1
|
Wellner SM, Fei X, Herrero-Fresno A, Olsen JE. Deletion of pcnB affects antibiotic susceptibility in resistant Escherichia coli by reducing copy number of ColE1-family plasmids. Sci Rep 2025; 15:8432. [PMID: 40069245 PMCID: PMC11897241 DOI: 10.1038/s41598-025-92308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Plasmids play a major role in the spread of antibiotic resistance genes in bacteria. Plasmid copy number (PCN) is often tightly regulated. In plasmids of the ColE1-type, this regulation happens by a negative feedback mechanism using an antisense RNA. Here, we employed a sequencing-based method for determining PCN to demonstrate that copy number of different ColE1-family plasmids harboring antibiotic resistance genes increases during antibiotic treatment. Further, we show that deletion of the gene pcnB reduces the copy number of ColE1-family plasmids in E. coli MG1655, which in turn results in a reduced resistance to antimicrobials of the classes aminoglycosides, β-lactams and tetracyclines. In the absence of antibiotic selection, the deletion of pcnB also decreased the number of ColE1-type plasmids in a bacterial population. Hence, PcnB, which polyadenylates RNA, marking it for decay, represents a potential drug and helper-drug target that could be used to reduce PCN to re-sensitize bacteria with multi-copy-number resistance-plasmids to treatment with different antimicrobials.
Collapse
Affiliation(s)
- Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002, Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Laksmi FA, Lischer K, Nugraha Y, Violando WA, Helbert, Nuryana I, Khasna FN, Nur N, Ramadhan KP, Tobing DAL, Hariyatun, Hidayat I. A robust strategy for overexpression of DNA polymerase from Thermus aquaticus using an IPTG-independent autoinduction system in a benchtop bioreactor. Sci Rep 2025; 15:5891. [PMID: 39966433 PMCID: PMC11836315 DOI: 10.1038/s41598-025-89902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
The DNA polymerase derived from Thermus aquaticus is the most widely utilized among various DNA polymerases, indicating its significant economic importance. Consequently, efforts to achieve a substantial yield of Taq DNA polymerase (Taq-pol) are ongoing. The expression of recombinant protein using T7-induced promoters presents challenges in cost-effectiveness, primarily due to the reliance on traditional induction method. Our study aims to enhance cost-efficiency, and scalability of our method for overproducing Taq-pol, particularly in comparison to traditional IPTG-induced techniques, which remain underreported in the current literature. To achieve those purposes, this work integrated the use of (1) a high copy number vector; (2) an optimized chemically defined medium; and (3) optimized fermentation conditions in a 5 L bioreactor. A total of 83.5 mg/L of pure Taq-pol was successfully synthesized in its active form, leading to a 9.7-fold enhancement in protein yield. This was achieved by incorporating glucose, glycerol, and lactose into a defined medium at concentrations of 0.1, 0.6, and 1%, respectively, under specific production conditions in a 5 L bioreactor: 300 rpm, 2 vvm, and 10% inoculant. The data collectively suggest that the strategy serves as a significant foundation for the future advancement of large-scale production of Taq-pol.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia.
| | - Kenny Lischer
- Department of Chemical Engineering, University of Indonesia, Jakarta, Indonesia.
| | - Yudhi Nugraha
- Research Center for Molecular Biology Eijkman, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Wiga Alif Violando
- Department of Marine, Sunan Ampel State Islamic University, Surabaya, Indonesia
| | - Helbert
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Firyal Nida Khasna
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Naswandi Nur
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Kharisma Panji Ramadhan
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Destrianti Adelina Lumban Tobing
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Hariyatun
- Research Center for Genetic Engineering, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Iman Hidayat
- Deputy for Infrastructure Research and Innovation, National Research and Innovation Agency, Jalan Raya Bogor KM 46, Cibinong, Bogor, West Java, 16911, Indonesia
| |
Collapse
|
3
|
Li J, Zhao Y. Bioeffects of Nanoplastics: DNA Damage and Mechanism. NANO LETTERS 2025; 25:1660-1665. [PMID: 39808080 DOI: 10.1021/acs.nanolett.4c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanoplastics, as emerging contaminants, have been causing great panic, potentially affecting human health in recent years. Some in vitro studies have indicated that nanoplastics may induce severe toxicity. However, the mechanisms underlying this potential toxicity are insufficiently understood. In this study, we have found PS-NH2 nanoplastics had the obvious DNA cleavage activities, while PS-COOH nanoplastics were not observed to have the DNA cleavage abilities. Both microsized PS-NH2 and PS-COOH microplastics lacked DNA cleavage activities, indicating the importance of size and surface ligand in nanoplastics' DNA cleavage. The DNA cleavage system by nanoplastics remains stable under varying pH and temperature. From the mechanism exploration, the interaction energy is much higher between PS-NH2 nanoplastics than PS-COOH nanoplastics, further illuminating that PS-NH2 nanoplastics have stronger binding interaction with DNA to induce DNA cleavage activities. This study offers insights into the potential environmental risks and toxicity of nanoplastics in the aquatic ecosystems.
Collapse
Affiliation(s)
- Jinci Li
- Department of Life Sciences, Faculty of Science and Technology, Beijing Normal University- Hong Kong Baptist University United International College, No. 2000 Jintong Road, Zhuhai, Guangdong 519087, China
| | - Yingcan Zhao
- Department of Life Sciences, Faculty of Science and Technology, Beijing Normal University- Hong Kong Baptist University United International College, No. 2000 Jintong Road, Zhuhai, Guangdong 519087, China
| |
Collapse
|
4
|
Cho H, Kim KS. Characterization of Escherichia coli chaperonin GroEL as a ribonuclease. Int J Biol Macromol 2024; 281:136330. [PMID: 39370076 DOI: 10.1016/j.ijbiomac.2024.136330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Chaperonins are evolutionarily conserved proteins that facilitate polypeptide assemblies. The most extensively studied chaperonin is GroEL, which plays a crucial role in Escherichia coli. In addition to its chaperone activity, the RNA cleavage activity of GroEL has also been proposed. However, direct evidence of GroEL as a ribonuclease (RNase) and its physiological significance has not been fully elucidated. Here, we characterized the role of GroEL in E. coli as an RNase distinct from RNase E/G activity using in vivo reporter assays, in vitro cleavage assays with varying reaction times, divalent ions, and 5' phosphorylation status. GroEL bound to single-stranded RNA at nanomolar concentrations. Functional analysis of GroEL chaperonin-defective mutants and segments identified specific regions, and the chaperone active status of GroEL is not a necessary factor for RNase activity. Additionally, RNase activity of GroEL was attenuated by co-overexpression with GroES. Finally, we characterized potential transcripts regulated by GroEL and the conserved RNase activity of GroEL in Shigella flexneri. Our findings indicate that GroEL is a novel post-transcriptional regulator in bacteria.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Nakamura K, Miyauchi K. Grazing resistance developed in Escherichia coli K-12 during coexistence with a bacterivorous protist. PLoS One 2024; 19:e0299885. [PMID: 38820415 PMCID: PMC11142512 DOI: 10.1371/journal.pone.0299885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/16/2024] [Indexed: 06/02/2024] Open
Abstract
A development of grazing resistance in Escherichia coli K-12 was examined in the presence of a bacterivorous protist, Spumella sp. TGKK2. Two transformants were generated from E. coli K12 for grazing experiments. One was E. coli K-12-TGF, which possesses tetracycline resistance and green fluorescence. The other was E. coli K-12-KRF with kanamycin resistance and red fluorescence. These strains can be selectively colonized on antibiotic-containing agar media and further confirmed by their fluorescent colors. First, we added protist-untouched E. coli K-12-KRF to protist-touched residual E. coli K-12-TGF that had been attacked by Spumella sp. TGKK2 in a batch test. Then the survivability of the respective strains was investigated. Consequently, E. coli K-12-KRF was predated preferentially. On the other hand, E. coli K-12-TGF in the same tube was less predated, indicating some grazing resistance. Similar phenomena were observed when the conditions of these two strains of bacteria were reversed. Also, a continuous culture device supplied with a glucose-containing medium as a substrate was operated. The device connected two complete mixed reactors in series. E. coli K-12-TGF was cultivated in the first reactor, and then grown E. coli K-12-TGF was predated by Spumella sp. TGKK2 in the second reactor. The effluent in the second reactor containing residual E. coli K-12-TGF and Spumella sp. TGKK2 was supplemented with batch-cultured E. coli K-12-KRF. Consequently, it was confirmed that bach-cultured E. coli K-12-KRF never exposed to protist was predated preferentially. These findings reveal that E. coli K12 acquires some predation resistance through coexistence with the bacterivorous protist.
