1
|
Das B, Bhardwaj PK, Chaudhary SK, Pathaw N, Singh HK, Tampha S, Singh KK, Sharma N, Mukherjee PK. Bioeconomy and ethnopharmacology - Translational perspective and sustainability of the bioresources of northeast region of India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118203. [PMID: 38641075 DOI: 10.1016/j.jep.2024.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ecological environment of Northeast region of India (NER), with its high humidity, has resulted in greater speciation and genetic diversity of plant, animal, and microbial species. This region is not only rich in ethnic and cultural diversity, but it is also a major biodiversity hotspot. The sustainable use of these bioresources can contribute to the region's bioeconomic development. AIM OF THE STUDY The review aimed to deliver various perspectives on the development of bioeconomy from NER bioresources under the tenets of sustainable utilization and socioeconomic expansion. MATERIALS AND METHODS Relevant information related to prospects of the approaches and techniques pertaining to the sustainable use of ethnomedicine resources for the growth of the bioeconomy were retrieved from PubMed, ScienceDirect, Google Scholar, Scopus, and Springer from 1984 to 2023. All the appropriate abstracts, full-text articles and various book chapters on bioeconomy and ethnopharmacology were conferred. RESULT As the population grows, so does the demand for basic necessities such as food, health, and energy resources, where insufficient resource utilization and unsustainable pattern of material consumption cause impediments to economic development. On the other hand, the bioeconomy concept leads to "the production of renewable biological resources and the conversion of these resources and waste streams into value-added products. CONCLUSIONS In this context, major emphasis should be placed on strengthening the economy's backbone in order to ensure sustainable use of these resources and livelihood security; in other words, it can boost the bio-economy by empowering the local people in general.
Collapse
Affiliation(s)
- Bhaskar Das
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pardeep Kumar Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Sushil K Chaudhary
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Neeta Pathaw
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Huidrom Khelemba Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Soibam Tampha
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Khaidem Kennedy Singh
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India.
| | - Pulok Kumar Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, Manipur 795001, India; Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Meghalaya Center, Shillong, Meghalaya 793009, India.
| |
Collapse
|
2
|
Yan Z, Huang H, Wang Q, Kong Y, Liu X. Function and mechanism of action of the TRPV1 channel in the development of triple-negative breast cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:957-962. [PMID: 38734935 PMCID: PMC11322878 DOI: 10.3724/abbs.2024068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 05/13/2024] Open
Abstract
Transient receptor potential channel subfamily vanilloid 1 (TRPV1) is a member of the transient receptor potential family of nonselective cationic transmembrane channel proteins that are involved in the regulation of calcium homeostasis. It is expressed in various tumor types and has been implicated in the regulation of cancer growth, metastasis, apoptosis, and cancer-related pain. TRPV1 is highly expressed in triple-negative breast cancer (TNBC), and both its agonists and antagonists may exert anti-cancer effects. In this review, we provide an overview of the effect of TRPV1 on TNBC development and its influence on immunotherapy in an attempt to facilitate the development of future treatment strategies.
