1
|
Peng YY, Tang JJ, Li S, Tang C, Ding Y, Cheng H, Wang HY, Long ZY, Lu XM, Wang YT. Deletion of p75NTR rescues behavioral and cognitive dysfunction in SPS-induced PTSD mice through hippocampal PI3K/Akt/mTOR pathway. Int J Biol Macromol 2025; 308:142770. [PMID: 40180094 DOI: 10.1016/j.ijbiomac.2025.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Post-traumatic stress disorder (PTSD) is a persistent mental illness caused by severe traumatic events, and its pathogenesis is still unclear. Recent studies indicate that p75 neurotrophic factor receptor (p75NTR) plays a crucial role in neurological diseases, but the role of p75NTR in PTSD is currently unknown. To investigate the effects and mechanisms of p75NTR in PTSD, in this study, a functional p75NTR-deficient mouse was used to establish a PTSD model by single prolonged stress (SPS) paradigm, then the behavioral effects and underlying mechanisms were further investigated. The results demonstrated that p75NTR deletion alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD mice. Further study indicated that deletion of p75NTR downregulated the expression of apoptosis (Bax) and autophagy (Beclin-1) related proteins in the hippocampus of PTSD mice, protected against hippocampal neuronal damage, upregulated the expression of synaptic-related proteins (PSD95 and Synapsin I), increased dendritic complexity and dendritic spine density, and improved synaptic plasticity through the PI3K/Akt/mTOR pathway. In conclusion, deletion of p75NTR rescues behavioral and cognitive dysfunction through PI3K/Akt/mTOR pathway mediated regulation of hippocampal autophagy, apoptosis and synaptic plasticity in SPS-induced PTSD mice, which provides a potential therapeutic target for the treatment of PTSD.
Collapse
Affiliation(s)
- Yu-Yuan Peng
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun-Jie Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hui Cheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
3
|
Li T, Yang XH, Shao MJ, Dong YX, Li LY, Lin CZ. Effectiveness and mechanism of cisplatin combined with PDT on human lung adenocarcinoma A549 cells transplanted tumor in nude mice. Sci Rep 2025; 15:10062. [PMID: 40128581 PMCID: PMC11933342 DOI: 10.1038/s41598-025-94990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
This study aims to investigate the effect and mechanism of photodynamic therapy (PDT) combined with cisplatin on human lung adenocarcinoma A549 cells transplanted tumors in nude mice, and to provide a theoretical basis for clinical PDT. Construction of a nude mouse lung cancer transplantation tumor model using the human lung adenocarcinoma A549 cell line, and the mice were randomly divided into four groups: the control group, the cisplatin alone group, the PDT alone group, and the cisplatin combined PDT group. The apoptosis of tumor cells in the four groups was observed and compared by the TUNEL method, and the mRNA expression levels of apoptosis-related genes Bax, caspase-3 and Survivin, as well as the expression levels of the corresponding proteins, were detected by the real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and the protein immunoblotting technique (Western blot) respectively. The results showed that photodynamic force combined with cisplatin was effective in inhibiting tumor growth, and its effect was superior to that of cisplatin or PDT alone. This may be related to the promotion of apoptosis, specifically through the up-regulation of Bax and caspase-3, and the down-regulation of Survivin gene expression, thus inhibiting cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao-Hui Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ming-Ju Shao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yu-Xia Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lin-Yu Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cun-Zhi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
4
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
5
|
Spiess KL, Geden MJ, Romero SE, Hollville E, Hammond ES, Patterson RL, Girardi QB, Deshmukh M. Apoptosis signaling is activated as a transient pulse in neurons. Cell Death Differ 2025; 32:521-529. [PMID: 39462068 PMCID: PMC11894145 DOI: 10.1038/s41418-024-01403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Apoptosis is a fundamental process of all mammalian cells but exactly how it is regulated in different primary cells remains less explored. In most contexts, apoptosis is engaged to eliminate cells. However, postmitotic cells such as neurons must efficiently balance the need for developmental apoptosis versus the physiological needs for their long-term survival. Neurons are capable of reversing the commitment to death even after the point of cytochrome c release. This ability of neurons to recover from an apoptotic signal suggests that activation of the apoptotic pathway in neurons could be much more transient than is currently recognized. Here, we investigated whether the apoptotic pathway in neurons is a persistent signal or a transient pulse in continuous presence of apoptotic stimulus. We have examined this at three key steps in apoptotic signaling: phosphorylation of c-Jun, induction of the BH3-only family proteins and Bax activation. Strikingly, we found all three of these events occur as transient signals following Nerve Growth Factor (NGF) deprivation-induced apoptosis in sympathetic neurons. This transient apoptosis signal would effectively allow neurons to reset and permit recovery if the apoptotic stimulus is reversed. Excitingly, we have also discovered that a neuron's ability to recover from an apoptotic signal is dependent on expression of the anti-apoptotic Bcl-2 family protein Bcl-xL. Bcl-xL-deficient neurons lose the ability to recover from NGF deprivation even if NGF is restored. Additionally, we show that recovery from a previous exposure to NGF deprivation is protective against subsequent deprivation. Together, these results define a novel mechanism by which apoptosis is regulated in neurons where the transient pulse of the apoptotic signaling supports neuronal resilience.
Collapse
Affiliation(s)
- Keeley L Spiess
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA
| | - Matthew J Geden
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Selena E Romero
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Emilie Hollville
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Quintin B Girardi
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mohanish Deshmukh
- Neuroscience Center; University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Zhang X, Zhang L, Xiang W. The impact of mitochondrial dysfunction on ovarian aging. J Transl Med 2025; 23:211. [PMID: 39980008 PMCID: PMC11844166 DOI: 10.1186/s12967-025-06223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
IMPORTANCE Ovarian aging has become a focal point in current research on female aging and refers to the gradual decline in ovarian function as women age. Numerous factors influence ovarian aging, among which mitochondrial function is one because it plays a crucial role by affecting oocytes and granulosa cells. Mitochondrial deterioration not only leads to a decrease in oocyte quality but also hinders follicle development, further impacting women's reproductive health and fertility. OBJECTIVE This review summarizes and integrates research on the impact of mitochondrial function on ovarian aging, outlining the mechanisms by which mitochondria regulate the functions of oocytes and granulosa cells. This study aims to provide potential therapeutic directions to mitigate mitochondrial decline and support female reproductive health. EVIDENCE REVIEW According to a 2023 study published in Cell, factors such as oxidative stress, mitochondrial dysfunction, chronic inflammation, and telomere shortening collectively drive ovarian aging, directly affecting female fertility. Among these factors, mitochondrial dysfunction plays a key role. This study reviewed literature from databases such as PubMed, Google Scholar, and CNKI, using keywords such as "mitochondrial dysfunction", "decline in oocyte quality and quantity", and "ovarian aging", aiming to summarize current research on the mechanisms of the impact of mitochondrial dysfunction on ovarian aging and provide theoretical support for future exploration of related therapeutic strategies. FINDINGS The main characteristics of ovarian aging include a decline in oocyte quantity and quality, fluctuations in hormone levels, and a reduction in granulosa cell function. Studies have shown that mitochondria affect fertility by regulating cellular energy metabolism, exacerbating oxidative stress, causing mitochondrial DNA (mtDNA) damage, and impacting the physiological function of granulosa cells within the ovary, gradually diminishing the ovarian reserve. CONCLUSION This review focuses on analyzing the effects of mitochondrial decline on energy production in oocytes and granulosa cells, the accumulation of reactive oxygen species (ROS), and the calcium ion (Ca2+) concentration, which all contribute to the ovarian aging process, and understanding them will provide new insights into the mechanisms of ovarian aging. RELEVANCE Therapeutic interventions targeting mitochondrial dysfunction may help delay ovarian aging and improve female reproductive health.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
He Z, Deng S, Wu Z, Cui Z, Mei H, Wang J, Wang K, Zhang Y. Angelica sinensis polysaccharide could alleviate the gastrointestinal damage in alcoholic fatty liver disease mice: Regulation of alcohol metabolism and enhancement of short-chain fatty acids utilization. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119117. [PMID: 39551279 DOI: 10.1016/j.jep.2024.119117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dysfunction of the intestinal barrier was an important trigger for alcoholic liver damage and alcohol had brought about intestinal damage before causing liver damage. The root of Angelica sinensis (Oliv.) Diels, crucial traditional medicinal material, was widely utilized for its blood-invigorating, intestinal-lubricating and gynecological benefits. Angelica sinensis polysaccharide (ASP) was an essential natural active ingredient of Angelica sinensis and exhibited considerable potential for gastrointestinal protection. Nevertheless, the systematic research of ASP on the gastrointestinal tract remained insufficient. AIM OF THIS STUDY To systematically explore the protective effect and underlying mechanisms of ASP against alcohol-induced gastrointestinal injury, including the stomach, ileum and colon. MATERIALS AND METHODS The AFLD mice model was established via the intragastric administration of alcohol twice a day for one week. The protective effect of ASP on the representative segments of the gastrointestinal tract (stomach, ileum and colon) was subsequently studied after confirming its hepatoprotective activity. The impact of ASP on gastrointestinal alcohol metabolism was examined to explain its antioxidant and antiapoptotic activities. Furthermore, the effect of ASP on short-chain fatty acids (SCFA) in the colon and colonic contents was investigated to further enhance the understanding of the underlying mechanisms. RESULTS ASP could reduce oxidative stress and apoptosis in the gastrointestinal tract via regulating CYP2E1-mediated alcohol metabolism. Additionally, ASP could significantly increase the levels of FFAR2, FFAR3 and HCAR2 in colon, thereby promoting the utilization of SCFA. CONCLUSION ASP was proven for the first time to improve gastrointestinal damage caused by alcohol, indicating its enormous potential as a candidate medicine for the treatment of alcohol related gastrointestinal injury.