Collapse
Affiliation(s)
- Kanji Nakamura
- Department of Civil and Environmental Engineering, Tohoku Gakuin University, Sendai, Miyagi, Japan
| | - Keisuke Miyauchi
- Department of Civil and Environmental Engineering, Tohoku Gakuin University, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Cronin JM, Yu AM. Recombinant Technologies Facilitate Drug Metabolism, Pharmacokinetics, and General Biomedical Research. Drug Metab Dispos 2023; 51:685-699. [PMID: 36948592 PMCID: PMC10197202 DOI: 10.1124/dmd.122.001008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
The development of safe and effective medications requires a profound understanding of their pharmacokinetic (PK) and pharmacodynamic properties. PK studies have been built through investigation of enzymes and transporters that drive drug absorption, distribution, metabolism, and excretion (ADME). Like many other disciplines, the study of ADME gene products and their functions has been revolutionized through the invention and widespread adoption of recombinant DNA technologies. Recombinant DNA technologies use expression vectors such as plasmids to achieve heterologous expression of a desired transgene in a specified host organism. This has enabled the purification of recombinant ADME gene products for functional and structural characterization, allowing investigators to elucidate their roles in drug metabolism and disposition. This strategy has also been used to offer recombinant or bioengineered RNA (BioRNA) agents to investigate the posttranscriptional regulation of ADME genes. Conventional research with small noncoding RNAs such as microRNAs (miRNAs) and small interfering RNAs has been dependent on synthetic RNA analogs that are known to carry a range of chemical modifications expected to improve stability and PK properties. Indeed, a novel transfer RNA fused pre-miRNA carrier-based bioengineering platform technology has been established to offer consistent and high-yield production of unparalleled BioRNA molecules from Escherichia coli fermentation. These BioRNAs are produced and processed inside living cells to better recapitulate the properties of natural RNAs, representing superior research tools to investigate regulatory mechanisms behind ADME. SIGNIFICANCE STATEMENT: This review article summarizes recombinant DNA technologies that have been an incredible boon in the study of drug metabolism and PK, providing investigators with powerful tools to express nearly any ADME gene products for functional and structural studies. It further overviews novel recombinant RNA technologies and discusses the utilities of bioengineered RNA agents for the investigation of ADME gene regulation and general biomedical research.
Collapse
Affiliation(s)
- Joseph M Cronin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA (J.M.C., A.-M.Y.)
| |
Collapse
|
7
|
Chen Y, Du M, Yuan Z, Chen Z, Yan F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat Commun 2022; 13:4468. [PMID: 35918309 PMCID: PMC9345953 DOI: 10.1038/s41467-022-31932-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria-based tumor therapy has recently attracted wide attentions due to its unique capability in targeting tumors and preferentially colonizing the core area of the tumor. Various therapeutic genes are also harbored into these engineering bacteria to enhance their anti-tumor efficacy. However, it is difficult to spatiotemporally control the expression of these inserted genes in the tumor site. Here, we engineer an ultrasound-responsive bacterium (URB) which can induce the expression of exogenous genes in an ultrasound-controllable manner. Owing to the advantage of ultrasound in tissue penetration, an acoustic remote control of bacterial gene expression can be realized by designing a temperature-actuated genetic switch. Cytokine interferon-γ (IFN-γ), an important immune regulatory molecule that plays a significant role in tumor immunotherapy, is used to test the system. Our results show that brief hyperthermia induced by focused ultrasound promotes the expression of IFN-γ gene, improving anti-tumor efficacy of URB in vitro and in vivo. Our study provides an alternative strategy for bacteria-mediated tumor immunotherapy.
Collapse
Affiliation(s)
- Yuhao Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Yuan
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. METHODS IN MICROBIOLOGY 2022; 200:106555. [DOI: 10.1016/j.mimet.2022.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
9
|
Matsuoka S, Shimizu Y, Nobe K, Matsumoto K, Asai K, Hara H. Glucolipids and lipoteichoic acids affect the activity of SigI, an alternative sigma factor, and WalKR, an essential two-component system, in Bacillus subtilis. Genes Cells 2021; 27:77-92. [PMID: 34910349 DOI: 10.1111/gtc.12912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
In a Bacillus subtilis ugtP mutant lacking glucolipids, SigI was activated in the log phase, and the activation of SigI in the mutant was suppressed by the expression of native ugtP. By contrast, SigI was inhibited in a yfnI mutant lacking one of the lipoteichoic acid (LTA) synthase genes, and the inhibition was suppressed by the expression of yfnI. A series of mutation analyses of the sigI promoter revealed that the two WalR binding sites were involved in the increase of PsigI -lacZ activity in the ugtP mutant and decrease of the lacZ activity in the yfnI mutant. Transcription from the SigI recognition sequence was enhanced in the ugtP mutant, whereas yfnI disruption inhibited the transcription from the SigA recognition sequence in the sigI promoter. We found that not only SigI but also WalKR, the essential two-component system, was activated in the ugtP mutant and inhibited in the yfnI mutant. The walK mutants with activated WalR exhibited abnormal morphology, but this phenotype was suppressed by the addition of MgSO4 . We conclude that glucolipids and LTA are key compounds in the maintenance of normal cell surface structure in B. subtilis.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yoko Shimizu
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kaori Nobe
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kei Asai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.,Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
10
|
Green MR, Sambrook J. Cloning and Transformation with Plasmid Vectors. Cold Spring Harb Protoc 2021; 2021:2021/11/pdb.top101170. [PMID: 34725175 DOI: 10.1101/pdb.top101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasmids occupy a place of honor in molecular cloning: They were used in the first recombinant DNA experiments and, 40 or more years later, they remain as the carriage horses of molecular cloning. After almost half a century of sequential improvement in design, today's plasmid vectors are available in huge variety, are often optimized for specific purposes, and bear only passing resemblance to their forebears. Here, various features of plasmid vectors and methods for transforming E. coli cells are introduced.
