1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Giron-Michel J, Padelli M, Oberlin E, Guenou H, Duclos-Vallée JC. State-of-the-Art Liver Cancer Organoids: Modeling Cancer Stem Cell Heterogeneity for Personalized Treatment. BioDrugs 2025; 39:237-260. [PMID: 39826071 PMCID: PMC11906529 DOI: 10.1007/s40259-024-00702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/20/2025]
Abstract
Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment. These modifications enable CSCs to exhibit plasticity, differentiating into various resistant tumor cell types. Addressing this challenge requires urgent efforts to develop personalized treatments guided by biomarkers, with a specific focus on targeting CSCs. The lack of effective precision treatments for PLCs is partly due to the scarcity of ex vivo preclinical models that accurately capture the complexity of CSC-related tumors and can predict therapeutic responses. Fortunately, recent advancements in the establishment of patient-derived liver cancer cell lines and organoids have opened new avenues for precision medicine research. Notably, patient-derived organoid (PDO) cultures have demonstrated self-assembly and self-renewal capabilities, retaining essential characteristics of their respective in vivo tissues, including both inter- and intratumoral heterogeneities. The emergence of PDOs derived from PLCs serves as patient avatars, enabling preclinical investigations for patient stratification, screening of anticancer drugs, efficacy testing, and thereby advancing the field of precision medicine. This review offers a comprehensive summary of the advancements in constructing PLC-derived PDO models. Emphasis is placed on the role of CSCs, which not only contribute significantly to the establishment of PDO cultures but also faithfully capture tumor heterogeneity and the ensuing development of therapy resistance. The exploration of PDOs' benefits in personalized medicine research is undertaken, including a discussion of their limitations, particularly in terms of culture conditions, reproducibility, and scalability.
Collapse
Affiliation(s)
- Julien Giron-Michel
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France.
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France.
| | - Maël Padelli
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- Department of Biochemistry and Oncogenetics, Paul Brousse Hospital, AP-HP, Villejuif, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Hind Guenou
- INSERM UMR-S-MD 1197, Paul-Brousse Hospital, Villejuif, France
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
| | - Jean-Charles Duclos-Vallée
- Orsay-Vallée Campus, Paris-Saclay University, Gif-sur-Yvette, France
- INSERM UMR-S 1193, Paul Brousse Hospital, Villejuif, France
- Hepato-Biliary Department, Paul Brousse Hospital, APHP, Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hepatinov, Villejuif, France
| |
Collapse
|
3
|
Zhang Y, Xie J, Huang X, Gao J, Xiong Z. Role of cancer stem cell heterogeneity in intrahepatic cholangiocarcinoma. Transl Cancer Res 2025; 14:1265-1281. [PMID: 40104739 PMCID: PMC11912081 DOI: 10.21037/tcr-24-1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/17/2024] [Indexed: 03/20/2025]
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a highly invasive bile duct cancer with poor prognosis due to frequent recurrence and limited effective treatments. Cancer stem cells (CSCs) contribute to ICC's therapeutic resistance and recurrence, driven by distinct cellular subpopulations with variable tumorigenic properties. Recent advances in single-cell RNA sequencing (scRNA-seq) have enabled a deeper exploration of cellular heterogeneity in tumors, offering insights into unique CSC subgroups that impact ICC progression and patient outcomes. This study aimed to investigate the effect of CSC heterogeneity on the prognosis of ICC. Methods The scRNA-seq dataset GSE142784 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from The Cancer Genome Atlas (TCGA) databases. Hallmarks and AUCell R package were adopted for analyzing the signaling pathway activity, CellChat for observing cell communication between subgroups, and SCENIC for analyzing transcription factors expression. The immune cell infiltration and drug sensitivity of the model were analyzed using the CIBERSORT algorithm and the "pRRophetic" R packages, respectively. And immunohistochemistry (IHC) tests were used to evaluate expression of transcription factors in ICC patients. Results Based on scRNA-seq data, five clusters (DLK+, CD13+, CD90+, CD133+, and other cholangiocarcinoma cells) were observed in ICC, which presented different signaling pathway activities, such as HSF1 and STAT1 were highly expressed in the CD133 cluster, and consistent with the results of IHC tests. Pathways like Notch and Wnt/β-catenin signaling transferred among above subgroups. Further, subgroups favored varied immune response and drug sensitivity, and CD133+ subgroup patients showed significantly shortened recurrence-free survival (RFS). Conclusions Configuring the subgroup of ICC is helpful for predicting the prognosis and drug resistance in ICC and can provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Juping Xie
- Department of General Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiangqi Huang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jintian Gao
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Xiong
- Department of Hepatobiliary, Pancreatic, and Splenic Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Porreca V, Corbella E, Palmisano B, Peres M, Angelone P, Barbagallo C, Stella M, Mignogna G, Mennini G, Melandro F, Rossi M, Ragusa M, Corsi A, Riminucci M, Maras B, Mancone C. Pigment Epithelium-Derived Factor Inhibits Cell Motility and p-ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma Cell Lines. BIOLOGY 2025; 14:155. [PMID: 40001923 PMCID: PMC11851717 DOI: 10.3390/biology14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, Thrombospondin 1 (THBS1), and Thrombospondin 2 (THBS2) are expressed and released into the tumor microenvironment (TME), where they promote lymphangiogenesis at the expense of the neoangiogenic program, aiding the dissemination of cancer cells via lymphatic vessels. Recently, we demonstrated that THBS1 and THBS2 directly affect iCCA cells, exacerbating their malignant behavior, while the direct role of PEDF remains to be elucidated. In this study, through a cell-based assay and molecular analysis, we investigate the direct function of PEDF on two well-established iCCA cell lines. Our results show that PEDF affects cancer cell motility in a paracrine manner, reducing their migratory and invasive capabilities. Notably, our data suggest that the PEDF-induced inhibition of motility in iCCA cells occurs through the MAPK/ERK signaling pathway, as indicated by the reduced phosphorylation of ERK1/2. Overall, this study provides the first evidence of PEDF acting as a tumor suppressor in iCCA.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Pietro Angelone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Michele Stella
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Gianluca Mennini
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Fabio Melandro
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Massimo Rossi
- General Surgery and Organ Transplantation Unit, Department of General Surgery and Surgical Specialties P. Stefanini, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (G.M.); (F.M.); (M.R.)
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences-Section of Biology and Genetics, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemical Science, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.P.); (E.C.); (B.P.); (M.P.); (P.A.); (A.C.); (M.R.)
| |
Collapse
|
5
|
Rattanasinchai C, Navasumrit P, Chornkrathok C, Ruchirawat M. Kinase library screening identifies IGF-1R as an oncogenic vulnerability in intrahepatic cholangiocarcinoma stem-like cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167521. [PMID: 39369614 DOI: 10.1016/j.bbadis.2024.167521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer of the peripheral bile ducts and is recognized by the abundance of cancer stem-like cells (CSCs) within the tumor mass. While CSC markers in iCCA are well-defined, the molecular vulnerabilities of this subpopulation remain elusive. METHODS The 96-well, three dimensional (3D) tumorsphere culture was adapted from a well-established CSC model, validated for CSC markers through gene expression analysis. Kinase library screening was then conducted to reveal potential oncogenic vulnerable pathways. RNA interference was utilized to stably silence the candidate gene in three iCCA cell lines and its impact on iCCA cell proliferation and tumorsphere formation efficiency (TFE) was evaluated. RESULTS Kinase inhibitor library screening identified the top 50 kinase inhibitors crucial for tumorsphere viability, with 11 inhibitors targeting the IGF-1R/PI3K/AKT axis. Further dose-dependent analysis of the top 'hit' inhibitors confirmed IGF-1R as the candidate molecule. Upon stably silencing of IGF-1R, all three iCCA cell lines exhibited decreased AKT activation, impeded proliferation and reduced TFE, indicating a decline in CSC subpopulations. CONCLUSIONS IGF-1R plays a critical role in maintaining iCCA-stem like cell populations. GENERAL SIGNIFICANCE Our data highlight the potential utility of IGF-1R as a prognostic marker of iCCA and a therapeutic target for eliminating its CSC subpopulation.
Collapse
Affiliation(s)
- Chotirat Rattanasinchai
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok 10300, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok 10300, Thailand
| | - Chidchanok Chornkrathok
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok 10300, Thailand.
| |
Collapse
|
6
|
Driscoll J, Gondaliya P, Ziemer A, Yan IK, Gupta Y, Patel T. In Silico Design of Novel EpCAM-Binding Aptamers for Targeted Delivery of RNA Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1727. [PMID: 39513807 PMCID: PMC11548041 DOI: 10.3390/nano14211727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Aptamers are short DNA or RNA sequences that adopt 3D structures and can bind to protein targets with high binding affinity and specificity. Aptamers exhibit excellent tissue penetration, are inexpensive to produce, and can be internalized by cells. Therefore, aptamers are attractive targeting ligands to direct the delivery of theranostic agents to the desired cells. Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is aberrantly overexpressed on many epithelial-derived cancers, including on cholangiocarcinoma (CCA) cells. Its expression on treatment-resistant cancer stem cells, along with its abundance in the CCA tumor microenvironment, highlights the need to develop EpCAM-targeted therapies for CCA. Herein, an in silico approach was used to design and screen DNA aptamers capable of binding to the EpCAM monomer and homodimer. Two aptamers, PLD01 and PLD02, met the selection criteria and were validated in vitro. Both aptamers exhibited high affinity for EpCAM+ CCA cells, with negligible binding to EpCAM- leukemia cells. Modified versions of PLD01 and PLD02 were successfully incorporated into the membranes of milk-derived nanovesicles. PLD01-functionalized nanovesicles enabled EpCAM-targeted delivery of the therapeutic cargo to CCA cells. In summary, these EpCAM-targeting aptamers can be utilized to direct the delivery of theranostic agents to EpCAM-expressing cells.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA (I.K.Y.)