Collapse
Affiliation(s)
- Ziling Yan
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Haihui Huang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Qianqian Wang
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Yanjie Kong
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| | - Xia Liu
- />Pathology Departmentthe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s HospitalShenzhen518035China
| |
Collapse
|
3
|
Xiao Z, Yu S, Zhang D, Li C. UHPLC-qTOF-MS-Based Nontargeted Metabolomics to Characterize the Effects of Capsaicin on Plasma and Skin Metabolic Profiles of C57BL/6 Mice-An In vivo Experimental Study. Drug Des Devel Ther 2024; 18:719-729. [PMID: 38476205 PMCID: PMC10929253 DOI: 10.2147/dddt.s423974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Background Capsaicin is the main compound found in chili pepper and has complex pharmacologic effects. This study aimed to elucidate the mechanism of the effect of capsaicin on physiological processes by analyzing changes in metabolites and metabolic pathways. Methods Female C57BL/6 mice were divided into two groups(n = 10/group) and fed with capsaicin-soybean oil solution(group T) or soybean oil(group C) for 6 weeks. Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was undertaken to assess plasma and skin metabolic profile changes and identify differential metabolites through multivariate analysis. Results According to the OPLS-DA score plots, the plasma and skin metabolic profiles in the group T and group C were significantly separated. In plasma, 38 significant differential metabolites were identified. KEGG pathway enrichment analysis revealed that the most significant plasma metabolic pathways included pyruvate metabolism and ABC transporters. In skin, seven significant differential metabolites were found. Four metabolic pathways with p values < 0.05 were detected, including sphingolipid metabolism, sphingolipid signaling pathway, apoptosis, and necroptosis. Conclusion These findings will provide metabolomic insights to assess the physiological functions of capsaicin and contribute to a better understanding of the potential effects of a capsaicin-rich diet on health.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Simin Yu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chunming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
4
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
5
|
Xie P, Xia W, Lowe S, Zhou Z, Ding P, Cheng C, Bentley R, Li Y, Wang Y, Zhou Q, Wu B, Gao J, Feng L, Ma S, Liu H, Sun C. High spicy food intake may increase the risk of esophageal cancer: A meta-analysis and systematic review. Nutr Res 2022; 107:139-151. [PMID: 36215887 DOI: 10.1016/j.nutres.2022.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/27/2022]
Abstract
Spicy food is popular with people around the world and reports on the association between spicy food intake and esophageal cancer (EC) risk have been controversial. Therefore, we conducted a meta-analysis of 25 studies to provide the latest evidence for this uncertainty. We hypothesized that high spicy food intake is associated with an increased risk of EC. A database was searched to identify case-control or cohort studies of spicy food intake associated with EC through March 2022. Combined odds ratios (ORs) and their 95% CIs were used to estimate the effect of spicy food intake on EC. Subgroup analyses and sensitivity analyses were also performed. All data were analyzed using STATA 15.1 software. Twenty-five studies from 22 articles met the inclusion criteria for the meta-analysis (7810 patients with EC and 515,397 controls). Despite significant heterogeneity (P < .001), the comparison of highest versus lowest spicy food intake in each study showed a significant OR of 1.70 (95% CI, 1.30-2.22). In subgroup analyses, this positive association was found among the Chinese population, different sample sizes of EC, different sources of the control group, and different quality of articles. However, for India, as well as for other countries, esophageal squamous cell carcinoma and esophageal adenocarcinoma showed no statistically significant association. This meta-analysis suggests that high levels of spicy food intake may be associated with an increased risk of EC, although 1 prospective study found an inverse association. Additional studies are necessary to confirm the relationship between spicy food and EC risk.
Collapse
Affiliation(s)
- Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Tasmania, Australia
| | - Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Ce Cheng
- The University of Arizona College of Medicine, Tucson, AZ 85724; Banner-University Medical Center South, Tucson, AZ 85713
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Yaru Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, 50312, USA; Internal Medicine, Swedish Hospital, Chicago, IL 60625, USA
| | - Yichen Wang
- Mercy Internal Medicine Service, Trinity Health of New England, Springfield, MA 01104, USA
| | - Qin Zhou
- Mayo Clinic, Rochester, MN 55905, USA
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, Anhui, P.R. China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago 60657, Illinois, USA.