Collapse
|
11
|
Kudryakova IV, Afoshin AS, Ivashina TV, Suzina NE, Leontyevskaya EA, Leontyevskaya Vasilyeva NV. Deletion of alpB Gene Influences Outer Membrane Vesicles Biogenesis of Lysobacter sp. XL1. Front Microbiol 2021; 12:715802. [PMID: 34484157 PMCID: PMC8415630 DOI: 10.3389/fmicb.2021.715802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria constitute important factors in defining interactions with the extracellular milieu. Lysobacter sp. XL1 produces OMVs capable of lysing microbial cells due to the presence in their cargo of bacteriolytic protease L5 (AlpB). Although protein L5 has been functionally and biochemically characterized (including aspects of its packing into OMVs), its role in vesicle biogenesis through genetic deletion of alpB had not been studied previously. Here, we have successfully deleted alpB by allelic replacement and show that the alpB deletion mutant produces a significantly lower amount of OMVs that lack bacteriolytic activity and display altered ultrastructural characteristics in relation to the OMVs produced by the wild-type strain. These results confirm that, as previously proposed, protein L5 participates in OMV production through a mechanism that is not yet fully understood.
Collapse
Affiliation(s)
- Irina V Kudryakova
- Laboratory of Microbial Cell Surface Biochemistry, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Alexey S Afoshin
- Laboratory of Microbial Cell Surface Biochemistry, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Tanya V Ivashina
- Laboratory of Molecular Microbiology, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Natalia E Suzina
- Laboratory of Microbial Cytology, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Elena A Leontyevskaya
- Laboratory of Microbial Cell Surface Biochemistry, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Natalia V Leontyevskaya Vasilyeva
- Laboratory of Microbial Cell Surface Biochemistry, Pushchino Center for Biological Research, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
12
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Galindo Casas M, Stargardt P, Mairhofer J, Wiltschi B. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in E. coli. ACS Synth Biol 2020; 9:3052-3066. [PMID: 33150786 DOI: 10.1021/acssynbio.0c00298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The site-specific incorporation of noncanonical amino acids (ncAAs) into proteins by amber stop codon suppression has become a routine method in academic laboratories. This approach requires an amber suppressor tRNACUA to read the amber codon and an aminoacyl-tRNA synthetase to charge the tRNACUA with the ncAA. However, a major drawback is the low yield of the mutant protein in comparison to the wild type. This effect primarily results from the competition of release factor 1 with the charged suppressor tRNACUA for the amber codon at the A-site of the ribosome. A number of laboratories have attempted to improve the incorporation efficiency of ncAAs with moderate results. We aimed at increasing the efficiency to produce high yields of ncAA-functionalized proteins in a scalable setting for industrial application. To do this, we inserted an ncAA into the enhanced green fluorescent protein and an antibody mimetic molecule using an industrial E. coli strain, which produces recombinant proteins independent of cell growth. The controlled decoupling of recombinant protein production from cell growth considerably increased the incorporation of the ncAA, producing substantially higher protein yields versus the reference E. coli strain BL21(DE3). The target proteins were expressed at high levels, and the ncAA was efficiently incorporated with excellent fidelity while the protein function was preserved.
Collapse
Affiliation(s)
- Meritxell Galindo Casas
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | | | | | - Birgit Wiltschi
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
| |
Collapse
|
14
|
Zhang Y, Sun X, Wang Q, Xu J, Dong F, Yang S, Yang J, Zhang Z, Qian Y, Chen J, Zhang J, Liu Y, Tao R, Jiang Y, Yang J, Yang S. Multicopy Chromosomal Integration Using CRISPR-Associated Transposases. ACS Synth Biol 2020; 9:1998-2008. [PMID: 32551502 DOI: 10.1021/acssynbio.0c00073] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Controlling the copy number of gene expression cassettes is an important strategy to engineer bacterial cells into high-efficiency biocatalysts. Current strategies mostly use plasmid vectors, but multicopy plasmids are often genetically unstable, and their copy numbers cannot be precisely controlled. The integration of expression cassettes into a bacterial chromosome has advantages, but iterative integration is laborious, and it is challenging to obtain a library with varied gene doses for phenotype characterization. Here, we demonstrated that multicopy chromosomal integration using CRISPR-associated transposases (MUCICAT) can be achieved by designing a crRNA to target multicopy loci or a crRNA array to target multiple loci in the Escherichia coli genome. Within 5 days without selection pressure, E. coli strains carrying cargos with successively increasing copy numbers (up to 10) were obtained. Recombinant MUCICAT E. coli containing genomic multicopy glucose dehydrogenase expression cassettes showed 2.6-fold increased expression of this important industrial enzyme compared to E. coli harboring the conventional protein-expressing plasmid pET24a. Successful extension of MUCICAT to Tatumella citrea further demonstrated that MUCICAT may be generally applied to many bacterial species.
Collapse
Affiliation(s)
- Yiwen Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Qingzhuo Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feng Dong
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Siqi Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yuan Qian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingmiao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rongsheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai 201203, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| |
Collapse
|
15
|
Schwaiger KN, Voit A, Dobiašová H, Luley C, Wiltschi B, Nidetzky B. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose. Biotechnol J 2020; 15:e2000063. [PMID: 32668097 DOI: 10.1002/biot.202000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Indexed: 12/30/2022]
Abstract
Catalyst development for biochemical cascade reactions often follows a "whole-cell-approach" in which a single microbial cell is made to express all required enzyme activities. Although attractive in principle, the approach can encounter limitations when efficient overall flux necessitates precise balancing between activities. This study shows an effective integration of major design strategies from synthetic biology to a coherent development of plasmid vectors, enabling tunable two-enzyme co-expression in E. coli, for whole-cell-production of cellobiose. An efficient transformation of sucrose and glucose into cellobiose by a parallel (countercurrent) cascade of disaccharide phosphorylases requires the enzyme co-expression to cope with large differences in specific activity of cellobiose phosphorylase (14 U mg-1 ) and sucrose phosphorylase (122 U mg-1 ). Mono- and bicistronic co-expression strategies controlling transcription, transcription-translation coupling or plasmid replication are analyzed for effect on activity and stable producibility of the whole-cell-catalyst. A key role of bom (basis of mobility) for plasmid stability dependent on the ori is reported and the importance of RBS (ribosome binding site) strength is demonstrated. Whole cell catalysts show high specific rates (460 µmol cellobiose min-1 g-1 dry cells) and performance metrics (30 g L-1 ; ∼82% yield; 3.8 g L-1 h-1 overall productivity) promising for cellobiose production.
Collapse
Affiliation(s)
- Katharina N Schwaiger
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Alena Voit
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Hana Dobiašová
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Christiane Luley
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Birgit Wiltschi
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Bernd Nidetzky
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, TU Graz, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| |
Collapse
|
16
|
Martínez-García E, Goñi-Moreno A, Bartley B, McLaughlin J, Sánchez-Sampedro L, Pascual del Pozo H, Prieto Hernández C, Marletta AS, De Lucrezia D, Sánchez-Fernández G, Fraile S, de Lorenzo V. SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res 2020; 48:D1164-D1170. [PMID: 31740968 PMCID: PMC7018797 DOI: 10.1093/nar/gkz1024] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/29/2022] Open
Abstract
The Standard European Vector Architecture 3.0 database (SEVA-DB 3.0, http://seva.cnb.csic.es) is the update of the platform launched in 2013 both as a web-based resource and as a material repository of formatted genetic tools (mostly plasmids) for analysis, construction and deployment of complex bacterial phenotypes. The period between the first version of SEVA-DB and the present time has witnessed several technical, computational and conceptual advances in genetic/genomic engineering of prokaryotes that have enabled upgrading of the utilities of the updated database. Novelties include not only a more user-friendly web interface and many more plasmid vectors, but also new links of the plasmids to advanced bioinformatic tools. These provide an intuitive visualization of the constructs at stake and a range of virtual manipulations of DNA segments that were not possible before. Finally, the list of canonical SEVA plasmids is available in machine-readable SBOL (Synthetic Biology Open Language) format. This ensures interoperability with other platforms and affords simulations of their behaviour under different in vivo conditions. We argue that the SEVA-DB will remain a useful resource for extending Synthetic Biology approaches towards non-standard bacterial species as well as genetically programming new prokaryotic chassis for a suite of fundamental and biotechnological endeavours.