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA (I.K.Y.)
| | - Abbye Ziemer
- Department of Transplantation, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA (I.K.Y.)
| | - Irene K. Yan
- Department of Transplantation, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA (I.K.Y.)
| | - Yash Gupta
- Division of Infectious Diseases, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA (I.K.Y.)
| |
Collapse
|
7
|
Kongtanawanich K, Prasopporn S, Jamnongsong S, Thongsin N, Payungwong T, Okada S, Hokland M, Wattanapanitch M, Jirawatnotai S. A live single-cell reporter system reveals drug-induced plasticity of a cancer stem cell-like population in cholangiocarcinoma. Sci Rep 2024; 14:22619. [PMID: 39349745 PMCID: PMC11442615 DOI: 10.1038/s41598-024-73581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer stem cells (CSC) play an important role in carcinogenesis and are acknowledged to be responsible for chemoresistance in cholangiocarcinoma (CCA). Studying CCA CSC has been challenging, due to lack of consensus CSC markers, and to their plastic nature. Since dual expression of the core pluripotent factors SOX2/OCT4 has been shown to correlate with poor outcome in CCA patients, we selected the SOX2/OCT4 activating short half-life GFP-based live reporter (SORE6-dsCopGFP) to study CSC dynamics at the single-cell level. Transduction of five human CCA cell lines resulted in the expression of 1.8-13.1% GFP-positive (SORE6POS) cells. By live imaging, we found that SORE6POS CCA cells possess self-renewal capacity and that they can be induced to differentiate. Significantly, the SORE6POS cells were highly tumorigenic, both in vitro and in vivo, thus implicating the characteristics of primary CSCs. When we then analyzed for selected CSC-related markers, we found that the majority of both CD133+/CD44+, and CD133+/LGR5+ CCA cells were SORE6POS cells. Exposing transduced cells to standard CCA chemotherapy revealed higher growth rate inhibition at 50% (GR50s) for SORE6POS cells compared to GFP-negative (SORE6NEG) ones indicating that these CSC-like cells were more resistant to the treatment. Moreover, the chemotherapy induced SORE6POS from SORE6NEG cells, while retaining the existing SORE6POS population. Finally, treatment of transduced cells with CDK4/6 inhibitors in vitro for 3 days resulted in a lowered CSC number in the culture. Thus, applying a live reporter system allowed us to elucidate the stem cell diversity and drug-induced plasticity of CCA CSCs. These findings have clear implications for future management of such patients.
Collapse
Affiliation(s)
| | - Sunisa Prasopporn
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tongchai Payungwong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
8
|
Song Y, Boerner T, Drill E, Shin P, Kumar S, Sigel C, Cercek A, Kemeny N, Abou-Alfa G, Iacobuzio-Donahue C, Cowzer D, Schultz N, Walch H, Balachandran V, Groot Koerkamp B, Kingham P, Soares K, Wei A, D'Angelica M, Drebin J, Chandwani R, Harding JJ, Jarnagin W. A Novel Approach to Quantify Heterogeneity of Intrahepatic Cholangiocarcinoma: The Hidden-Genome Classifier. Clin Cancer Res 2024; 30:3499-3511. [PMID: 38864854 PMCID: PMC11326964 DOI: 10.1158/1078-0432.ccr-24-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.
Collapse
Affiliation(s)
- Yi Song
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Boerner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Shin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandeep Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlie Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - James J Harding
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Zhang J, Cui T, Xu J, Wang P, Lv C, Pan G. The potential of cancer stem cells for personalized risk assessment and therapeutic intervention in individuals with intrahepatic cholangiocarcinoma. Discov Oncol 2024; 15:306. [PMID: 39048806 PMCID: PMC11269542 DOI: 10.1007/s12672-024-01179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that intrahepatic cholangiocarcinoma (ICC) is a stem cell-based disease, but information on the biology of cancer stem cells (CSC) in ICC is very limited. METHODS ICC RNA-seq cohorts from three different public databases were integrated and the protein-coding genes were divided into different modules using "WGCNA" to screen the most relevant modules with CSC scores. Least Absolute Shrinkage and Selection Operator (LASSO) regression were introduced to construct prognostic classification models. In addition, the extent of immune cell infiltration in patients in different risk groups was assessed based on the ESTIMATE, CIBERSORT, MCP-Counter, and single sample gene set enrichment analysis (ssGSEA) algorithms. Finally, the correlation between different risk scores and common drugs was analyzed by pRRophetic package and Spearman method. RESULTS In the present study, we found that a high CSC score was associated with a poorer prognosis in patients with ICC. The yellow module obtained by WGCNA was significantly positively correlated with the CSCs score, in which 8 genes were served to build a prognostic classification model, and the obtained risk score was negatively correlated with CSCs score and prognosis. The low-risk score was more suitable for immunotherapy, and the high-risk score was more suitable for treatment with 11 antitumor drugs. CONCLUSION This study revealed the regulatory role of CSC-mediated EMT, angiogenesis, and immunomodulatory biological processes in ICC, and applied a prognostic classification model to highlight the great potential of CSC for personalized risk assessment, chemotherapy, and immunotherapy intervention in ICC individuals.
Collapse
Affiliation(s)
- Jian Zhang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Tao Cui
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Jiaobang Xu
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Peng Wang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Chongqing Lv
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Guozheng Pan
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China.
| |
Collapse
|
10
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
11
|
Jo JH, Park SB, Chung J, Oh T, Lee HS, Chung MJ, Park JY, Bang S, Park SW, Jung DE, Song SY. Transgelin-2, a novel cancer stem cell-related biomarker, is a diagnostic and therapeutic target for biliary tract cancer. BMC Cancer 2024; 24:357. [PMID: 38509504 PMCID: PMC10953140 DOI: 10.1186/s12885-024-12082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Biliary tract cancer (BTC) is a relatively rare but aggressive gastrointestinal cancer with a high mortality rate. Cancer stem cell (CSC) populations play crucial roles in tumor biology and are responsible for the low response to anti-cancer treatment and the high recurrence rate. This study investigated the role of Transgelin-2 (TAGLN2), overexpressed in CSC in BTC cells, and analyzed its expression in patient tissues and serum to identify potential new targets for BTC. METHODS TAGLN2 expression was suppressed by small-interfering or short hairpin RNAs, and its effects on tumor biology were assessed in several BTC cell lines. Furthermore, the effects of TAGLN2 silencing on gemcitabine-resistant BTC cells, differentially expressed genes, proteins, and sensitivity to therapeutics or radiation were assessed. TAGLN2 expression was also assessed using western blotting and immunohistochemistry in samples obtained from patients with BTC to validate its clinical application. RESULTS Suppression of TAGLN2 in BTC cell lines decreased cell proliferation, migration, invasion, and tumor size, in addition to a reduction in CSC features, including clonogenicity, radioresistance, and chemoresistance. TAGLN2 was highly expressed in BTC tissues, especially in cancer-associated fibroblasts in the stroma. Patients with a low stromal immunohistochemical index had prolonged disease-free survival compared to those with a high stromal immunohistochemical index (11.5 vs. 7.4 months, P = 0.013). TAGLN2 expression was higher in the plasma of patients with BTC than that in those with benign diseases. TAGLN2 had a higher area under the curve (0.901) than CA19-9, a validated tumor biomarker (0.799; P < 0.001). CONCLUSION TAGLN2 plays a critical role in promoting BTC cell growth and motility and is involved in regulating BTC stemness. Silencing TAGLN2 expression enhanced cell sensitivity to radiation and chemotherapeutic drugs. The expression of TAGLN2 in patient tissue and plasma suggests its potential to serve as a secretory biomarker for BTC. Overall, targeting TAGLN2 could be an appropriate therapeutic strategy against advanced cancer following chemotherapy failure.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joowon Chung
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea
| | - Taeyun Oh
- Cowell Biodigm Co., Ltd., Seoul, Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Cowell Biodigm Co., Ltd., Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Corbella E, Fara C, Covarelli F, Porreca V, Palmisano B, Mignogna G, Corsi A, Riminucci M, Maras B, Mancone C. THBS1 and THBS2 Enhance the In Vitro Proliferation, Adhesion, Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:1782. [PMID: 38339060 PMCID: PMC10855656 DOI: 10.3390/ijms25031782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes. rhTHBS2 was more intense in inducing invasiveness and in committing the HuCCT-1 cells to a mesenchymal-like phenotype and was therefore a stronger enhancer of the malignant behavior of iCCA cells compared to rhTHBS1. Our data extend the role of THBS1 and THBS2, which are not only able to hinder the vascular network and promote tumor-associated lymphangiogenesis but also exacerbate the malignant behavior of the iCCA cells.
