1
|
Zhou Z, Tang X, Huang D, Chen M, Wei X, Zhan Y, Jiang M, Chen X, Cui X, Zhang J, Gong X. Programmed Drug Delivering Janus Hydrogel Adapted to the Spatio-temporal Therapeutic Window for Achilles Tendon Repair. Acta Biomater 2025:S1742-7061(25)00378-2. [PMID: 40412506 DOI: 10.1016/j.actbio.2025.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/24/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Peritendinous adhesion formation and tendon re-rupture are prevalent clinical complications following tendon repair surgery. The key to reducing adhesions and enhancing the biomechanical strength of injured tendons lies in suppressing inflammation and extrinsic fibroblast activation while promoting intrinsic tenocyte proliferation. However, as tenocytes are inherently a type of fibroblast, it remains challenging for a single drug to reduce adhesion and improve tendon strength simultaneously. To address this challenge, a Janus hydrogel was designed for spatiotemporal programmed drug delivery specifically tailored to Achilles tendon repair. The outer layer of the Janus hydrogel rapidly releases melatonin (MT) via poly(N-acryloyl alaninamide) (PNAAA), effectively suppressing inflammation and extrinsic fibroblast activation. The inner layer gel, formed by thiol-modified gelatin (GelSH) and norbornene-modified hyaluronic acid (HANB), incorporates protein-binding AAc-NHS and gradually releases platelet-derived growth factor-BB (PDGF-BB), thereby promoting tenocyte proliferation. In the rat Achilles tendon injury model, the spatiotemporal programmed drug delivery Janus hydrogel successfully reduced adhesion while enhancing tendon healing strength. This work promoted Achilles tendon repair by meeting the distinct spatiotemporal therapeutic needs. STATEMENT OF SIGNIFICANCE: Melatonin may inhibit fibroblast proliferation and differentiation via the PI3K/AKT pathway, whereas PDGF-BB promotes tenocyte proliferation and differentiation through the same pathway. Consequently, the effects of these two drugs on fibroblasts and tenocytes may be conflicting. In this study, the programmed drug delivery Janus hydrogel was designed to match the different stages of tendon repair and achieved staggered release of melatonin and PDGF-BB. Melatonin@PNAAA primarily targets the extrinsic healing pathway, focusing on inflammatory cells during the inflammatory phase and fibroblasts during the proliferative phase. PDGF-BB@SHNB mainly targets intrinsic healing pathway, focusing on tenocytes during the proliferative phase and collagen synthesis during the remodeling phase. This spatiotemporal delivery system alleviates adhesion while promoting tendon healing.
Collapse
Affiliation(s)
- Zekun Zhou
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Xiaoduo Tang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, the First Hospital of Jilin University, Changchun, 130021, P. R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China.
| | - Dongxu Huang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Miao Chen
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Xin Wei
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Yongxin Zhan
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Meijun Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Xiang Chen
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Xingyao Cui
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| | - Junhu Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, the First Hospital of Jilin University, Changchun, 130021, P. R. China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Xu Gong
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, P. R. China; Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, P. R. China.
| |
Collapse
|
2
|
Ahmed EH, Farrag SM, El-Latif NA. Evaluating the effects of L-carnitine on albino rat's gingiva-derived stem cells (In-Vitro Study). Arch Oral Biol 2025; 173:106192. [PMID: 39954495 DOI: 10.1016/j.archoralbio.2025.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE Stem cells as therapy is currently a well-established scientific research topic. Poor maintenance and survival of cells supplied to the damaged tissue are barriers to improving the efficacy of regenerative medicine. Antioxidants such as L-carnitine are used to promote cell survival and maintenance properties. This study aims to assess the effects of L-carnitine on albino rat gingiva-derived mesenchymal stem cells proliferation. DESIGN Rat gingiva-derived mesenchymal stem cells were isolated and exposed to 0, 1, 3, and 10 Mm of L-carnitine. Flow cytometry was then utilized to measure gene and protein expression levels for CD90, CD105, CD45, and CD19. The MTT test was used to examine the proliferation of cells. The proportion of apoptosis was determined using the Annexin V/PI technique. Cell cycle investigations to assess cells and identify the percentages of cells in the G0/G1, S, and G2/M phases. Expression of TGF-β gene has been evaluated using Real time‑PCR analysis. RESULTS The results showed that gingiva-derived mesenchymal stem cells, including CD90 and CD105, consistently showed positive immunostaining, whereas CD45 and CD19 were weakly positive or negative. Concentration-dependent increase of growth proliferation, more rapid proliferation of the cells treated with the highest L-carnitine concentration (10 mM) after 72 h (0.934 ± 0.063). Cells treated with 10 mM L-carnitine showed considerably decreased percentages of necrotic (2.38 ± 0.55), late (1.23 ± 0.90), early apoptotic cells (1.18 ± 0.13), and increased the percentage of viable cells (95.13 ± 1.61). CONCLUSION Our findings suggest that adding L-carnitine to gingiva-derived mesenchymal stem cells during expansion enables efficient and viable cell production.
Collapse
Affiliation(s)
- Elham H Ahmed
- Lecturer of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Sara Mohamed Farrag
- Lab specialist, Medical Experimental Research Center (MERC), Mansoura University, Egypt.
| | - Noura Abd El-Latif
- Lecturer of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
3
|
Raghavan P. Muscle physiology in spasticity and muscle stiffness. Toxicon 2025; 259:108350. [PMID: 40216366 DOI: 10.1016/j.toxicon.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
This paper examines the physiological changes in spastic muscles contributing to spasticity and muscle stiffness, focusing on the underlying mechanisms and their clinical implications. Spasticity, which is prevalent in neurological conditions such as multiple sclerosis, cerebral palsy, spinal cord injury, stroke, and traumatic brain injury, is characterized by disordered sensorimotor control and often results in increased muscle stiffness and resistance to movement. Recent developments in the understanding of spasticity suggest the importance of architectural changes in muscles that may contribute to increased passive resistance, potentiate reflex mechanisms, and progression to fibrosis, with hyaluronan (HA), a glycosaminoglycan, playing a pivotal in modulating the properties of the muscle extracellular matrix (ECM). The hyaluronan hypothesis of muscle stiffness postulates that the accumulation and biophysical alteration of HA in the ECM of muscle increases its viscosity, resulting in increased passive mechanical resistance. This is turn mayincrease muscle sensitivity to stretch, potentiating spasticity, and lead to cellular differentiation of myofibroblasts to fibroblasts ultimately leading to fibrosis and contracture. A deeper understanding of HA's role in ECM dynamics offers promising avenues for novel treatments aimed at mitigating stiffness and preventing long-term disability in patients with spasticity.
Collapse
Affiliation(s)
- Preeti Raghavan
- Departments of Physical Medicine and Rehabilitation and Neurology, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
4
|
Huang P, Qin D, Qin Y, Tao S, Liu G. SIRT3/6/7: promising therapeutic targets for pulmonary fibrosis. Front Cell Dev Biol 2025; 13:1557384. [PMID: 40241794 PMCID: PMC12000143 DOI: 10.3389/fcell.2025.1557384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Pulmonary fibrosis is a chronic progressive fibrosing interstitial lung disease of unknown cause, characterized by excessive deposition of extracellular matrix, leading to irreversible decline in lung function and ultimately death due to respiratory failure and multiple complications. The Sirtuin family is a group of nicotinamide adenine dinucleotide (NAD+) -dependent histone deacetylases, including SIRT1 to SIRT7. They are involved in various biological processes such as protein synthesis, metabolism, cell stress, inflammation, aging and fibrosis through deacetylation. This article reviews the complex molecular mechanisms of the poorly studied SIRT3, SIRT6, and SIRT7 subtypes in lung fibrosis and the latest research progress in targeting them to treat lung fibrosis.