| |
Collapse
|
6
|
Khan A, Naaz F, Basit R, Das D, Bisht P, Shaikh M, Lone BA, Pokharel YR, Ahmed QN, Parveen S, Ali I, Singh SK, Chashoo G, Shafi S. 1,2,3-Triazole Tethered Hybrid Capsaicinoids as Antiproliferative Agents Active against Lung Cancer Cells (A549). ACS OMEGA 2022; 7:32078-32100. [PMID: 36119972 PMCID: PMC9476207 DOI: 10.1021/acsomega.2c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
A series of novel 1,2,3-triazole derivatives of capsaicin and its structural isomer (new natural product hybrid capsaicinoid) were synthesized by exploiting one-/two-point modification of capsaicin without altering the amide linkage (neck). The newly synthesized compounds were screened for their antiproliferative activity against an NCI panel of 60 cancer cell lines at a single dose of 10 μM. Most of the compounds have demonstrated reduced growth between 55 and 95%, whereas capsaicin (10) has shown reduced growth between 0 and 24%. Compounds showing more than 50% growth inhibition were further evaluated for the IC50 value. Among the cell lines tested, lung cancer cell lines (A549, NCI-H460) were found to be more susceptible toward most of the synthesized compounds. Compounds 14g and 14j demonstrated good antiproliferative activity in NCI-H460 with IC50 values of 6.65 and 5.55 μM, respectively, while compounds 18b, 18c, 18f, and 18m demonstrated potential antiproliferative activity in A549 cell lines with IC50 values ranging between 2.9 and 10.5 μM. Among the compounds, compound 18f was found to demonstrate the best activity with an IC50 value of 2.91 μM against A549. Furthermore, 18f induces cell cycle arrest at the S-phase and disrupts the mitochondrial membrane potential, reducing cell migration potential by inducing cellular apoptosis and higher ROS generation along with a decrease in mitochondrial membrane potential in addition to surface and nuclear morphological alterations such as a reduction in the number and shrinkage of cells coupled with nuclear blabbing indicating the sign of apoptosis of A549 non-small cell lung cancer cell lines. Compound 18f has emerged as a lead molecule and may serve as a template for further discovery of capsaicinoid scaffolds.
Collapse
Affiliation(s)
- Arif Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Fatima Naaz
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Rafia Basit
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Deepak Das
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Piyush Bisht
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Majeed Shaikh
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Bilal Ahmad Lone
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Qazi Naveed Ahmed
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shazia Parveen
- Faculty
of Science, Chemistry Department, Taibah
University, Yanbu Branch, Yanbu 46423, Saudi
Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shashank Kumar Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Gousia Chashoo
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Syed Shafi
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
7
|
Catalfamo LM, Marrone G, Basilicata M, Vivarini I, Paolino V, Della-Morte D, De Ponte FS, Di Daniele F, Quattrone D, De Rinaldis D, Bollero P, Di Daniele N, Noce A. The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11187. [PMID: 36141454 PMCID: PMC9517535 DOI: 10.3390/ijerph191811187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.
Collapse
Affiliation(s)
- Luciano Maria Catalfamo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Ilaria Vivarini
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Francesco Saverio De Ponte
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Francesca Di Daniele
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domenico Quattrone
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Danilo De Rinaldis
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Adetunji TL, Olawale F, Olisah C, Adetunji AE, Aremu AO. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front Oncol 2022; 12:908487. [PMID: 35912207 PMCID: PMC9326111 DOI: 10.3389/fonc.2022.908487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the most important natural products in the genus Capsicum. Due to its numerous biological effects, there has been extensive and increasing research interest in capsaicin, resulting in increased scientific publications in recent years. Therefore, an in-depth bibliometric analysis of published literature on capsaicin from 2001 to 2021 was performed to assess the global research status, thematic and emerging areas, and potential insights into future research. Furthermore, recent research advances of capsaicin and its combination therapy on human cancer as well as their potential mechanisms of action were described. In the last two decades, research outputs on capsaicin have increased by an estimated 18% per year and were dominated by research articles at 93% of the 3753 assessed literature. In addition, anti-cancer/pharmacokinetics, cytotoxicity, in vivo neurological and pain research studies were the keyword clusters generated