveillance. Infection with H. pylori and EBV leads to increased PD-L1 expression in various cell types within TME, resulting in immune suppression and facilitating immune escape of GC cells. In the TME, mesenchymal stem cells (MSCs), M1-like tumor-associated macrophages (MI-like TAM), and myeloid-derived suppressor cells (MDSCs) contribute to the upregulation of PD-L1 expression in GC cells. Conversely, mast cells, M2-like tumor-associated macrophages (M2-like TAM), and tumor-associated neutrophils (TANs) exhibit elevated levels of PD-L1 expression in response to the influence of GC cells. Together, these factors collectively contribute to the upregulation of PD-L1 expression in GC. This review aims to provide a comprehensive summary of the cellular expression patterns of PD-L1 in GC and the underlying molecular mechanisms. Understanding the complex regulatory pathways governing PD-L1 expression may offer novel insights for the development of effective immunotherapeutic interventions.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wannian Sui
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wenxiu Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
20
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
21
|
Wu Y, Tian J, Zhou Y, Zhang R, Gao X, Luo L. Development and Characterization of 4A7: A High-Affinity Monoclonal Antibody Targeting Claudin18.2. Immunotargets Ther 2025; 14:189-203. [PMID: 40093351 PMCID: PMC11910048 DOI: 10.2147/itt.s494696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Claudin18.2 has emerged as a promising therapeutic target due to its high expression in gastric (GC) and pancreatic cancers (PC). However, patients with advanced, unresectable, or metastatic GC or PC face poor prognoses, highlighting the urgent need for more effective Claudin18.2-targeted therapies. Methods and Results We developed 4A7, a fully human monoclonal antibody with superior affinity and specificity for Claudin18.2, using a rigorous positive and negative screening strategy to eliminate cross-reactivity with Claudin18.1. In vitro, 4A7 demonstrated significantly enhanced binding activity, as well as robust antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), outperforming IMAB362, a clinical investigational antibody. In vivo, 4A7 exhibited remarkable tumor growth inhibition both as a monotherapy and in combination with anti-mPD-1, achieving superior efficacy compared to IMAB362. Additionally, 4A7 demonstrated a higher degree of humanization and comparable stability, supporting its translational potential. Conclusion 4A7 shows great promise as a next-generation therapeutic for Claudin18.2-positive cancers, offering improved efficacy and reduced immunogenicity. This study not only highlights 4A7's potential to address unmet clinical needs but also provides a foundation for future innovations in monoclonal antibody-based cancer therapy.
Collapse
Affiliation(s)
- Yahui Wu
- Hunan Normal University Health Science Center, Changsha, Hunan Province, People's Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Juan Tian
- Hunan Normal University Health Science Center, Changsha, Hunan Province, People's Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Ran Zhang
- Hunan Normal University Health Science Center, Changsha, Hunan Province, People's Republic of China
| | - Xiang Gao
- Hunan Normal University Health Science Center, Changsha, Hunan Province, People's Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| | - Longlong Luo
- Hunan Normal University Health Science Center, Changsha, Hunan Province, People's Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, People's Republic of China
| |
Collapse
|
22
|
Asghariazar V, Makaremi S, Amani N, Zare E, Kadkhodayi M, Eterafi M, Golmohammadi MG, Safarzadeh E. MicroRNA 320a-3p up-regulation reduces PD-L1 expression in gastric cancer cells: an experimental and bioinformatic study. Sci Rep 2025; 15:8239. [PMID: 40065071 PMCID: PMC11894147 DOI: 10.1038/s41598-025-92537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Growing evidence suggests that dysregulated microRNAs were critical in the development of tumors and the progression number of malignancies. This research aimed to check the effect of microRNA 320a-3p transfection on gastric cancer (GC) cell lines. Following transfection, the efficacy was determined by the RT-PCR method. After that, MTT, scratch assay, DAPI staining, RT-PCR, and flow cytometry were used respectively. The results demonstrated that the viability of GC cells considerably decreased following transfection. Moreover, microRNA 320a-3p transfection significantly suppressed cell migration and induced apoptosis in these cells. We found that transfection of microRNA 320a-3p remarkably decreased PD-L1 gene expression and influenced epithelial-mesenchymal transition (EMT)-related and apoptotic gene expressions. The findings propose that microRNA 320a-3p could decrease cell proliferation and migration and induce apoptosis by increasing TP53 and CASP3 expression levels in GC cells. Notably, microRNA 320a-3p might be a potential target in GC immunotherapy by suppressing the PD-L1 gene expression.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shima Makaremi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Negin Amani
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Ghasem Golmohammadi
- Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 5166614711, Iran.
| |
Collapse
|
23
|
Song J, Wei R, Liu C, Zhao Z, Liu X, Wang Y, Liu F, Liu X. Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response. Nat Commun 2025; 16:2175. [PMID: 40038297 PMCID: PMC11880398 DOI: 10.1038/s41467-025-57465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Cancer-associated fibroblasts (CAF) play a crucial role in tumor progression and immune regulation. However, the functional heterogeneity of CAFs remains unclear. Here, we identify antigen-presenting CAFs (apCAF), characterized by high MHC II expression, in gastric cancer (GC) tumors and find that apCAFs are preferentially located near tertiary lymphoid structures. Both in vivo and in vitro experiments demonstrate that apCAFs promote T cell activation and enhances its cytotoxic and proliferative capacities, thereby strengthening T cell-mediated anti-tumor immunity. Additionally, apCAFs facilitate the polarization of macrophages toward a pro-inflammatory phenotype. These polarized macrophages, in turn, promote the formation of apCAFs, creating a positive feedback loop that amplifies anti-tumor immune responses. Notably, baseline tumors in immunotherapy responders across various cancer types exhibit higher levels of apCAFs infiltration. This study advances the understanding of CAFs heterogeneity in GC and highlights apCAFs as a potential biomarker for predicting immunotherapy response in pan-cancer.
Collapse
Affiliation(s)
- Junquan Song
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rongyuan Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xuanjun Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yanong Wang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Fenglin Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Xiaowen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Zhang Y, Zhang F, Liu Z, Li M, Wu G, Li H. P2RX1 in neutrophils mediates JAK/STAT signaling pathway to regulate malignant phenotype of gastric Cancer cells. Mol Genet Genomics 2025; 300:23. [PMID: 39985719 DOI: 10.1007/s00438-025-02227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Gastric cancer is one of the most frequent malignancies and a serious concern in the global public health realm. Neutrophils, the most numerous myeloid cells in human blood, are emerging as significant regulatory variables in cancer. This study examines the molecular processes behind the link between gastric cancer's malignant character and neutrophils in the disease. This study aims to reveal the role of P2RX1 in neutrophils in gastric cancer and investigate its effects on the migration, invasion, and apoptosis of gastric cancer cells, with the hope of providing new targets and strategies for the treatment of gastric cancer. P2RX1 expression levels in gastric cancer samples were examined using The Cancer Genome Atlas-Stomach adenocarcinoma (TCGA-STAD). The signal pathways enriched by P2RX1-related differential gene expression were examined using GSEA. P2RX1 mRNA levels were examined using qPCR. Jak/Stat signaling pathway-related proteins and P2RX1 expression levels were subjected to western blot analysis. The apoptotic rate, migration, invasion, and cell viability were evaluated using flow cytometry, Transwell, and CCK-8 tests. Immunohistochemistry was used to detect the expression of P2RX1 in tumor tissues. Neutrophils and P2RX1 were both underexpressed in gastric cancer. In gastric cancer neutrophils, overexpression of P2RX1 increased cancer cell apoptosis while suppressing migration, invasion, and viability of the cells. Jak/Stat signaling pathway was connected to production of neutrophil P2RX1, and P2RX1 overexpression could trigger the pathway in vivo and in vitro. By activating its own Jak/Stat signaling pathway, overexpression of P2RX1 in gastric cancer neutrophils improved neutrophil survival, which in turn suppressed the migration, invasion, and viability of gastric cancer cells and raised their apoptosis rate. This suggests that P2RX1 may play a significant anti-tumor role in the tumor microenvironment of gastric cancer, indicating its value as a potential therapeutic target.