Collapse
Affiliation(s)
- Pingping Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Qin
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanling Qin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sha Tao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangnan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Zhu H, Zhang R, Bao T, Ma M, Li J, Cao L, Yu B, Hu J, Tian Z. Interleukin-11 Is Involved in Hyperoxia-induced Bronchopulmonary Dysplasia in Newborn Mice by Mediating Epithelium-Fibroblast Cross-talk. Inflammation 2025; 48:796-805. [PMID: 39046604 DOI: 10.1007/s10753-024-02089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung disorder predominantly affecting preterm infants. Oxygen therapy, a common treatment for BPD, often leads to hyperoxia-induced pulmonary damage, particularly targeting alveolar epithelial cells (AECs). Crucially, disrupted lung epithelium-fibroblast interactions significantly contribute to BPD's pathogenesis. Previous studies on interleukin-11 (IL-11) in lung diseases have yielded conflicting results. Recent research, however, highlights IL-11 as a key regulator of fibrosis, stromal inflammation, and epithelial dysfunction. Despite this, the specific role of IL-11 in BPD remains underexplored. Our transcriptome analysis of normal and hyperoxia-exposed murine lung tissues revealed an increased expression of IL-11 RNA. This study aimed to investigate IL-11's role in modulating the disrupted interactions between AECs and fibroblasts in BPD. METHODS BPD was modeled in vivo by exposing C57BL/6J neonatal mice to hyperoxia. Histopathological changes in lung tissue were evaluated with hematoxylin-eosin staining, while lung fibrosis was assessed using Masson staining and immunohistochemistry (IHC). To investigate IL-11's role in pulmonary injury contributing to BPD, IL-11 levels were reduced through intraperitoneal administration of IL-11RαFc in hyperoxia-exposed mice. Additionally, MLE-12 cells subjected to 95% oxygen were collected and co-cultured with mouse pulmonary fibroblasts (MPFs) to measure α-SMA and Collagen I expression levels. IL-11 levels in the supernatants were quantified using an enzyme-linked immunosorbent assay (ELISA). RESULTS Both IHC and Masson staining revealed that inhibiting IL-11 expression alleviated pulmonary fibrosis in neonatal mice induced by hyperoxia, along with reducing the expression of fibrosis markers α-SMA and collagen I in lung tissue. In vitro analysis showed a significant increase in IL-11 levels in the supernatant of MLE-12 cells treated with hyperoxia. Silencing IL-11 expression in MLE-12 cells reduced α-SMA and collagen I concentrations in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Additionally, ERK inhibitors decreased α-SMA and collagen I levels in MPFs co-cultured with the supernatant of hyperoxia-treated MLE-12 cells. Clinical studies found increased IL-11 levels in tracheal aspirates (TA) of infants with BPD. CONCLUSION This research reveals that hyperoxia induces IL-11 secretion in lung epithelium. Additionally, IL-11 derived from lung epithelium emerged as a crucial mediator in myofibroblast differentiation via the ERK signaling pathway, highlighting its potential therapeutic value in BPD treatment.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Rongrong Zhang
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
6
|
Sakai T, Kumagai K. Molecular dissection of tendon development and healing: Insights into tenogenic phenotypes and functions. J Biol Chem 2025; 301:108353. [PMID: 40015639 PMCID: PMC11986518 DOI: 10.1016/j.jbc.2025.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Tendon is a dense connective tissue that transmits contraction forces from skeletal muscles to bones. Adult tendon injury is a significant clinical problem because it occurs frequently with a high recurrence rate, and damaged tendon is rarely restored to full function. The main barrier to improving recovery outcomes is our incomplete understanding of the molecular mechanisms underlying the biological alterations following tendon injury in vivo. In this review, we specifically highlight the cellular dynamism of fibrotic tendon wound healing and the roles of mechanical loading. In particular, we document how tendon stem/progenitor cells expressing the tendon-specific transcription factor Scleraxis (Scx) play a role in fibrotic tendon wound healing, and describe novel experimental systems such as lineage cell tracing and single-cell analysis, both of which can shed light on tendon cell behavior and fate decisions during the tendon wound healing process.
Collapse
Affiliation(s)
- Takao Sakai
- Department of Diagnostic Pathology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Ken Kumagai
- Department of Orthopaedic Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
7
|
Freeberg MAT, Camus SV, Robila V, Perelas A, Thatcher TH, Sime PJ. Piezo2 Is a Key Mechanoreceptor in Lung Fibrosis that Drives Myofibroblast Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:626-638. [PMID: 39855300 PMCID: PMC11959423 DOI: 10.1016/j.ajpath.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases have limited treatment options. Fibroblasts are key effector cells that sense matrix stiffness through conformation changes in mechanically sensitive receptors, leading to activation of downstream profibrotic pathways. Here, the role of Piezo2, a mechanosensitive ion channel, in human and mouse lung fibrosis, and its function in myofibroblast differentiation in primary human lung fibroblasts (HLFs) was investigated. Human samples from patients with IPF and mouse tissue from bleomycin-induced pulmonary fibrosis were assessed. Primary HLFs from nonfibrotic donors were grown on substrates of different stiffness to induce myofibroblast differentiation and treated with a Piezo2 inhibitor. Piezo2 expression was up-regulated in tissue from patients with IPF and in fibrotic mouse lung tissue. Additionally, analysis of published single-cell RNA-sequencing data showed that Piezo2 was expressed in the profibrotic collagen triple helix repeat containing 1 (Cthrc1)+ fibroblast subpopulation. Myofibroblast differentiation was increased in HLFs grown on substrates with fibrotic levels of stiffness compared with that seen in softer substrates. Piezo2 inhibition reduced stiffness-induced expression α-smooth muscle actin and fibronectin in HLFs. Piezo2 expression was elevated in fibrotic lung disease in both patients and rodents, and its presence was key in the differentiation of fibroblasts to the profibrotic myofibroblasts. Blocking Piezo2 may play a key role in fibrosis and, thus, be a novel therapeutic approach to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Margaret A T Freeberg
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sarah V Camus
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Valentina Robila
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Apostolos Perelas
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Thomas H Thatcher
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia J Sime
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
8
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
9
|
Rieder F, Nagy LE, Maher TM, Distler JHW, Kramann R, Hinz B, Prunotto M. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 2025:10.1038/s41573-025-01158-9. [PMID: 40102636 DOI: 10.1038/s41573-025-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA.
- Program for Global Translational Inflammatory Bowel Diseases (GRID), Chicago, IL, USA.
| | - Laura E Nagy
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH, USA
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Toby M Maher
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- National Heart and Lung Institute, Imperial College, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen; Medical Faculty, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Srinivasan D, Subbarayan R, Krishnan M, Balakrishna R, Adtani P, Shrestha R, Chauhan A, Babu S, Radhakrishnan A. Radiation therapy-induced normal tissue damage: involvement of EMT pathways and role of FLASH-RT in reducing toxicities. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:1-16. [PMID: 39760753 DOI: 10.1007/s00411-024-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer. The transformation of epithelial cells into mesenchymal-like cells, termed epithelial-mesenchymal transition (EMT), is essential for processes such as fibrosis, embryogenesis, and wound healing. Conventional radiation therapy increases the asymmetric activation of fibrotic and inflammatory pathways, and the resulting chronic fibrotic changes and organ dysfunction are linked to radiation-induced epithelial-mesenchymal transition. Recent advances in radiation therapy, namely flash radiation therapy (FLASH-RT), have the potential to widen the therapeutic index. Radiation delivered by FLASH-RT at very high dose rates (exceeding 40 Gy/s) can protect normal tissue from radiation-induced damage, a phenomenon referred to as the "FLASH effect". Preclinical studies have demonstrated that FLASH-RT successfully inhibits processes associated with fibrosis and epithelial-mesenchymal transition, mitigates damage to normal tissue, and enhances regeneration. Three distinct types of EMT have been identified: type-1, associated with embryogenesis; Type-2, associated with injury potential; and type-3, related with cancer spread. The regulation of EMT via pathways, including TGF-β/SMAD, WNT/β-catenin, and NF-κB, is essential for radiation-induced tissue remodelling. This study examined radiation-induced EMT, TGF-β activity, multiple signalling pathways in fibrosis, and the potential of FLASH-RT to reduce tissue damage. FLASH-RT is a novel approach to treat chronic tissue injury and fibrosis post-irradiation by maintaining epithelial properties and regulating mesenchymal markers including vimentin and N-cadherin. Understanding these pathways will facilitate the development of future therapies that can alleviate fibrosis, improve the efficacy of cancer therapy, and improve the quality of life of patients.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ranjith Balakrishna
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Pooja Adtani
- Department of Basic Medical and Dental Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal.