Collapse
Affiliation(s)
- Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Claudia Fara
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Francesca Covarelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| |
Collapse
|
13
|
Minini M, Pavy A, Lekbaby B, Fouassier L. Crosstalk between cancer cell plasticity and immune microenvironment in cholangiocarcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive tumor of the biliary tree characterized by an intense desmoplastic tumor microenvironment (TME). To date, treatment of CCA remains challenging; tumor resection is the only curative treatment with a high recurrence probability. Besides resection, therapeutic options have moved forward with the advent of immunotherapies, but these remain limited and low effective. Our knowledge about the cellular interplays in CCA is still fragmentary. An area is currently emerging regarding the potential role of cancer cell plasticity in the genesis of an immunosuppressive microenvironment. The cancer cells’ ability to acquire stemness properties and to disseminate through an epithelial-mesenchymal transition (EMT) shape a tumor immune microenvironment that supports cancer progression by attracting immunosuppressive cells including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and by increasing the expression of inhibitory immune checkpoints such as PD-1/PD-L-1. EMT-inducing transcription factors (EMT-TF) have recently emerged as regulators of tumor immunity by creating an immunosuppressive microenvironment. This review delves into the molecular mechanisms underlying the existing links between EMT/stemness and tumor immune microenvironment, as well as the last discoveries in CCA.
Collapse
|
14
|
Martini A, Prasai K, Zemla TJ, Ahmed FY, Elnagar MB, Giama NH, Guzzardo V, Biasiolo A, Fassan M, Yin J, Pontisso P, Roberts LR. SerpinB3/4 Expression Is Associated with Poor Prognosis in Patients with Cholangiocarcinoma. Cancers (Basel) 2024; 16:225. [PMID: 38201652 PMCID: PMC10778206 DOI: 10.3390/cancers16010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Cholangiocarcinoma (CCA), the second most common primary liver tumor, is associated with a dismal outcome, and useful prognostic markers are not currently available in clinical practice. SerpinB3, a serine protease inhibitor, was recently found to play a relevant role in malignant transformation in different cancers. The aim of the present study was to determine the expression of SerpinB3/4 in tissue and serum samples of patients with CCA in relation to clinical outcomes. SerpinB3/4 was assessed in the tissue microarrays (TMAs) of 123 surgically resected CCAs. ELISA assays were carried out in 188 patients with CCA to detect the free and IgM-linked forms of SerpinB3/4. Overall survival was analyzed in relation to SerpinB3/4 expression, and Cox models were used to identify the variables associated with survival. High levels of SerpinB3/4 (TMA score 2+/3+) were detected in 15 tumors (12.2%), characterized by a more advanced TNM stage (III/IV: 64.3% vs. 31.3%; p = 0.031) and lower overall patient survival, independently of CCA subclass (intrahepatic CCA: median 1.1 (0.8-Not Estimable, NE) vs. 2.4 (1.8-3.4) years; p = 0.0007; extrahepatic CCA: median 0.8 (0.2-NE) vs. 2.2 (1.5-5.4) years; p = 0.011). Vascular invasion (p = 0.027) and SerpinB3/4 scores (p = 0.0016) were independently associated with mortality in multivariate analysis. Patients who had detectable free or IgM-linked SerpinB3/4 in their serum showed poorer survival (1 vs. 2.4 years, p = 0.015, for free SerpinB3/4, and 1 vs. 2.6 years, p = 0.0026, for SerpinB3/4-IgM). In conclusion, high levels of SerpinB3/4 in tissue and serum in CCA are associated with poor outcomes after surgery, regardless of tumor subclass.
Collapse
Affiliation(s)
- Andrea Martini
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Kritika Prasai
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Tyler J. Zemla
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (T.J.Z.); (J.Y.)
| | - Fowsiyo Y. Ahmed
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Mamoun B. Elnagar
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Nasra H. Giama
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| | - Vincenza Guzzardo
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
| | - Matteo Fassan
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
- Veneto Institute of Oncology, (IOV-IRCCS), via Gattamelata 64, 35128 Padua, Italy
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (T.J.Z.); (J.Y.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padua, via Giustiniani 2, 35128 Padua, Italy; (A.M.); (V.G.); (A.B.); (M.F.)
- European Reference Network—ERN RARE-LIVER, 72076 Tübingen, Germany
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA; (K.P.); (F.Y.A.); (M.B.E.); (N.H.G.); (L.R.R.)
| |
Collapse
|
15
|
Yang L, Zhu Z, Zheng Y, Yang J, Liu Y, Shen T, Li M, He H, Huang H, Dai W. RAB6A functions as a critical modulator of the stem-like subsets in cholangiocarcinoma. Mol Carcinog 2023; 62:1460-1473. [PMID: 37278569 DOI: 10.1002/mc.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
RAB6A is a member of RAB GTPase family and plays an important role in the targeted transport of neurotrophic receptors and inflammatory cytokines. RAB6A-mediated secretory pathway is involved in many physiological and pathological processes. Defects in RAB6A-mediated secretory pathway may lead to the development of many diseases, including cancer. However, its role in cholangiocarcinoma (CCA) has not yet been revealed. We explored the regulatory role of RAB6A in the stem-like subsets of CCA. We showed that RAB6A knockdown (KD) impedes cancer stem cells (CSCs) properties and epithelial-mesenchymal transition in vitro and that suppression of RAB6A inhibits tumor growth in vivo. We screened target cargos of RAB6A in CCA cells and identified a extracellular matrix component as the target cargo. RAB6A binds directly to OPN, and RAB6A KD suppressed OPN secretion and inhibited the interaction between OPN and αV integrin receptor. Moreover, RAB6A KD inhibited the AKT signaling pathway, which is a downstream effector of the integrin receptor signaling. In addition, shRNA targeting OPN blocked endogenous expression of OPN and consequently weakened CSCs properties in RAB6A-formed spheres. Similarly, inhibitor of AKT signaling, MK2206 also impedes oncogenic function of RAB6A in the stem-like subsets of CCA cells. In conclusion, our findings showed that RAB6A sustains CSCs phenotype maintenance by modulating the secretion of OPN and consequentially activating the downstream AKT signaling pathway. Targeting the RAB6A/OPN axis may be an effective strategy for CCA therapy.
Collapse
Affiliation(s)
- Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingyun Shen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Panawan O, Silsirivanit A, Chang C, Putthisen S, Boonnate P, Yokota T, Nishisyama‐Ikeda Y, Detarya M, Sawanyawisuth K, Kaewkong W, Muisuk K, Luang S, Vaeteewoottacharn K, Kariya R, Yano H, Komohara Y, Ohta K, Okada S, Wongkham S, Araki N. Establishment and characterization of a novel cancer stem-like cell of cholangiocarcinoma. Cancer Sci 2023; 114:3230-3246. [PMID: 37026527 PMCID: PMC10394157 DOI: 10.1111/cas.15812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive malignant tumor of bile duct epithelia. Recent evidence suggests the impact of cancer stem cells (CSC) on the therapeutic resistance of CCA; however, the knowledge of CSC in CCA is limited due to the lack of a CSC model. In this study, we successfully established a stable sphere-forming CCA stem-like cell, KKU-055-CSC, from the original CCA cell line, KKU-055. The KKU-055-CSC exhibits CSC characteristics, including: (1) the ability to grow stably and withstand continuous passage for a long period of culture in the stem cell medium, (2) high expression of stem cell markers, (3) low responsiveness to standard chemotherapy drugs, (4) multilineage differentiation, and (5) faster and constant expansive tumor formation in xenograft mouse models. To identify the CCA-CSC-associated pathway, we have undertaken a global proteomics and functional cluster/network analysis. Proteomics identified the 5925 proteins in total, and the significantly upregulated proteins in CSC compared with FCS-induced differentiated CSC and its parental cells were extracted. Network analysis revealed that high mobility group A1 (HMGA1) and Aurora A signaling through the signal transducer and activator of transcription 3 pathways were enriched in KKU-055-CSC. Knockdown of HMGA1 in KKU-055-CSC suppressed the expression of stem cell markers, induced the differentiation followed by cell proliferation, and enhanced sensitivity to chemotherapy drugs including Aurora A inhibitors. In silico analysis indicated that the expression of HMGA1 was correlated with Aurora A expressions and poor survival of CCA patients. In conclusion, we have established a unique CCA stem-like cell model and identified the HMGA1-Aurora A signaling as an important pathway for CSC-CCA.
Collapse
Affiliation(s)
- Orasa Panawan
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Atit Silsirivanit
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Chih‐Hsiang Chang
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Siyaporn Putthisen
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Piyanard Boonnate
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Taro Yokota
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Nishisyama‐Ikeda
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Marutpong Detarya
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical SciencesNaresuan UniversityPhitsanulokThailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Sukanya Luang
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Cholangiocarcinoma Research Institute, Khon Kaen UniversityKhon KaenThailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Hiromu Yano
- Department of Cell Pathology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and ScienceKyushu UniversityFukuokaJapan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus InfectionKumamoto UniversityKumamotoJapan
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
- Center for Translational Medicine, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
17
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
18
|
Zhang W, Wang X, Lanzoni G, Wauthier E, Simpson S, Ezzell JA, Allen A, Suitt C, Krolik J, Jhirad A, Dominguez-Bendala J, Cardinale V, Alvaro D, Overi D, Gaudio E, Sethupathy P, Carpino G, Adin C, Piedrahita JA, Mathews K, He Z, Reid LM. A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. NPJ Regen Med 2023; 8:40. [PMID: 37528116 PMCID: PMC10394089 DOI: 10.1038/s41536-023-00303-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/23/2023] [Indexed: 08/03/2023] Open
Abstract
A network of co-hepato/pancreatic stem/progenitors exists in pigs and humans in Brunner's Glands in the submucosa of the duodenum, in peribiliary glands (PBGs) of intrahepatic and extrahepatic biliary trees, and in pancreatic duct glands (PDGs) of intrapancreatic biliary trees, collectively supporting hepatic and pancreatic regeneration postnatally. The network is found in humans postnatally throughout life and, so far, has been demonstrated in pigs postnatally at least through to young adulthood. These stem/progenitors in vivo in pigs are in highest numbers in Brunner's Glands and in PDGs nearest the duodenum, and in humans are in Brunner's Glands and in PBGs in the hepato/pancreatic common duct, a duct missing postnatally in pigs. Elsewhere in PDGs in pigs and in all PDGs in humans are only committed unipotent or bipotent progenitors. Stem/progenitors have genetic signatures in liver/pancreas-related RNA-seq data based on correlation, hierarchical clustering, differential gene expression and principal component analyses (PCA). Gene expression includes representative traits of pluripotency genes (SOX2, OCT4), endodermal transcription factors (e.g. SOX9, SOX17, PDX1), other stem cell traits (e.g. NCAM, CD44, sodium iodide symporter or NIS), and proliferation biomarkers (Ki67). Hepato/pancreatic multipotentiality was demonstrated by the stem/progenitors' responses under distinct ex vivo conditions or in vivo when patch grafted as organoids onto the liver versus the pancreas. Therefore, pigs are logical hosts for translational/preclinical studies for cell therapies with these stem/progenitors for hepatic and pancreatic dysfunctions.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China
| | - Giacomo Lanzoni
- Diabetes Research Institute, Leonard Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sean Simpson
- Department of Molecular Biomedical Sciences, North Carolina State University (NCSU) College of Veterinary Medicine, Raleigh, NC, 27606, USA
- Comparative Medicine Institute, NCSU, Raleigh, NC, 27606, USA
| | - Jennifer Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Amanda Allen
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Carolyn Suitt
- Center for Gastrointestinal Biology and Disease (CGIBD), UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonah Krolik
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Alexander Jhirad
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, Leonard Miller School of Medicine, 1450 N.W. 10th Avenue, Miami, FL, 33136, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Latina, 04100, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University, Rome, 00185, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, Rome, 00161, Italy.