Collapse
Affiliation(s)
- Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Siyuan Deng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030, Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030, Wuhan, PR China.
| |
Collapse
|
8
|
Wei H, Wang H, Xiang S, Wang J, Qu L, Chen X, Guo M, Lu X, Chen Y. Deciphering molecular specificity in MCL-1/BAK interaction and its implications for designing potent MCL-1 inhibitors. Cell Death Differ 2025:10.1038/s41418-025-01454-2. [PMID: 39901037 DOI: 10.1038/s41418-025-01454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The intricate interplay among BCL-2 family proteins governs mitochondrial apoptosis, with the anti-apoptotic protein MCL-1 primarily exerting its function by sequestering the pore-forming effector BAK. Understanding the MCL-1/BAK complex is pivotal for the sensitivity of cancer cells to BH3 mimetics, yet the precise molecular mechanism underlying their interaction remains elusive. Herein, we demonstrate that a canonical BH3 peptide from BAK inadequately binds to MCL-1 proteins, whereas an extended BAK-BH3 peptide with five C-terminal residues exhibits a remarkable 65-fold increase in affinity. By elucidating the complex structures of MCL-1 bound to these two BAK-BH3 peptides at 2.08 Å and 1.98 Å resolutions, we uncover their distinct binding specificities. Notably, MCL-1 engages in critical hydrophobic interactions with the extended BAK-BH3 peptide, particularly at an additional p5 sub-pocket, featuring a π-π stacking interaction between MCL-1 Phe319 and BAK Tyr89. Mutations within this p5 sub-pocket substantially disrupt the MCL-1/BAK protein-protein interaction. Furthermore, the p5 sub-pocket of MCL-1 significantly influences the efficacy of MCL-1 inhibitors. Overall, our findings elucidate the molecular specificity underlying MCL-1 binding to BAK and underscore the significance of the p5 hydrophobic sub-pocket in their high-affinity interaction, thus providing novel insights for the development of BH3 mimetics targeting the MCL-1/BAK interaction as potential therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaqi Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
10
|
Belenichev I, Popazova O, Bukhtiyarova N, Ryzhenko V, Pavlov S, Suprun E, Oksenych V, Kamyshnyi O. Targeting Mitochondrial Dysfunction in Cerebral Ischemia: Advances in Pharmacological Interventions. Antioxidants (Basel) 2025; 14:108. [PMID: 39857442 PMCID: PMC11760872 DOI: 10.3390/antiox14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The study of mitochondrial dysfunction has become increasingly pivotal in elucidating the pathophysiology of various cerebral pathologies, particularly neurodegenerative disorders. Mitochondria are essential for cellular energy metabolism, regulation of reactive oxygen species (ROS), calcium homeostasis, and the execution of apoptotic processes. Disruptions in mitochondrial function, driven by factors such as oxidative stress, excitotoxicity, and altered ion balance, lead to neuronal death and contribute to cognitive impairments in several brain diseases. Mitochondrial dysfunction can arise from genetic mutations, ischemic events, hypoxia, and other environmental factors. This article highlights the critical role of mitochondrial dysfunction in the progression of neurodegenerative diseases and discusses the need for targeted therapeutic strategies to attenuate cellular damage, restore mitochondrial function, and enhance neuroprotection.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine;
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical University, 69000 Zaporizhzhia, Ukraine
| | - Sergii Pavlov
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Elina Suprun
- The State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, 46 Academician Pavlov Street, 61076 Kharkov, Ukraine
| | | | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
11
|
Zhou Z, Xu L, Lv Y, Li L, Yuan H, Hu F. BAX pores facilitate mitochondrial DNA release in wasp sting-induced acute kidney injury. Int Immunopharmacol 2024; 143:113424. [PMID: 39437488 DOI: 10.1016/j.intimp.2024.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The role of B-cell lymphoma 2 (BCL2)-associated X (BAX) macropores in the leakage of mitochondrial DNA (mtDNA) and their impact on acute kidney injury (AKI) has recently been brought to the focus of researchers. This study aimed to explore the relationship between mtDNA leakage and BAX macropores during wasp sting-induced AKI. BAX mitochondrial translocation and macropores opening increased in both in vivo and in vitro models of wasp sting-induced AKI. In a mouse model, BAX inhibition dramatically attenuated mitochondrial impairment, cytoplasmic release of mtDNA, and suppressed activation of the mtDNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. This attenuation improved kidney function, reduced inflammatory response, and decreased apoptosis in mouse models. Furthermore, in cultured human proximal tubular epithelial cells (HK-2) treated with myoglobin and subjected to BAX knockdown, quantitative real-time polymerase chain reaction (PCR) directly demonstrated decreased mtDNA release into the cytoplasm. Consistent with in vivo results, downregulation of BAX expression in vitro ameliorated mitochondrial damage and attenuated subsequent inflammation and apoptosis caused by the activation of the mtDNA-cGAS-STING signaling pathway. Our findings revealed that mtDNA is released into the cytoplasm through BAX macropores in wasp sting-induced AKI, which provided an important novel perspective for understanding wasp sting-induced AKI and is conducive for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Zilin Zhou
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Liang Xu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Lv
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ling Li
- School of Medicine, Wuhan University of Science and Technology, Wuhan, China; Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hai Yuan
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Fengqi Hu
- Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
12
|
Afacan B, Budak U, Altınyürek EE, Özden C, Çevik Ö, Köse T, Emingil G. Gingival crevicular fluid Bax, Bcl-xl, interleukin-22, and transforming growth factor beta 1 levels in stage III periodontitis. J Periodontol 2024. [PMID: 39692450 DOI: 10.1002/jper.24-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 11/09/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Intrinsic apoptosis plays a critical role in immune defense and inflammation. Its dysregulation is involved in various chronic diseases. The B-cell lymphoma 2 (Bcl-2) family primarily mediates this mitochondrial pathway. This study aimed to investigate the proapoptotic Bcl-2-associated X protein (Bax) and antiapoptotic B-cell lymphoma-extra large (Bcl-xl) levels and their association with interleukin-22 (IL-22) and transforming growth factor beta 1 (TGF-β1) in the gingival crevicular fluid (GCF) of patients with periodontitis. METHODS A total of 75 systemically healthy nonsmokers were enrolled, of whom 23 had stage III periodontitis, 26 had gingivitis, and 26 were periodontally healthy. Whole-mouth clinical periodontal measurements were recorded. Bax, Bcl-xl, IL-22, and TGF-β1 levels in the GCF were determined by enzyme-linked immunosorbent assay (ELISA). Data were analyzed using nonparametric statistical tests. RESULTS The periodontitis group had significantly lower GCF Bax levels than the gingivitis group (p < 0.05). The periodontitis and gingivitis groups had higher GCF Bcl-xl levels than the periodontally healthy group (p < 0.05). GCF IL-22 levels were similar in all groups (p > 0.05). The periodontitis group had lower GCF TGF-β1 levels than the gingivitis and periodontally healthy groups (p < 0.05). The diseased groups had a lower GCF Bax/Bcl-xl ratio than the healthy controls (p < 0.05). IL-22 was positively correlated with Bax (p < 0.05). CONCLUSIONS This is the first study investigating GCF Bax and Bcl-xl levels in periodontal health and disease. Increased GCF Bcl-xl levels and a decreased Bax/Bcl-xl ratio in stage III periodontitis implicate that those apoptotic proteins may be involved in the pathogenesis of periodontal disease. Further studies are needed to enlighten the possible role of Bax and Bcl-xl and their association with IL-22 and TGF-β1 in periodontal diseases. PLAIN LANGUAGE SUMMARY A type of cell death called intrinsic apoptosis plays an important role in the body's defense system, and its dysregulation is linked to different human diseases. The B-cell lymphoma 2-associated X protein (Bax) and B-cell lymphoma-extra large (Bcl-xl) are apoptosis-related proteins, which promote and inhibit cell death, respectively. This study aimed to investigate Bax and Bcl-xl levels and their association with the signaling proteins interleukin-22 (IL-22) and transforming growth factor beta 1 (TGF-β1) in the gingival crevicular fluid (GCF), which accumulates around the necks of the teeth of patients suffering from gum diseases such as gingivitis and periodontitis. Clinical parameters were recorded and GCF was collected. Bax, Bcl-xl, IL-22, and TGF-β1 levels were measured by biochemical assay in periodontally healthy individuals who had healthy gums (n = 26) and patients with periodontitis (n = 23) and gingivitis (n = 26). Periodontitis patients had lower Bax levels than gingivitis patients. Periodontitis and gingivitis patients had higher Bcl-xl levels and a lower Bax/Bcl-xl ratio than periodontally healthy individuals. IL-22 was positively correlated with Bax. The present findings suggest that the apoptotic regulatory molecules may be involved in the development of gum diseases, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Utkucan Budak