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shyamaladevi Babu
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
11
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
12
|
Luo Q, Wang X, Zhang Y, Xie W, Liang L, Xu Y, Liang Y, Ji S. The role and mechanism of JAK2 inhibitor in endothelial mesenchymal transition in systemic sclerosis. J Dermatol Sci 2025; 117:71-80. [PMID: 40023747 DOI: 10.1016/j.jdermsci.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular endothelial dysfunction and damage, immune dysregulation and fibrosis. Endothelial mesenchymal transition (EndoMT) has been implicated in the skin fibrosis of SSc. Many studies have demonstrated that janus kinase type2 (JAK2) inhibitor can alleviate skin fibrosis in both SSc patients and bleomycin (BLM)-induced mouse models of SSc. However, the potential therapeutic effect of JAK2 inhibitor on EndoMT in SSc skin, along with the underlying molecular mechanisms, remains unexplored. OBJECTIVE To investigate the effects of JAK2 inhibitor on the EndoMT in SSc skin and to elucidate the associated molecular mechanisms. METHODS Wild-type female C57BL/6 mice were divided into several groups to assess the effects of JAK2 inhibitor on EndoMT through H&E staining, masson staining, immunofluorescence and single-cell RNA-sequencing (scRNA-seq). Cultured human umbilical vein endothelial cells (HUVECs) were used to explore the mechanism of action of JAK2 inhibitor on EndoMT using immunofluorescence, quantitative RT-PCR, RNA sequencing and western blot. RESULTS JAK2 inhibition improved skin fibrosis, reduced CD31/α-SMA co-localisation and the number of EndoMT-activated vascular endothelial cells in bleomycin-induced SSc mice. Treatment of HUVECs with TGF-β or BLM led to a myofibroblast-like morphology and markers, along with downregulation of endothelial cell features, which were reversed following JAK2 inhibition. The activation of the PI3K/Akt/mTOR pathway was involved in EndoMT in HUVECs induced by TGF-β/BLM, and this activation was attenuated by JAK2 inhibition. CONCLUSIONS JAK2 inhibitor may serve as an effective treatment for EndoMT in SSc, potentially through modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Qingyan Luo
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoheng Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Zhang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenrong Xie
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lina Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingping Xu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yunshen Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Suyun Ji
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Li J, Kou C, Chai Y, Li Y, Liu X, Zhang L, Zhang H. The relationship between the ratio of non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol (NHHR) and both MASLD and advanced liver fibrosis: evidence from NHANES 2017-2020. Front Nutr 2025; 11:1508106. [PMID: 40084133 PMCID: PMC11903283 DOI: 10.3389/fnut.2025.1508106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Background The non-HDL-C to HDL-C ratio (NHHR) is a dependable lipid marker linked to atherosclerotic traits. This study examines the potential relationship between NHHR and both metabolic dysfunction-associated steatotic liver disease (MASLD) and advanced liver fibrosis. Methods This study investigated the relationship between NHHR levels and both MASLD and advanced liver fibrosis using data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) in the United States. First, we conducted a baseline characteristics analysis of the population based on NHHR quartiles. Second, we employed multivariable weighted linear regression models to examine the associations between NHHR and MASLD, as well as advanced liver fibrosis. Third, we utilized restricted cubic splines (RCS) to assess potential non-linear relationships. Fourth, we performed subgroup analyses. Finally, ROC curve analysis was conducted to evaluate the effectiveness of NHHR. Results In the main analysis, this study included a total of 9,864 participants. Following multivariable logistic regression and comprehensive adjustments, elevated NHHR levels in the Q3 and Q4 groups were significantly linked to MASLD, with odds ratios of 1.59 (95% CI: 1.20-2.11) and 1.83 (95% CI: 1.40-2.39), respectively (P for trend < 0.0001). Elevated NHHR levels in the Q2 and Q3 groups remained significantly linked to a decreased risk of advanced liver fibrosis, with odds ratios of 0.61 (95% CI 0.40-0.94, P = 0.03) and 0.64 (95% CI 0.47-0.89, P = 0.01), respectively. RCS analysis revealed a U-shaped nonlinear association between NHHR and both MASLD (P = 0.000; P for nonlinear = 0.029) and advanced liver fibrosis (P = 0.0001; P for nonlinear = 0.000). In the subgroup analysis, we found that this relationship was significant only in certain subgroups. The ROC curve analysis revealed that NHHR exhibited the best predictive performance for diagnosing MASLD based on the fatty liver index (FLI). The optimal cutoff point for NHHR in predicting MASLD using FLI was determined to be 2.476, with sensitivity and specificity values of 0.589 and 0.698, respectively. Conclusion NHHR may serve as a predictive marker for MASLD and advanced liver fibrosis, highlighting its potential significance in risk assessment and prevention strategies.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
| | - Yuwei Chai
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
| | - Yuchen Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
| | - Xue Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
14
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
15
|
Lin F, Luo H, Wang J, Li Q, Zha L. Macrophage-derived extracellular vesicles as new players in chronic non-communicable diseases. Front Immunol 2025; 15:1479330. [PMID: 39896803 PMCID: PMC11782043 DOI: 10.3389/fimmu.2024.1479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Macrophages are innate immune cells present in all tissues and play an important role in almost all aspects of the biology of living organisms. Extracellular vesicles (EVs) are released by cells and transport their contents (micro RNAs, mRNA, proteins, and long noncoding RNAs) to nearby or distant cells for cell-to-cell communication. Numerous studies have shown that macrophage-derived extracellular vesicles (M-EVs) and their contents play an important role in a variety of diseases and show great potential as biomarkers, therapeutics, and drug delivery vehicles for diseases. This article reviews the biological functions and mechanisms of M-EVs and their contents in chronic non-communicable diseases such as cardiovascular diseases, metabolic diseases, cancer, inflammatory diseases and bone-related diseases. In addition, the potential application of M-EVs as drug delivery systems for various diseases have been summarized.
Collapse
Affiliation(s)
- Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Scharpf BR, Ruetten H, Sandhu J, Wegner KA, Chandrashekar S, Fox O, Turco AE, Cole C, Arendt LM, Strand DW, Vezina CM. Prostatic Escherichia coli infection drives CCR2-dependent recruitment of fibrocytes and collagen production. Dis Model Mech 2025; 18:DMM052012. [PMID: 39748675 PMCID: PMC11789281 DOI: 10.1242/dmm.052012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation. E. coli increased collagen density and production in Gli1+, S100a4+, Lyz2+ and Cd2+ cell lineages, but not in Myh11+ or Srd5a2+ cell lineages, in the mouse prostate. Molecular phenotyping revealed GLI1+LYZ+S100A4+ cells (fibrocytes) in histologically inflamed human prostate. These fibrocytes colocalized with regions of increased collagen in men with LUTD. Fibrocyte recruitment and collagen synthesis was impaired in Ccr2 null mice but restored by allotransplantation of Rosa-GFP donor bone marrow-derived cells. These results suggest that bone marrow-derived fibrocytes are a mediator of prostatic collagen accumulation.
Collapse
Affiliation(s)
- Brandon R. Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaskiran Sandhu
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyle A. Wegner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Olivia Fox
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anne E. Turco
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Clara Cole
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lisa M. Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas W. Strand
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Liu M, Liu X, Zhang J, Liang S, Gong Y, Shi S, Yuan X. Single-cell RNA sequencing reveals the heterogeneity of myofibroblasts in wound repair. Genomics 2025; 117:110982. [PMID: 39706310 DOI: 10.1016/j.ygeno.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Skin wound repair involves myofibroblasts crucial for tissue integrity. This study utilized single-cell RNA sequencing to explore myofibroblast diversity in various wound healing scenarios. Analysis of 89,148 cells from skin ulcers, keloids, and normal scars identified 13 cell clusters. Myofibroblast subcluster analysis unveiled 11 subsets, with subclusters 1 and 9 predominant in ulcers. Subcluster 1 exhibited heightened matrix metalloproteinase expression and involvement in bacterial response and angiogenesis, crucial in inflammation. Tissue validation confirmed subcluster 1 significance., while animal models supported upregulated CA12, TDO2, and IL-7R in chronic ulcers. These findings illuminate myofibroblast heterogeneity and their impact on wound healing, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Miaonan Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Liu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingchi Zhang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaocong Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Gong
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shengjun Shi
- Department of Burns and Wound Repairing, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University; Shenzhen 518020, Guangdong China..
| |
Collapse
|
18
|
Kim DW, Kim S, Han J, Belday K, Li E, Mahoney N, Blackshaw S, Rajaii F. Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway. JCI Insight 2024; 9:e182352. [PMID: 39704170 DOI: 10.1172/jci.insight.182352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, and
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soohyun Kim
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong Han
- Baylor College of Medicine, Houston, Texas, USA
| | - Karan Belday
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Li
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Mahoney
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology
- Institute for Cell Engineering, and
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Xu J, Wang Y, Shao Z, Zhou Y, Bin X, Liu L, Huang W, Wang X, Hu Y, Li K. Adipose-derived stem cell exosomes attenuates myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in oral submucosal fibrosis. J Nanobiotechnology 2024; 22:780. [PMID: 39702233 DOI: 10.1186/s12951-024-03067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a precancerous condition that poses substantial health risks. OSF is mainly caused by betel nut chewing behavior, but its pathogenesis is still unclear and there is no effective treatment strategy. The transformation of fibroblasts to myofibroblast is the key pathological change in the development of OSF. We isolated fibroblasts from human oral mucosa and induced them into myofibroblasts by arecoline, during which autophagy was significantly activated. Here, we found that adipose-derived stem cell exosomes (ADSCs-EXO) could inhibit autophagy to regulate myofibroblast phenotype, and transcriptome sequencing analysis suggested that this process is closely related to the TGF-β pathway. The interplay between autophagy and TGF-β pathway was examined through modulation the two with autophagy activators and inhibitors, TGF-β receptor activators and inhibitors. Results showed that in vitro, the TGF-β/Smad2 pathway augmented autophagy and promoted myofibroblast transformation. The transcriptome information of ADSCs-EXO showed that it contains a large number of miRNAs. Among them, miR-125a-5p could target Smad2. In vivo, injection of ADSCs-EXO alleviated OSF in mice, during which TGF-β and autophagy signals were inhibited. We suggested that ADSCs-EXO could inhibit myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in OSF, providing new insights for autophagy-based intervention strategies.