| | - Christopher Adin
- Department of Clinical Sciences, Soft Tissue and Oncologic Surgery Service, College of Veterinary Medicine, NCSU, Raleigh, NC, 27606, USA.
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, 32608, USA.
| | - Jorge A Piedrahita
- Department of Molecular Biomedical Sciences, North Carolina State University (NCSU) College of Veterinary Medicine, Raleigh, NC, 27606, USA.
- Comparative Medicine Institute, NCSU, Raleigh, NC, 27606, USA.
| | - Kyle Mathews
- Department of Clinical Sciences, Soft Tissue and Oncologic Surgery Service, College of Veterinary Medicine, NCSU, Raleigh, NC, 27606, USA.
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, 200123, Shanghai, China.
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, 200335, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, 200120, Shanghai, China.
| | - Lola McAdams Reid
- Department of Cell Biology and Physiology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, 27599, USA.
- Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
19
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
UNLABELLED Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
20
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
21
|
Vita F, Olaizola I, Amato F, Rae C, Marco S, Banales JM, Braconi C. Heterogeneity of Cholangiocarcinoma Immune Biology. Cells 2023; 12:cells12060846. [PMID: 36980187 PMCID: PMC10047186 DOI: 10.3390/cells12060846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are aggressive tumors arising along the biliary tract epithelium, whose incidence and mortality are increasing. CCAs are highly desmoplastic cancers characterized by a dense tumor microenvironment (TME), in which each single component plays a fundamental role in shaping CCA initiation, progression and resistance to therapies. The crosstalk between cancer cells and TME can affect the recruitment, infiltration and differentiation of immune cells. According to the stage of the disease and to intra- and inter-patient heterogeneity, TME may contribute to either protumoral or antitumoral activities. Therefore, a better understanding of the effect of each immune cell subtype may open the path to new personalized immune therapeutic strategies for the management of CCA. In this review, we describe the role of immune cells in CCA initiation and progression, and their crosstalk with both cancer-associated fibroblasts (CAFs) and the cancer-stem-cell-like (CSC) niche.
Collapse
Affiliation(s)
- Francesca Vita
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
| | - Francesco Amato
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Colin Rae
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Sergi Marco
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute–Donostia University Hospital, University of the Basque Country (UPV/EHU), 20014 San Sebastian, Spain; (I.O.); (J.M.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, “Instituto de Salud Carlos III”), 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (F.V.); (F.A.); (C.R.); (S.M.)
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
- Correspondence:
| |
Collapse
|
22
|
Yue Y, Tao J, An D, Shi L. Exploring the role of tumor stemness and the potential of stemness-related risk model in the prognosis of intrahepatic cholangiocarcinoma. Front Genet 2023; 13:1089405. [PMID: 36712866 PMCID: PMC9877308 DOI: 10.3389/fgene.2022.1089405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Tumor stem cells (TSCs) have been widely reported to play a critical role in tumor progression and metastasis. We explored the role of tumor stemness in intrahepatic cholangiocarcinoma (iCCA) and established a prognostic risk model related to tumor stemness for prognosis prediction and clinical treatment guidance in iCCA patients. Materials and Methods: The expression profiles of iCCA samples (E-MTAB-6389 and GSE107943 cohorts) were used in the study. One-class logistic regression algorithm calculated the mRNA stemness index (mRNAsi). The mRNAsi-related genes were used as a basis for the identification of mRNAsi-related molecular subtypes through consensus clustering. The immune characteristics and biological pathways of different subtypes were assessed. The mRNAsi-related risk model was constructed with differentially expressed genes (DEGs) between subtypes. Results: The patients with high mRNAsi had longer overall survival than that with low mRNAsi. Two subtypes were identified with that C2 had higher mRNAsi and better prognosis than C1. Tumor-related pathways such as TGF-β and epithelial-mesenchymal transition (EMT) were activated in C1. C1 had higher enrichment of cancer-associated fibroblasts and tumor-associated macrophages, as well as higher immune response and angiogenesis score than C2. We screened a total 98 prognostic DEGs between C1 and C2. Based on the prognostic DEGs, we constructed a risk model containing three genes (ANO1, CD109, and CTNND2) that could divide iCCA samples into high- and low-risk groups. The two groups had distinct prognosis and immune characteristics. Notably, the risk score was negatively associated with mRNAsi (R = -0.53). High-risk group had higher enrichment score of T cell inflamed GEP, INF-γ, and cytolytic activity, and lower score of estimated IC50 of 5-fluorouracil and cisplatin than low-risk group. Conclusions: This study clarified the important role of tumor stemness in iCCA and developed an mRNAsi-related risk model for predicting the prognosis and supporting the clinical treatment in iCCA patients. The three genes (ANO1, CD109, and CTNND2) may serve as potential targets for iCCA treatment.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
23
|
Ruiz de Gauna M, Biancaniello F, González‐Romero F, Rodrigues PM, Lapitz A, Gómez‐Santos B, Olaizola P, Di Matteo S, Aurrekoetxea I, Labiano I, Nieva‐Zuluaga A, Benito‐Vicente A, Perugorria MJ, Apodaka‐Biguri M, Paiva NA, Sáenz de Urturi D, Buqué X, Delgado I, Martín C, Azkargorta M, Elortza F, Calvisi DF, Andersen JB, Alvaro D, Cardinale V, Bujanda L, Banales J, Aspichueta P. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology 2022; 76:1617-1633. [PMID: 35030285 PMCID: PMC9790564 DOI: 10.1002/hep.32344] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.
Collapse
|
24
|
Zhu Z, Zheng Y, He H, Yang L, Yang J, Li M, Dai W, Huang H. FBXO31 sensitizes cancer stem cells-like cells to cisplatin by promoting ferroptosis and facilitating proteasomal degradation of GPX4 in cholangiocarcinoma. Liver Int 2022; 42:2871-2888. [PMID: 36269678 DOI: 10.1111/liv.15462] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a malignant tumour originating from the biliary epithelium that easily infiltrates, metastasizes and recurs. The deficiency of FBXO31 facilitates the initiation and progression of several types of cancer. However, the involvement of FBXO31 in CCA progression has remained unclear. METHODS qRT-PCR was used to detect the expression of FBXO31 in CCA. The biological functions of FBXO31 were confirmed in vivo and in vitro. Sphere formation and flow cytometry were used to identify the stem cell properties of CCA. RESULTS FBXO31 is downregulated in CCA and that deficiency of FBXO31 is associated with the TNM stage of CCA. Functional studies showed FBXO31 inhibits cell growth, migration, invasion, cancer stem cell (CSC) properties and epithelial-mesenchymal transition (EMT) in vitro and impedes tumour growth in vivo. In addition, overexpression of FBXO31 increases the cisplatin (CDDP) sensitivity of CCA cells. RNA-sequencing analysis revealed that FBXO31 is involved in redox biology and metal ion metabolism in CCA cells during CDDP treatment. Further studies revealed that FBXO31 enhances ferroptosis induced by CDDP in CCA and CSC-like cells. FBXO31 enhances ubiquitination of glutathione peroxidase 4 (GPX4), which leads to proteasomal degradation of GPX4. Moreover, overexpression of GPX4 compromises the promoting effects of FBXO31 on CDDP-induced ferroptosis in CCA and CSC-like cells. CONCLUSIONS Our studies indicate that FBXO31 functions as a tumour suppressor in CCA and sensitizes CSC-like cells to CDDP by promoting ferroptosis and facilitating the proteasomal degradation of GPX4.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Connor AA, Kodali S, Abdelrahim M, Javle MM, Brombosz EW, Ghobrial RM. Intrahepatic cholangiocarcinoma: The role of liver transplantation, adjunctive treatments, and prognostic biomarkers. Front Oncol 2022; 12:996710. [PMID: 36479082 PMCID: PMC9719919 DOI: 10.3389/fonc.2022.996710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/31/2022] [Indexed: 08/01/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a primary epithelial cell malignancy of the liver with rising incidence rate globally. Its insidious presentation, heterogeneous and aggressive biology, and recalcitrance to current therapies results in unacceptably high morbidity and mortality. This has spurred research efforts in the last decade to better characterize it molecularly with translation to improved diagnostic tools and treatments. Much of this has been driven by patient advocacy. This has renewed interest in orthotopic liver transplantation (LT) with adjunctive therapies for iCCA, which was historically disparaged due to poor recipient outcomes and donor organ scarcity. However, the optimal use of LT as a treatment for iCCA care remains unclear. Here, we review the epidemiology of iCCA, the history of LT as a treatment modality, alternative approaches to iCCA local control, the evidence for peri-operative systemic therapies, and the potential roles of biomarkers and targeted agents. In doing so, we hope to prioritize areas for continued research and identify areas where multidisciplinary care can improve outcomes.