and designated as thematic domains for capsaicin research. It was evident that the United States, China, and Japan accounted for about 42% of 3753 publications that met the inclusion criteria. Also, visibly dominant collaboration nodes and networks with most of the other identified countries were established. Assessment of the eligible literature revealed that the potential of capsaicin for mitigating cancer mainly entailed its chemo-preventive effects, which were often linked to its ability to exert multi-biological effects such as anti-mutagenic, antioxidant and anti-inflammatory activities. However, clinical studies were limited, which may be related to some of the inherent challenges associated with capsaicin in the limited clinical trials. This review presents a novel approach to visualizing information about capsaicin research and a comprehensive perspective on the therapeutic significance and applications of capsaicin in the treatment of human cancer.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Femi Olawale
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Kreidl M, Rainer M, Bonn GK, Oberacher H. Electrochemical Simulation of the Oxidative Capsaicin Metabolism. Chem Res Toxicol 2021; 34:2522-2533. [PMID: 34879203 DOI: 10.1021/acs.chemrestox.1c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Capsaicin, primarily known as the pungent ingredient in hot peppers, is rapidly metabolized in the human body by enzymatic processes altering the pharmacological as well as toxicological properties. Herein, the oxidative transformation of capsaicin was investigated in vitro with electrochemistry as well as human liver microsomal incubations. The reaction mixtures were analyzed with liquid chromatography-mass spectrometry. Structure elucidation involved accurate mass measurements and multistage tandem mass spectrometry experiments. In total, 126 transformation products were detected. Electrochemistry provided evidence for 101 transformation products and the microsomal incubations for 46 species. 21 compounds were observed with both approaches. Identified oxidative pathways likely occurring during the phase I metabolism included dehydrogenation, O-demethylation, and hydroxylation reactions as well as combinations thereof. Furthermore, trapping of reactive intermediates either with glutathione or with electrochemically activated ribonucleosides provided evidence for the possible production of phase II metabolites and covalent adducts with a genetic material. Evidence for the occurrence of some capsaicin metabolites in humans was obtained by urine screening.
Collapse
Affiliation(s)
- Marco Kreidl
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.,ADSI-Austrian Drug Screening Institute GmbH, University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Smoak P, Burke SJ, Collier JJ. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:2465-2491. [PMID: 35098034 PMCID: PMC8796700 DOI: 10.1007/s42399-021-01034-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered into distinct subtypes based on the route of development, with the most common forms associated with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants have been used historically to reduce the pathological features associated with diabetes. In this review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts investigated using various preclinical and clinical study designs. In some cases, crude extracts were examined directly, and in others, purified compounds were explored for their possible therapeutic efficacy. A subset of these studies compared the botanical product with standard of care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future drug discovery and refinement into class(es) of compounds that have either direct or adjuvant therapeutic benefit.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Susan J. Burke
- Immunogenetics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, LA 70808 Baton Rouge, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
11
|
Bencze N, Schvarcz C, Kriszta G, Danics L, Szőke É, Balogh P, Szállási Á, Hamar P, Helyes Z, Botz B. Desensitization of Capsaicin-Sensitive Afferents Accelerates Early Tumor Growth via Increased Vascular Leakage in a Murine Model of Triple Negative Breast Cancer. Front Oncol 2021; 11:685297. [PMID: 34336669 PMCID: PMC8317060 DOI: 10.3389/fonc.2021.685297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