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ece Erdem Altınyürek
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Can Özden
- Department of Periodontology, Faculty of Dentistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İzmir Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, İstinye University, İstanbul, Turkey
| |
Collapse
|
13
|
Alsaleh AN, Aziz IM, Aljowaie RM, Alshalan RM, Alkubaisi NA, Aboul-Soud MAM. In Vitro Evaluation, Chemical Profiling, and In Silico ADMET Prediction of the Pharmacological Activities of Artemisia absinthium Root Extract. Pharmaceuticals (Basel) 2024; 17:1646. [PMID: 39770489 PMCID: PMC11728498 DOI: 10.3390/ph17121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Artemisia absinthium L., is a plant with established pharmacological properties, but the A. absinthium root extract (AARE) remains unexplored. The aim of this study was to examine the chemical composition of AARE and assess its biological activity, which included antidiabetic, antibacterial, anticancer, and antioxidant properties. GC-MS was used to analyze the chemical components. The antioxidant activity of the total phenolic and flavonoid content was evaluated. Antibacterial activity and cytotoxic effects were identified. Enzyme inhibition experiments were performed to determine its antidiabetic potential. Molecular docking was utilized to evaluate the potential antioxidant, antibacterial, and anticancer activities of the compounds from AARE using Maestro 11.5 from the Schrödinger suite. AARE exhibited moderate antioxidant activity in DPPH (IC50: 172.41 ± 3.15 μg/mL) and ABTS (IC50: 378.94 ± 2.18 μg/mL) assays. Cytotoxicity tests on MCF-7 and HepG2 cancer cells demonstrated significant anticancer effects, with IC50 values of 150.12 ± 0.74 μg/mL and 137.11 ± 1.33 μg/mL, respectively. Apoptotic studies indicated an upregulation of pro-apoptotic genes (caspase-3, 8, 9, Bax) and a downregulation of anti-apoptotic markers (Bcl-2 and Bcl-Xl). AARE also inhibited α-amylase and α-glucosidase, suggesting potential antidiabetic effects, with IC50 values of 224.12 ± 1.17 μg/mL and 243.35 ± 1.51 μg/mL. Antibacterial assays revealed strong activity against Gram-positive bacteria. Molecular docking and pharmacokinetic analysis identified promising inhibitory effects of key AARE compounds on NADPH oxidase, E. coli Gyrase B, and Topoisomerase IIα, with favorable drug-like properties. These findings suggest AARE's potential in treating cancer, diabetes, and bacterial infections, warranting further in vivo and clinical studies.
Collapse
Affiliation(s)
- Asma N. Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Ibrahim M. Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Reem M. Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Rawan M. Alshalan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Noorah A. Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.N.A.); (R.M.A.); (R.M.A.); (N.A.A.)
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| |
Collapse
|
14
|
Gosálvez J, Johnston SD, Prado A, López-Fernández C, Contreras P, Bartolomé-Nebreda J, González-Martínez M, Fernández JL, de la Vega CG, Góngora A. Strong Correlation Between Double-Strand DNA Breaks and Total Sperm DNA Fragmentation in the Human Ejaculate. Arch Med Res 2024; 55:103122. [PMID: 39566167 DOI: 10.1016/j.arcmed.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Double- and single-strand DNA breaks (DSBs and SSBs, respectively) in spermatozoa, which emerge from intrinsic and extrinsic degenerative processes, are likely related to the underlying male pathology. AIM To determine whether the incidence of DSBs in the human ejaculate is a consistent predictor of whole sperm DNA fragmentation (W-SDF = SSBs + DSBs). METHODS A correlation between the proportion of spermatozoa that showed whole W-SDF and those displaying only DSBs in DNA. Two patient cohorts were established: W-SDF ≤30% (low SDF; n = 153) and W-SDF ≥30% (high SDF; n = 222). RESULTS An increasing level of W-SDF is associated with an increased incidence of DSBs in the ejaculate. When data from both the low and high W-SDF groups were combined, a linear relationship was observed, with DSBs increasing by 0.799 units for each unit increase in W-SDF. However, when the cohorts were analyzed separately, the relationships differed. In the low SDF group, DSBs increased linearly by 0.559 units for each unit increase in W-SDF. In the high SDF group, DSBs increased exponentially by 0.602 units per unit of W-SDF. Furthermore, the data dispersion between the two variables was significantly different between the cohorts, with the high SDF group showing 0.8 times greater variability than the low SDF group. CONCLUSIONS While the presence of DSBs in sperm is correlated with the W-SDF present in raw semen samples, the biological mechanisms responsible for DSBs are expressed in different proportions and/or at different levels in ejaculates with higher levels of DNA damage.
Collapse
Affiliation(s)
- Jaime Gosálvez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Stephen D Johnston
- School of Environment, University of Queensland, Gatton, Queensland, Australia; School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia; Halotech DNA, Calle Faraday SN, Parque Científico de Madrid, Madrid, Spain
| | - Ahinoa Prado
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia; Halotech DNA, Calle Faraday SN, Parque Científico de Madrid, Madrid, Spain
| | | | - Pablo Contreras
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia; Halotech DNA, Calle Faraday SN, Parque Científico de Madrid, Madrid, Spain
| | - Javier Bartolomé-Nebreda
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain; School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia; Halotech DNA, Calle Faraday SN, Parque Científico de Madrid, Madrid, Spain
| | | | - José Luis Fernández
- Unidad de Genética, Complejo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña, A Coruña, Spain; Laboratorio de Genética Molecular y Radiobiología, Centro Oncológico de Galicia. A Coruña, Spain
| | | | | |
Collapse
|
15
|
Klein SM, Bozko M, Toennießen A, Rangno D, Bozko P. High p53 Protein Level Is a Negative Prognostic Marker for Pancreatic Adenocarcinoma. Int J Mol Sci 2024; 25:12307. [PMID: 39596373 PMCID: PMC11594790 DOI: 10.3390/ijms252212307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive types of cancer. Among different mechanisms generally believed to be important for the development of cancer, aberrant regulation of the p53 protein is a well-known and common feature for many cancer entities. Our work aims to analyze the impact of p53 deregulation and proteins encoded by p53 target genes on the survival of patients suffering from pancreatic adenocarcinoma. We, therefore, focused on the analysis of the selected collective for the TP53 mutation status, the p53 protein level, their correlation, and possible impacts on the prognosis/survival. We compared and analyzed a set of 123 patients. We have extracted information regarding the TP53 mutation status, p53 protein levels, the level of proteins encoded by prominent p53 target genes, and information on the overall survival. Survival analyses were displayed by Kaplan-Meier plots, using the log-rank test, in order to check for statistical significance. Protein levels were compared using the Mann-Whitney Test. We did not find any statistically significant correlation between the TP53 mutation status and the survival of the patients. Moreover, we have not found any significant correlation between the protein amount of prominent p53 target genes and the patients' survival. However, we see a significant correlation between the p53 protein level in cancer samples and the overall survival of pancreatic adenocarcinoma patients: patients having tumors with a p53 protein level within the upper quartile of all measured cases show a significantly reduced survival compared to the rest of the patients. Thus, in pancreatic adenocarcinoma, the p53 protein level is a relevant marker for prognosis, and cancers having a high p53 protein amount show a shortened patients' survival. In contrast, for this cancer entity, the TP53 mutation status or the protein amount of prominent p53 target genes on their own seems not to have a significant impact on survival.