Collapse
Affiliation(s)
- Yan Zhang
- Medical Oncology, Ma'anshan People's Hospital, No. 519 Hunan East Road, Huashan District, Ma'anshan, 243000, China.
| | - Fenglin Zhang
- Medical Oncology, Ma'anshan People's Hospital, No. 519 Hunan East Road, Huashan District, Ma'anshan, 243000, China
| | - Zhi Liu
- Department of Pathology, Ma'anshan People's Hospital, Ma'anshan, 243000, China
| | - Min Li
- Medical Oncology, Ma'anshan People's Hospital, No. 519 Hunan East Road, Huashan District, Ma'anshan, 243000, China
| | - Ge Wu
- Medical Oncology, Ma'anshan People's Hospital, No. 519 Hunan East Road, Huashan District, Ma'anshan, 243000, China
| | - Hui Li
- Medical Oncology, Ma'anshan People's Hospital, No. 519 Hunan East Road, Huashan District, Ma'anshan, 243000, China
| |
Collapse
|
25
|
Wei Z, Kou Z, Luo Y, Cheng Y. DNA methyltransferase 3A: A prognostic biomarker and potential target for immunotherapy in gastric cancer. Medicine (Baltimore) 2025; 104:e41578. [PMID: 39960919 PMCID: PMC11835108 DOI: 10.1097/md.0000000000041578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methyltransferase 3A (DNMT3A) has been associated with the occurrence or progression of various tumors, including gastric cancer. However, the role of DNMT3A in the efficacy of immune-cell infiltration in the tumor microenvironment and immunotherapy in gastric cancer remains less explored. DNMT3A expression level was analyzed using TIMER 2.0, Sangerbox 3.0, and The Cancer Genome Atlas database and further verified by immunohistochemical staining and RT-qPCR. The UALCAN, chi-square test, and Kaplan-Meier plotter databases were performed to assess the correlation of DNMT3A with clinicopathological characteristics and prognosis. The GeneMANIA database, STRING database, and R package were used to construct a DNMT3A co-expression gene network. Gene set enrichment analysis was used to identify the signaling pathways related to DNMT3A expression. The correlations between DNMT3A and cancer immune infiltrates were investigated using TIMER 2.0, Sangerbox 3.0, Kaplan-Meier Plotter, R package, and TISIDB databases. The TISIDB database and R package were used to construct the correlation between DNMT3A and immunomodulators and Immune cell Proportion Score. The association of DNMT3A expression with tumor mutational burden (TMB), microsatellite instability, and tumor dryness was evaluated using the TMB function of the R package, TIMER 2.0. Finally, the biological function of DNMT3A in gastric cancer cells was further assessed by CCK-8, cloning formation, and transwell assay. DNMT3A expression was remarkably upregulated in gastric cancer. The high expression of DNMT3A was associated with poor clinical features and poor survival in patients with gastric cancer. Moreover, gene set enrichment analyses showed that DNMT3A and its related genes were involved in various pathways that promoted cancer occurrence and progression by influencing the tumor microenvironment. Finally, DNMT3A was significantly related to tumor-infiltrating immune cells, immunomodulators, TMB, microsatellite instability, and immune checkpoints in gastric cancer. Moreover, knockdown of DNMT3A reduced the proliferation and migration of gastric cancer cells. Our findings highlight the potential of DNMT3A as a prognosis biomarker and an immunotherapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zijie Wei
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Ziqian Kou
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yun Luo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yu Cheng
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
26
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
27
|
Li X, Tang B, Yujie O, Xu C, Yuan S. Single-cell RNA Sequencing Analysis Reveals Cancer-associated Fibroblast Signature for Prediction of Clinical Outcomes and Immunotherapy in Gastric Cancer. J Immunother 2025; 48:63-77. [PMID: 39206772 DOI: 10.1097/cji.0000000000000539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) is a significant worldwide health concern and is a leading cause of cancer-related mortality. Immunotherapy has arisen as a promising strategy to stimulate the patient's immune system in combating cancer cells. Nevertheless, the effectiveness of immunotherapy in individuals with gastric cancer (GC) is not yet optimal. Thus, it is crucial to discover biomarkers capable appof predicting the advantages of immunotherapy for tailored treatment. The tumor microenvironment (TME) and its constituents, including cancer-associated fibroblasts (CAFs), exert a substantial influence on immune responses and treatment outcomes. In this investigation, we utilized single-cell RNA sequencing to profile CAFs in GC and established a scoring method, referred to as the CAF score (CAFS), for the prediction of patient prognosis and response to immunotherapy. Through our analysis, we successfully identified distinct subgroups within CAFs based on CAF score (CAFS), namely CAFS-high and CAFS-low subgroups. Notably, we noted that individuals within the CAFS-high subgroup experienced a lessF favorable prognosis and displayed diminished responsiveness to immunotherapy in contrast to the CAFS low subgroup. Furthermore, we analyzed the mutation and immune characteristics of these subgroups, identifying differentially mutated genes and immune cell compositions. We established that CAFS could forecast treatment advantages in patients with gastric cancer, both for chemotherapy and immunotherapy. Its efficacy was additionally confirmed in contrast to other biomarkers, including Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenotypic Score (IPS). These findings emphasize the clinical relevance and potential utility of CAFS in guiding personalized treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Shandong University Cancer Center
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao
| | - Bo Tang
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Ouyang Yujie
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Shuanghu Yuan
- Shandong University Cancer Center
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
28
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
29
|
Qian Z, Cai X, Wu J, Ke K, Ye Z, Wu F. FGL1 facilitates rather than suppresses anticancer immunity against microsatellite instable gastric cancer. Genes Immun 2025; 26:36-44. [PMID: 39672971 DOI: 10.1038/s41435-024-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Microsatellite instability (MSI) is a phenotype characterized by changes in the sequence length of microsatellites in tumor cells and is closely linked to tumorigenesis and prognosis. Immune checkpoint inhibitors have shown good therapeutic effects in gastric cancer (GC) with MSI-high (MSI-H). However, the role of the novel immune checkpoint fibrinogen-like protein 1 (FGL1) in GC treatment has not been fully investigated. FGL1 expression in GC tissues and the difference in FGL1 immune infiltration between MSI/ microsatellite stability (MSS) patients were analyzed by bioinformatics and were verified in clinical samples. Xenograft models of MSS and MSI GC were constructed in human immune reconstitution mice, and FGL1 expression in tumors was detected. Immunofluorescence and immunohistochemistry were used to assay the infiltration of immune cells in the two types of mice. Cytotoxicity and chemotaxis tests were used to detect the toxicity and chemotaxis of CD8+T cells to GC cells, respectively. The cytokine content was detected by enzyme-linked immunosorbent assay. The therapeutic effects of FGL1 antibody on different types of GC were analyzed by xenograft mouse models. FGL1 exhibited significantly higher expression in GC, and its expression and immune cell infiltration levels were significantly higher in MSI GC than in MSS GC. CD8+T cells were significantly more effective in killing and chemotaxis of MSI GC cells than MSS GC cells. The FGL1 antibody was more effective in treating MSI GC.The novel immunosuppressor FGL1 antibody exerts a good therapeutic influence on MSI GC. These findings provide a basis for the development of drugs targeting FGL1 for MSI GC treatment.