Collapse
Affiliation(s)
- Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Spain
| | | | | | | | | | | | | | | | | | | | - Sofía Fraile
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Spain
| |
Collapse
|
17
|
A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:8875-8888. [PMID: 31641814 PMCID: PMC6851033 DOI: 10.1007/s00253-019-10145-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Monoclonal antibodies (mABs) are of great biopharmaceutical importance for the diagnosis and treatment of diseases. However, their production in mammalian expression hosts usually requires extensive production times and is expensive. Escherichia coli has become a new platform for production of functional small antibody fragment variants. In this study, we have used a rhamnose-inducible expression system that allows precise control of protein expression levels. The system was first evaluated for the cytoplasmic production of super folder green fluorescence protein (sfGFP) in various production platforms and then for the periplasmic production of the anti-HIV single-chain variable antibody fragment (scFv) of PGT135. Anti-HIV broadly neutralizing antibodies, like PGT135, have potential for clinical use to prevent HIV transmission, to promote immune responses and to eradicate infected cells. Different concentrations of L-rhamnose resulted in the controlled production of both sfGFP and scFv PGT135 antibody. In addition, by optimizing the culture conditions, the amount of scFv PGT135 antibody that was expressed soluble or as inclusions bodies could be modulated. The proteins were produced in batch bioreactors, with yields of 4.9 g/L for sfGFP and 0.8 g/L for scFv. The functionality of the purified antibodies was demonstrated by their ability to neutralize a panel of different HIV variants in vitro. We expect that this expression system will prove very useful for the development of a more cost-effective production process for proteins and antibody fragments in microbial cells.
Collapse
|
18
|
Nora LC, Westmann CA, Martins‐Santana L, Alves LDF, Monteiro LMO, Guazzaroni M, Silva‐Rocha R. The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 2019; 12:125-147. [PMID: 30259693 PMCID: PMC6302727 DOI: 10.1111/1751-7915.13318] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - Luana de Fátima Alves
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - María‐Eugenia Guazzaroni
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Rafael Silva‐Rocha
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| |
Collapse
|
19
|
Jin H, Wang Y, Idoine A, Bhaya D. Construction of a Shuttle Vector Using an Endogenous Plasmid From the Cyanobacterium Synechocystis sp. PCC6803. Front Microbiol 2018; 9:1662. [PMID: 30087668 PMCID: PMC6066503 DOI: 10.3389/fmicb.2018.01662] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
To advance synthetic biology in the photosynthetic cyanobacterium Synechocystis sp. PCC6803 (Syn6803), we constructed a shuttle vector with some versatile features. This shuttle vector, pSCB-YFP, consists of a putative replicon identified on the plasmid pCC5.2, the origin of replication of pMB1 from E. coli, as well as the YFP reporter gene and a spectinomycin/streptomycin resistance cassette. pSCB-YFP is stably maintained in Syn6803M (a motile strain that lacks the endogenous pCC5.2) and expresses YFP. In addition, we engineered a fragment into pSCB-YFP that has multiple cloning sites and other features such that this plasmid can also be used as an expression vector (pSCBe). The shuttle vector pSCB-YFP can be stably maintained for at least 50 generations without antibiotic selection. It is a high copy number plasmid and can stably co-exist with the RSF1010-based pPMQAK1-GFP.
Collapse
Affiliation(s)
- Haojie Jin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Yan Wang
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, United States
| | - Adam Idoine
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
20
|
Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 2018; 115:2120-2138. [PMID: 29750332 DOI: 10.1002/bit.26727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 03/10/2018] [Indexed: 12/26/2022]
Abstract
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.
Collapse
Affiliation(s)
- Emily Freed
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Jacob Fenster
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | | | - Julie Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO
| | - Ryan Gill
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Carrie A Eckert
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| |
Collapse
|
21
|
Swadling JB, Ishii K, Tahara T, Kitao A. Origins of biological function in DNA and RNA hairpin loop motifs from replica exchange molecular dynamics simulation. Phys Chem Chem Phys 2018; 20:2990-3001. [DOI: 10.1039/c7cp06355e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Temperature REMD reveals how local chemical changes can result in markedly differing conformational landscapes for DNA and RNA hairpin loops.
Collapse
Affiliation(s)
- Jacob B. Swadling
- School of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | | | | | - Akio Kitao
- School of Life Science and Technology
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| |
Collapse
|
22
|
Lee JH, Cheglakov Z, Yi J, Cronin TM, Gibson KJ, Tian B, Weizmann Y. Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. J Am Chem Soc 2017; 139:8054-8057. [DOI: 10.1021/jacs.7b01779] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jung-Hoon Lee
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Zoya Cheglakov
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jaeseok Yi
- The
James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy M. Cronin
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kyle J. Gibson
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- The
Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yossi Weizmann
- Department
of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
pBR322 vectors having tetracycline-dependent replication. Plasmid 2016; 84-85:20-6. [PMID: 26876942 DOI: 10.1016/j.plasmid.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/04/2016] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
Few Escherichia coli cloning vectors are available that can both be stably maintained and efficiently cured. One such vector is pAM34, a pBR332 derivative constructed by Gil and Bouché (1991). Replication of this plasmid is driven by the lacZYA promoter under control of a gratuitous inducer. However, lac operator-repressor interactions are also used to regulate many expression systems which limit the utility of pAM34. In this report pAM34 has been modified by replacement of the lac regulatory elements with those of the transposon Tn10 tetracycline resistance module. This resulted in medium copy number plasmids that are dependent on the presence of tetracycline (or less satisfactorily, anhydrotetracycline) for replication. The tetracycline-dependent plasmids are rapidly lost in the absence of tetracycline and plasmid loss is markedly accelerated when the host strain expresses a tetracycline efflux pump.
Collapse
|
24
|
Abstract
This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term plasmid biology was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).