Collapse
Affiliation(s)
- Sebastian M. Klein
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- M3 Research Institute, University Tübingen, 72076 Tübingen, Germany
| | - Maria Bozko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | - Dennis Rangno
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Przemyslaw Bozko
- Department of Internal Medicine I, Universitätsklinikum Tübingen, Universität Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- M3 Research Institute, University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Chu W, Liu P, Zhang Z, Wu D, Li W, Chen W, Li Z, Wang W, Yang Y. Preparation, characterization and cytotoxic activity of selenium nanoparticles stabilized with a heteropolysaccharide isolated from Sanghuangporus vaninii residue. Carbohydr Polym 2024; 343:122468. [PMID: 39174129 DOI: 10.1016/j.carbpol.2024.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/24/2024]
Abstract
Selenium nanoparticles (SeNPs) possess unique features with excellent bioavailability and bioactivity, but the poor stability limits its application. A combination of polysaccharides and SeNPs is an effective strategy to overcome the limitation. Herein, a heteropolysaccharide (SVL-3) with an average molecular weight of 2.428 × 104 Da was purified from the fruiting body residue of Sanghuangporus vaninii after soaking in sorghum wine, which was composed of fucose, galactose, glucose, fructose and 3-O-methyl-galactose. The main chain of SVL-3 was composed of →6)-α-3-MeO-Galp-(1→, →4)-α-D-Galp-(1→, →2,6)-β-D-Glcp-(1 → and →3)-α-D-Glcp-(1→, and the branched chain was composed of →4)-α-D-Xylp-(1 → and α-L-Fucp-(1→. For enhancing bioactivity of SVL-3 and stability of SeNPs, SVL-3-functionalized SeNPs (SVL-3-SeNPs) was prepared, which contained 45.31 % polysaccharide and 48.49 % selenium. SVL-3-SeNPs maintained an emphatic stability over 28 days at 4 °C and pH 6-8, and exhibited a higher cytotoxic effect on MCF-7 cells than SVL-3 and SeNPs. The inhibitory effect of SVL-3-SeNPs on the cancer cells may be associated with the mechanisms by inducing S-phase arrest, triggering apoptosis and elevating the protein levels of Cytochrome c, Caspases and cleaved caspases 3 and 9. These results indicated that SeNPs modified by S. vaninii polysaccharides can be utilized as a potential material for targeted antitumor drugs.
Collapse
Affiliation(s)
- Wenqi Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Institute of Biological products CO., LTD, Shanghai 200050, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Weike Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
17
|
Rauh U, Wei G, Serrano-Wu M, Kosmidis G, Kaulfuss S, Siegel F, Thede K, McFarland J, Lemke CT, Werbeck N, Nowak-Reppel K, Pilari S, Menz S, Ocker M, Zhang W, Davis K, Poncet-Montange G, Roth J, Daniels D, Kaushik VK, Hubbard B, Ziegelbauer K, Golub TR. BRD-810 is a highly selective MCL1 inhibitor with optimized in vivo clearance and robust efficacy in solid and hematological tumor models. NATURE CANCER 2024; 5:1479-1493. [PMID: 39179926 PMCID: PMC11502502 DOI: 10.1038/s43018-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
The MCL1 gene is frequently amplified in cancer and codes for the antiapoptotic protein myeloid cell leukemia 1 (MCL1), which confers resistance to the current standard of care. Therefore, MCL1 is an attractive anticancer target. Here we describe BRD-810 as a potent and selective MCL1 inhibitor and its key design principle of rapid systemic clearance to potentially minimize area under the curve-driven toxicities associated with MCL1 inhibition. BRD-810 induced rapid cell killing within 4 h in vitro but, in the same 4-h window, had no impact on cell viability or troponin I release in human induced pluripotent stem cell-derived cardiomyocytes, even at suprapharmacologic concentrations. In vivo BRD-810 induced efficacy in xenograft hematological and solid tumor models despite the short residence time of BRD-810 in plasma. In totality, our data support the hypothesis that short-term inhibition of MCL1 with BRD-810 can induce apoptosis in tumor cells while maintaining an acceptable safety profile. We, therefore, intend to advance BRD-810 to clinical trials.
Collapse
Affiliation(s)
- Ulrike Rauh
- Trueline Therapeutics Inc., Cambridge, MA, USA.
| | - Guo Wei
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Kai Thede
- Nuvisan Innovation Campus Berlin, Berlin, Germany
| | | | | | | | | | - Sabine Pilari
- Independent Consultant, Pharmacometrics Modeling and Simulation, Berlin, Germany
| | | | | | - Weiqun Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyle Davis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jennifer Roth
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Chen L, Guo P, Zhai L, Yu L, Zhu D, Hu X, Li Z, Chen Y, Sun Q, Sun L, Luo H, Tang H. Nrf2 affects DNA damage repair and cell apoptosis through regulating HR and the intrinsic Caspase-dependent apoptosis pathway in TK6 cells exposed to hydroquinone. Toxicol In Vitro 2024; 100:105901. [PMID: 39029599 DOI: 10.1016/j.tiv.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Hydroquinone (HQ) is one of benzene metabolites that can cause oxidative stress damage and Homologous recombination repair (HR). A good deal of reactive oxygen species (ROS) generated by oxidative stress can trigger apoptotic signaling pathways. The nuclear factor erythroid 2-related factor 2 (Nrf2) can regulate the cell response to oxidative stress damage. The aim of this study was to explore whether Nrf2 participate in HQ-induced apoptosis and its mechanism. The findings displayed that HQ triggered HR, promoted Nrf2 transfer into the cell nucleus and induced cell apoptosis, while Nrf2 deficient elevated cell apoptosis, attenuated the expression of PARP1 and RAD51. We also observed that Nrf2 deficient triggered Caspase-9. Thus, we speculated that Nrf2 might participate in HQ-induced cell apoptosis through Caspase-9 dependent pathways. Meanwhile, Nrf2 participated in HQ-induced DNA damage repair by regulating the level of PARP1 and RAD51.
Collapse
Affiliation(s)
- Lin Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Pu Guo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lu Zhai
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lingxue Yu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Delong Zhu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyi Hu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zhuanzhuan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Lei Sun
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hao Luo
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
19
|
Zhang Y, Huang J, Li S, Jiang J, Sun J, Chen D, Pang Q, Wu Y. Pyrroloquinoline Quinone Alleviates Mitochondria Damage in Radiation-Induced Lung Injury in a MOTS-c-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20944-20958. [PMID: 39259217 DOI: 10.1021/acs.jafc.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Junlin Jiang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qingfeng Pang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Yaxian Wu
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214122, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| |
Collapse
|
20
|
Zhu H, Zhou L, Tang J, Xu Y, Wang W, Shi W, Li Z, Zhang L, Ding Z, Xi K, Gu Y, Chen L. Reactive Oxygen Species-Responsive Composite Fibers Regulate Oxidative Metabolism through Internal and External Factors to Promote the Recovery of Nerve Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401241. [PMID: 38660829 DOI: 10.1002/smll.202401241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Indexed: 04/26/2024]
Abstract
It is challenging to sufficiently regulate endogenous neuronal reactive oxygen species (ROS) production, reduce neuronal apoptosis, and reconstruct neural networks under spinal cord injury conditions. Here, hydrogel surface grafting and microsol electrospinning are used to construct a composite biomimetic scaffold with "external-endogenous" dual regulation of ROS. The outer hydrogel enhances local autophagy through responsive degradation and rapid release of rapamycin (≈80% within a week), neutralizing extracellular ROS and inhibiting endogenous ROS production, further reducing neuronal apoptosis. The inner directional fibers continuously supply brain-derived neurotrophic factors to guide axonal growth. The results of in vitro co-culturing show that the dual regulation of oxidative metabolism by the composite scaffold approximately doubles the neuronal autophagy level, reduces 60% of the apoptosis induced by oxidative stress, and increases the differentiation of neural stem cells into neuron-like cells by ≈2.5 times. The in vivo results show that the composite fibers reduce the ROS levels by ≈80% and decrease the formation of scar tissue. RNA sequencing results show that composite scaffolds upregulate autophagy-associated proteins, antioxidase genes, and axonal growth proteins. The developed composite biomimetic scaffold represents a therapeutic strategy to achieve neurofunctional recovery through programmed and accurate bidirectional regulation of the ROS cascade response.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yichang Xu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenxiao Shi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Ziang Li
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lichen Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhouye Ding
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yong Gu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
21
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
22
|
Xiong Y, Chen J, Liang W, Li K, Huang Y, Song J, Zhang B, Qiu X, Qiu D, Zhang Q, Qin Y. Blockade of the mitochondrial DNA release ameliorates hepatic ischemia-reperfusion injury through avoiding the activation of cGAS-Sting pathway. J Transl Med 2024; 22:796. [PMID: 39198913 PMCID: PMC11351313 DOI: 10.1186/s12967-024-05588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Liver surgery during the perioperative period often leads to a significant complication known as hepatic ischemia-reperfusion (I/R) injury. Hepatic I/R injury is linked to the innate immune response. The cGAS-STING pathway triggers the activation of innate immune through the detection of DNA within cells. Nevertheless, the precise mechanism and significance of the cGAS-STING pathway in hepatic I/R injury are yet to be investigated. METHODS Mouse model of hepatic I/R injury was used in the C57BL/6 WT mice and the STING knockout (STING-KO) mice. In addition, purified primary hepatocytes were used to construct oxygen-glucose deprivation reperfusion (OGD-Rep) treatment models. RESULTS Our research revealed a notable increase in mRNA and protein levels of cGAS and STING in liver during I/R injury. Interestingly, the lack of STING exhibited a safeguarding impact on hepatic I/R injury by suppressing the elevation of liver enzymes, liver cell death, and inflammation. Furthermore, pharmacological cGAS and STING inhibition recapitulated these phenomena. Macrophages play a crucial role in the activation of the cGAS-STING pathway during hepatic I/R injury. The cGAS-STING pathway experiences a significant decrease in activity and hepatic I/R injury is greatly diminished following the elimination of macrophages. Significantly, we demonstrate that the activation of the cGAS-STING pathway is primarily caused by the liberation of mitochondrial DNA (mtDNA) rather than nuclear DNA (nDNA). Moreover, the safeguarding of the liver against I/R injury is also attributed to the hindrance of mtDNA release through the utilization of inhibitors targeting mPTP and VDAC oligomerization. CONCLUSIONS The results of our study suggest that the release of mtDNA plays a significant role in causing damage to liver by activating the cGAS-STING pathway during I/R injury. Furthermore, inhibiting the release of mtDNA can provide effective protection against hepatic I/R injury.