Collapse
Affiliation(s)
- Ashton A. Connor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Maen Abdelrahim
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Section of Gastrointestinal Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Cockrell Center Phase 1 Unit, Cockrell Center for Advanced Therapeutics, Houston Methodist Hospital, Houston, TX, United States
| | - Milind M. Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - R. Mark Ghobrial
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
26
|
Chung A, Nasralla D, Quaglia A. Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. J Hepatocell Carcinoma 2022; 9:1149-1169. [PMID: 36349146 PMCID: PMC9637345 DOI: 10.2147/jhc.s382310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
One of the most common cancers worldwide, primary liver cancer remains a major cause of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma represent the majority of primary liver cancer cases. Despite advances in the development of novel anti-cancer therapies that exploit targets within the immune system, survival rates from liver cancer remain poor. Furthermore, responses to immunotherapies, such as immune checkpoint inhibitors, have revealed limited and variable responses amongst patients with hepatocellular carcinoma, although combination immunotherapies have shown recent breakthroughs in clinical trials. This has shifted the focus towards improving our understanding of the underlying immune and molecular characteristics of liver tumours that may influence their response to immune-modulating treatments. In this review, we outline the complex interactions that occur in the tumour microenvironment of hepatocellular carcinoma and cholangiocarcinoma, respectively, from a histopathological perspective. We explore the potential role of a classification system based on immune-specific characteristics within each cancer type, the importance of understanding inter- and intra-tumoural heterogeneity and consider the future role of histopathology and novel technologies within this field.
Collapse
Affiliation(s)
- Annabelle Chung
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| | - David Nasralla
- Department of Hepato-Pancreato-Biliary Surgery, Royal Free Hospital, London, UK
| | - Alberto Quaglia
- Department of Cellular Pathology, Royal Free Hospital, London, UK
| |
Collapse
|
27
|
Xiao X, Chen H, Yang L, Xie G, Shimuzu R, Murai A. Concise review: Cancer cell reprogramming and therapeutic implications. Transl Oncol 2022; 24:101503. [PMID: 35933935 PMCID: PMC9364012 DOI: 10.1016/j.tranon.2022.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cancer stem cell (CSC) act as tumor initiating cells. Reprogramming technology can convert cells into CSCs. Metabolic reprogramming is critical for CSCs. MiRNA can mediate cancer cell reprogramming as emerging alternatives. The cancer stem cell (CSC) hypothesis postulates that cancer originates from the malignant transformation of stem cells and is considered to apply to a variety of cancers. Additionally, cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. Further, microRNAs (miRNAs) are found to be involved in acquisition of stem cell-like properties, regulation and reprogramming of cancer cells during cancer progression through its post-transcriptional-regulatory activity. In this concise review, we aim to integrate the current knowledge and recent advances to elucidate the mechanisms involved in the regulation of cell reprogramming and highlights the potential therapeutic implications for the future.
Collapse
Affiliation(s)
- Xue Xiao
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Hua Chen
- Laboratory Department of community health service station, Wuhan Engineering University, Wuhan City, Hubei Province, China
| | - Lili Yang
- Laboratory Department of xingouqiao Street Community Health Service Center, Qingshan District, Wuhan City, Hubei Province, China
| | - Guoping Xie
- Laboratory of the second staff hospital of Wuhan Iron and steel (Group) Company, Wuhan City, Hubei Province, China
| | - Risa Shimuzu
- Department of medicine and molecular science, Gunma University, Maebeshi, Japan
| | - Akiko Murai
- Department of Gynecology Oncology, University of Chicago, , 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Redox-Regulation in Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10102413. [PMID: 36289675 PMCID: PMC9598867 DOI: 10.3390/biomedicines10102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of slowly dividing cells with tumor-initiating ability. They can self-renew and differentiate into all the distinct cell populations within a tumor. CSCs are naturally resistant to chemotherapy or radiotherapy. CSCs, thus, can repopulate a tumor after therapy and are responsible for recurrence of disease. Stemness manifests itself through, among other things, the expression of stem cell markers, the ability to induce sphere formation and tumor growth in vivo, and resistance to chemotherapeutics and irradiation. Stemness is maintained by keeping levels of reactive oxygen species (ROS) low, which is achieved by enhanced activity of antioxidant pathways. Here, cellular sources of ROS, antioxidant pathways employed by CSCs, and underlying mechanisms to overcome resistance are discussed.
Collapse
|
29
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver cancer. Biomark Res 2022; 10:59. [PMID: 35971182 PMCID: PMC9380339 DOI: 10.1186/s40364-022-00406-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer is one of the most common malignant tumors worldwide, it is ranked sixth in incidence and fourth in mortality. According to the distinct origin of malignant tumor cells, liver cancer is mainly divided into hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Since most cases are diagnosed at an advanced stage, the prognosis of liver cancer is poor. Tumor growth depends on the dynamic interaction of various cellular components in the tumor microenvironment (TME). As the most abundant components of tumor stroma, cancer-associated fibroblasts (CAFs) have been involved in the progression of liver cancer. The interplay between CAFs and tumor cells, immune cells, or vascular endothelial cells in the TME through direct cell-to-cell contact or indirect paracrine interaction, affects the initiation and development of tumors. Additionally, CAFs are not a homogeneous cell population in liver cancer. Recently, single-cell sequencing technology has been used to help better understand the diversity of CAFs in liver cancer. In this review, we mainly update the knowledge of CAFs both in HCC and CCA, including their cell origins, chemoresistance, tumor stemness induction, tumor immune microenvironment formation, and the role of tumor cells on CAFs. Understanding the context-dependent role of different CAFs subsets provides new strategies for precise liver cancer treatment.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Erwei Zhu
- The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang, 222006, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
31
|
Comparison of growth features and cancer stem cell prevalence in intrahepatic and extrahepatic cholangiocarcinoma cell lines. Clin Exp Hepatol 2022; 8:60-69. [PMID: 35415255 PMCID: PMC8984799 DOI: 10.5114/ceh.2022.114192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Intra- and extrahepatic cholangiocarcinoma (I-CCA and E-CCA respectively) exhibit different growth features that contribute to different clinical outcomes. Cancer stem cells (CSCs) influence tumor growth and thereby may be responsible for these differences. The aim of this study was to document and compare the growth features of human I-CCA and E-CCA cell lines and determine whether any differences observed could be explained by differences in the prevalence and/or stem cell surface marker (SCSM) expression profiles of CSCs within the tumor cell lines. Material and methods Six CCA cells lines, three I-CCA and three E-CCA, were studied. Tumor cell growth features including cell proliferation, colony/spheroid formation, migration and invasion were documented. CSC prevalence and SCSM expression profiles were examined by flow cytometry. Results I-CCA cells had significantly increased proliferative activity, shorter doubling times and were more invasive than E-CCA cells, while colony/spheroid formation and migration were similar in the two cell populations. There were no significant differences in CSC prevalence rates or SCSM expression profiles. Conclusions These findings suggest that I-CCA cells proliferate at a more rapid rate and are more invasive than E-CCA cells but the differences cannot be explained by differences in the prevalence or SCSM expression profiles of CSCs within the tumor cell population.
Collapse
|
32
|
Zheng Q, Zhang B, Li C, Zhang X. Overcome Drug Resistance in Cholangiocarcinoma: New Insight Into Mechanisms and Refining the Preclinical Experiment Models. Front Oncol 2022; 12:850732. [PMID: 35372014 PMCID: PMC8970309 DOI: 10.3389/fonc.2022.850732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor characterized by a poor prognosis. Therapeutic options are limited in patients with advanced stage of CCA, as a result of the intrinsic or acquired resistance to currently available chemotherapeutic agents, and the lack of new drugs entering into clinical application. The challenge in translating basic research to the clinical setting, caused by preclinical models not being able to recapitulate the tumor characteristics of the patient, seems to be an important reason for the lack of effective and specific therapies for CCA. So, there seems to be two ways to improve patient outcomes. The first one is developing the combination therapies based on a better understanding of the mechanisms contributing to the resistance to currently available chemotherapeutic agents. The second one is developing novel preclinical experimental models that better recapitulate the genetic and histopathological features of the primary tumor, facilitating the screening of new drugs for CCA patients. In this review, we discussed the evidence implicating the mechanisms underlying treatment resistance to currently investigated drugs, and the development of preclinical experiment models for CCA.