Collapse
|
25
|
Malaga F, Mayberry O, Park DJ, Rodgers ME, Toptygin D, Schleif RF. A genetic and physical study of the interdomain linker of E. Coli
AraC protein-a trans
-subunit communication pathway. Proteins 2016; 84:448-60. [DOI: 10.1002/prot.24990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiana Malaga
- Biology Department; UPCH; Lima San Martín De Porres Peru
| | - Ory Mayberry
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - David J. Park
- Tufts University Medical School; Boston Massachusetts
| | - Michael E. Rodgers
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Dmitri Toptygin
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Robert F. Schleif
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| |
Collapse
|
26
|
Son YJ, Ryu AJ, Li L, Han NS, Jeong KJ. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microb Cell Fact 2016; 15:12. [PMID: 26767787 PMCID: PMC4714500 DOI: 10.1186/s12934-015-0400-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background Leuconostoc is a hetero-fermentative lactic acid bacteria, and its importance is widely recognized in the dairy industry. However, due to limited genetic tools including plasmids for Leuconostoc, there has not been much extensive research on the genetics and engineering of Leuconostoc yet. Thus, there is a big demand for high-copy-number plasmids for useful gene manipulation and overproduction of recombinant proteins in Leuconostoc. Results Using an existing low-copy plasmid, the copy number of plasmid was increased by random mutagenesis followed by FACS-based high-throughput screening. First, a random library of plasmids was constructed by randomizing the region responsible for replication in Leuconostoc citreum; additionally, a superfolder green fluorescent protein (sfGFP) was used as a reporter protein. With a high-speed FACS sorter, highly fluorescent cells were enriched, and after two rounds of sorting, single clone exhibiting the highest level of sfGFP was isolated. The copy number of the isolated plasmid (pCB4270) was determined by quantitative PCR (qPCR). It was found that the isolated plasmid has approximately a 30-fold higher copy number (approx. 70 copies per cell) than that of the original plasmid. From the sequence analysis, a single mutation (C→T) at position 4690 was found, and we confirmed that this single mutation was responsible for the increased plasmid copy number. The effectiveness of the isolated high-copy-number plasmid for the overproduction of recombinant proteins was successfully demonstrated with two protein models Glutathione-S-transferase (GST) and α–amylase. Conclusions The high-copy number plasmid was successfully isolated by FACS-based high-throughput screening of a plasmid library in L. citreum. The isolated plasmid could be a useful genetic tool for high-level gene expression in Leuconostoc, and for extending the applications of this useful bacteria to various areas in the dairy and pharmaceutical industries.
Collapse
Affiliation(s)
- Yeon Jeong Son
- Department of Chemical and Biomolecular Engineering, BK21 Plus PROGRAM, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, BK21 Plus PROGRAM, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Ling Li
- Division of Animal, Horticultural and Food Sciences, Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Nam Soo Han
- Division of Animal, Horticultural and Food Sciences, Brain Korea 21 Center for Bio-Resource Development, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus PROGRAM, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
27
|
Álvarez-Mejía C, Rodríguez-Ríos D, Hernández-Guzmán G, López-Ramírez V, Valenzuela-Soto H, Marsch R. Characterization of the hrpZ gene from Pseudomonas syringae pv. maculicola M2. Braz J Microbiol 2015; 46:929-36. [PMID: 26413080 PMCID: PMC4568854 DOI: 10.1590/s1517-838246320140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas syringae pv. maculicola is a natural
pathogen of members of the Brassicaceae plant family. Using a transposon-based
mutagenesis strategy in Pseudomonas syringaepv.
maculicola M2 (PsmM2), we conducted a genetic screen to identify
mutants that were capable of growing in M9 medium supplemented with a crude extract
from the leaves of Arabidopsis thaliana. A mutant containing a
transposon insertion in the hrpZ gene (PsmMut8) was unable to infect
adult plants from Arabidopsis thaliana or Brassica
oleracea, suggesting a loss of pathogenicity. The promotorless
cat reporter present in the gene trap was expressed if PsmMut8
was grown in minimal medium (M9) supplemented with the leaf extract but not if grown
in normal rich medium (KB). We conducted phylogenetic analysis using
hrpAZB genes, showing the classical 5-clade distribution, and
nucleotide diversity analysis, showing the putative position for selective pressure
in this operon. Our results indicate that the hrpAZB operon from
Pseudomonas syringaepv. maculicola M2 is
necessary for its pathogenicity and that its diversity would be under host-mediated
diversifying selection.
Collapse
Affiliation(s)
- César Álvarez-Mejía
- Instituto Tecnológico Superior de Irapuato Plantel Abasolo, Guanajuato, México
| | - Dalia Rodríguez-Ríos
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato, México
| | | | | | - Humberto Valenzuela-Soto
- Departamento de Plásticos en Agricultura, Centro de Investigación en Química Aplicada, Coahuila, México
| | - Rodolfo Marsch
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, D.F. México, México
| |
Collapse
|
28
|
Zaritsky A, Woldringh CL. Chromosome replication, cell growth, division and shape: a personal perspective. Front Microbiol 2015; 6:756. [PMID: 26284044 PMCID: PMC4522554 DOI: 10.3389/fmicb.2015.00756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Abstract
The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Conrad L. Woldringh
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Roman S, Panduro A. Genomic medicine in gastroenterology: A new approach or a new specialty? World J Gastroenterol 2015; 21:8227-8237. [PMID: 26217074 PMCID: PMC4507092 DOI: 10.3748/wjg.v21.i27.8227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/24/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Throughout history, many medical milestones have been achieved to prevent and treat human diseases. Man's early conception of illness was naturally holistic or integrative. However, scientific knowledge was atomized into quantitative and qualitative research. In the field of medicine, the main trade-off was the creation of many medical specialties that commonly treat patients in advanced stages of disease. However, now that we are immersed in the post-genomic era, how should we reevaluate medicine? Genomic medicine has evoked a medical paradigm shift based on the plausibility to predict the genetic susceptibility to disease. Additionally, the development of chronic diseases should be viewed as a continuum of interactions between the individual's genetic make-up and environmental factors such as diet, physical activity, and emotions. Thus, personalized medicine is aimed at preventing or reversing clinical symptoms, and providing a better quality of life by integrating the genetic, environmental and cultural factors of diseases. Whether using genomic medicine in the field of gastroenterology is a new approach or a new medical specialty remains an open question. To address this issue, it will require the mutual work of educational and governmental authorities with public health professionals, with the goal of translating genomic medicine into better health policies.
Collapse
|
30
|
Abstract
Formation of patterns is a common feature in the development of multicellular organism as well as of microbial communities. To investigate the formation of gene expression patterns in colonies, we build a mathematical model of two-dimensional colony growth, where cells carry a coupled positive-and-negative-feedback circuit. We demonstrate that the model can produce sectored, target (concentric), uniform, and scattered expression patterns of regulators, depending on gene expression dynamics and nutrient diffusion. We reconstructed the same regulatory structure in Escherichia coli cells and found gene expression patterns on the surface of colonies similar to the ones produced by the computer simulations. By comparing computer simulations and experimental results, we observed that very simple rules of gene expression can yield a spectrum of well-defined patterns in a growing colony. Our results suggest that variations of the protein content among cells lead to a high level of heterogeneity in colonies. Importance Formation of patterns is a common feature in the development of microbial communities. In this work, we show that a simple genetic circuit composed of a positive-feedback loop and a negative-feedback loop can produce diverse expression patterns in colonies. We obtained similar sets of gene expression patterns in the simulations and in the experiments. Because the combination of positive feedback and negative feedback is common in intracellular molecular networks, our results suggest that the protein content of cells is highly diversified in colonies. Formation of patterns is a common feature in the development of microbial communities. In this work, we show that a simple genetic circuit composed of a positive-feedback loop and a negative-feedback loop can produce diverse expression patterns in colonies. We obtained similar sets of gene expression patterns in the simulations and in the experiments. Because the combination of positive feedback and negative feedback is common in intracellular molecular networks, our results suggest that the protein content of cells is highly diversified in colonies.
Collapse
|
31
|
Seki T, Mineshima R, Hashimoto M, Matsumoto K, Hara H, Matsuoka S. Repression of the activities of two extracytoplasmic function σ factors, σM and σV, of Bacillus subtilis by glucolipids in Escherichia coli cells. Genes Genet Syst 2015; 90:109-14. [DOI: 10.1266/ggs.90.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Takahiro Seki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Ryota Mineshima
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Michihiro Hashimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| | - Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
32
|
Juang BT, Ludwig AL, Benedetti KL, Gu C, Collins K, Morales C, Asundi A, Wittmann T, L'Etoile N, Hagerman PJ. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum Mol Genet 2014; 23:4945-59. [PMID: 24821701 PMCID: PMC4140470 DOI: 10.1093/hmg/ddu210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS.