Collapse
Affiliation(s)
- Zhenyuan Qian
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xufan Cai
- Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zaiyuan Ye
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Fang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Zhang Y, Zhang F, Liu Z, Li M, Wu G, Li H. P2RX1-blocked neutrophils induce CD8 + T cell dysfunction and affect the immune escape of gastric cancer cells. Cell Immunol 2025; 408:104901. [PMID: 39675308 DOI: 10.1016/j.cellimm.2024.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadly malignancies of the gastrointestinal tract. Research has confirmed the linkage of P2RX1 with immune cell activation and tumor progression. This project focused on the impact of P2RX1 level in neutrophils on the efficacy of immune checkpoint inhibitor (ICI) treatment in GC. METHODS Blood samples from 23 GC patients eligible for camrelizumab treatment were collected. Flow cytometry was carried out to analyze the proportion of P2RX1 in neutrophils. IHC was utilized to detect the expression level of PD-L1. We also evaluated the chemotaxis ability of neutrophils using a Transwell system, assessed the viability and apoptosis rate of GC cells using CCK-8 and flow cytometry, measured the proportions of CD8+PD-1+ and CD8+GZMB+ cells, determined the expression levels of IL-6, TNFα, IFN-γ, IL-8, IL-12, IL-1β, and GZMB by utilizing enzyme-linked immunosorbent assay (ELISA), and examined the expression levels of P2RX1 and PD-L1 using western blot (WB). By establishing a xenograft mouse model, we studied the impact of P2RX1-blocked neutrophils on the efficacy of ICI treatment in the GC microenvironment. RESULTS In GC, clinical analysis revealed increased infiltration of P2RX1-lowly expressed neutrophil subsets and increased expression of PD-L1. In vitro experiments demonstrated that abnormal expression of P2RX1 affected neutrophil function. Furthermore, the blockage or knockdown of P2RX1 in neutrophils modulated CD8+ T cell function, promoting GC progression. In in vivo experiments, the blockage of P2RX1 in neutrophils inhibited the effectiveness of ICI treatment in the GC microenvironment. CONCLUSION This project validated that the loss of P2RX1 in neutrophils induces CD8+ T cell dysfunction and affects the GC development, indicating that P2RX1 may be an accurate biomarker for predicting ICI response, thus providing a theoretical basis for the clinical application of ICI.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China.
| | - Fenglin Zhang
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Zhi Liu
- Department of Pathology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Min Li
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Ge Wu
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| | - Hui Li
- Department of Medical Oncology, Ma'anshan People's Hospital, 519 Hunan East Road, Huashan District, Ma'anshan City, Anhui Province 243000, China
| |
Collapse
|
31
|
Xie W, Hu C, Liu H, Wu Z, Luo B, Wu X, Tuo C, Deng Z, Liang H, Liu Y, Gong W. Dual-positive gastric cancer: an extremely malignant subtype of gastric cancer with high serum alpha-fetoprotein and carcinoembryonic antigen concentrations. Front Oncol 2025; 14:1514069. [PMID: 39902132 PMCID: PMC11788079 DOI: 10.3389/fonc.2024.1514069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Background Alpha-fetoprotein-producing gastric cancer (AFPGC) is a highly malignant subtype of gastric cancer, but solely alpha-fetoprotein may fail to accurately predict the prognosis. Although the utilization of multi tumor markers could improve stratified patient management, such research in AFPGC is still blank. This study seeks to evaluate whether combining multiple tumor markers can enhance risk stratification and identify AFPGC subtypes with poor prognosis. Methods We first screened for patients with elevated serum CEA levels within the AFPGC cohort and evaluated their prognosis. Tumor characteristics and overall health conditions were analyzed to identify factors contributing to CEA elevation. Finally, the treatment responses of this group to different treatment modalities were also reviewed. Results Approximately 45% of gastric cancer patients with elevated serum AFP also show increased CEA levels, classifying them as the dual-positive gastric cancer (DPGC) subgroup. These patients exhibit significantly shorter overall survival, heightened metastasis risk, and are more susceptible to systemic inflammation, immune response dysregulation, malnutrition, and cancer-related thrombosis. The elevation in serum CEA levels may indicate gastric cancer liver metastasis and increased neutrophils. While surgery is optimal for AFPGC, DPGC patients benefit significantly from immunotherapy combined with chemotherapy. Conclusions In AFPGC, combining serum AFP and CEA offers a more accurate prognosis. The poor prognosis in DPGC may be associated with aggressive local properties and systemic complications. Liver metastases and increased neutrophils are associated with increased serum CEA in AFPGC. Immunochemotherapy is a viable option for DPGC patients who cannot undergo surgery.