Collapse
Affiliation(s)
- Qingfan Zheng
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ceci L, Zhou T, Lenci I, Meadows V, Kennedy L, Li P, Ekser B, Milana M, Zhang W, Wu C, Sato K, Chakraborty S, Glaser SS, Francis H, Alpini G, Baiocchi L. Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers (Basel) 2022; 14:1442. [PMID: 35326593 PMCID: PMC8945938 DOI: 10.3390/cancers14061442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The poor prognosis of cholangiocarcinoma in humans is related to several factors, such as (i) the heterogeneity of the disease, (ii) the late onset of symptoms and (iii) the limited comprehension of the carcinogenic pathways determining neoplastic changes, which all limit the pursuit of appropriate treatment. Several risk factors have been recognized, including different infective, immune-mediated, and dysmorphogenic disorders of the biliary tree. In this review, we report the details of possible mechanisms that lead a specific premalignant pathological condition to become cholangiocarcinoma. For instance, during liver fluke infection, factors secreted from the worms may play a major role in pathogenesis. In primary sclerosing cholangitis, deregulation of histamine and bile-acid signaling may determine important changes in cellular pathways. The study of these molecular events may also shed some light on the pathogenesis of sporadic (unrelated to risk factors) forms of cholangiocarcinoma, which represent the majority (nearly 75%) of cases.
Collapse
Affiliation(s)
- Ludovica Ceci
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Tianhao Zhou
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Ilaria Lenci
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Vik Meadows
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Lindsey Kennedy
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ping Li
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Burcin Ekser
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Martina Milana
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| | - Wenjun Zhang
- Department of Surgery, Division of Transplant Surgery, Indiana University, Indianapolis, IN 46202, USA; (P.L.); (B.E.); (W.Z.)
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Keisaku Sato
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Shannon S. Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA; (S.C.); (S.S.G.)
| | - Heather Francis
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology Division, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (L.C.); (T.Z.); (V.M.); (L.K.); (K.S.); (H.F.)
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Unit of Hepatology, Tor Vergata University, 00133 Rome, Italy; (I.L.); (M.M.)
| |
Collapse
|
34
|
Di Matteo S, Di Meo C, Carpino G, Zoratto N, Cardinale V, Nevi L, Overi D, Costantini D, Pinto C, Montanari E, Marzioni M, Maroni L, Benedetti A, Viola M, Coviello T, Matricardi P, Gaudio E, Alvaro D. Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Deliv Transl Res 2022; 12:1959-1973. [PMID: 35226290 PMCID: PMC9242918 DOI: 10.1007/s13346-022-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
A major function of the intrahepatic biliary epithelium is bicarbonate excretion in bile. Recent reports indicate that budesonide, a corticosteroid with high receptor affinity and hepatic first pass clearance, increases the efficacy of ursodeoxycholic acid, a choleretic agent, in primary biliary cholangitis patients. We have previously reported that bile ducts isolated from rats treated with dexamethasone or budesonide showed an enhanced activity of the Na+/H+ exchanger isoform 1 (NHE1) and Cl-/HCO3- exchanger protein 2 (AE2) . Increasing the delivery of steroids to the liver may result in three beneficial effects: increase in the choleresis, treatment of the autoimmune or inflammatory liver injury and reduction of steroids' systemic harmful effects. In this study, the steroid dexamethasone was loaded into nanohydrogels (or nanogels, NHs), in order to investigate corticosteroid-induced increased activities of transport processes driving bicarbonate excretion in the biliary epithelium (NHE-1 isoform) and to evaluate the effects of dexamethasone-loaded NHs (NHs/dex) on liver injury induced by experimental cholestatis. Our results showed that NHs and NHs/dex do not reduce cell viability in vitro in human cholangiocyte cell lines. Primary and immortalized human cholangiocytes treated with NHs/dex show an increase in the functional marker expression of NHE1 cholangiocytes compared to control groups. A mouse model of cholangiopathy treated with NHs/dex shows a reduction in markers of hepatocellular injury compared to control groups (NHs, dex, or sham group). In conclusion, we believe that the NHs/dex formulation is a suitable candidate to be investigated in preclinical models of cholangiopathies.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Department of Immunology, Bambino Gesù Childrens Hospital, IRCCS, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Guido Carpino
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Nevi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Diletta Overi
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Tommasina Coviello
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Pietro Matricardi
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Correnti M, Cappon A, Pastore M, Piombanti B, Lori G, Oliveira DVPN, Munoz‐Garrido P, Lewinska M, Andersen JB, Coulouarn C, Sulpice L, Peraldo Neia C, Cavalloni G, Quarta S, Biasiolo A, Fassan M, Ramazzotti M, Parri M, Recalcati S, di Tommaso L, Campani C, Invernizzi P, Torzilli G, Marra F, Pontisso P, Raggi C. The protease-inhibitor SerpinB3 as a critical modulator of the stem-like subset in human cholangiocarcinoma. Liver Int 2022; 42:233-248. [PMID: 34478594 PMCID: PMC9290104 DOI: 10.1111/liv.15049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a form of primary liver cancer with limited therapeutic options. Recently, cancer stem cells (CSCs) have been proposed as a driving force of tumour initiation and dissemination, thus representing a crucial therapeutic target. The protease inhibitor SerpinB3 (SB3) has been identified in several malignancies including hepatocellular carcinoma. SB3 has been involved in the early events of hepatocarcinogenesis and is highly expressed in hepatic progenitor cells and in a mouse model of liver progenitor cell activation. However, only limited information on the possible role of SB3 in CCA stem-like compartment is available. METHODS Enrichment of CCA stem-like subset was performed by sphere culture (SPH) in CCA cell lines (CCLP1, HUCCT1, MTCHC01 and SG231). Quantitative RT-PCR and Western blotting were used to detect SB3 in both SPH and parental monolayer (MON) cells. Acquired CSC-like features were analysed using an endogenous and a paracrine in vitro model, with transfection of SB3 gene or addition of recombinant SB3 to cell medium respectively. SB3 tumorigenic role was explored in an in vivo mouse model of CCA by subcutaneous injection of SB3-transfected MON (MONSB3+ ) cells in immune-deficient NOD-SCID/IL2Rgnull (NSG) mice. SB3 expression in human CCA sections was investigated by immunohistochemistry. Overall survival (OS) and time to recurrence (TTR) analyses were carried out from a transcriptome database of 104 CCA patients. RESULTS SB3, barely detected in parental MON cells, was overexpressed in the same CCA cells grown as 3D SPH. Notably, MONSB3+ showed significant overexpression of genes associated with stemness (CD24, CD44, CD133), pluripotency (c-MYC, NOTCH1, STAT3, YAP, NANOG, BMI1, KLF4, OCT4, SOX2), epithelial mesenchymal transition (β-catenin, SLUG) and extracellular matrix remodelling (MMP1, MMP7, MMP9, ADAM9, ADAM10, ADAM17, ITGB3). SB3-overexpressing cells showed superior spherogenic capacity and invasion ability compared to control. Importantly, MONSB3+ exhibited activation of MAP kinases (ERK1/2, p38, JNK) as well as phosphorylation of NFκB (p65) in addition to up-regulation of the proto-oncogene β-catenin. All these effects were reversed after transient silencing of SB3. According to the in vitro finding, MONSB3+ cells retained high tumorigenic potential in NSG mice. SB3 overexpression was observed in human CCA tissues and analysis of OS as well as TTR indicated a worse prognosis in SB3+ CCA patients. CONCLUSION These findings indicate a SB3 role in mediating malignant phenotype of CCA and identify a new therapeutic target.
Collapse
Affiliation(s)
- Margherita Correnti
- Center for Autoimmune Liver DiseasesHumanitas Clinical and Research CenterRozzanoItaly
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Andrea Cappon
- Animal Care‐Polo Vallisneri University of PaduaPaduaItaly
| | - Mirella Pastore
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Benedetta Piombanti
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Giulia Lori
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | | | - Monika Lewinska
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Andersen
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
| | - Cédric Coulouarn
- CHU RennesService de Chirurgie Hépatobiliaire et DigestiveInsermUniv RennesCOSS (Chemistry, Oncogenesis Stress Signaling)UMR_S 1242Centre de Lutte contre le Cancer Eugène MarquisRennesFrance
| | - Laurent Sulpice
- CHU RennesService de Chirurgie Hépatobiliaire et DigestiveINSERM 1241Université de RennesRennesFrance
| | | | - Giuliana Cavalloni
- Division of Medical OncologyCandiolo Cancer InstituteFPO‐IRCCSCandiolo, TorinoItaly
| | - Santina Quarta
- Department of Medicine‐DIMEDUniversity of PaduaPaduaItaly
| | | | - Matteo Fassan
- Department of Medicine‐DIMEDUniversity of PaduaPaduaItaly
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Matteo Parri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Stefania Recalcati
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| | - Luca di Tommaso
- Department of PathologyHumanitas Clinical and Research CenterRozzanoItaly
- Department of Biomedical SciencesHumanitas UniversityRozzanoItaly
| | - Claudia Campani
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Guido Torzilli
- Department of Hepatobiliary and General SurgeryHumanitas UniversityHumanitas Clinical and Research CenterIRCCS, RozzanoMilanItaly
| | - Fabio Marra
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Chiara Raggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
36
|
Maier CF, Zhu L, Nanduri LK, Kühn D, Kochall S, Thepkaysone ML, William D, Grützmann K, Klink B, Betge J, Weitz J, Rahbari NN, Reißfelder C, Schölch S. Patient-Derived Organoids of Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22168675. [PMID: 34445380 PMCID: PMC8395494 DOI: 10.3390/ijms22168675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cholangiocarcinoma (CC) is an aggressive malignancy with an inferior prognosis due to limited systemic treatment options. As preclinical models such as CC cell lines are extremely rare, this manuscript reports a protocol of cholangiocarcinoma patient-derived organoid culture as well as a protocol for the transition of 3D organoid lines to 2D cell lines. Tissue samples of non-cancer bile duct and cholangiocarcinoma were obtained during surgical resection. Organoid lines were generated following a standardized protocol. 2D cell lines were generated from established organoid lines following a novel protocol. Subcutaneous and orthotopic patient-derived xenografts were generated from CC organoid lines, histologically examined, and treated using standard CC protocols. Therapeutic responses of organoids and 2D cell lines were examined using standard CC agents. Next-generation exome and RNA sequencing was performed on primary tumors and CC organoid lines. Patient-derived organoids closely recapitulated the original features of the primary tumors on multiple levels. Treatment experiments demonstrated that patient-derived organoids of cholangiocarcinoma and organoid-derived xenografts can be used for the evaluation of novel treatments and may therefore be used in personalized oncology approaches. In summary, this study establishes cholangiocarcinoma organoids and organoid-derived cell lines, thus expanding translational research resources of cholangiocarcinoma.