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chen Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Morales
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noelle L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| |
Collapse
|
33
|
Jang CW, Magnuson T. A novel selection marker for efficient DNA cloning and recombineering in E. coli. PLoS One 2013; 8:e57075. [PMID: 23437314 PMCID: PMC3577784 DOI: 10.1371/journal.pone.0057075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/17/2013] [Indexed: 12/03/2022] Open
Abstract
Production of recombinant DNA in bacterial cells is an essential technique in molecular biology. Plasmids are usually maintained in an E. coli host by antibiotic selection. However, there are only a few antibiotic-resistance markers available in common use. Here we report the adoption of a novel selection marker, mfabI (mutant fabI) for plasmid propagation in E. coli. mfabI expands the limited repertoire of selection markers and allows for more efficient molecular manipulation and plasmid propagation in E. coli. We show that mfabI is not only an efficient plasmid selection marker, but it also possesses unique activity that may facilitate molecular manipulation of unstable sequences. Furthermore, we have incorporated mfabI in the recombineering tool kit for generating mouse gene targeting vectors and demonstrate the advantage of using mfabI-containing recombineering vectors.
Collapse
Affiliation(s)
- Chuan-Wei Jang
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Molecular characterization of direct target genes and cis-acting consensus recognized by quorum-sensing regulator AphA in Vibrio parahaemolyticus. PLoS One 2012; 7:e44210. [PMID: 22984476 PMCID: PMC3440409 DOI: 10.1371/journal.pone.0044210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/30/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AphA is the master quorum-sensing (QS) regulator operating at low cell density in vibrios. Molecular regulation of target genes by AphA has been characterized in Vibrio harveyi and V. cholerae, but it is still poorly understood in V. parahaemolyticus. METHODOLOGY/PRINCIPAL FINDINGS The AphA proteins are extremely conserved in V. parahaemolyticus, Vibrio sp. Ex25, Vibrio sp. EJY3, V. harveyi, V. vulnificus, V. splendidus, V. anguillarum, V. cholerae, and V. furnissii. The above nine AphA orthologs appear to recognize conserved cis-acting DNA signals which can be represented by two consensus constructs, a 20 bp box sequence and a position frequency matrix. V. parahaemolyticus AphA represses the transcription of ahpA, qrr4, and opaR through direct AphA-target promoter DNA association, while it inhibits the qrr2-3 transcription in an indirect manner. Translation and transcription starts, core promoter elements for sigma factor recognition, Shine-Dalgarno sequences for ribosome recognition, and AphA-binding sites (containing corresponding AphA box-like sequences) were determined for the three direct AphA targets ahpA, qrr4, and opaR in V. parahaemolyticus. CONCLUSIONS/SIGNIFICANCE AphA-mediated repression of ahpA, qrr2-4, and opaR was characterized in V. parahaemolyticus by using multiple biochemical and molecular experiments. The computational promoter analysis indicated the conserved mechanism of transcriptional regulation of QS regulator-encoding genes ahpA, qrr4, and opaR in vibrios.
Collapse
|
35
|
Zhang Y, Qiu Y, Tan Y, Guo Z, Yang R, Zhou D. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus. PLoS One 2012; 7:e34622. [PMID: 22506036 PMCID: PMC3323551 DOI: 10.1371/journal.pone.0034622] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/02/2012] [Indexed: 02/01/2023] Open
Abstract
Background Vibrio parahaemolyticus is a leading cause of infectious diarrhea and enterogastritis via the fecal-oral route. V. harveyi is a pathogen of fishes and invertebrates, and has been used as a model for quorum sensing (QS) studies. LuxR is the master QS regulator (MQSR) of V. harveyi, and LuxR-dependent expression of its own gene, qrr2–4 and aphA have been established in V. harveyi. Molecular regulation of target genes by the V. parahaemolyticus MQSR OpaR is still poorly understood. Methodology/Principal Findings The bioinformatics analysis indicated that V. parahaemolyticus OpaR, V. harveyi LuxR, V. vulnificu SmcR, and V. alginolyticus ValR were extremely conserved, and that these four MQSRs appeared to recognize the same conserved cis-acting signals, which was represented by the consensus constructs manifesting as a position frequency matrix and as a 20 bp box, within their target promoters. The MQSR box-like sequences were found within the upstream DNA regions of opaR, qrr2–4 and aphA in V. parahaemolyticus, and the direct transcriptional regulation of these target genes by OpaR were further confirmed by multiple biochemical experiments including primer extension assay, gel mobility shift assay, and DNase I footprinting analysis. Translation and transcription starts, core promoter elements for sigma factor recognition, Shine-Dalgarno sequences for ribosome recognition, and OpaR-binding sites were determined for the five target genes of OpaR, which gave a structural map of the OpaR-dependent promoters. Further computational promoter analysis indicated the above regulatory circuits were shared by several other closely related Vibrios but with slight exceptions. Conclusions/Significance This study gave a comprehensive computational and characterization of the direct transcriptional regulation of five target genes, opaR, qrr2–4 and ahpA, by OpaR in V. parahaemolyticus. These characterized regulatory circuits were conserved in V. harveyi and V. parahaemolyticus.
Collapse
Affiliation(s)
- Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
The MetJ regulon in gammaproteobacteria determined by comparative genomics methods. BMC Genomics 2011; 12:558. [PMID: 22082356 PMCID: PMC3228920 DOI: 10.1186/1471-2164-12-558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background Whole-genome sequencing of bacteria has proceeded at an exponential pace but annotation validation has lagged behind. For instance, the MetJ regulon, which controls methionine biosynthesis and transport, has been studied almost exclusively in E. coli and Salmonella, but homologs of MetJ exist in a variety of other species. These include some that are pathogenic (e.g. Yersinia) and some that are important for environmental remediation (e.g. Shewanella) but many of which have not been extensively characterized in the literature. Results We have determined the likely composition of the MetJ regulon in all species which have MetJ homologs using bioinformatics techniques. We show that the core genes known from E. coli are consistently regulated in other species, and we identify previously unknown members of the regulon. These include the cobalamin transporter, btuB; all the genes involved in the methionine salvage pathway; as well as several enzymes and transporters of unknown specificity. Conclusions The MetJ regulon is present and functional in five orders of gammaproteobacteria: Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales and Alteromonadales. New regulatory activity for MetJ was identified in the genomic data and verified experimentally. This strategy should be applicable for the elucidation of regulatory pathways in other systems by using the extensive sequencing data currently being generated.
Collapse
|
37
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
38
|
Bentley WE, Quiroga OE. Investigation of subpopulation heterogeneity and plasmid stability in recombinant escherichia coli via a simple segregated model. Biotechnol Bioeng 2010; 42:222-34. [PMID: 18612983 DOI: 10.1002/bit.260420210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Many microbial and cell cultures exhibit phenomena that can best be described using a segregated modeling approach. Heterogeneties are more marked in recombinant cell cultures because subpopulations, which often exhibit different growth and productivity characteristics, are more easily identified by selective markers. A simple segregated mathematical model that simulates the growth of recombinant Escherichia coli cells is developed. Subpopulations of different growth rate, plasmid replication rate, and plasmid segregation probability are explicitly considered. Results indicate that a third mechanism of plasmid instability, referred to here as a "downward selective pressure," is significant when describing plasmid loss in batch and chemostat cultures. Also, the model agrees well with experimental data from cultures under antibiotic selective pressure. Finally, model simulations of chemostat cultures reveal the importance of initial conditions on culture stability and the possible presence of nonrandom partitioning functions.