Collapse
Affiliation(s)
- Weixun Xie
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengyu Hu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Bixian Luo
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoying Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chuanlei Tuo
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Ziyin Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Yong Liu
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Lu T, Gao Y, Zhang G, Zhang H, Chen Z, Liu Y, Chen L, Xi H. Gastric cancer liver metastases in China: a real-world, multicentre, prospective, observational cohort study protocol. BMJ Open 2025; 15:e086276. [PMID: 39779263 PMCID: PMC11749313 DOI: 10.1136/bmjopen-2024-086276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Gastric cancer liver metastases (GCLM) is a highly heterogeneous disease with a poor prognosis. The multidisciplinary diagnosis and treatment model is applied throughout the entire treatment process. In addition to the previous RECORD study, which was based on the C-GCLM classification system developed by our team, there is a lack of recent data on patient baseline characteristics, clinical treatment and efficacy evaluation. A large-scale prospective observational study is necessary to determine the current situation of GCLM treatment in China. The findings of this study may inform the development of relevant healthcare policies, clinical pathways and treatment guidelines. METHODS AND ANALYSIS This is a prospective, non-interventional, observational, multicentre, real-world study designed to monitor the general condition, treatment pattern and prognosis of patients with GCLM. Patients with GCLM were classified into three distinct categories: type I (resectable type), type II (potentially resectable type) and type III (unresectable type). The patients' general information, medical history, imaging results, laboratory tests, surgical and systemic therapy details will be recorded and subjected to analysis. The 2-year overall survival (OS) will be recorded as the primary endpoint. The different therapeutic modalities employed in the treatment of GCLM, including surgery, chemotherapy and immunotherapy, will be recorded as secondary endpoints. Additionally, the effects of these therapies on prognosis, including OS of type I, II and III; R0 resection and disease-free survival of type I; and successful conversion rate and R0 resection rate and event-free survival of type II will be documented. ETHICS AND DISSEMINATION This study involving human participants was reviewed and approved by the Ethics Committee of Chinese PLA General Hospital (no. S2023-724-02) and will be conducted in accordance with the guidelines of the Declaration of Helsinki. Study findings will be disseminated through international peer-reviewed journal articles as well as public, academic presentations at national and international conferences. TRIAL REGISTRATION NUMBERS NCT06493448; ChiCTR2400083955.
Collapse
Affiliation(s)
- Tingting Lu
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunhe Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Gan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Haiya Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhida Chen
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Liu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- Department of Gastrointestinal Surgery, Peking University International Hospital, Beijing, China
| | - Hongqing Xi
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Chen C, Guan S, Zhuang Y, Xie M, Huang Q, Li X, Yang C, Jian J. miRNA-214-3p targets BNIP3 to affect autophagy and thus drive gastric cancer progression. J Toxicol Sci 2025; 50:235-244. [PMID: 40307014 DOI: 10.2131/jts.50.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
With a fourth-place death rate among all malignancies, gastric cancer (GC) is one of the most prevalent tumors globally. As a primary malignant characteristic of GC, metastasis contributes substantially to a high death rate and unfavorable prognosis. miRNA-214-3p can influence cell apoptosis since it is an autophagy-regulating molecule. Its significance in GC malignant development has not, however, been investigated in terms of mechanism. qRT-PCR was utilized to confirm expression of miRNA-214-3p in GC tissues and cells. Bioinformatics analysis was then implemented to examine BNIP3 expression in GC as well as binding interaction between BNIP3 and miRNA-214-3p. The targeting capability of miRNA-214-3p on BNIP3 was confirmed using the dual-luciferase assay. Capacities of cells to proliferate, migrate, and invade were assayed using Transwell assays and colony formation. In order to determine if GC cells were capable of autophagy, immunofluorescence and western blot were employed. In GC, miRNA-214-3p was substantially expressed in GC tissues and cells, but BNIP3 was downregulated, as shown by bioinformatics analysis and verified by cell tests. MiRNA-214-3p targeted BNIP3, as shown by further bioinformatics analysis, and dual-luciferase experiment verified this binding connection. MicroRNA-214-3p facilitated cell invasion, migration, and proliferation, as shown by Transwell tests and colony formation. MiRNA-214-3p accelerated malignant development of GC by targeting BNIP3 to impact autophagy, as demonstrated by immunofluorescence and western blot analyses. By targeting BNIP3 to affect autophagy, miRNA-214-3p aided in the malignant growth of GC. This suggested that miRNA-214-3p may function as a likely therapeutic target or biomarker for the disease, with significant implications for early diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Changjiang Chen
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Shen Guan
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Yong Zhuang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Mingming Xie
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Qingxia Huang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Xiaoling Li
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Chunkang Yang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| | - Jinliang Jian
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China
| |
Collapse
|
34
|
Yang X, Li X, Huang K, Zhuang X. Evaluation of the efficacy of PD‑1/PD‑L1 inhibitor plus bevacizumab and chemotherapy for the treatment of patients with driver gene‑negative advanced‑stage lung adenocarcinoma: A retrospective cohort study. Oncol Lett 2025; 29:53. [PMID: 39584040 PMCID: PMC11582526 DOI: 10.3892/ol.2024.14799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 11/26/2024] Open
Abstract
Driver gene-negative advanced-stage lung adenocarcinoma is associated with a poor prognosis and insufficient treatment options. The present study aimed to evaluate the efficacy and safety profile of a programmed cell death protein 1/programmed death-ligand 1 inhibitor plus bevacizumab and chemotherapy (PBC) regimen for the treatment of patients with driver gene-negative advanced-stage lung adenocarcinoma under real-world clinical conditions. Data from 65 patients with advanced-stage lung adenocarcinoma without sensitizing epidermal growth factor receptor, ALK receptor tyrosine kinase or ROS proto-oncogene 1 receptor tyrosine kinase mutations who received a PBC regimen or only a BC regimen were reviewed in the present retrospective cohort study. The results revealed that the objective response rate was higher (70.4 vs. 47.4%; P=0.065) in the PBC group compared with that in the BC group, while not reaching statistical significance. Progression-free survival (PFS) time was longer in the PBC group than in the BC group [median PFS: 10.8 months (95% confidence interval (CI), 7.2-14.4) vs. 7.6 months (95% CI, 5.0-10.2); P=0.016], while overall survival (OS) exhibited a non-significant trend to be longer in the PBC group compared with that in the BC group [median OS: 20.6 months (95% CI, 16.8-24.4) vs. 15.9 months (95% CI, 11.8-20.0); P=0.115]. Following adjustment by multivariate Cox analysis, the PBC (vs. BC) regimen was found to be independently associated with an improved PFS time (P=0.045). The common adverse events in the PBC group were neutropenia, alopecia, leukopenia, nausea and vomiting, fatigue, anemia and peripheral neuropathy. Moreover, the incidence of each adverse event did not differ significantly between the PBC and BC groups. In conclusion, the present study demonstrated that the PBC regimen serves as a superior treatment option for patients with driver gene-negative advanced-stage lung adenocarcinoma; however, further verification of its efficacy is still required.