Collapse
Affiliation(s)
- Jinhao Xu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yujing Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Zifei Shao
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yuxi Zhou
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Xin Bin
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Lian Liu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Weiman Huang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Xidi Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Yanjia Hu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, 410000, China.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
20
|
Reed EB, Sitikov A, Shin KWD, Hamanaka RB, Cetin-Atalay R, Mutlu GM, Mongin AA, Dulin NO. Gα12 and Gα13 proteins are required for transforming growth factor-β-induced myofibroblast differentiation. Biochem J 2024; 481:1937-1948. [PMID: 39621448 DOI: 10.1042/bcj20240317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate distinct signaling from seven-transmembrane G protein coupled receptors, which are not known to be linked to Smad activation. We tested whether G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Neither inhibition of Gαi by pertussis toxin nor siRNA-mediated combined knockdown of Gαq and Gα11 had a significant effect on TGF-β-induced myofibroblast differentiation. In contrast, combined knockdown of Gα12 and Gα13 significantly inhibited TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, combined knockdown of Gα12 and Gα13 resulted in substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGF-β receptors (TGFBR1, TGFBR2) and of Smad3. Thus, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, U.S.A
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| |
Collapse
|
21
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Kim J, Sakar MS, Bouklas N. Modeling the mechanosensitive collective migration of cells on the surface and the interior of morphing soft tissues. Biomech Model Mechanobiol 2024; 23:1815-1835. [PMID: 38972940 DOI: 10.1007/s10237-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Cellular contractility, migration, and extracellular matrix (ECM) mechanics are critical for a wide range of biological processes including embryonic development, wound healing, tissue morphogenesis, and regeneration. Even though the distinct response of cells near the tissue periphery has been previously observed in cell-laden microtissues, including faster kinetics and more prominent cell-ECM interactions, there are currently no models that can fully combine coupled surface and bulk mechanics and kinetics to recapitulate the morphogenic response of these constructs. Mailand et al. (Biophys J 117(5):975-986, 2019) had shown the importance of active elastocapillarity in cell-laden microtissues, but modeling the distinct mechanosensitive migration of cells on the periphery and the interior of highly deforming tissues has not been possible thus far, especially in the presence of active elastocapillary effects. This paper presents a framework for understanding the interplay between cellular contractility, migration, and ECM mechanics in dynamically morphing soft tissues accounting for distinct cellular responses in the bulk and the surface of tissues. The major novelty of this approach is that it enables modeling the distinct migratory and contractile response of cells residing on the tissue surface and the bulk, where concurrently the morphing soft tissues undergo large deformations driven by cell contractility. Additionally, the simulation results capture the changes in shape and cell concentration for wounded and intact microtissues, enabling the interpretation of experimental data. The numerical procedure that accounts for mechanosensitive stress generation, large deformations, diffusive migration in the bulk and a distinct mechanism for diffusive migration on deforming surfaces is inspired from recent work on bulk and surface poroelasticity of hydrogels involving elastocapillary effects, but in this work, a two-field weak form is proposed and is able to alleviate numerical instabilities that were observed in the original method that utilized a three-field mixed finite element formulation.
Collapse
Affiliation(s)
- Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA
| | - Mahmut Selman Sakar
- Institutes of Mechanical Engineering and Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14853, NY, USA.
| |
Collapse
|
23
|
Wan X, Deng Q, Chen A, Zhang X, Yang W. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. 3 Biotech 2024; 14:290. [PMID: 39507058 PMCID: PMC11534945 DOI: 10.1007/s13205-024-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The intricate expression patterns and oncogenic attributes of COL11A1 across different cancer types remain largely elusive. This study used several public databases (TCGA, GTEx, and CCLE) to investigate the pan-cancer landscape of COL11A1 expression, its prognostic implications, interplay with the immune microenvironment, and enriched signaling cascades. Concurrently, western blot analyses were performed to verify COL11A1 expression in lung adenocarcinoma (LUAD) cell lines and clinical samples. In addition, COL11A1 knockout cell lines were generated to scrutinize the functional consequences of COL11AI expression on cancer cell behavior by use MTT, colony formation, and scratch wound healing assays. A comprehensive database investigation revealed that COL11A1 was upregulated in a majority of tumor tissues and its expression was highly correlated with a patient's prognosis. Notably, genetic alterations in COL11A1 predominantly occurred as mutations, while its DNA methylation status inversely mirrored gene expression levels across multiple promoter regions. Our findings suggest that COL11A1 helps to modulate the tumor immune landscape and potentially acts through the epithelial-mesenchymal transition (EMT) pathway to exert its oncogenic function. Western blot analyses further substantiated the specific upregulation of COL11A1 in LUAD cell lines and tissues, suggesting a close association with the EMT process. Ablation of COL11A1 in cancer cells significantly reduced their proliferative, clonogenic, and migratory abilities, underscoring the functional significance of COL11A1 in tumor cell behavior. Collectively, this research revealed the prevalent overexpression of COL11A1 in pan-cancer tissues, its profound prognostic and microenvironmental correlations, and the mechanistic underpinnings of its tumor-promoting effects as mediated via EMT signaling. Our findings suggest that COL11A1 could serve as a prognostic and diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Qingmei Deng
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Anling Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xinhui Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wulin Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
24
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
25
|
Pallod S, Aguilera Olvera R, Ghosh D, Rai L, Brimo S, DeCambra W, Sant HG, Ristich E, Singh V, Abedin MR, Chang N, Yarger JL, Lee JK, Kilbourne J, Yaron JR, Haydel SE, Rege K. Skin repair and infection control in diabetic, obese mice using bioactive laser-activated sealants. Biomaterials 2024; 311:122668. [PMID: 38908232 PMCID: PMC11562812 DOI: 10.1016/j.biomaterials.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Rodrigo Aguilera Olvera
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA
| | - Deepanjan Ghosh
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Lama Rai
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; College of Health Solutions, Arizona State University, USA
| | - Souzan Brimo
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Harsh Girish Sant
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Eron Ristich
- School of Molecular Sciences, Arizona State University, USA; School of Computing and Augmented Intelligence, Arizona State University, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Nicolas Chang
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Jung Keun Lee
- Departments of Pathology and Population Medicine, Midwestern University, College of Veterinary Medicine, 5725 West Utopia Rd., Glendale, AZ, 85308, USA
| | | | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Shelley E Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA; School of Life Sciences, Arizona State University, 501 E. Tyler Mall ECG 303, Tempe, AZ, 85287-6106, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA.