Collapse
Affiliation(s)
- W E Bentley
- Center for Agricultural Biotechnology and Department of Chemical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
39
|
Hughes RA, Ellington AD. Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Nucleic Acids Res 2010; 38:6813-30. [PMID: 20571084 PMCID: PMC2965240 DOI: 10.1093/nar/gkq521] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While a number of aminoacyl tRNA synthetase (aaRS):tRNA pairs have been engineered to alter or expand the genetic code, only the Methanococcus jannaschii tyrosyl tRNA synthetase and tRNA have been used extensively in bacteria, limiting the types and numbers of unnatural amino acids that can be utilized at any one time to expand the genetic code. In order to expand the number and type of aaRS/tRNA pairs available for engineering bacterial genetic codes, we have developed an orthogonal tryptophanyl tRNA synthetase and tRNA pair, derived from Saccharomyces cerevisiae. In the process of developing an amber suppressor tRNA, we discovered that the Escherichia coli lysyl tRNA synthetase was responsible for misacylating the initial amber suppressor version of the yeast tryptophanyl tRNA. It was discovered that modification of the G:C content of the anticodon stem and therefore reducing the structural flexibility of this stem eliminated misacylation by the E. coli lysyl tRNA synthetase, and led to the development of a functional, orthogonal suppressor pair that should prove useful for the incorporation of bulky, unnatural amino acids into the genetic code. Our results provide insight into the role of tRNA flexibility in molecular recognition and the engineering and evolution of tRNA specificity.
Collapse
Affiliation(s)
- Randall A Hughes
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA
| | | |
Collapse
|
40
|
The S helix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12. J Bacteriol 2009; 192:734-45. [PMID: 19966007 DOI: 10.1128/jb.00172-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the nitrate-responsive, homodimeric NarX sensor, two cytoplasmic membrane alpha-helices delimit the periplasmic ligand-binding domain. The HAMP domain, a four-helix parallel coiled-coil built from two alpha-helices (HD1 and HD2), immediately follows the second transmembrane helix. Previous computational studies identified a likely coiled-coil-forming alpha-helix, the signaling helix (S helix), in a range of signaling proteins, including eucaryal receptor guanylyl cyclases, but its function remains obscure. In NarX, the HAMP HD2 and S-helix regions overlap and apparently form a continuous coiled-coil marked by a heptad repeat stutter discontinuity at the distal boundary of HD2. Similar composite HD2-S-helix elements are present in other sensors, such as Sln1p from Saccharomyces cerevisiae. We constructed deletions and missense substitutions in the NarX S helix. Most caused constitutive signaling phenotypes. However, strongly impaired induction phenotypes were conferred by heptad deletions within the S-helix conserved core and also by deletions that remove the heptad stutter. The latter observation illuminates a key element of the dynamic bundle hypothesis for signaling across the heptad stutter adjacent to the HAMP domain in methyl-accepting chemotaxis proteins (Q. Zhou, P. Ames, and J. S. Parkinson, Mol. Microbiol. 73:801-814, 2009). Sequence comparisons identified other examples of heptad stutters between a HAMP domain and a contiguous coiled-coil-like heptad repeat sequence in conventional sensors, such as CpxA, EnvZ, PhoQ, and QseC; other S-helix-containing sensors, such as BarA and TorS; and the Neurospora crassa Nik-1 (Os-1) sensor that contains a tandem array of alternating HAMP and HAMP-like elements. Therefore, stutter elements may be broadly important for HAMP function.
Collapse
|
41
|
Iafolla MAJ, Mazumder M, Sardana V, Velauthapillai T, Pannu K, McMillen DR. Dark proteins: effect of inclusion body formation on quantification of protein expression. Proteins 2009; 72:1233-42. [PMID: 18350571 DOI: 10.1002/prot.22024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells.
Collapse
Affiliation(s)
- Marco A J Iafolla
- Department of Chemical and Physical Sciences, and Institute for Optical Sciences, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Kawe M, Horn U, Plückthun A. Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microb Cell Fact 2009; 8:8. [PMID: 19171063 PMCID: PMC2655282 DOI: 10.1186/1475-2859-8-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Accepted: 01/26/2009] [Indexed: 11/17/2022] Open
Abstract
Background Overexpression of proteins in Escherichia coli is considered routine today, at least when the protein is soluble and not otherwise toxic for the host. We report here that the massive overproduction of even such "benign" proteins can cause surprisingly efficient promoter deletions in the expression plasmid, leading to the growth of only non-producers, when expression is not well repressed in the newly transformed bacterial cell. Because deletion is so facile, it might impact on high-throughput protein production, e.g. for structural genomics, where not every expression parameter will be monitored. Results We studied the high-level expression of several robust non-toxic proteins using a T5 promoter under lac operator control. Full induction leads to no significant growth retardation. We compared expression from almost identical plasmids with or without the lacI gene together in strains expressing different levels of LacI. Any combination without net overexpression of LacI led to an efficient promoter deletion in the plasmid, although the number of growing colonies and even the plasmid size – all antibiotic-resistant non-producers – was almost normal, and thus the problem not immediately recognizable. However, by assuring sufficient repression during the initial establishment phase of the plasmid, deletion was completely prevented. Conclusion The deletions in the insufficiently repressed system are caused entirely by the burden of high-level translation. Since the E. coli Dps protein, known to protect DNA against stress in the stationary phase, is accumulated in the deletion mutants, the mutation may have taken place during a transient stationary phase. The cause of the deletion is thus distinct from the well known interference of high-level transcription with plasmid replication. The deletion can be entirely prevented by overexpressing LacI, a useful precaution even without any signs of stress caused by the protein.
Collapse
Affiliation(s)
- Martin Kawe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
43
|
Bacterial genetics: past achievements, present state of the field, and future challenges. Biotechniques 2008; 44:633-4, 636-41. [PMID: 18474038 DOI: 10.2144/000112807] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic tools are required to take full advantage of the wealth of information generated by genome sequencing efforts and ensuing global gene and protein expression analyses. Bacterial genetics was originally developed and refined in Escherichia coli. As a consequence, elegant plasmid, cloning, expression, and mutagenesis systems were developed over the years and a good number of them are commercially available. This is not true for other bacteria. Although the development of genetic tools has generally not kept up with the sequencing pace, substantial progress has been made in this arena with many bacterial species. This short review highlights selected topics and achievements in the field over the past 25 years and presents some strategies that may help address future challenges. BioTechniques has played an integral part in the publication of important technological advances in the field over the first 25 years of its existence and it can be anticipated that it will continue to do so in the future.
Collapse
|
44
|
Bagh S, Mazumder M, Velauthapillai T, Sardana V, Dong GQ, Movva AB, Lim LH, McMillen DR. Plasmid-borne prokaryotic gene expression: sources of variability and quantitative system characterization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:021919. [PMID: 18352063 DOI: 10.1103/physreve.77.021919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Indexed: 05/26/2023]
Abstract
One aim of synthetic biology is to exert systematic control over cellular behavior, either for medical purposes or to "program" microorganisms. An engineering approach to the design of biological controllers demands a quantitative understanding of the dynamics of both the system to be controlled and the controllers themselves. Here we focus on a widely used method of exerting control in bacterial cells: plasmid vectors bearing gene-promoter pairs. We study two variants of the simplest such element, an unregulated promoter constitutively expressing its gene, against the varying genomic background of four Escherichia coli cell strains. Absolute protein numbers and rates of expression vary with both cell strain and plasmid type, as does the variability of expression across the population. Total variability is most strongly coupled to the cell division process, and after cell size is scaled away, plasmid copy number regulation emerges as a significant effect. We present simple models that capture the main features of the system behavior. Our results confirm that complex interactions between plasmids and their hosts can have significant effects on both expression and variability, even in deliberately simplified systems.