Collapse
Affiliation(s)
- Xiaozun Yang
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Xin Li
- Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Ke Huang
- Department of Thoracic Surgery, Sichuan Jianzhu Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
35
|
Jin W, Liu J, Yang T, Feng Z, Yang J, Cao L, Wu C, Zuo Y, Yu L. Transcriptome Analyses Reveal the Important miRNAs Involved in Immune Response of Gastric Cancer. IET Syst Biol 2025; 19:e70014. [PMID: 40186852 PMCID: PMC11972004 DOI: 10.1049/syb2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
MicroRNAs (miRNAs) are crucial factors in gene regulation, and their dysregulation plays important roles in the immunity of gastric cancer (GC). However, finding specific and effective miRNA markers is still a great challenge for GC immunotherapy. In this study, we computed and analysed miRNA-seq, RNA-seq and clinical data of GC patients from the TCGA database. With the comparison of tumour and normal tissues in GC, we identified 2056 upregulated and 2311 downregulated protein-coding genes. Based on the miRNet database, more than 2600 miRNAs interact with these genes. Several key miRNAs, including hsa-mir-34a, hsa-mir-182 and hsa-mir-23b, were identified to potentially play important regulatory roles in the expression of most upregulated and downregulated genes in GC. Based on bioinformation approaches, the expressions of hsa-mir-34a and hsa-mir-182 were closely linked to the tumour stage, and high expression of hsa-mir-23b was correlated with poor survival in GC. Moreover, these three miRNAs are involved in immune cell infiltration (such as activated memory CD4 T cells and resting mast cells), particularly hsa-mir-182 and hsa-mir-23b. GSEA suggested that the changes in their expression may possibly activate/inhibit immune-related signal pathways, such as chemokine signalling pathway and CXCR4 pathway. These results will provide possible miRNA markers or targets for combined immunotherapy of GC.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jianli Liu
- School of Water Resource and Environment EngineeringChina University of GeosciencesBeijingChina
| | - Tingyu Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Zongqi Feng
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jie Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Lei Cao
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Chengyan Wu
- Baotou Teacher's CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Yongchun Zuo
- College of Life SciencesInner Mongolia UniversityHohhotChina
- Digital CollegeInner Mongolia Intelligent Union Big Data AcademyHohhotChina
- Inner Mongolia International Mongolian HospitalHohhotChina
| | - Lan Yu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
- Department of Endocrine and Metabolic DiseasesInner Mongolia People's HospitalHohhotChina
| |
Collapse
|
36
|
Yun H, Dong F, Wei X, Yan X, Zhang R, Zhang X, Wang Y. Role and value of the tumor microenvironment in the progression and treatment resistance of gastric cancer (Review). Oncol Rep 2025; 53:14. [PMID: 39611496 PMCID: PMC11622107 DOI: 10.3892/or.2024.8847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Gastric cancer (GC) is characterized by a complex and heterogeneous tumor microenvironment (TME) that significantly influences disease progression and treatment outcomes. The tumor stroma, which is composed of a variety of cell types such as cancer‑associated fibroblasts, immune cells and vascular components, displays significant spatial and temporal diversity. These stromal elements engage in dynamic crosstalk with cancer cells, shaping their proliferative, invasive and metastatic potential. Furthermore, the TME is instrumental in facilitating resistance to traditional chemotherapy, specific treatments and immunotherapy strategies. Understanding the underlying mechanisms by which the GC microenvironment evolves and supports tumor growth and therapeutic resistance is critical for developing effective treatment strategies. The present review explores the latest progress in understanding the intricate interactions between cancer cells and their immediate environment in GC, highlighting the implications for disease pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Heng Yun
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Fangde Dong
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiaoqin Wei
- Department of Pain, The Second People's Hospital of Baiyin, Baiyin, Gansu 730900, P.R. China
| | - Xinyong Yan
- Department of Proctology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Ronglong Zhang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| | - Yulin Wang
- Department of General Surgery, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, Gansu 730900, P.R. China
| |
Collapse
|
37
|
Xiao H, He Q, Hu Y, Li C, Tian H, Chen F, Song W. A novel DNA damage-related gene index for predicting prognosis in gastric cancer. 3 Biotech 2025; 15:32. [PMID: 39763491 PMCID: PMC11700079 DOI: 10.1007/s13205-024-04166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is one of the major cancers with high cancer mortality and shows significant heterogeneity. The development of precise prognostic models is crucial for advancing treatment strategies. Recognizing the pivotal role of DNA damage in tumor progression, we conducted a consensus clustering analysis of DNA damage-related genes to categorize gastric cancer patients from the TCGA clinical cohort into distinct subtypes. Prognostic models were then constructed utilizing machine learning algorithms following Cox regression with differentially expressed genes. Validation was performed using the GSE gastric cancer cohort. Additionally, we investigated other characteristic responses of patients through gene mapping and drug sensitivity analysis. This study 12 differentially prognostic signature genes between the 2 DNA damage subtypes identified were used to calculate risk scores for the patients. This score predicts the prognosis of patients with gastric cancer and their overall survival time. Higher risk scores mean less drug sensitivity, lower survival, and possibly a poorer response to immunotherapy. Our findings provide the basis for future studies targeting DNA damage and its immune microenvironment to improve prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Haipeng Xiao
- Department of General Surgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Qianjin He
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Yang Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000 China
| | - Chang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Wenchong Song
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| |
Collapse
|
38
|
Pallavi P, Girigoswami K, Harini K, Gowtham P, Thirumalai A, Girigoswami A. Theranostic dye entrapped in an optimized blended-polymer matrix for effective photodynamic inactivation of diseased cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:867-880. [PMID: 39073418 DOI: 10.1007/s00210-024-03321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Despite the wide range of treatment options available for cancer therapy, including chemotherapy, radiation therapy, and surgical procedures, each of these treatments has a different side-effect profile and leaves the patient with no option but to choose. Due to their insensitivity and nonspecificity, conventional treatments damage normal cells together with cancer cells. In recent years, a significant amount of attention has been focused on photodynamic therapy (PDT) as a treatment for cancer and drug-resistant microbes. An activated photosensitizer is used as a part of the procedure along with oxygen molecules and a specific wavelength of light belonging to the visible or NIR spectral zone. A light-sensitive laser dye, rhodamine 6G (R6G), was used in the present study as a photosensitizer, taking a challenge to improve the aqueous solubility and ROS quantum yield using optimum concentration (160 mg/ml) of chitosan-alginate (Cs-Alg) blended polymeric nanoformulations. As evidenced by steady-state spectrophotometric and fluorometric measurements, ROS quantum yield increases three-fold over aqueous solution along with solubility gaining that was validated by PDT experiment using human epithelial carcinoma (KB) cell line. Phantom optical imaging was taken using the IVIS imaging system to establish the formulations as a fluorescence-based optical contrast agent, and zebrafish embryos were used to establish their safe in vivo use. The release profile of R6G was fitted using kinetic models, which followed the Non-Fickian kinetic profile. In conclusion, we recommend the formulations as a potential theranostic agent that will aid in PDT-based therapy in conjunction with optical imaging-based diagnosis.
Collapse
Affiliation(s)
- Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, TN, 603103, India.
| |
Collapse
|
39
|
Zhang J, Zhou L, Sun X, Lin Y, Yuan J, Yang C, Liao C. SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity. Cancer Biol Ther 2024; 25:2426305. [PMID: 39543823 PMCID: PMC11572088 DOI: 10.1080/15384047.2024.2426305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8+ T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities in vitro. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.