Collapse
Affiliation(s)
- Yi Xiong
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jiawen Chen
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Wei Liang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Yingqi Huang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Jingwen Song
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Neurosurgery Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China
| | - Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, PR China.
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat- sen University, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
23
|
Gao C, Shang J, Sun Z, Xia M, Gao D, Sun R, Li W, Wang F, Zhang J. Presenilin2 D439A Mutation Induces Dysfunction of Mitochondrial Fusion/Fission Dynamics and Abnormal Regulation of GTPase Activity. Mol Neurobiol 2024; 61:5047-5070. [PMID: 38159198 PMCID: PMC11249618 DOI: 10.1007/s12035-023-03858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, and approximately 10% of AD cases are early-onset familial AD (EOFAD), which is mainly linked to point mutations in genes encoding presenilins (PS1 and PS2). Mutations in PS2 are extremely rare and have not received enough attention. Recently, studies have found that Rho GTPase activity is closely related to the pathogenesis of AD. In this study, we used transcriptome sequencing in PS2 siRNA-transfected SH-SY5Y cells and found a group of differentially expressed genes (DEGs) related to the regulation of GTPase activity. Among those DEGs, the most significantly downregulated was Rho guanine nucleotide exchange factor 5 (ARHGEF5). GTPase activity in PS2 siRNA-transfected cells was significantly decreased. Then, we found that the expression of ARHGEF5 and the GTPase activity of Mitochondrial Rho GTPase 2 (Miro2) in PS2 D439A mutant SH-SY5Y cells were significantly decreased. We found for the first time that PS2 can bind to Miro2, and the PS2 D439A mutation reduced the binding between PS2 and Miro2, reduced the expression of Miro2, and resulted in an imbalance in mitochondrial fusion/fission dynamics. In conclusion, PS2 gene knockdown may participate in the pathogenesis of AD through the regulation of GTPase activity. The imbalance in mitochondrial dynamics mediated by the PS2 D439A mutation through regulation of the expression and GTPase activity of Miro2 may be a potential pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhengyu Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Mingrong Xia
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dandan Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China.
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
24
|
Liu X, Li Z, Zhao Q, Zhou X, Wang Y, Zhao G, Guo X. Capsaicin reverses cisplatin resistance in tongue squamous cell carcinoma by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Cell Biol Int 2024; 48:1097-1110. [PMID: 38706122 DOI: 10.1002/cbin.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/12/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Cisplatin is commonly used for the chemotherapy of tongue squamous cell carcinoma (TSCC); however, adverse side effects and drug resistance impact its therapeutic efficacy. Capsaicin is an active ingredient in chili peppers that exerts antitumor effects, whether it exerts antitumor effects on cisplatin-resistant cells remains unknown. Therefore, in this study, we investigated the effect of capsaicin on cisplatin resistance in TSCC cells and explored the underlying mechanisms. A cisplatin-resistant TSCC cell line was established by treated with increasing cisplatin concentrations. Combined treatment with cisplatin and capsaicin decreased the glucose consumption and lactate dehydrogenase activity and increased the adenosine triphosphate production both in vitro and in vivo, suggesting the inhibition of the Warburg effect. Moreover, this combined treatment induced cell apoptosis and significantly upregulated the levels of proapoptotic proteins, such as Bax, cleaved caspase-3, -7, and -9, and apoptosis-inducing factor. In contrast, levels of the antiapoptotic protein, Bcl-2, were downregulated. Additionally, LKB1 and AMPK activities were stimulated, whereas those of AKT and mTOR were suppressed. Notably, AMPK knockdown abolished the inhibitory effects of capsaicin and cisplatin on the AKT/mTOR signaling pathway and Warburg effect. Overall, combined treatment with capsaicin and cisplatin reversed cisplatin resistance by inhibiting the Warburg effect and facilitating mitochondrial-dependent apoptosis via the AMPK/AKT/mTOR axis. Our findings suggest combination therapy with capsaicin and cisplatin as a potentially novel strategy and highlight capsaicin as a promising adjuvant drug for TSCC treatment.
Collapse
Affiliation(s)
- Xiayang Liu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Zhuang Li
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Qiwei Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Xinyue Zhou
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yu Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Gang Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaohong Guo
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| |
Collapse
|
25
|
Wang L, Zhang Z, Zhang H, Zhou M, Huang C, Xia W, Li J, You H. The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence. Front Immunol 2024; 15:1346446. [PMID: 39114669 PMCID: PMC11303230 DOI: 10.3389/fimmu.2024.1346446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is one of the fundamental mechanisms of the body's defense, which responds to the abnormal presence of double-stranded DNA in the cytoplasm to establish an effective natural immune response. In addition to detecting microbial infections, the cGAS pathway may be triggered by any cytoplasmic DNA, which is absent from the normal cytoplasm, and only conditions such as senescence and mitochondrial stress can lead to its leakage and cause sterile inflammation. A growing body of research has shown that the cGAS-STING pathway is strongly associated with sterile inflammation. In this study, we reviewed the regulatory mechanisms and biological functions of the cGAS-STING pathway through its involvement in aseptic inflammation in liver disease, kidney disease, and cellular senescence.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Zhengwei Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Haichao Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Minmin Zhou
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjiang Xia
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongmei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| |
Collapse
|
26
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
27
|
Farhad SZ, Karbalaeihasanesfahani A, Dadgar E, Nasiri K, Esfahaniani M, Nabi Afjadi M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol Biol Rep 2024; 51:814. [PMID: 39008163 DOI: 10.1007/s11033-024-09737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Collapse
Affiliation(s)
- Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mahla Esfahaniani
- Faculty of Dentistry, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Ying L, Li K, Chen C, Wang Y, Zhao Q, Wang Y, Xu L, Huang H, Song G, Li W, He X. OIP5-AS1 enhances the malignant characteristics and resistance to chemotherapy of pancreatic cancer cells by targeting miR-30d-5p/MARCH8. Heliyon 2024; 10:e33835. [PMID: 39050450 PMCID: PMC11268210 DOI: 10.1016/j.heliyon.2024.e33835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
MARCH8, an E3 ubiquitin ligase, plays a crucial role in regulating various cellular processes such as protein degradation and signaling pathways and is implicated in the development and spread of pancreatic cancer. Analysis of pancreatic cancer tissues compared to adjacent normal tissues showed a decrease in miRNA-30d-5p levels and an increase in OIP5-AS1 and MARCH8 levels, as confirmed by qRT-PCR and Western blot analysis. The dual-luciferase reporter assay demonstrated a binding relationship between OIP5-AS1 and miRNA-30d-5p, as well as between miRNA-30d-5p and MARCH8 in PACN-1 cells, derived from a human pancreatic carcinoma specimen. Further investigations utilizing various assays revealed that OIP5-AS1 inhibited apoptosis and promoted cell proliferation, invasion, and migration in PACN-1 cells via the miRNA-30d-5p/MARCH8 axis in vitro. Tumor experiments in nude mice confirmed that OIP5-AS1 enhanced PACN-1 cell growth in vivo through the miRNA-30d-5p/MARCH8 axis. Additionally, OIP5-AS1 was found to activate downstream genes of the JAK-STAT pathway, namely IFNAR2, SOCS3, and JAK1, in PACN-1 cells. Furthermore, OIP5-AS1 increased the IC50 values for doxorubicin, gemcitabine, and cisplatin in PACN-1 cells, as determined by the Cell Counting Kit-8 assay. Overall, OIP5-AS1 was shown to promote aggressive traits and resistance to chemotherapy in PACN-1 cells through the miRNA-30d-5p/MARCH8 axis.