| |
Collapse
|
26
|
Stepanova G, Manzéger A, Mózes MM, Kökény G. Renal Epithelial Complement C3 Expression Affects Kidney Fibrosis Progression. Int J Mol Sci 2024; 25:12551. [PMID: 39684261 DOI: 10.3390/ijms252312551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Kidney fibrosis is a hallmark of chronic kidney diseases. Evidence shows that genetic variability and complement component 3 (C3) might influence tubulointerstitial fibrosis. Still, the role of renal C3 production in the epithelial-to-mesenchymal transition (EMT) and genetically determined fibrosis progression remains undiscovered. The kidneys of fibrosis-resistant C57Bl/6J (B6) and fibrosis-prone CBA/J (CBA) and BALB/cJ (BalbC) mice (n = 4-8/group) were subjected to unilateral ureteral obstruction (UUO) and analyzed after 1, 3, and 7 days, along with human focal glomerular sclerotic (FSGS) and healthy kidneys. Mouse primary tubular epithelial cells (PTECs) were investigated after 24 h of treatment with transforming growth factor β (TGFβ) or complement anaphylatoxin 3a (C3a) agonist (n = 4/group). UUO resulted in delayed kidney injury in fibrosis-resistant B6 mice, but very early renal C3 messenger RNA (mRNA) induction in fibrosis-prone CBA and BalbC mice, along with collagen I (Col1a1) and collagen III (Col3a1). CBA depicted the fastest fibrosis progression with the highest C3, lipocalin-2 (Lcn2), Tgfb1, and chemokine (C-C motif) ligand 2 (Ccl2) expression. Human FSGS kidneys depicted C3 mRNA over-expression and strong tubular C3 immunostaining. In PTECs, C3a agonist treatment induced pro-fibrotic early growth response protein 1 (EGR1) expression and the EMT, independent of TGFβ signaling. We conclude that de novo renal tubular C3 synthesis is associated with the genetically determined kidney fibrosis progression rate in mice and the pathogenesis of FSGS in humans. This tubular C3 overproduction can, through local pro-fibrotic effects, influence the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Ganna Stepanova
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Manzéger
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Miklós M Mózes
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
27
|
Khanna D, Kramer F, Höfler J, Ghadessi M, Sandner P, Allanore Y, Denton CP, Kuwana M, Matucci-Cerinic M, Pope JE, Atsumi T, Bečvář R, Czirják L, De Langhe E, Hachulla E, Ishii T, Ishikawa O, Johnson SR, Riccieri V, Schiopu E, Silver RM, Smith V, Stagnaro C, Steen V, Stevens W, Szücs G, Truchetet ME, Wosnitza M, Distler O. Biomarker analysis from the phase 2b randomized placebo-controlled trial of riociguat in early diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 2024; 63:3124-3134. [PMID: 38460548 PMCID: PMC11534119 DOI: 10.1093/rheumatology/keae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 03/11/2024] Open
Abstract
OBJECTIVE To examine disease and target engagement biomarkers in the RISE-SSc trial of riociguat in early diffuse cutaneous systemic sclerosis and their potential to predict the response to treatment. METHODS Patients were randomized to riociguat (n = 60) or placebo (n = 61) for 52 weeks. Skin biopsies and plasma/serum samples were obtained at baseline and week 14. Plasma cyclic guanosine monophosphate (cGMP) was assessed using radio-immunoassay. α-Smooth muscle actin (αSMA) and skin thickness were determined by immunohistochemistry, mRNA markers of fibrosis by qRT-PCR in skin biopsies, and serum CXC motif chemokine ligand 4 (CXCL-4) and soluble platelet endothelial cell adhesion molecule-1 (sPECAM-1) by enzyme-linked immunosorbent assay. RESULTS By week 14, cGMP increased by 94 (78)% with riociguat and 10 (39)% with placebo (P < 0.001, riociguat vs placebo). Serum sPECAM-1 and CXCL-4 decreased with riociguat vs placebo (P = 0.004 and P = 0.008, respectively). There were no differences in skin collagen markers between the two groups. Higher baseline serum sPECAM-1 or the detection of αSMA-positive cells in baseline skin biopsies was associated with a larger reduction of modified Rodnan skin score from baseline at week 52 with riociguat vs placebo (interaction P-values 0.004 and 0.02, respectively). CONCLUSION Plasma cGMP increased with riociguat, suggesting engagement with the nitric oxide-soluble guanylate cyclase-cGMP pathway. Riociguat was associated with a significant reduction in sPECAM-1 (an angiogenic biomarker) vs placebo. Elevated sPECAM-1 and the presence of αSMA-positive skin cells may help to identify patients who could benefit from riociguat in terms of skin fibrosis. TRIAL REGISTRATION Clinicaltrials.gov, NCT02283762.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kramer
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | | | - Mercedeh Ghadessi
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Sandner
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Yannick Allanore
- Rheumatology A Department, Cochin Hospital, APAP, Paris Descartes University, Paris, France
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology, University College London, London, UK
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Marco Matucci-Cerinic
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Janet E Pope
- Division of Rheumatology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Radim Bečvář
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - László Czirják
- Department of Rheumatology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Division of Rheumatology, Department of Development and Regeneration, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, Referral Centre for Centre for Rare Systemic Autoimmune Diseases North and North-West of France, CHU Lille, University of Lille, Inserm, U1286 - INFINITE-Institute for Translational Research in Inflammation, Lille, France
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University, Sendai, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Postgraduate School of Medicine, Maebashi, Japan
| | - Sindhu R Johnson
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital, University Health Network, Mount Sinai Hospital, University of Toronto, Toronto Scleroderma Research Program, Toronto, ON, Canada
| | - Valeria Riccieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Schiopu
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Belgium and Department of Rheumatology, Ghent University Hospital, Belgium, and Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent, Belgium
| | - Chiara Stagnaro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Virginia Steen
- Division of Rheumatology, Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Wendy Stevens
- Department of Rheumatology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Gabriella Szücs
- Department of Rheumatology, University of Debrecen, Debrecen, Hungary
| | | | - Melanie Wosnitza
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Jin YX, Ngoc Chien P, Thi Nga P, Zhang XR, Ngan Giang N, Thi Thuy Le L, Trinh TTT, Zhou SY, Nam SY, Heo CY. Enhancing wound healing through innovative technologies: microneedle patches and iontophoresis. Front Bioeng Biotechnol 2024; 12:1468423. [PMID: 39530061 PMCID: PMC11550992 DOI: 10.3389/fbioe.2024.1468423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Wound healing is a complex process involving multiple stages, including inflammation, proliferation, and remodeling. Effective wound management strategies are essential for accelerating healing and improving outcomes. The CELLADEEP patch, incorporating iontophoresis therapy and microneedle technology, was evaluated for its potential to enhance the wound healing process. Methods This study utilized a full-thickness skin defect model in Sprague-Dawley rats, researchers compared wound healing outcomes between rats treated with the CELLADEEP Patch and those left untreated. Various histological staining techniques were employed to examine and assess the wound healing process, such as H&E, MT and immunofluorescence staining. Furthermore, the anti-inflammatory and proliferative capabilities were further investigated using biochemical assays. Results Macroscopic and microscopic analyses revealed that the CELLADEEP patch significantly accelerated wound closure, reduced wound width, and increased epidermal thickness and collagen deposition compared to an untreated group. The CELLADEEP patch decreased nitric oxide and reactive oxygen species levels, as well as pro-inflammatory cytokines IL-6 and TNF-α, indicating effective modulation of the inflammatory response. Immunofluorescence staining showed reduced markers of macrophage activity (CD68, F4/80, MCP-1) in the patch group, suggesting a controlled inflammation process. Increased levels of vimentin, α-SMA, VEGF, collagen I, and TGF-β1 were observed, indicating enhanced fibroblast activity, angiogenesis, and extracellular matrix production. Discussion The CELLADEEP patch demonstrated potential in promoting effective wound healing by accelerating wound closure, modulating the inflammatory response, and enhancing tissue proliferation and remodeling. The CELLADEEP patch offers a promising non-invasive treatment option for improving wound healing outcomes.
Collapse
Affiliation(s)
- Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Kosaka K, Takayama N, Paul SK, Kanashiro MA, Oshima M, Fukuyo M, Rahmutulla B, Tajiri I, Mukai M, Kubota Y, Akita S, Furuyama N, Kaneda A, Iwama A, Eto K, Mitsukawa N. iPSC-derived megakaryocytes and platelets accelerate wound healing and angiogenesis. Stem Cell Res Ther 2024; 15:364. [PMID: 39402677 PMCID: PMC11477011 DOI: 10.1186/s13287-024-03966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), which is prepared by concentrating platelets in autologous blood, shows efficacy in chronic skin wounds via multiple growth factors. However, it exhibits heterogeneity across patients, leading to unstable therapeutic efficacy. Human induced pluripotent stem cell (iPSC)-derived megakaryocytes and platelets (iMPs) are capable of providing a stable supply, holding promise as materials for novel platelet concentrate-based therapies. In this context, we evaluated the effect of iMPs on wound healing and validated lyophilization for clinical applications. METHODS The growth factors released by activated iMPs were measured. The effect of the administration of iMPs on human fibroblasts and human umbilical vein endothelial cells (HUVECs) was investigated in vitro. iMPs were applied to dorsal skin defects of diabetic mice to assess the wound closure rate and quantify collagen deposition and angiogenesis. Following the storage of freeze-dried iMPs (FD-iMPs) for three months, the stability of growth factors and their efficacy in animal models were determined. RESULT Multiple growth factors that promote wound healing were detected in activated iMPs. iMPs specifically released FGF2 and exhibited a superior enhancement of HUVEC proliferation compared to PRP. Moreover, an RNA-seq analysis revealed that iMPs induce polarization to stalk cells and enhance ANGPTL4 gene expression in HUVECs. Animal studies demonstrated that iMPs promoted wound closure and angiogenesis in chronic wounds caused by diabetes. We also confirmed the long-term stability of growth factors in FD-iMPs and their comparable effects to those of original iMPs in the animal model. CONCLUSION Our study demonstrates that iMPs promote angiogenesis and wound healing through the activation of vascular endothelial cells. iMPs exhibited more effectiveness than PRP, an effect attributed to the exclusive presence of specific factors including FGF2. Lyophilization enabled the long-term maintenance of the composition of the growth factors and efficacy of the iMPs, therefore contributing to stable supply for clinical application. These findings suggest that iMPs provide a novel treatment for chronic wounds.