Collapse
Affiliation(s)
- Jun Zhang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Lei Zhou
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Xing Sun
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Yuan Lin
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Jimin Yuan
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Changyong Yang
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| | - Cheng Liao
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Shanghai Shengdi Pharmaceutical Co., Ltd., Shanghai, China
- Innovative Drug R&D, Pre-clinical Development and Translational Medicine, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
40
|
Pan Y, Ma Y, Guan H, Dai G. Pre-treatment of hyponatremia as a biomarker for poor immune prognosis in advanced or metastatic gastric cancer: A retrospective case analysis. Hum Vaccin Immunother 2024; 20:2414546. [PMID: 39411929 PMCID: PMC11486141 DOI: 10.1080/21645515.2024.2414546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Hyponatremia, a prevalent electrolyte imbalance among tumor patients, has often been overlooked regarding its prognostic significance for immunotherapy. In this study, we delved into the prognostic ramifications of hyponatremia in advanced gastric cancer (AGC) patients undergoing immunotherapy. Enrolling AGC patients diagnosed between December 2014 and May 2021, we extracted pertinent data from electronic medical records, with a median follow-up of 35.8 months. Kaplan-Meier curves illuminated patients' progression-free survival (PFS) and overall survival (OS), while survival disparities were tested using the Mantel-Haenszel log rank test. COX and logistic regressions were employed to scrutinize the correlation between serum sodium levels and prognosis in 268 AGC patients, both at baseline and during treatment. Notably, patients with hyponatremia exhibited shorter PFS (4.7 vs 2.1 months, p = .001*) and OS (12.5 vs 3.9 months, p < .001*). Serum sodium emerged as an independent prognostic factor for both PFS (HR = 1.773; 95% CI 1.067-2.945; p = .001*) and OS (HR = 1.773; 95% CI 1.067-2.945; p = .003*). Subgroup analysis revealed that AGC patients with hyponatremia derived no benefit from immunotherapy in terms of PFS and OS. Strikingly, a decrease in serum sodium during immunotherapy was associated with early relapse and mortality. Based on these findings, we hypothesize that hyponatremia portends poor prognostic outcomes in AGC patients treated with immunotherapy and may serve as a valuable prognostic biomarker. However, further large-scale prospective studies are warranted to validate these observations.
Collapse
Affiliation(s)
- Yuting Pan
- Department of Medical Oncology, Medical School of Chinese PLA, Beijing, China
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yue Ma
- Department of Medical Oncology, Medical School of Chinese PLA, Beijing, China
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huafang Guan
- External Relations Office, Yingtan City People’s Hospital, Yingtan, China
| | - Guanghai Dai
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
41
|
Zhu C, Yan M, Zhang Z, Shen Y, Wang W, Chen Z, Cai C, Liu H, Xu Z, Li Z. Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on cholesterol metabolism in gastric cancer. Front Oncol 2024; 14:1518010. [PMID: 39777330 PMCID: PMC11703741 DOI: 10.3389/fonc.2024.1518010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Background Cholesterol metabolism plays a crucial role in tumor progression and immune response modulation. However, the precise connection between cholesterol metabolism-related genes (CMRGs) and their implications for clinical prognosis, the tumor microenvironment (TME), and the outcomes of immunotherapy in gastric cancer remains to be fully elucidated. Methods Transcriptome data and related clinical information from 675 gastric cancer patients were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A total of 50 cholesterol metabolism-related genes (CMRGs) were identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG, hsa04979). Consensus clustering analysis was used to classify patients into distinct molecular subgroups, while principal component analysis (PCA) was applied to develop a prognostic scoring system for predicting survival and immunotherapy response. The scoring system was validated using three independent cohorts of gastric cancer patients. Results Based on 49 CMRGs, 675 gastric cancer patients were categorized into three distinct subgroups with varying prognoses, tumor microenvironment features, and clinical characteristics. Further differential gene analysis and consensus clustering identified two additional subgroups. The prognostic scoring system developed through PCA demonstrated that the high-score subgroup had significantly improved survival, higher tumor mutational burden (TMB), and microsatellite instability (MSI), as well as a greater number of mutated genes, indicating greater sensitivity to immunotherapy. This system was validated in a real-world cohort undergoing immunotherapy. Additionally, the correlation between GPC3 expression and cholesterol levels was confirmed, highlighting GPC3's potential biological role. Conclusion This study highlights the importance of CMRGs in gastric cancer, deepens our understanding of the tumor immune microenvironment, and guides individualized immunotherapy.
Collapse
Affiliation(s)
- Chengjun Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengpei Yan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yikai Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wangwen Wang
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changsheng Cai
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongda Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- The Institute of Gastric Cancer, Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Wang J, Zhang H, Li J, Ni X, Yan W, Chen Y, Shi T. Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response. Cell Mol Biol Lett 2024; 29:157. [PMID: 39719600 PMCID: PMC11667977 DOI: 10.1186/s11658-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC. Recently, with the rapid development of mass spectrometry-based detection technology, researchers have paid increasing attention to exosomal cargo proteins. In this review, we discussed the origin of exosomes and the diagnostic and prognostic roles of exosomal proteins in GC. Moreover, we summarized the biological functions of exosomal proteins in GC processes, such as proliferation, metastasis, drug resistance, stemness, immune response, angiogenesis, and traditional Chinese medicine therapy. In summary, this review synthesizes current advancements in exosomal proteins associated with GC, offering insights that could pave the way for novel diagnostic and therapeutic strategies for GC in the foreseeable future.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
- Center for Systems Biology, Soochow University, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
43
|
Seo Y, Jang J, Ko KP, Zou G, Huang Y, Zhang S, Zhang J, Jun S, Chu W, Venkatesan V, Dhakshinamoorthy S, Park JI. Actin dysregulation induces immune evasion via oxidative stress-activated PD-L1 in gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629227. [PMID: 39763993 PMCID: PMC11702617 DOI: 10.1101/2024.12.18.629227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Diffuse gastric adenocarcinoma (DGAC) is an aggressive malignancy with limited therapeutic options, poor prognosis, and poorly understood biology. CRACD, an actin polymerization regulator, is often inactivated in gastric cancer, including DGAC. We found that genetic engineering of murine gastric organoids with Cracd ablation combined with Kras mutation and Trp53 loss induced aberrant cell plasticity, hyperproliferation, and hypermucinosis, the features that recapitulate DGAC transcriptional signatures. Notably, CRACD inactivation remodeled the immune landscape for immune evasion through PD-L1 enrichment in tumor cells. Mechanistically, CRACD loss disrupted actin dynamics, generating reactive oxygen species that activated HIF1α, which transactivated PD-L1 . Pharmacologic inhibition of HIF1α or PD-L1 restored immune surveillance and suppressed tumorigenesis. These findings reveal a novel role of actin homeostasis in limiting cell plasticity and immune evasion, position CRACD as a potential biomarker for stratifying patients with DGAC, and highlight HIF1α and PD-L1 as actionable therapeutic targets.