Collapse
Affiliation(s)
- Leilei Ying
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kening Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chao Chen
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Zhao
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaohui Wang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lichao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haozhe Huang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ge Song
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wentao Li
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinhong He
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
29
|
Ye Z, Zhang J, Xu Z, Li Z, Huang G, Tong B, Xia P, Shen Y, Hu H, Yu P, Xi X. Pioglitazone ameliorates ischemia/reperfusion-induced acute kidney injury via oxidative stress attenuation and NLRP3 inflammasome. Hum Cell 2024; 37:959-971. [PMID: 38607518 DOI: 10.1007/s13577-024-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague-Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1β, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1β, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.
Collapse
Affiliation(s)
- Zhenfeng Ye
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Gaomin Huang
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Bin Tong
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Jiangxi, 330006, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, Nanchang, China.
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Jiangxi, 330006, Nanchang, China.
| | - Xiaoqing Xi
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1st Minde Road, Jiangxi, 330006, Nanchang, China.
| |
Collapse
|
30
|
Luo Y, Lu C, Huang Y, Liao W, Huang Y. Identification of colon adenocarcinoma necroptosis subtypes and tumor antigens for the development of mRNA vaccines. Heliyon 2024; 10:e32531. [PMID: 38952359 PMCID: PMC11215264 DOI: 10.1016/j.heliyon.2024.e32531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Colon adenocarcinoma (COAD) is a serious public health issue due to high incidence and mortality rate. This study aimed to identify possible tumor antigens and necroptosis subtypes of COAD for the development of mRNA vaccines and the selection of appropriate patients for precision therapy. Methods Gene expression profiles and clinical information for COAD were obtained from The Cancer Genome Atlas and Gene Expression Omnibus, respectively. We comprehensively studied the alterations in necroptosis-related genes (NRGs) using cBioPortal, and screened the hub NRGs associated with the prognosis of patients with COAD using Gene Expression Profiling Interactive Analysis 2. Consensuses clustering analysis was performed to identify necroptosis subtypes. Weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of the NRGs. The necroptosis landscape of COAD was assessed using graph learning-based dimensionality reduction. Finally, a drug sensitivity analysis of the two necroptosis subtypes was performed. Findings Two tumor antigens, BLC-2-associated X protein (BAX) and interleukin 1 beta (IL1B) were identified based on their associations with prognosis of patients and antigen presenting cell infiltration. Two necroptosis subtypes (N1 and N2) were distinguished in patients with COAD, and they were characterized by their differential survival status and molecular expression levels of immune checkpoint proteins and immunogenetic cell death modulators. Furthermore, the necroptosis landscape of COAD indicated that individual patients had obvious heterogeneity. Co-expression modules were identified using WGCNA, and the hub NRGs were found to be involved in various immune processes. Drug sensitivity analysis indicated that there were significant differences in drug sensitivity between the N1 and N2 subtypes. Cell experiments suggested that both overexpression of BAX and IL1B promoted necroptosis of COAD cells and enhanced the cytotoxicity of CD8+ T cells. Interpretation BAX and IL1B are potential antigens for the development of anti-COAD mRNA vaccines, specifically for patients with the N2 subtype. Consequently, this study will guide the development of more effective immunotherapeutic approaches and the identification of appropriate patients.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen 518110, Guangdong Province, China
| | - Caijie Lu
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen 518110, Guangdong Province, China
| | - Yiwen Huang
- Department of Emergency, Nansha Hospital, Guangzhou First People's Hospital, School of Medicine, Southern China University of Technology, Guangzhou, Guangdong, China
| | - Weihua Liao
- Department of Radiology, Guangzhou Nansha District Maternal and Child Health Hospital, No. 103, Haibang Road, Nansha District, Guangzhou 511457, Guangdong Province, China
| | - Yaoxing Huang
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen 518110, Guangdong Province, China
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Zhou Y, Qiu T, Wang T, Yu B, Xia K, Guo J, Liu Y, Ma X, Zhang L, Zou J, Chen Z, Zhou J. Research progress on the role of mitochondria in the process of hepatic ischemia-reperfusion injury. Gastroenterol Rep (Oxf) 2024; 12:goae066. [PMID: 38912038 PMCID: PMC11193119 DOI: 10.1093/gastro/goae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 06/25/2024] Open
Abstract
During liver ischemia-reperfusion injury, existing mechanisms involved oxidative stress, calcium overload, and the activation of inflammatory responses involve mitochondrial injury. Mitochondrial autophagy, a process that maintains the normal physiological activity of mitochondria, promotes cellular metabolism, improves cellular function, and facilitates organelle renewal. Mitochondrial autophagy is involved in oxidative stress and apoptosis, of which the PINK1-Parkin pathway is a major regulatory pathway, and the deletion of PINK1 and Parkin increases mitochondrial damage, reactive oxygen species production, and inflammatory response, playing an important role in mitochondrial quality regulation. In addition, proper mitochondrial permeability translational cycle regulation can help maintain mitochondrial stability and mitigate hepatocyte death during ischemia-reperfusion injury. This mechanism is also closely related to oxidative stress, calcium overload, and the aforementioned autophagy pathway, all of which leads to the augmentation of the mitochondrial membrane permeability transition pore opening and cause apoptosis. Moreover, the release of mitochondrial DNA (mtDNA) due to oxidative stress further aggravates mitochondrial function impairment. Mitochondrial fission and fusion are non-negligible processes required to maintain the dynamic renewal of mitochondria and are essential to the dynamic stability of these organelles. The Bcl-2 protein family also plays an important regulatory role in the mitochondrial apoptosis signaling pathway. A series of complex mechanisms work together to cause hepatic ischemia-reperfusion injury (HIRI). This article reviews the role of mitochondria in HIRI, hoping to provide new therapeutic clues for alleviating HIRI in clinical practice.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bo Yu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Kang Xia
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaoxiong Ma
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Long Zhang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jilin Zou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhongbao Chen
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
32
|
Chen H, Zhang W, Shi J, Tang Y, Chen X, Li J, Yao X. Study on the mechanism of S100A4-mediated cancer oncogenesis in uveal melanoma cells through the integration of bioinformatics and in vitro experiments. Gene 2024; 911:148333. [PMID: 38431233 DOI: 10.1016/j.gene.2024.148333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The elevated metastasis rate of uveal melanoma (UM) is intricately correlated with patient prognosis, significantly affecting the quality of life. S100 calcium-binding protein A4 (S100A4) has tumorigenic properties; therefore, the present study investigated the impact of S100A4 on UM cell proliferation, apoptosis, migration, and invasion using bioinformatics and in vitro experiments. METHODS Bioinformatic analysis was used to screen S100A4 as a hub gene and predict its possible mechanism in UM cells, and the S100A4 silencing cell line was constructed. The impact of S100A4 silencing on the proliferative ability of UM cells was detected using the Cell Counting Kit-8 and colony formation assays. Annexin V-FITC/PI double fluorescence and Hoechst 33342 staining were used to observe the effects of apoptosis on UM cells. The effect of S100A4 silencing on the migratory and invasive capabilities of UM cells was assessed using wound healing and Transwell assays. Western blotting was used to detect the expression of related proteins. RESULTS The present study found that S100A4 is a biomarker of UM, and its high expression is related to poor prognosis. After constructing the S100A4 silencing cell line, cell viability, clone number, proliferating cell nuclear antigen, X-linked inhibitor of apoptosis protein, and survivin expression were decreased in UM cells. The cell apoptosis rate and relative fluorescence intensity increased, accompanied by increased levels of Bax and caspase-3 and decreased levels of Bcl-2. Additionally, a decrease in the cell migration index and relative invasion rate was observed with increased E-cadherin expression and decreased N-cadherin and vimentin protein expression. CONCLUSION S100A4 silencing can inhibit the proliferation, migration, and invasion and synchronously induces apoptosis in UM cells.