Collapse
Affiliation(s)
- Kentaro Kosaka
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sudip Kumar Paul
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Michiaki Mukai
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinsuke Akita
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Atsushi Kaneda
- Department of Molecular Oncology, Chiba University Graduate School of Medicine, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
30
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
31
|
Konishi T, Kamiyama K, Osato T, Yoshimoto T, Aoki T, Anzai T, Tanaka S. Increased Piezo1 expression in myofibroblasts in patients with symptomatic carotid atherosclerotic plaques undergoing carotid endarterectomy: A pilot study. Vascular 2024; 32:1063-1069. [PMID: 37499697 DOI: 10.1177/17085381231192380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVES We aimed to investigate Piezo1 expression in myofibroblasts in symptomatic and asymptomatic patients undergoing carotid endarterectomy and its relationship with atherosclerotic plaque formation. METHODS This cross-sectional study analyzed carotid plaques of 17 randomly selected patients who underwent carotid endarterectomy from May 2015 to August 2017. In total, 51 sections (the most stenotic lesion, and the sections 5-mm proximal and distal) stained with hematoxylin-eosin and elastica-Masson were examined. Immunohistochemistry was performed using antibodies to Piezo1. The Piezo1 score of a section was calculated semiquantitatively, averaged across 30 randomly selected myofibroblasts in the fibrous cap of the plaque. RESULTS Of 17 patients (mean age: 74.2 ± 7.1 years), 15 were men, 9 had diabetes mellitus, and 13 had hypertension. Symptomatic patients had higher mean Piezo1 score than asymptomatic patients (1.78 ± 0.23 vs 1.34 ± 0.17, p < .001). Univariate linear regression analyses suggested an association between plaque rupture, thin-cap fibroatheroma and microcalcifications and the Piezo1 score (p = .001, .008, and 0.003, respectively). CONCLUSIONS Increased Piezo1 expression of myofibroblasts may be associated with atherosclerotic carotid plaque instability. Further study is warranted to support this finding.
Collapse
Affiliation(s)
- Takao Konishi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Kamiyama
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Toshiaki Osato
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Tetsuyuki Yoshimoto
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Takeshi Aoki
- Department of Neurosurgery, Hokkaido Neurosurgical Memorial Hospital, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
33
|
Zhong Y, Wei B, Wang W, Chen J, Wu W, Liang L, Huang XR, Szeto CC, Yu X, Nikolic-Paterson DJ, Lan HY. Single-Cell RNA-Sequencing Identifies Bone Marrow-Derived Progenitor Cells as a Main Source of Extracellular Matrix-Producing Cells Across Multiple Organ-Based Fibrotic Diseases. Int J Biol Sci 2024; 20:5027-5042. [PMID: 39430238 PMCID: PMC11488580 DOI: 10.7150/ijbs.98839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/04/2024] [Indexed: 10/22/2024] Open
Abstract
Fibrosis is characterized by the aberrant deposition of extracellular matrix (ECM) due to dysregulated tissue repair responses, imposing a significant global burden on fibrosis-related diseases. Although alpha-smooth muscle actin (α-SMA/ACTA2)-expressing myofibroblasts are considered as key player in fibrogenesis, the origin of ECM-producing cells remains controversial. To address this issue, we integrated and analyzed large-scale single-cell transcriptomic datasets from patients with distinct fibrotic diseases involving the heart, lung, liver, or kidney. Unexpectedly, not all ACTA2-expressing cells were ECM-producing cells identified by expressing collagen genes; instead, the majority of ECM-producing cells were myofibroblasts and fibroblasts derived from circulating bone marrow precursor, and to a lesser extent from local pericytes and vascular smooth cells in all fibrotic diseases. This was confirmed in sex-mismatched kidney transplants by the discovery that ECM-producing cells originated from recipient, not donor, bone marrow-derived progenitor cells (BMPCs). Moreover, these BMPCs-derived ECM-producing cells exhibited a proinflammatory phenotype. Thus, bone marrow-derived proinflammatory and profibrotic fibroblasts/myofibroblasts with stem cell properties serve as a major source of ECM-producing cells and may play a driving role in tissue fibrosis across a wide range of human fibrotic diseases. Targeting these ECM-producing cells may provide a novel therapy for diseases with fibrosis.
Collapse
Affiliation(s)
- Yu Zhong
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Biao Wei
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenbiao Wang
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Wu
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Liying Liang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Clinical Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Cheuk-Chun Szeto
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - David J. Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Departments of Nephrology and Pathology, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Dey I, Li Y, Taylor TC, Peroumal D, Asada N, Panzer U, Biswas PS, Sterneck E, Gaffen SL. C/EBPδ Mediates Immunity to Renal Autoinflammatory Disorders in a Stage-specific Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:767-778. [PMID: 39082925 PMCID: PMC11371505 DOI: 10.4049/jimmunol.2400124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Kidney disease represents a major medical and economic burden for which improved treatments are urgently needed. Emerging data have implicated Th17 cells and IL-17 signaling in the underlying pathogenesis of autoantibody-induced glomerulonephritis (AGN). However, the downstream transduction pathways mediated by IL-17 in autoimmunity are not well defined. In this article, we show that CCAAT/enhancer-binding protein (C/EBP) δ is elevated in kidney biopsies from multiple manifestations of human AGN. C/EBPδ is similarly upregulated in a mouse model of anti-glomerular basement membrane protein-mediated kidney disease, and Cebpd-/- mice were fully refractory to disease. Although C/EBPδ is expressed in a variety of cell types, C/EBPδ was required only in the radioresistant compartment to drive GN pathology. C/EBPδ induced expression of several IL-17-induced kidney injury markers and cytokines implicated in disease, including Il6 and Lcn2. Because mouse AGN models do not progress to fibrosis, we employed a nephrotoxic injury model using aristolochic acid I to assess the contribution of the IL-17-C/EBPδ pathway to renal fibrotic events. Surprisingly, deficiency of either C/EBPδ or the IL-17 receptor caused kidney fibrosis to be enhanced. Thus, C/EBPδ and IL-17 play divergent and apparently stage-specific roles in the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Ipsita Dey
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Yang Li
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Tiffany C Taylor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Doureradjou Peroumal
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Nariaki Asada
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Partha S Biswas
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| |
Collapse
|
35
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
36
|
Müller WEG, Schepler H, Neufurth M, Dobmeyer R, Batel R, Schröder HC, Wang X. Energy level as a theranostic factor for successful therapy of tissue injuries with polyphosphate: the triad metabolic energy - mechanical energy - heat. Theranostics 2024; 14:5262-5280. [PMID: 39267793 PMCID: PMC11388067 DOI: 10.7150/thno.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Tissue regeneration of skin and bone is an energy-intensive, ATP-consuming process that, if impaired, can lead to the development of chronic clinical pictures. ATP levels in the extracellular space including the exudate of wounds, especially chronic wounds, are low. This deficiency can be compensated by inorganic polyphosphate (polyP) supplied via the blood platelets to the regenerating site. Methods: The contribution of the different forms of energy derived from polyP (metabolic energy, mechanical energy and heat) to regeneration processes was dissected and studied both in vitro and in patients. ATP is generated metabolically during the enzymatic cleavage of the energy-rich anhydride bonds between the phosphate units of polyP, involving the two enzymes alkaline phosphatase (ALP) and adenylate kinase (ADK). Exogenous polyP was administered after incorporation into compressed collagen or hydrogel wound coverages to evaluate its regenerative activity for chronic wound healing. Results: In a proof-of-concept study, fast healing of chronic wounds was achieved with the embedded polyP, supporting the crucial regeneration-promoting activity of ATP. In the presence of Ca2+ in the wound exudate, polyP undergoes a coacervation process leading to a conversion of fibroblasts into myofibroblasts, a crucial step supporting cell migration during regenerative tissue repair. During coacervation, a switch from an endothermic to an exothermic, heat-generating process occurs, reflecting a shift from an entropically- to an enthalpically-driven thermodynamic reaction. In addition, mechanical forces cause the appearance of turbulent flows and vortices during liquid-liquid phase separation. These mechanical forces orient the cellular and mineralic (hydroxyapatite crystallite) components, as shown using mineralizing SaOS-2 cells as a model. Conclusion: Here we introduce the energetic triad: metabolic energy (ATP), thermal energy and mechanical energy as a novel theranostic biomarker, which contributes essentially to a successful application of polyP for regeneration processes.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Hadrian Schepler
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, GERMANY
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Rita Dobmeyer
- Galenus GH AG, Rainstrasse 7, 6052 Hergiswil, Switzerland
| | - Renato Batel
- Faculty of Natural Sciences, Juraj Dobrila University, Zagrebačka 30, 52100 Pula, Croatia
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| |
Collapse
|
37
|
Khan MA, Fischer J, Harrer L, Schwiering F, Groneberg D, Friebe A. Hepatic stellate cells in zone 1 engage in capillarization rather than myofibroblast formation in murine liver fibrosis. Sci Rep 2024; 14:18840. [PMID: 39138336 PMCID: PMC11322391 DOI: 10.1038/s41598-024-69898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
The combination of lineage tracing and immunohistochemistry has helped to identify subpopulations and fate of hepatic stellate cells (HSC) in murine liver. HSC are sinusoidal pericytes that act as myofibroblast precursors after liver injury. Single cell RNA sequencing approaches have recently helped to differentiate central and portal HSC. A specific Cre line to lineage trace portal HSC has not yet been described. We used three Cre lines (Lrat-Cre, PDGFRβ-CreERT2 and SMMHC-CreERT2) known to label mesenchymal cells including HSC in combination with a tdTomato-expressing reporter. All three Cre lines labeled populations of HSC as well as smooth muscle cells (SMC). Using the SMMHC-CreERT2, we identified a subtype of HSC in the periportal area of the hepatic lobule (termed zone 1-HSC). We lineage traced tdTomato-expressing zone 1-HSC over 1 year, described fibrotic behavior in two fibrosis models and investigated their possible role during fibrosis. This HSC subtype resides in zone 1 under healthy conditions; however, zonation is disrupted in preclinical models of liver fibrosis (CCl4 and MASH). Zone 1-HSC do not transform into αSMA-expressing myofibroblasts. Rather, they participate in sinusoidal capillarization. We describe a novel subtype of HSC restricted to zone 1 under physiological conditions and its possible function after liver injury. In contrast to the accepted notion, this HSC subtype does not transform into αSMA-positive myofibroblasts; rather, zone 1-HSC adopt properties of capillary pericytes, thereby participating in sinusoidal capillarization.