Collapse
|
44
|
Xu L, Long Y, Yao L, Wang H, Ge W. Updated cost-effectiveness analysis of tislelizumab in combination with chemotherapy for the first-line treatment of advanced gastric cancer or gastroesophageal junction adenocarcinoma. Front Oncol 2024; 14:1477722. [PMID: 39737400 PMCID: PMC11682971 DOI: 10.3389/fonc.2024.1477722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Objective The RATIONALE-305 trial demonstrated that tislelizumab in combination with chemotherapy regimens was more beneficial than chemotherapy regimens alone in the treatment of patients with advanced gastric cancer or gastroesophageal junction adenocarcinoma (GC/GEJC). This study aimed to evaluate the cost-effectiveness of tislelizumab combination chemotherapy in the treatment of advanced GC/GEJC from the perspective of the Chinese health service system. Methods A three-state partition survival model was constructed to evaluate the economics of tislelizumab combined with chemotherapy as the first-line treatment of advanced GC/GEJC. Clinical data were collected from the RATIONALE-305 trial, and the incremental cost-effectiveness ratio (ICER) was calculated using quality-adjusted life years (QALYs) as the output index. The stability of the results was verified using sensitivity and subgroup analyses. In addition, scenario analysis was conducted for the model simulation time and different parameter extrapolation models. Results The results of basic analysis showed an increase of 0.31 QALYs in the tislelizumab group compared with the placebo group (1.53 QALYs vs 1.22 QALYs), and a concomitant increase in cost of 10,326.68 USD, with an ICER of 33,876.38 USD/QALY, which is less than the current Chinese willingness-to-pay threshold (36,924.80 USD/QALY). Sensitivity analyses demonstrated that the utility values of progression-free survival, progressive disease and the price of capecitabine had a greater impact on the model. Subgroup analysis revealed that combination therapy was equally cost-effective in people with a program death ligand 1 tumor area positivity score of ≥5%. Conclusion From the perspective of the Chinese health service system, the treatment of advanced GC/GEJC with tislelizumab combined with chemotherapy has a cost-effective advantage over chemotherapy alone.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunchun Long
- Department of Pharmacy, Meishan People ‘s Hospital, Meishan, Sichuan, China
| | - Lu Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Chen J, Jiang Y, Hou M, Liu C, Liu E, Zong Y, Wang X, Meng Z, Gu M, Su Y, Wang H, Fu J. Nuclear translocation of plasma membrane protein ADCY7 potentiates T cell-mediated antitumour immunity in HCC. Gut 2024; 74:128-140. [PMID: 39349007 DOI: 10.1136/gutjnl-2024-332902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/31/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The potency of T cell-mediated responses is a determinant of immunotherapy effectiveness in treating malignancies; however, the clinical efficacy of T-cell therapies has been limited in hepatocellular carcinoma (HCC) owing to the extensive immunosuppressive microenvironment. OBJECTIVE Here, we aimed to investigate the key genes contributing to immune escape in HCC and raise a new therapeutic strategy for remoulding the HCC microenvironment. DESIGN The genome-wide in vivo clustered regularly interspaced short palindromic repeats (CRISPR) screen library was conducted to identify the key genes associated with immune tolerance. Single-cell RNA-seq (scRNA-seq), flow cytometry, HCC mouse models, chromatin immunoprecipitation and coimmunoprecipitation were used to explore the function and mechanism of adenylate cyclase 7 (ADCY7) in HCC immune surveillance. RESULTS Here, a genome-wide in vivo CRISPR screen identified a novel immune modulator-ADCY7. The transmembrane protein ADCY7 undergoes subcellular translocation via caveolae-mediated endocytosis and then translocates to the nucleus with the help of leucine-rich repeat-containing protein 59 (LRRC59) and karyopherin subunit beta 1 (KPNB1). In the nucleus, it functions as a transcription cofactor of CCAAT/enhancer binding protein alpha (CEBPA) to induce CCL5 transcription, thereby increasing CD8+ T cell infiltration to restrain HCC progression. Furthermore, ADCY7 can be secreted as exosomes and enter neighbouring tumour cells to promote CCL5 induction. Exosomes with high ADCY7 levels promote intratumoural infiltration of CD8+ T cells and suppress HCC tumour growth. CONCLUSION We delineate the unconventional function and subcellular location of ADCY7, highlighting its pivotal role in T cell-mediated immunity in HCC and its potential as a promising treatment target.
Collapse
Affiliation(s)
- Jianan Chen
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Youhai Jiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology, Anhui, China
| | - Minghui Hou
- Research Center for Organoids, Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunliang Liu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Erdong Liu
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Yali Zong
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhengyuan Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingye Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Su
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongyang Wang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
46
|
Zhan H, Xiao J, Shi S, Zou F, Wang S, Mo F, Liu X, Zhang B, Dai M, Zeng J, Liu H. Pluripotent stem cell-derived CTLs targeting FGFR3-TACC3 fusion gene in osteosarcoma. Int Immunopharmacol 2024; 142:112862. [PMID: 39306889 DOI: 10.1016/j.intimp.2024.112862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Osteosarcoma, a highly aggressive bone cancer, poses significant treatment challenges. This study investigates a novel approach utilizing induced pluripotent stem cells (iPSCs) engineered with the FGFR3-TACC3 fusion gene to generate cytotoxic T lymphocytes (CTLs) targeting osteosarcoma. The aim was to assess the efficacy of iPSC-derived CTLs in combating osteosarcoma progression. Abnormal expression of the FGFR3-TACC3 fusion gene was confirmed in osteosarcoma samples. iPSCs were successfully modified to express the fusion gene and were then differentiated into CTLs. In vitro experiments demonstrated that these modified CTLs effectively killed osteosarcoma cells, induced apoptosis, and inhibited migration and invasion. Findings were validated in in vivo experiments. This study suggests that iPSC-derived CTLs targeting FGFR3-TACC3 hold promise for personalized immunotherapy against osteosarcoma.
Collapse
Affiliation(s)
- Haibo Zhan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Jun Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Shoujie Shi
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fan Zou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Departerment of orthopedic, Gaoxin Branch Of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 7889, Changdong Ave., Gaoxin District, Nanchang, Jiangxi Province 330046, China
| | - Song Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Fengbo Mo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China
| | - Min Dai
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Jin Zeng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| | - Hucheng Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China; Artificial Joints Engineering and Technology Research Center of Jiangxi Province, No. 17, Yongwaizheng Street, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
47
|
Sun Q, Li T, Wei Z, Ye Z, Zhao X, Jing J. Integrating transcriptomic data and digital pathology for NRG-based prediction of prognosis and therapy response in gastric cancer. Ann Med 2024; 56:2426758. [PMID: 39527470 PMCID: PMC11556273 DOI: 10.1080/07853890.2024.2426758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Cancer is characterized by its ability to resist cell death, and emerging evidence suggests a potential correlation between non-apoptotic regulated cell death (RCD), tumor progression, and therapy response. However, the prognostic significance of non-apoptotic RCD-related genes (NRGs) and their relationships with immune response in gastric cancer (GC) remain unclear. METHODS In this study, RNA-seq gene expression and clinical information of GC patients were acquired from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Cox and LASSO regression analyses were used to construct the NRG signature. Moreover, we developed a deep learning model based on ResNet50 to predict the NRG signature from digital pathology slides. The expression of signature hub genes was validated using real-time quantitative PCR and single-cell RNA sequencing data. RESULTS We identified 13 NRGs as signature genes for predicting the prognosis of patients with GC. The high-risk group, characterized by higher NRG scores, demonstrated a shorter overall survival rate, increased immunosuppressive cell infiltration, and immune dysfunction. Moreover, associations were observed between the NRG signature and chemotherapeutic drug responsiveness, as well as immunotherapy effectiveness in GC patients. Furthermore, the deep learning model effectively stratified GC patients based on the NRG signature by leveraging morphological variances, showing promising results for the classification of GC patients. Validation experiments demonstrated that the expression level of SERPINE1 was significantly upregulated in GC, while the expression levels of GPX3 and APOD were significantly downregulated. CONCLUSION The NRG signature and its deep learning model have significant clinical implications, highlighting the importance of individualized treatment strategies based on GC subtyping. These findings provide valuable insights for guiding clinical decision-making and treatment approaches for GC.