Collapse
Affiliation(s)
- Huimei Chen
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenqing Zhang
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Jian Shi
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Yu Tang
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Chen
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiangwei Li
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaolei Yao
- The First Clinical College of Chinese Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
33
|
Halfon M, Tankeu AT, Ribi C. Mitochondrial Dysfunction in Systemic Lupus Erythematosus with a Focus on Lupus Nephritis. Int J Mol Sci 2024; 25:6162. [PMID: 38892349 PMCID: PMC11173067 DOI: 10.3390/ijms25116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting mostly women of child-bearing age. Immune dysfunction in SLE results from disrupted apoptosis which lead to an unregulated interferon (IFN) stimulation and the production of autoantibodies, leading to immune complex formation, complement activation, and organ damage. Lupus nephritis (LN) is a common and severe complication of SLE, impacting approximately 30% to 40% of SLE patients. Recent studies have demonstrated an alteration in mitochondrial homeostasis in SLE patients. Mitochondrial dysfunction contributes significantly to SLE pathogenesis by enhancing type 1 IFN production through various pathways involving neutrophils, platelets, and T cells. Defective mitophagy, the process of clearing damaged mitochondria, exacerbates this cycle, leading to increased immune dysregulation. In this review, we aim to detail the physiopathological link between mitochondrial dysfunction and disease activity in SLE. Additionally, we will explore the potential role of mitochondria as biomarkers and therapeutic targets in SLE, with a specific focus on LN. In LN, mitochondrial abnormalities are observed in renal cells, correlating with disease progression and renal fibrosis. Studies exploring cell-free mitochondrial DNA as a biomarker in SLE and LN have shown promising but preliminary results, necessitating further validation and standardization. Therapeutically targeting mitochondrial dysfunction in SLE, using drugs like metformin or mTOR inhibitors, shows potential in modulating immune responses and improving clinical outcomes. The interplay between mitochondria, immune dysregulation, and renal involvement in SLE and LN underscores the need for comprehensive research and innovative therapeutic strategies. Understanding mitochondrial dynamics and their impact on immune responses offers promising avenues for developing personalized treatments and non-invasive biomarkers, ultimately improving outcomes for LN patients.
Collapse
Affiliation(s)
- Matthieu Halfon
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Aurel T. Tankeu
- Transplantation Center, Lausanne University Hospital, Rue du Bugnon 44, CH-1010 Lausanne, Switzerland;
| | - Camillo Ribi
- Division of Immunology and Allergy, Lausanne University Hospital, CH-1010 Lausanne, Switzerland;
| |
Collapse
|
34
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
35
|
Fang X, Ji Y, Li S, Wang L, He B, Li B, Liang B, Yin H, Chen H, Dingda D, Wu B, Gao F. Paeoniflorin attenuates cuproptosis and ameliorates left ventricular remodeling after AMI in hypobaric hypoxia environments. J Nat Med 2024; 78:664-676. [PMID: 38427210 PMCID: PMC11101588 DOI: 10.1007/s11418-024-01781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
This study investigates the cardioprotective effects of Paeoniflorin (PF) on left ventricular remodeling following acute myocardial infarction (AMI) under conditions of hypobaric hypoxia. Left ventricular remodeling post-AMI plays a pivotal role in exacerbating heart failure, especially at high altitudes. Using a rat model of AMI, the study aimed to evaluate the cardioprotective potential of PF under hypobaric hypoxia. Ninety male rats were divided into four groups: sham-operated controls under normoxia/hypobaria, an AMI model group, and a PF treatment group. PF was administered for 4 weeks after AMI induction. Left ventricular function was assessed using cardiac magnetic resonance imaging. Biochemical assays of cuproptosis, oxidative stress, apoptosis, inflammation, and fibrosis were performed. Results demonstrated PF significantly improved left ventricular function and remodeling after AMI under hypobaric hypoxia. Mechanistically, PF decreased FDX1/DLAT expression and serum copper while increasing pyruvate. It also attenuated apoptosis, inflammation, and fibrosis by modulating Bcl-2, Bax, NLRP3, and oxidative stress markers. Thus, PF exhibits therapeutic potential for left ventricular remodeling post-AMI at high altitude by inhibiting cuproptosis, inflammation, apoptosis and fibrosis. Further studies are warranted to optimize dosage and duration and elucidate PF's mechanisms of action.
Collapse
Affiliation(s)
- Xin Fang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yaoxuan Ji
- Department of Radiology, Ningxia Medical University, Yinchuan, China
| | - Shuang Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Boshen Liang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Hongke Yin
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Haotian Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Duojie Dingda
- Department of Radiology, Yushu People's Hospital, Yushu, Qinghai, China
| | - Bing Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
36
|
Gu X, Chen Y, Cao K, Tu M, Liu W, Ju J. Therapeutic landscape in systemic lupus erythematosus: mtDNA activation of the cGAS-STING pathway. Int Immunopharmacol 2024; 133:112114. [PMID: 38652968 DOI: 10.1016/j.intimp.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Mitochondrial DNA (mtDNA) serves as a pivotal immune stimulus in the immune response. During stress, mitochondria release mtDNA into the cytoplasm, where it is recognized by the cytoplasmic DNA receptor cGAS. This activation initiates the cGAS-STING-IRF3 pathway, culminating in an inflammatory response. The cGAS-STING pathway has emerged as a critical mediator of inflammatory responses in microbial infections, stress, autoimmune diseases, chronic illnesses, and tissue injuries. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by connective tissue involvement across various bodily systems. Its hallmark is the production of numerous autoantibodies, which prompt the immune system to target and damage the body's own tissues, resulting in organ and tissue damage. Increasing evidence implicates the cGAS-STING pathway as a significant contributor to SLE pathogenesis. This article aims to explore the role of the mtDNA-triggered cGAS-STING pathway and its mechanisms in SLE, with the goal of providing novel insights for clinical interventions.
Collapse
Affiliation(s)
- Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
37
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
38
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
39
|
Hwangbo H, Park C, Bang E, Kim HS, Bae SJ, Kim E, Jung Y, Leem SH, Seo YR, Hong SH, Kim GY, Hyun JW, Choi YH. Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress. Biomol Ther (Seoul) 2024; 32:349-360. [PMID: 38602043 PMCID: PMC11063479 DOI: 10.4062/biomolther.2024.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Eunjeong Kim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngmi Jung
- Department of Biological Sciences, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine, Department of Life Science, Dongguk University Biomedi Campus, Goyang 10326, Republic of Korea
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases, Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47340, Republic of Korea
| |
Collapse
|
40
|
Ge B, Yan K, Sang R, Wang W, Liu X, Yu M, Liu X, Qiu Q, Zhang X. Integrated network toxicology, molecular docking, and in vivo experiments to elucidate molecular mechanism of aflatoxin B1 hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116278. [PMID: 38564860 DOI: 10.1016/j.ecoenv.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.
Collapse
Affiliation(s)
- Bingjie Ge
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Kexin Yan
- Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xinman Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Minghong Yu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xiaotong Liu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Qian Qiu
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
41
|
Schweighofer SV, Jans DC, Keller-Findeisen J, Folmeg A, Ilgen P, Bates M, Jakobs S. Endogenous BAX and BAK form mosaic rings of variable size and composition on apoptotic mitochondria. Cell Death Differ 2024; 31:469-478. [PMID: 38503846 PMCID: PMC11043412 DOI: 10.1038/s41418-024-01273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
One hallmark of apoptosis is the oligomerization of BAX and BAK to form a pore in the mitochondrial outer membrane, which mediates the release of pro-apoptotic intermembrane space proteins into the cytosol. Cells overexpressing BAX or BAK fusion proteins are a powerful model system to study the dynamics and localization of these proteins in cells. However, it is unclear whether overexpressed BAX and BAK form the same ultrastructural assemblies following the same spatiotemporal hierarchy as endogenously expressed proteins. Combining live- and fixed-cell STED super-resolution microscopy, we show that overexpression of BAK results in novel BAK structures, which are virtually absent in non-overexpressing apoptotic cells. We further demonstrate that in wild type cells, BAK is recruited to apoptotic pores before BAX. Both proteins together form unordered, mosaic rings on apoptotic mitochondria in immortalized cell culture models as well as in human primary cells. In BAX- or BAK- single-knockout cells, the remaining protein is able to form rings independently. The heterogeneous nature of these rings in both wild type as well as single-knockout cells corroborates the toroidal apoptotic pore model.
Collapse
Affiliation(s)
- Sarah V Schweighofer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Keller-Findeisen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anne Folmeg
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Ilgen
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Optical Nanoscopy, Institute for Nanophotonics, Göttingen, Germany
| | - Stefan Jakobs
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, Göttingen, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
42
|
Lambert L, de Carpentier F, André P, Marchand CH, Danon A. Type II metacaspase mediates light-dependent programmed cell death in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2024; 194:2648-2662. [PMID: 37971939 PMCID: PMC10980519 DOI: 10.1093/plphys/kiad618] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.