Collapse
Affiliation(s)
- Christopher Fabian Maier
- Junior Clinical Cooperation Unit Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.F.M.); (L.Z.)
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.R.); (C.R.)
| | - Lei Zhu
- Junior Clinical Cooperation Unit Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.F.M.); (L.Z.)
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.R.); (C.R.)
| | - Lahiri Kanth Nanduri
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (D.K.); (S.K.); (M.-L.T.); (J.W.)
| | - Daniel Kühn
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (D.K.); (S.K.); (M.-L.T.); (J.W.)
| | - Susan Kochall
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (D.K.); (S.K.); (M.-L.T.); (J.W.)
| | - May-Linn Thepkaysone
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (D.K.); (S.K.); (M.-L.T.); (J.W.)
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (K.G.); (B.K.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (K.G.); (B.K.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT) Partner Site Dresden, 01307 Dresden, Germany; (D.W.); (K.G.); (B.K.)
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center of Genetics, Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models (B440), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Medicine II, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.K.N.); (D.K.); (S.K.); (M.-L.T.); (J.W.)
| | - Nuh N. Rahbari
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.R.); (C.R.)
| | - Christoph Reißfelder
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.R.); (C.R.)
| | - Sebastian Schölch
- Junior Clinical Cooperation Unit Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (C.F.M.); (L.Z.)
- Department of Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.N.R.); (C.R.)
- Correspondence:
| |
Collapse
|
37
|
Prognostic Role of Immune Checkpoint Regulators in Cholangiocarcinoma: A Pilot Study. J Clin Med 2021; 10:jcm10102191. [PMID: 34069452 PMCID: PMC8159105 DOI: 10.3390/jcm10102191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes.
Collapse
|
38
|
Baiocchi L, Sato K, Ekser B, Kennedy L, Francis H, Ceci L, Lenci I, Alvaro D, Franchitto A, Onori P, Gaudio E, Wu C, Chakraborty S, Glaser S, Alpini G. Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opin Investig Drugs 2021; 30:365-375. [PMID: 33226854 PMCID: PMC8441992 DOI: 10.1080/13543784.2021.1854725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a devastating liver tumor with a poor prognosis. While less than 50% of the patients with CCA may benefit from surgical resection, the rest undergoes chemotherapy with disappointing results (mean survival <2 years). Alternative pharmacological treatments are needed to improve the outcomes in patients with CCA.Areas covered: In this review, we discuss CCA-related (1) experimental systems used in preclinical studies; (2) pharmacological targets identified by genetic analysis; (3) results obtained in preliminary trials in human with their pros and cons; and (4) possible targeting of endocrinal modulation. A PubMed bibliographic search matching the term 'cholangiocarcinoma' with 'experimental model', 'preclinical model', 'genetic target', 'targeted therapy', 'clinical trial', or 'translational research' was conducted and manuscripts published between 2010 and 2020 were retrieved for reading and reviewing.Expert opinion: Several factors contribute to the translational gap between bench research and clinical practice in CCA. The tumor heterogeneity, lack of a preclinical model recapitulating the different features of CCA, and difficult patient enrollment in clinical trials are elements to consider for basic and clinical research in CCA. Establishment of international networks formed by experts in the field of CCA may improve future research and its translational findings on patients.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Keisaku Sato
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Heather Francis
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
| | - Ilaria Lenci
- Liver Unit, Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
39
|
Kawasaki K, Kuboki S, Furukawa K, Takayashiki T, Takano S, Ohtsuka M. LGR5 induces β-catenin activation and augments tumour progression by activating STAT3 in human intrahepatic cholangiocarcinoma. Liver Int 2021; 41:865-881. [PMID: 33249719 DOI: 10.1111/liv.14747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS LGR5 enhances Wnt-β-catenin signalling; however, involvement of LGR5 or Wnt-β-catenin signalling in ICC progression has not been reported. METHODS Functions and regulations of LGR5-mediated β-catenin activation in ICC progression were evaluated using surgical specimens collected from 61 ICC patients or 2 ICC cell lines. RESULTS LGR5 expression was increased in some cases of ICC. It was positively correlated with β-catenin activation, OLFM4 expression and STAT3 activation, and negatively correlated with GRIM19 expression in ICC, thereby enhancing cancer stem cell (CSC)-like property and EMT. High LGR5 expression was an independent factor for poor prognosis in ICC after operation. In vitro, Wnt inhibition by IWP-2 suppressed β-catenin activation, OLFM4 expression and STAT3 activation. IWP-2 treatment decreased expression of EpCAM, CD133, vimentin and increased E-cadherin expression. The rate of mesenchymal cells was decreased and cell invasiveness was suppressed after IWP-2 treatment, suggesting that Wnt-β-catenin signalling enhanced CSC-like property and EMT by activating STAT3. In addition, LGR5 knockdown inhibited β-catenin activation, resulting in suppression of β-catenin-induced STAT3 activation through inhibition of OLFM4-GRIM19 cascade. As these results, LGR5 knockdown suppressed CSC-like property and EMT. Therefore, LGR5 was a key regulator for β-catenin activation, and β-catenin was unable to be activated without LGR5. CONCLUSIONS LGR5 is essential for β-catenin activation induced by Wnt signalling. Activated β-catenin further activates STAT3 and enhances CSC-like property and EMT, leading to aggressive tumour progression and poor prognosis in patients with ICC. Therefore, LGR5 is an excellent prognostic predictor and a promising therapeutic target for ICC.
Collapse
Affiliation(s)
- Keishi Kawasaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Branchi V, Jürgensen B, Esser L, Gonzalez-Carmona M, Weismüller TJ, Strassburg CP, Henn J, Semaan A, Lingohr P, Manekeller S, Kristiansen G, Kalff JC, Toma MI, Matthaei H. Tumor Infiltrating Neutrophils Are Frequently Found in Adenocarcinomas of the Biliary Tract and Their Precursor Lesions with Possible Impact on Prognosis. J Pers Med 2021; 11:jpm11030233. [PMID: 33806804 PMCID: PMC8004909 DOI: 10.3390/jpm11030233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Biliary tract cancer (BTC) is characterized by an intense stromal reaction and a complex landscape of infiltrating immune cells. Evidence is emerging that tumor-infiltrating neutrophils (TINs) have an impact on carcinogenesis and tumor progression. TINs have also been associated with outcomes in various solid malignant tumors but their possible clinical role in BTC is largely unknown. Tissue samples from patients with sporadic BTC ("spBTC" cohort, N = 53) and BTC in association with primary sclerosing cholangitis ("PSC-BTC" cohort, N = 7) were collected. Furthermore, tissue samples from 27 patients with PSC who underwent liver transplantation ("PSC-LTX" cohort) were investigated. All specimens were assessed for TIN density in invasive and precancerous lesions (biliary intraepithelial neoplasia, BilIN). Most spBTC showed low TIN density (LD, 61%). High TIN density (HD) was detected in 16% of the tumors, whereas 23% were classified as intermediate density (ID); the majority of both HD and ID groups were in T1-T2 tumors (83% and 100%, p = 0.012). TIN density in BilIN lesions did not significantly differ among the three groups. The HD group had a mean overall survival (OS) of 53.5 months, whereas the mean OS in the LD and ID groups was significantly shorter (LD 29.5 months vs. ID 24.6 months, log-rank p < 0.05). The results of this study underline the possible prognostic relevance of TINs in BTC and stress the complexity of the immune cell landscape in BTC. The prognostic relevance of TINs suggests a key regulator role in inflammation and immune landscape in BTC.
Collapse
Affiliation(s)
- Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Benedict Jürgensen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Laura Esser
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Maria Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Tobias J. Weismüller
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Christian P. Strassburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany; (M.G.-C.); (T.J.W.); (C.P.S.)
| | - Jonas Henn
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Steffen Manekeller
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
| | - Marieta I. Toma
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany; (L.E.); (G.K.); (M.I.T.)
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany; (V.B.); (B.J.); (J.H.); (A.S.); (P.L.); (S.M.); (J.C.K.)