Collapse
Affiliation(s)
- Sangram Bagh
- Institute for Optical Sciences and Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T, Wojciuch E. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol 2007; 188:551-63. [PMID: 17639350 DOI: 10.1007/s00203-007-0276-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 06/16/2007] [Indexed: 11/26/2022]
Abstract
The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF A) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.
Collapse
Affiliation(s)
- C Peter Wolk
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhao JB, Wei DZ, Tong WY. Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Appl Microbiol Biotechnol 2007; 76:795-800. [PMID: 17598107 DOI: 10.1007/s00253-007-1050-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 05/11/2007] [Accepted: 05/14/2007] [Indexed: 11/24/2022]
Abstract
To improve the plasmid stability during the production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody (AhOCxAhCD3), the Escherichia coli BL21(DE3) host cell was optimized serially. Firstly, an isogenic recombination-deficient (recA (-)) derivative of BL21(DE3), namely BLR(DE3), was used as host instead of BL21(DE3). Although the segregational plasmid stability was greatly improved, AhOCxAhCD3 yield was not improved due to the severe growth inhibition of plasmid-bearing BLR(DE3) cells and the competitive plasmid instability after induction. Secondly, a mutant BLR(DE3), namely BLRM(DE3), was screened by using LB agar plates plus ampicillin and isopropyl-beta-D: -thiogalactopyranoside. Using this new host, growth inhibition of recombinant cells after induction was eliminated, and plasmids could be stably maintained even after long-time induction in a nonselective medium. At last, about 1.2 g/l AhOCxAhCD3, which was about thrice as much as those of recombinant BL21(DE3) and BLR(DE3) strains, was yielded.
Collapse
Affiliation(s)
- Jing-Bo Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | | |
Collapse
|
47
|
Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S. Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 2006; 255:115-20. [PMID: 16436070 DOI: 10.1111/j.1574-6968.2005.00072.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We tested the possibility of nonconjugative lateral DNA transfer in a colony biofilm of mixed Escherichia coli strains. By simply coculturing a plasmid-free F(-) strain and another F(-) strain harboring a nonconjugative plasmid in a colony biofilm on antibiotic-free agar media, transformed cells were produced within 24-48 h at the frequency of 10(-10)-10(-9) per recipient cell. PCR analysis of the transformed cells demonstrated the occurrence of lateral plasmid transfer. These cells survived until at least day 7 under antibiotic-free conditions. Liquid cultures of the same strains in Luria-Bertani broth produced no or few transformants, suggesting the importance of colony-biofilm formation for plasmid transfer. This is a novel line of evidence indicating that nonconjugative, nonviral horizontal gene transfer can occur between E. coli cells.
Collapse
Affiliation(s)
- Sumio Maeda
- Faculty of Human Life and Environment, Nara Women's University, Kitauoya-nishi-machi, Nara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Delgado-Olivares L, Zamora-Romo E, Guarneros G, Hernandez-Sanchez J. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes. Biochimie 2006; 88:793-800. [PMID: 16488066 DOI: 10.1016/j.biochi.2006.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/10/2006] [Indexed: 11/21/2022]
Abstract
The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.
Collapse
MESH Headings
- Base Sequence
- Codon/genetics
- Codon, Terminator/genetics
- Escherichia coli/genetics
- Lac Operon/genetics
- Peptide Chain Termination, Translational/genetics
- Plasmids/genetics
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Luis Delgado-Olivares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México DF 07000, Mexico
| | | | | | | |
Collapse
|
49
|
Gallant CV, Daniels C, Leung JM, Ghosh AS, Young KD, Kotra LP, Burrows LL. Common beta-lactamases inhibit bacterial biofilm formation. Mol Microbiol 2005; 58:1012-24. [PMID: 16262787 PMCID: PMC3097517 DOI: 10.1111/j.1365-2958.2005.04892.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-lactamases, which evolved from bacterial penicillin-binding proteins (PBPs) involved in peptidoglycan (PG) synthesis, confer resistance to beta-lactam antibiotics. While investigating the genetic basis of biofilm development by Pseudomonas aeruginosa, we noted that plasmid vectors encoding the common beta-lactamase marker TEM-1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm formation without affecting growth rates. Similarly, strains of Escherichia coli carrying TEM-1-encoding vectors grew normally but showed reduced adherence and biofilm formation, showing this effect was not species-specific. Introduction of otherwise identical plasmid vectors carrying tetracycline or gentamicin resistance markers had no effect on biofilm formation or twitching motility. The effect is restricted to class A and D enzymes, because expression of the class D Oxa-3 beta-lactamase, but not class B or C beta-lactamases, impaired biofilm formation by E. coli and P. aeruginosa. Site-directed mutagenesis of the catalytic Ser of TEM-1, but not Oxa-3, abolished the biofilm defect, while disruption of either TEM-1 or Oxa-3 expression restored wild-type levels of biofilm formation. We hypothesized that the A and D classes of beta-lactamases, which are related to low molecular weight (LMW) PBPs, may sequester or alter the PG substrates of such enzymes and interfere with normal cell wall turnover. In support of this hypothesis, deletion of the E. coli LMW PBPs 4, 5 and 7 or combinations thereof, resulted in cumulative defects in biofilm formation, similar to those seen in beta-lactamase-expressing transformants. Our results imply that horizontal acquisition of beta-lactamase resistance enzymes can have a phenotypic cost to bacteria by reducing their ability to form biofilms. Beta-lactamases likely affect PG remodelling, manifesting as perturbation of structures involved in bacterial adhesion that are required to initiate biofilm formation.
Collapse
Affiliation(s)
| | - Craig Daniels
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Anindya S. Ghosh
- Department of Microbiology and Immunology, University of North Dakota Medical School, Grand Forks, ND, USA
| | - Kevin D. Young
- Department of Microbiology and Immunology, University of North Dakota Medical School, Grand Forks, ND, USA
| | - Lakshmi P. Kotra
- Department of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Lori L. Burrows
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Wang PL, Lo BKC, Winter G. Generating molecular diversity by homologous recombination in Escherichia coli. Protein Eng Des Sel 2005; 18:397-404. [PMID: 15983006 DOI: 10.1093/protein/gzi042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We explored the use of recE-mediated homologous recombination to generate molecular diversity in Escherichia coli. Two homologous genes were placed on different phagemid vectors each comprising multiple EcoRI restriction sites and overlapping N- and C-terminal portions of beta-lactamase. By co-infection of these phage into RecE+ EcoRI+ E.coli, we were able to introduce double-strand breaks into these vectors, allowing efficient homologous recombination (in up to 10% of bacteria) by the recE pathway and selection of the recombinants by resistance to ampicillin. Recombination gave single crossovers; these were more frequent near the EcoRI sites and the recombination frequency increased with the target length and degree of homology. The system was used to create a large combinatorial chicken antibody library (10(10)) for display on filamentous phage and to isolate several antibody fragments with binding affinities in the 10-100 nM range.
Collapse
Affiliation(s)
- Peter L Wang
- Centre for Protein Engineering, University of Cambridge, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|