Collapse
Affiliation(s)
- Lou Lambert
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Félix de Carpentier
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Doctoral School of Plant Sciences, Université Paris-Saclay, Saint-Aubin 91190, France
| | - Phuc André
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| | - Christophe H Marchand
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Paris F-75005, France
| | - Antoine Danon
- Institut de Biologie Paris Seine, UMR 7238, CNRS, Sorbonne Université, Paris 75005, France
| |
Collapse
|
43
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
44
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
45
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
46
|
Deng H, Chen Y, Liu H, Wang L, Xu H, Tan B, Yi Q, Wang R, He B, Tian J, Zhu J. Study of the effect of keap1 on oxidative stress in human umbilical cord mesenchymal stem cells. Mol Biol Rep 2024; 51:67. [PMID: 38170368 PMCID: PMC10764455 DOI: 10.1007/s11033-023-08997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND HucMSCs had shown promising efficacy in treating childhood diseases, but oxidative stress induced by the poor microenvironment at the site of damage resulted in low cell survival after transplantation, thus preventing the cells from maximizing therapeutic efficacy. Therefore, this study aimed to investigate the role and mechanism of keap1 in oxidative stress injury of human umbilical cord mesenchymal stem cells (hucMSCs), and to provide theoretical support for improving the efficacy of stem cell therapy. METHODS The hucMSCs were treated with hypoxic low-sugar-free serum (GSDH) to mimic the damaged site microenvironment after implantation. Adenoviral overexpression of keap1 gene of hucMSCs was performed in vitro, and cell proliferation ability was detected by CCK8 assay, crystal violet staining assay, and cell cycle assay. Cellular redox level was assessed by Amplex Red, MDA, and GSH/GSSG kit. Mitochondrial morphology was evaluated by mitotracker Red staining. ATP production was estimated by ATP detection kit. The mRNA and protein expression levels were tested by western blotting and RT-qPCR. RESULTS GSDH treatment substantially upregulated keap1 expression. Subsequently, we found that overexpression of keap1 notably inhibited cell proliferation and caused cells to stagnate in G1 phase. At the same time, overexpression of keap1 induced the production of large amounts of H2O2 and the accumulation of MDA, but suppressed the GSH/GSSG ratio and the expression of antioxidant proteins NQO1 and SOD1, which caused oxidative stress damage. Overexpression of keap1 induced cells to produce a large number of dysfunctional mitochondria resulting in reduced ATP production. Moreover, Overexpression of keap1 significantly decreased the IKKβ protein level, while upregulating IkB mRNA levels and downregulating P50 mRNA levels. CONCLUSIONS Overexpression of keap1 may induce oxidative stress injury in hucMSCs by down-regulating IKKβ expression and inhibiting NF-κB pathway activation. This implies the importance of keap1 in hucMSCs and it may be a potential gene for genetic modification of hucMSCs.
Collapse
Affiliation(s)
- Hongrong Deng
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yunxia Chen
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rui Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Bolin He
- Department of Blood Transfusion, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Cardiovascular Internal Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders,Chongqing Key Laboratory of PediatricsChongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
47
|
Tsai WE, Liu YT, Kuo FH, Cheng WY, Shen CC, Chiao MT, Huang YF, Liang YJ, Yang YC, Hsieh WY, Chen JP, Liu SY, Chiu CD. Crocetin Enhances Temozolomide Efficacy in Glioblastoma Therapy Through Multiple Pathway Suppression. Curr Neurovasc Res 2024; 21:320-336. [PMID: 39092730 DOI: 10.2174/0115672026332275240731054001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive type of brain tumor that is difficult to remove surgically. Research suggests that substances from saffron, namely crocetin and crocin, could be effective natural treatments, showing abilities to kill cancer cells. METHODS Our study focused on evaluating the effects of crocetin on glioma using the U87 cell line. We specifically investigated how crocetin affects the survival, growth, and spread of glioma cells, exploring its impact at concentrations ranging from 75-150 μM. The study also included experiments combining crocetin with the chemotherapy drug Temozolomide (TMZ) to assess potential synergistic effects. RESULTS Crocetin significantly reduced the viability, proliferation, and migration of glioma cells. It achieved these effects by decreasing the levels of Matrix Metallopeptidase 9 (MMP-9) and Ras homolog family member A (RhoA), proteins that are critical for cancer progression. Additionally, crocetin inhibited the formation of cellular structures necessary for tumor growth. It blocked multiple points of the Ak Strain Transforming (AKT) signaling pathway, which is vital for cancer cell survival. This treatment led to increased cell death and disrupted the cell cycle in the glioma cells. When used in combination with TMZ, crocetin not only enhanced the reduction of cancer cell growth but also promoted cell death and reduced cell replication. This combination therapy further decreased levels of high mobility group box 1 (HMGB1) and Receptor for Advanced Glycation End-products (RAGE), proteins linked to inflammation and tumor progression. It selectively inhibited certain pathways involved in the cellular stress response without affecting others. CONCLUSION Our results underscore the potential of crocetin as a treatment for glioma. It targets various mechanisms involved in tumor growth and spread, offering multiple avenues for therapy. Further studies are essential to fully understand and utilize crocetin's benefits in treating glioma.
Collapse
Affiliation(s)
- Wei-En Tsai
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Yen-Tsen Liu
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Fu-Hsuan Kuo
- Center for Geriatrics and Gerontology, Taichung Veterans Hospital, Taichung, 40705, Taiwan
| | - Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Physical Therapy, Hung Kuang University, Taichung, Taiwan
- Basic Medical Education, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ming-Tsang Chiao
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Fen Huang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yea-Jiuen Liang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Yu Hsieh
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yuan Liu
- Department of Neurosurgery, Oncology Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Science, College of Life Science, Graduate Institute of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Di Chiu
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
48
|
Gao Q, Li L, Zhang QM, Sheng QS, Zhang JL, Jin LJ, Shang RY. Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells. Chin J Integr Med 2024; 30:25-33. [PMID: 37750986 DOI: 10.1007/s11655-023-3710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification. METHODS Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway. RESULTS The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway. CONCLUSION Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Li
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Man Zhang
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qin-Song Sheng
- Department of Colorectal Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ji-Liang Zhang
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., Beijing, 100000, China
| | - Li-Jun Jin
- Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China.
| | - Rui-Yan Shang
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou, 310008, China.
| |
Collapse
|
49
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
50
|
Niu N, Miao H, Ren H. Effect of miR-182-5p on apoptosis in myocardial infarction. Heliyon 2023; 9:e21524. [PMID: 38034598 PMCID: PMC10685254 DOI: 10.1016/j.heliyon.2023.e21524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Objective This study aimed to delineate the diagnostic significance of miR-182-5p by investigating its influence on myocardial apoptosis and function, employing both in vivo and in vitro myocardial infarction models. Methods A rat myocardial infarction model was established. Myocardial infarction area was detected using the 2,3,5-chlorotriphenyltetrazolium (TTC) method, myocardial enzyme spectrums were measured using enzyme-linked immunosorbent assay (ELISA), myocardial structure was detected by hematoxylin and eosin (HE) staining, myocardial apoptosis was detected using the TUNEL method, and expression levels of miR-182-5p and apoptosis-related molecules were detected using real-time fluorescence quantitative PCR (qPCR) and Western blot. miR-182-5p mimics and inhibitor were transfected into rat H9C2 cardiomyocytes and mouse HL-1 cardiomyocytes to establish a hypoxia model. Cardiomyocyte viability was detected using the CCK-8 method, expression levels of apoptosis-related indicators were detected using Western blot, and caspase-3/7 activity was detected using a caspase-3/7 activity detection kit. AAV9 adeno-associated virus was used to construct an miR-182-5p overexpression virus, which was injected into mice through the tail vein to create a mouse myocardial infarction model. TTC, ELISA, HE staining, echocardiography, real-time fluorescence qPCR, and Western blot methods were used to detect the effects of AAV9-miR-182-5p on myocardial injury, myocardial function, and myocardial apoptosis levels in myocardial infarction. Results The rat model displayed reduced miR-182-5p expression concurrent with an increase in apoptosis. The in vitro H9C2 and HL-1 hypoxia models revealed that miR-182-5p augmented the hypoxia-induced decrease in myocardial cell viability, suppressed Bcl-2 expression, and increased Bax, Bnip3, and caspase-3/7 activity levels. The injection of AAV9-miR-182-5p significantly exacerbated myocardial tissue damage, impaired myocardial function, and enhanced apoptosis. Conclusion miR-182-5p escalates myocardial injury during myocardial infarction by fostering apoptosis. Interventions that aim to reduce miR-182-5p levels might be crucial in halting the progression of myocardial infarction.
Collapse
Affiliation(s)
- Nan Niu
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Huangtai Miao
- Coronary Heart Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China
| | - Hongmei Ren
- Department of Cardiovascular Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, 750021, PR China
| |
Collapse
|