Collapse
Affiliation(s)
- Qiuyan Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Zheng Wei
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhiyi Ye
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Zhang H, Yang W, Tan X, He W, Zhao L, Liu H, Li G. Long-term relative survival of patients with gastric cancer from a large-scale cohort: a period-analysis. BMC Cancer 2024; 24:1420. [PMID: 39558281 PMCID: PMC11571998 DOI: 10.1186/s12885-024-13141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Gastric cancer poses a significant global health challenge. We aim to use period analysis to assess the changes in gastric cancer treatment at our center over the past 15 years. This study reflects the current state of gastric cancer treatment at our center and provides valuable data to support clinical advancements. METHOD We used period analysis to evaluate the survival status of 3915 patients with gastric cancer at Nanfang Hospital, Southern Medical University, over a 15-year period spaning from 2008 to 2022. The 5-year relative survival rates were analyzed. RESULT Our findings indicate that the 5-year relative survival rate at our center from 2018 to 2022 is 71.4%. From 2018 to 2022, the 5-year relative survival rates for patients aged < 40, 40-54, 55-69, and ≥ 70 reached 67.5%, 73.5%, 72.0%, and 67.1%, respectively. For stage IV patients, the 5-year relative survival rate reached 29% in 2018-2022. For stage I-III patients, the 5-year relative survival rate reached 89.7% in 2018-2022. The five-year relative survival rate for patients who underwent laparoscopic surgery at our center rose from 50.3% in 2008-2012 to 71.4% in 2018-2022. Overall, there has been a notable increase in the 5-year relative survival rates, regardless of age, gender, region, or tumor stage. CONCLUSION Period analysis over the past 15 years shows significant improvement in the 5-year survival rate for gastric cancer at our center. This progress is due to standardized surgical techniques, perioperative management, and immunotherapy, providing robust data for evaluating the efficacy of recent treatments.
Collapse
Affiliation(s)
- Hengyi Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weihao Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Guoxin Li
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Mir S, Venugopalan A, Zhang J, Nair NU, Sengupta M, Khanal M, Stathopoulou C, Jiang Q, Hassan R. Persistence of activated anti-mesothelin hYP218 chimeric antigen receptor T cells in the tumour is associated with efficacy in gastric and colorectal carcinomas. Clin Transl Med 2024; 14:e70057. [PMID: 39548594 PMCID: PMC11567854 DOI: 10.1002/ctm2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Patients with advanced gastric and colorectal cancers have limited treatment options. Since mesothelin is highly expressed in these tumour types, we evaluated the therapeutic benefits of anti-mesothelin hYP218 CAR T cells alone, and in combination with anti-PD1 antibody, pembrolizumab. GEPIA analysis was performed using human gastric (n = 408) and colon cancer tumours (n = 275) in TCGA database, to evaluate mRNA expression of mesothelin, compared to normal tissues. Mesothelin expression in gastric and colorectal cancer cell-lines (n = 5) was analysed using flow cytometry. In vitro efficacy by hYP218 CAR T cells was tested by cytotoxicity and cytokine release assays. In vivo anti-tumour efficacy of hYP218 CAR T cells alone, and in combination with pembrolizumab, was evaluated in NSG mice bearing human gastric (HGC27) and colorectal (SW48) tumour xenografts. Additionally, hYP218 CAR-T cell persistence, activation and exhaustion marker-expression were studied. Mesothelin expression was significantly higher in gastric and colon cancer biopsies compared to normal tissues (p < .005). Mesothelin expression in gastric and colon cancer cell lines ranged from 10 000 to 70 000 molecules per cell. hYP218 CAR T cells demonstrated strong cytotoxic activity at low effector to target ratio, ranging from 0.24 to 1.0. In NSG mouse-models, hYP218 CAR T cells demonstrated anti-tumour efficacy and persisted in the tumour microenvironment in a functional state at day 40 posttreatment with expression of activation markers CD39 and CD69, increased production of IFN-γ and TNF-α and ability to kill tumour cells in vitro when isolated from tumours. There was increased PD1 expression. In combination with pembrolizumab, hYP218 CAR T cells led to slower tumour growth in NSG mice bearing large but not small HGC27 tumours. Anti-tumour efficacy of hYP218 CAR T cells is due to increased accumulation of activated CAR T cells in the tumour and combination with pembrolizumab resulted in improvement in anti-tumour activity of large established tumours. HIGHLIGHTS: Mesothelin expression is significantly higher in gastric and colorectal cancers than normal tissues. hYP218 CAR T cells demonstrate strong anti-tumour activity against mesothelin-positive gastric and colorectal carcinomas. Activated hYP218 CAR T cells persist in the tumour microenvironment and retain their cytotoxic activity. Addition of pembrolizumab in larger tumours enhance CAR T cell efficacy.
Collapse
Affiliation(s)
- Sameer Mir
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Abhilash Venugopalan
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Jingli Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Manjistha Sengupta
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Manakamana Khanal
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Chaido Stathopoulou
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Qun Jiang
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
50
|
Gu X, Wang C. Advancements in nano-immunotherapy for gynecological cancers: A new frontier. Biomed Pharmacother 2024; 180:117553. [PMID: 39405913 DOI: 10.1016/j.biopha.2024.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Gynecological cancers rank among the leading causes of death for women worldwide. Traditional treatment methods, including surgery, chemotherapy, and radiotherapy, are commonly employed in patients with these tumors. However, the effectiveness of these approaches remains suboptimal due to issues like treatment resistance and challenges in early detection. As an alternative, immunotherapy has shown promise by offering improved anti-tumor responses and fewer side effects. In recent years, there have been significant advances in nanoparticle (NP) and nanoengineering technologies, paving the way for the development of nano-immunotherapy-an approach designed to enhance the effectiveness of immunotherapy. Thanks to the flexibility, adaptability, small size, and responsiveness of NP platforms to the tumor microenvironment (TME), nano-immunotherapy has demonstrated improved anti-tumor activity and safety. This is achieved through enhanced tumor targeting, better delivery of immune agents, and reduced toxicity and side effects. Recently, researchers have explored the application of nano-immunotherapy in treating gynecological cancers, aiming to slow tumor progression and improve patient outcomes. In this review, we provide an overview of the latest advances in nano-immunotherapy for gynecological cancers, including ovarian, cervical, and endometrial cancers. Additionally, we discuss the challenges facing the clinical translation of nano-immunotherapy from the lab to real-world applications.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Oncology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province 110022, China.
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province 110022, China.
| |
Collapse
|