Collapse
Affiliation(s)
- Muhammad Ashfaq Khan
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Julian Fischer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Leon Harrer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Fabian Schwiering
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Dieter Groneberg
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, 97070, Würzburg, Germany.
| |
Collapse
|
38
|
Bildyug N. Inhibition of Integrin-Associated Kinases FAK and ILK on the In Vitro Model of Skin Wound Healing. Appl Biochem Biotechnol 2024; 196:5604-5615. [PMID: 38165590 DOI: 10.1007/s12010-023-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Dermal fibroblasts are essential cells of skin tissue responsible for its normal functioning. In skin wounds, the differentiation of resident fibroblasts into myofibroblasts occurs, which is accompanied by the rearrangement of actin cytoskeleton with the expression of alpha-smooth muscle actin. This transformation is a prerequisite for a successful wound healing. At the same time, different studies indicate that extracellular matrix may be involved in regulation of this process. Since the connection between cells and matrix is provided by transmembrane integrin receptors, this work was aimed at studying the dynamics of signaling pathways associated with integrins on an in vitro model of wound healing using human skin fibroblasts. It was shown that the healing of simulated wound was accompanied by a change in the level of integrins as well as integrin-associated kinases ILK (integrin-linked kinase) and FAK (focal adhesion kinase). Pharmacological inhibition of ILK and FAK caused the suppression of p38 and Akt which proteins are involved in regulation of the actin cytoskeleton. Moreover, it resulted in an inefficient wound closure in vitro. The results of this study support the involvement of integrin-associated kinases in regulation of fibroblast-to-myofibroblast transition during wound healing.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology Russian Academy of Sciences, Centre for Cell Technologies, Tikhoretsky ave. 4, 194064, Saint Petersburg, Russia.
| |
Collapse
|
39
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
40
|
Liu Z, Liu Y, Yu Z, Tan C, Pek N, O'Donnell A, Wu A, Glass I, Winlaw DS, Guo M, Spence JR, Chen YW, Yutzey KE, Miao Y, Gu M. APOE-NOTCH axis governs elastogenesis during human cardiac valve remodeling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:933-950. [PMID: 39196035 DOI: 10.1038/s44161-024-00510-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2024] [Indexed: 08/29/2024]
Abstract
Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yu Liu
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Cheng Tan
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Nicole Pek
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Anna O'Donnell
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - David S Winlaw
- Cardiothoracic Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine E Yutzey
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yifei Miao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
42
|
López Sacristán H, Del Canto Pingarrón M, Alobera Gracia MA, de Elío Oliveros J, Díaz Pedrero R, Seco-Calvo J. Use of autologous tooth-derived material as a graft in the post-extraction socket. Split-mouth study with radiological and histological analysis. BMC Oral Health 2024; 24:832. [PMID: 39044178 PMCID: PMC11265360 DOI: 10.1186/s12903-024-04576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The healing process after tooth removal involves bone remodelling which implies some loss of alveolar bone volume. Among materials proposed for minimising this remodelling and preserving the bone, autologous dental tissue is a promising option, but more data are needed. In this context, we evaluated size and density changes using cone beam computed tomography in autologous dental material (ADM)-preserved sockets compared to controls, and assessed biological responses by histological analysis. METHODS A split-mouth study was conducted including 22 patients, who underwent removal of ≥ 2 single-rooted teeth with intact sockets, assigning one socket to the experimental group which received ADM for alveolar preservation and another to the control group, which only underwent blood clot stabilisation. Cone beam computed tomography was performed postoperatively (week 0) and at weeks 8 and 16 to assess socket size and bone density. Histological analysis was carried out on trephine biopsies taken (Ø4 × 4.5 mm) from the experimental group. RESULTS Less horizontal shrinkage was observed in the ADM group, especially at week 16 considering the group-by-time interaction for the following variables: difference in height between the lingual and buccal alveolar crests (-1.00; p < .01; 95% CI: -0.28 - -1.73), and half-widths, measured as the distance from the long axis of the missing tooth to the buccal alveolar crest at 1 mm (-0.61; p < .01; 95% CI: -0.18 - -1.04) and at 3 mm (-0.56; p < .01; 95% CI: -0.15 - -0.97) below the crest, with mean decreases of 1.07 and 2.14 mm in height difference, 0.66 and 1.32 mm in half-width at 1 mm and 0.43 and 1.02 mm in half-width at 3 mm in ADM and control groups respectively. Densitometry analysis showed higher bone densities in Hounsfield units in the ADM group considering all factors analysed regardless of time point and socket third (coronal, middle, or apical). Histologically, there were no signs of inflammation or foreign body reaction, and dentin particles were surrounded by and in close contact with bone tissue. CONCLUSION These results add to the evidence that dentin can be used successfully as a material for alveolar socket preservation, given its desirable mechanical and biological properties, and warrant larger studies.
Collapse
Affiliation(s)
- H López Sacristán
- Master's in Oral Surgery, Implant Dentistry, and Periodontics, University of León, Avenida de Valladolid 2, Primera Planta Oficina 3., Aldeamayor de San Martin, Valladolid, 47162, Spain.
| | - M Del Canto Pingarrón
- Head of the Master's programme, Master's in Oral Surgery, Implant Dentistry, and Periodontics, University of León, León, Spain
| | - M A Alobera Gracia
- Head of the Master's programme, Master's in Oral Surgery, Implant Dentistry, and Periodontics, University of León, León, Spain
| | - J de Elío Oliveros
- Master's in Oral Surgery, Implant Dentistry, and Periodontics, University of León, Avenida de Valladolid 2, Primera Planta Oficina 3., Aldeamayor de San Martin, Valladolid, 47162, Spain
| | - R Díaz Pedrero
- Department of Morphological Sciences and Surgery, School of Medicine, University of Alcalá, Madrid, Spain
| | - J Seco-Calvo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
43
|
Jerala M, Remic T, Hauptman N, Homan P, Zajšek N, Petitjean M, Chen L, Zidar N. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn's disease. Sci Rep 2024; 14:13810. [PMID: 38877292 PMCID: PMC11178913 DOI: 10.1038/s41598-024-64672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.