- Correspondence:
| |
Collapse
|
41
|
Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Sci Rep 2021; 11:2557. [PMID: 33510179 PMCID: PMC7844056 DOI: 10.1038/s41598-021-81172-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with marked resistance to chemotherapeutics without therapies. The tumour microenvironment of iCCA is enriched of Cancer-Stem-Cells expressing Epithelial-to-Mesenchymal Transition (EMT) traits, being these features associated with aggressiveness and drug resistance. Treatment with the anti-diabetic drug Metformin, has been recently associated with reduced incidence of iCCA. We aimed to evaluate the anti-cancerogenic effects of Metformin in vitro and in vivo on primary cultures of human iCCA. Our results showed that Metformin inhibited cell proliferation and induced dose- and time-dependent apoptosis of iCCA. The migration and invasion of iCCA cells in an extracellular bio-matrix was also significantly reduced upon treatments. Metformin increased the AMPK and FOXO3 and induced phosphorylation of activating FOXO3 in iCCA cells. After 12 days of treatment, a marked decrease of mesenchymal and EMT genes and an increase of epithelial genes were observed. After 2 months of treatment, in order to simulate chronic administration, Cytokeratin-19 positive cells constituted the majority of cell cultures paralleled by decreased Vimentin protein expression. Subcutaneous injection of iCCA cells previously treated with Metformin, in Balb/c-nude mice failed to induce tumour development. In conclusion, Metformin reverts the mesenchymal and EMT traits in iCCA by activating AMPK-FOXO3 related pathways suggesting it might have therapeutic implications.
Collapse
|
42
|
Moeini A, Haber PK, Sia D. Cell of origin in biliary tract cancers and clinical implications. JHEP Rep 2021; 3:100226. [PMID: 33665585 PMCID: PMC7902553 DOI: 10.1016/j.jhepr.2021.100226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancers (BTCs) are aggressive epithelial malignancies that can arise at any point of the biliary tree. Albeit rare, their incidence and mortality rates have been rising steadily over the past 40 years, highlighting the need to improve current diagnostic and therapeutic strategies. BTCs show high inter- and intra-tumour heterogeneity both at the morphological and molecular level. Such complex heterogeneity poses a substantial obstacle to effective interventions. It is widely accepted that the observed heterogeneity may be the result of a complex interplay of different elements, including risk factors, distinct molecular alterations and multiple potential cells of origin. The use of genetic lineage tracing systems in experimental models has identified cholangiocytes, hepatocytes and/or progenitor-like cells as the cells of origin of BTCs. Genomic evidence in support of the distinct cell of origin hypotheses is growing. In this review, we focus on recent advances in the histopathological subtyping of BTCs, discuss current genomic evidence and outline lineage tracing studies that have contributed to the current knowledge surrounding the cell of origin of these tumours.
Collapse
Key Words
- ARID1A, AT-rich interactive domain-containing protein 1A
- BAP1, BRCA1-associated protein 1
- BRAF, v-Raf murine sarcoma viral oncogene homolog B
- BTC, biliary tract cancer
- Biliary tract cancers
- CCA, cholangiocarcinoma
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CK, cytokeratin
- CLC, cholangiolocarcinoma
- Cell of origin
- Cholangiocarcinoma
- CoH, Canal of Hering
- DCR, disease control rate
- ER, estrogen receptor
- ERBB2/3, Erb-B2 Receptor Tyrosine Kinase 2/3
- FGFR, fibroblast growth factor receptor
- FGFR2, Fibroblast Growth Factor Receptor 2
- GBC, gallbladder cancer
- GEMM, genetically engineered mouse models
- Genomics
- HCC, hepatocellular carcinoma
- HPCs, hepatic progenitor cells
- IDH, isocitrate dehydrogenase
- KRAS, Kirsten Rat Sarcoma Viral Oncogene Homolog
- Lineage tracing
- MET, Hepatocyte Growth Factor Receptor
- MST1, Macrophage Stimulating 1
- NA, not applicable
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NGS, next-generation sequencing
- NR, not reported
- NTRK, Neurotrophic Receptor Tyrosine Kinase 1
- ORR, objective response rate
- OS, overall survival
- PBG, peribiliary gland
- PFS, progression- free survival
- PIK3CA, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
- PLC, primary liver cancer
- PRKACA/B, Protein Kinase CAMP-Activated Catalytic Subunit Alpha/Beta
- PROM1, Prominin 1
- PSC, primary sclerosing cholangitis
- Personalized therapy
- RNF43, Ring Finger Protein 43
- SMAD4, SMAD Family Member 4
- TBG, thyroid binding globulin
- TP53, Tumor Protein P53
- WHO, World Health Organization
- dCCA, distal cholangiocarcinoma
- eCCA, extrahepatic cholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
- mo, months
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Agrin Moeini
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Philipp K Haber
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
43
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
O'Rourke CJ, Munoz-Garrido P, Andersen JB. Molecular Targets in Cholangiocarcinoma. Hepatology 2021; 73 Suppl 1:62-74. [PMID: 32304327 DOI: 10.1002/hep.31278] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) encompasses a heterogeneous collection of malignancies for which diagnostic biomarkers are lacking and population screening is infeasible because of its status as a rare disease. Coupled with high postsurgical recurrence rates among the minority of patients diagnosed at resectable stages, systemic clinical management will inevitably be required for the majority of patients with CCA with recurrent and advanced disease. In this review, we discuss the therapeutic potential of different classes of molecular targets at various stages of development in CCA, including those targeted to the tumor epithelia (oncogenic, developmental, metabolic, epigenomic) and tumor microenvironment (angiogenesis, checkpoint regulation). Furthermore, we discuss the successes and failures of CCA-targeted therapies, emphasizing key lessons learned that should pave the way for future molecular target evaluation in this uncommon yet bona fide target-rich disease.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia Munoz-Garrido
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Lorenzo N, Sabina DM, Guido C, Ilaria Grazia Z, Samira S, Valeria A, Daniele C, Diletta O, Antonella G, Marco M, Daniela B, Valerio DP, Andrea O, Agostino Maria DR, Fabio M, Maria Consiglia B, Jessica F, Sara M, Gian Luca G, Pierluigi Benedetti P, Paquale Bartomeo B, Felice G, Vincenzo C, Pietro I, Giuseppina C, Eugenio G, Domenico A. DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology 2021; 73:144-159. [PMID: 32978808 PMCID: PMC8243252 DOI: 10.1002/hep.31571] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.
Collapse
Affiliation(s)
- Nevi Lorenzo
- Department of BiosciencesUniversity of MilanMilanItaly
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Di Matteo Sabina
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
- Department of ImmunologyBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Carpino Guido
- Department of MovementHuman and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | | | - Safarikia Samira
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Ambrosino Valeria
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Costantini Daniele
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Overi Diletta
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Giancotti Antonella
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Monti Marco
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | - Bosco Daniela
- Department of Pathological Anatomy and CytodiagnosticSapienza University of RomeRomeItaly
| | - De Peppo Valerio
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Oddi Andrea
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - De Rose Agostino Maria
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Melandro Fabio
- Department of General Surgery and Organ TransplantationSapienza University of RomeRomeItaly
| | | | - Faccioli Jessica
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Massironi Sara
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly
- European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | - Grazi Gian Luca
- Hepatobiliary and Pancreatic Surgery IRCCSRegina Elena National Cancer InstituteRomeItaly
| | - Panici Pierluigi Benedetti
- Department of Maternal and Child Health and Urologic SciencesUmberto I HospitalSapienza University of RomeRomeItaly
| | | | - Giuliante Felice
- Surgery, Hepatobiliary UnitCatholic University of the Sacred Heart School of Medicine and SurgeryRomeItaly
| | - Cardinale Vincenzo
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeRomeItaly
| | - Invernizzi Pietro
- Division of Gastroenterology and Center for Autoimmune Liver DiseasesDepartment of Medicine and SurgeryUniversity of Milan‐BicoccaMonzaItaly
- European Reference Network on Hepatological Diseases (ERN RARE‐LIVER)San Gerardo HospitalMonzaItaly
| | | | - Gaudio Eugenio
- Department of AnatomicalHistological, Forensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Alvaro Domenico
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| |
Collapse
|
46
|
Meadows V, Francis H. Doublecortin-Like Kinase Protein 1 in Cholangiocarcinoma: Is This the Biomarker and Target We Have Been Looking For? Hepatology 2021; 73:4-6. [PMID: 33179783 PMCID: PMC9274666 DOI: 10.1002/hep.31630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Vik Meadows
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research, Indianapolis, IN
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research, Indianapolis, IN
| |
Collapse
|
47
|
Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells. Int Immunopharmacol 2020; 89:107069. [PMID: 33242709 DOI: 10.1016/j.intimp.2020.107069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Current treatment of cholangiocarcinoma (CCA) - a lethal bile duct cancer - is ineffective because the disease is usually diagnosed at late and advanced stage. Thus, a novel therapeutic modality is urgently required. Fourth-generation chimeric antigen receptor (CAR4) T cells was created to target CD133, a well-known cancer stem cell marker, that is highly expressed and associates with cancer progression. The anti-CD133-CAR4 T cells showed high efficacy against CD133-expressing CCA cells. Tumour cell lysis occurred in a dose- and CD133 antigen-dependent manner, and significantly higher, up to 57.59% ± 9.62 at effector to target ratio of 5:1 in a CCA cell line - KKU-213A cells, compared to mock control (p = 0.008). Similarly, significant IFN-γ (p = 0.011) and TNF-α (p = 0.002) upregulation was observed upon tumour treatment. The effectiveness of our anti-CD133-CAR4 T cells will be beneficial not only for CD133-expressing CCA, but also for other CD133-expressing tumours. This study may guide future in vivo study and clinical trials.
Collapse
|
48
|
Mancinelli R, Cutone A, Rosa L, Lepanto MS, Onori P, Pannarale L, Franchitto A, Gaudio E, Valenti P. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Eur J Histochem 2020; 64. [PMID: 33131269 PMCID: PMC7586138 DOI: 10.4081/ejh.2020.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche (IS).
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome; Eleonora Lorillard Spencer Cenci Foundation, Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| |
Collapse
|
49
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
50
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1471] [Impact Index Per Article: 294.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|