Collapse
Affiliation(s)
- Miha Jerala
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tinkara Remic
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Pia Homan
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Neža Zajšek
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | | | - Li Chen
- PharmaNest Inc., Princeton, NJ, 08540, USA
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
44
|
Ren L, Chang YF, Jiang SH, Li XH, Cheng HP. DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1416325. [PMID: 38915445 PMCID: PMC11194555 DOI: 10.3389/fcell.2024.1416325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned. As a widely studied mechanism of epigenetic modification, DNA methylation is primarily facilitated by DNA methyltransferases (DNMTs), resulting in the addition of a methyl group to the fifth carbon position of the cytosine base, leading to the formation of 5-methylcytosine (5-mC). Dysregulation of DNA methylation is intricately associated with the advancement of respiratory disorders. Recently, the role of DNA methylation in IPF pathogenesis has also received considerable attention. DNA methylation patterns include methylation modification and demethylation modification and regulate a range of essential biological functions through gene expression regulation. The Ten-Eleven-Translocation (TET) family of DNA dioxygenases is crucial in facilitating active DNA demethylation through the enzymatic conversion of the modified genomic base 5-mC to 5-hydroxymethylcytosine (5-hmC). TET2, a member of TET proteins, is involved in lung inflammation, and its protein expression is downregulated in the lungs and alveolar epithelial type II cells of IPF patients. This review summarizes the current knowledge of pathologic features and DNA methylation mechanisms of pulmonary fibrosis, focusing on the critical roles of abnormal DNA methylation patterns, DNMTs, and TET proteins in impacting IPF pathogenesis. Researching DNA methylation will enchance comprehension of the fundamental mechanisms involved in IPF pathology and provide novel diagnostic biomarkers and therapeutic targets for pulmonary fibrosis based on the studies involving epigenetic mechanisms.
Collapse
Affiliation(s)
- Lu Ren
- Clinical Nursing Teaching and Research Section, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Fen Chang
- Medicine School, Zhengzhou University of Industrial Technology, Zhengzhou, China
| | - Shi-He Jiang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hai-Peng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Reed EB, Sitikov A, Hamanaka RB, Cetin-Atalay R, Mutlu GM, Mongin AA, Dulin NO. Critical role of Gα12 and Gα13 proteins in TGF-β-induced myofibroblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596473. [PMID: 38854083 PMCID: PMC11160726 DOI: 10.1101/2024.05.29.596473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate a distinct signaling from seven-transmembrane G protein coupled receptors, not commonly linked to Smad activation. We asked if G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Inhibition of Gαi by pertussis toxin, or siRNA-mediated combined knockdown of Gαq and Gα11 had no significant effect on TGF-β-induced myofibroblast differentiation. A combined knockdown of Gα12 and Gα13 resulted in a drastic inhibition of TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, a combined knockdown of Gα12 and Gα13 resulted in a substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGFβ receptors (TGFBR1, TGFBR2) and of Smad3 under siGα12/13 conditions. In conclusion, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B. Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander A. Mongin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY
| | - Nickolai O. Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Liu R, Liu H, Yang L, Li C, Yin G, Xie Q. Pathogenic role and clinical significance of neutrophils and neutrophil extracellular traps in idiopathic inflammatory myopathies. Clin Exp Med 2024; 24:115. [PMID: 38814339 PMCID: PMC11139741 DOI: 10.1007/s10238-024-01384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of chronic autoimmune diseases characterized by muscle damage and extramuscular symptoms, including specific skin rash, arthritis, interstitial lung disease, and cardiac involvement. While the etiology and pathogenesis of IIM are not yet fully understood, emerging evidence suggests that neutrophils and neutrophil extracellular traps (NETs) have a role in the pathogenesis. Recent research has identified increased levels of circulating and tissue neutrophils as well as NETs in patients with IIM; these contribute to the activation of the type I and type II interferons pathway. During active IIM disease, myositis-specific antibodies are associated with the formation and incomplete degradation of NETs, leading to damage in the lungs, muscles, and blood vessels of patients. This review focuses on the pathogenic role and clinical significance of neutrophils and NETs in IIM, and it includes a discussion of potential targeted treatment strategies.
Collapse
Affiliation(s)
- Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Changpei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Elmorsy EA, Saber S, Kira AY, Alghasham A, Abdel-Hamed MR, Amer MM, Mohamed EA, AlSalloom A. A, Alkhamiss AS, Hamad RS, Abdel-Reheim MA, Ellethy AT, Elsisi HA, Alsharidah M, Elghandour SR, Elnawawy T, Abdelhady R. Hedgehog signaling is a promising target for the treatment of hepatic fibrogenesis: a new management strategy using itraconazole-loaded nanoparticles. Front Pharmacol 2024; 15:1377980. [PMID: 38808257 PMCID: PMC11130383 DOI: 10.3389/fphar.2024.1377980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Liver fibrosis is a disease with a great global health and economic burden. Existing data highlights itraconazole (ITRCZ) as a potentially effective anti-fibrotic therapy. However, ITRCZ effect is hindered by several limitations, such as poor solubility and bioavailability. This study aimed to formulate and optimize chitosan nanoparticles (Cht NPs) loaded with ITRCZ as a new strategy for managing liver fibrosis. ITRCZ-Cht NPs were optimized utilizing a developed 22 full factorial design. The optimized formula (F3) underwent comprehensive in vitro and in vivo characterization. In vitro assessments revealed that F3 exhibited an entrapment efficiency of 89.65% ± 0.57%, a 169.6 ± 1.77 nm particle size, and a zeta potential of +15.93 ± 0.21 mV. Furthermore, in vitro release studies indicated that the release of ITRCZ from F3 adhered closely to the first-order model, demonstrating a significant enhancement (p-value < 0.05) in cumulative release compared to plain ITRCZ suspension. This formula increased primary hepatocyte survival and decreased LDH activity in vitro. The in vivo evaluation of F3 in a rat model of liver fibrosis revealed improved liver function and structure. ITRCZ-Cht NPs displayed potent antifibrotic effects as revealed by the downregulation of TGF-β, PDGF-BB, and TIMP-1 as well as decreased hydroxyproline content and α-SMA immunoexpression. Anti-inflammatory potential was evident by reduced TNF-α and p65 nuclear translocation. These effects were likely ascribed to the modulation of Hedgehog components SMO, GLI1, and GLI2. These findings theorize ITRCZ-Cht NPs as a promising formulation for treating liver fibrosis. However, further investigations are deemed necessary.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Y. Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Abdullah Alghasham
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A. Mohamed
- Department of Anatomy, College of Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - A AlSalloom A.
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Tayseer Elnawawy
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
49
|
Chen T, Li S, Wang L. Semaphorins in tumor microenvironment: Biological mechanisms and therapeutic progress. Int Immunopharmacol 2024; 132:112035. [PMID: 38603857 DOI: 10.1016/j.intimp.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Hallmark features of the tumor microenvironment include immune cells, stromal cells, blood vessels, and extracellular matrix (ECM), providing a conducive environment for the growth and survival of tumors. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins (SEMAs). SEMAs are a large and diverse family of widely expressed secreted and membrane-binding proteins, which were initially implicated in axon guidance and neural development. However, it is now clear that they are widely expressed beyond the nervous system and participate in regulating immune responses and cancer progression. In fact, accumulating evidence disclosed that different SEMAs can either stimulate or restrict tumor progression, some of which act as important regulators of tumor angiogenesis. Conversely, limited information is known about the functional relevance of SEMA signals in TME. In this setting, we systematically elaborate the role SEMAs and their major receptors played in characterized components of TME. Furthermore, we provide a convergent view of current SEMAs pharmacological progress in clinical treatment and also put forward their potential application value and clinical prospects in the future.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Shazhou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China
| | - Lufang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
50
|
Ji B, Liu XB. Coronary artery calcification: concepts and clinical applications. Ann Med Surg (Lond) 2024; 86:2848-2855. [PMID: 38694287 PMCID: PMC11060298 DOI: 10.1097/ms9.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Vascular calcification is an important hallmark of atherosclerosis. Coronary artery calcification (CAC) implies the presence of coronary artery disease (CAD), irrespective of risk factors or symptoms, is concomitant with the development of advanced atherosclerosis. Coronary thrombosis is the most common clinical end event leading to acute coronary syndrome (ACS). The least common type of pathology associated with thrombosis is the calcified nodule (CN). It usually occurs in elderly patients with severely calcified and tortuous arteries. The prevalence of calcified nodules in patients with ACS may be underestimated due to the lack of easily recognisable diagnostic methods. In this review, the authors will focus on the classification, clinical significance, pathogenesis, and diagnostic evaluation and treatment of CAC to further explore the clinical significance of CN.
Collapse
Affiliation(s)
| | - Xue-Bo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|