There is growing interest in the role of nerve-driven mechanisms in tumorigenesis and tumor growth. Capsaicin-sensitive afferents have been previously shown to possess antitumoral and immune-regulatory properties, the mechanism of which is currently poorly understood. In this study, we have assessed the role of these terminals in the triple negative 4T1 orthotopic mouse model of breast cancer. The ultrapotent capsaicin-analogue resiniferatoxin (RTX) was used for the selective, systemic desensitization of capsaicin-sensitive afferents. Growth and viability of orthotopically implanted 4T1 tumors were measured by caliper, in vivo MRI, and bioluminescence imaging, while tumor vascularity and protease enzyme activity were assessed using fluorescent in vivo imaging. The levels of the neuropeptides Calcitonin Gene-Related Peptide (CGRP), Substance P (SP), and somatostatin were measured from tumor tissue homogenates using radioimmunoassay, while tumor structure and peritumoral inflammation were evaluated by conventional use of CD31, CD45 and CD3 immunohistology. RTX-pretreated mice demonstrated facilitated tumor growth in the early phase measured using a caliper, which was coupled with increased tumor vascular leakage demonstrated using fluorescent vascular imaging. The tumor size difference dissipated by day seven. The MRI tumor volume was similar, while the intratumoral protease enzyme activity measured by fluorescence imaging was also comparable in RTX-pretreated and non-pretreated animals. Tumor viability or immunohistopathological profile was measured using CD3, CD31, and CD45 stains and did not differ significantly from the non-pretreated control group. Intratumoral somatostatin, CGRP, and SP levels were similar in both groups. Our results underscore the beneficial, antitumoral properties of capsaicin sensitive nerve terminals in this aggressive model of breast cancer, which is presumed to be due to the inhibition of tumor vascular bed disruption. The absence of any difference in intratumoral neuropeptide levels indicates non-neural sources playing a substantial part in their expression.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Csaba Schvarcz
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Kriszta
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Lea Danics
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
| | - Árpád Szállási
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Bálint Botz
- János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Medical Imaging, University of Pécs, Medical School, Pécs, Hungary
| |
Collapse
|
12
|
Dumitrache MD, Jieanu AS, Scheau C, Badarau IA, Popescu GDA, Caruntu A, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. Comparative effects of capsaicin in chronic obstructive pulmonary disease and asthma (Review). Exp Ther Med 2021; 22:917. [PMID: 34306191 PMCID: PMC8280727 DOI: 10.3892/etm.2021.10349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are chronic respiratory diseases with high prevalence and mortality that significantly alter the quality of life in affected patients. While the cellular and molecular mechanisms engaged in the development and evolution of these two conditions are different, COPD and asthma share a wide array of symptoms and clinical signs that may impede differential diagnosis. However, the distinct signaling pathways regulating cough and airway hyperresponsiveness employ the interaction of different cells, molecules, and receptors. Transient receptor potential cation channel subfamily V member 1 (TRPV1) plays a major role in cough and airway inflammation. Consequently, its agonist, capsaicin, is of substantial interest in exploring the cellular effects and regulatory pathways that mediate these respiratory conditions. Increasingly more studies emphasize the use of capsaicin for the inhalation cough challenge, yet the involvement of TRPV1 in cough, bronchoconstriction, and the initiation of inflammation has not been entirely revealed. This review outlines a comparative perspective on the effects of capsaicin and its receptor in the pathophysiology of COPD and asthma, underlying the complex entanglement of molecular signals that bridge the alteration of cellular function with the multitude of clinical effects.
Collapse
Affiliation(s)
- Mihai-Daniel Dumitrache
- Department of Pneumology IV, 'Marius Nasta' Institute of Pneumophtysiology, 050159 Bucharest, Romania
| | - Ana Stefania Jieanu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, 'Dr. Carol Davila' Central Military Emergency Hospital, 010825 Bucharest, Romania.,Department of Internal Medicine and Gastroenterology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Pathology, 'Colentina' University Hospital, 020125 Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Dermatology, 'Prof. N.C. Paulescu' National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
13
|
Gupta R, Kapoor B, Gulati M, Kumar B, Gupta M, Singh SK, Awasthi A. Sweet pepper and its principle constituent capsiate: functional properties and health benefits. Crit Rev Food Sci Nutr 2021; 62:7370-7394. [PMID: 33951968 DOI: 10.1080/10408398.2021.1913989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Capsiate is a non-pungent analogue of capsaicin. It belongs to the family of capsinoids which are esters of vanillyl alcohol with fatty acids while capsaicin belongs to the family of capsaicinoids that are amides of vanillylamine with a variety of branched-chain fatty acids. While capsaicin is extensively reported for plethora of pharmacological actions, capsiate remains much less explored. Extracted from various species of Capsicum plant, the molecule has also been chemically synthesized via a number of synthetic and enzymatic routes. Based on its action on transient receptor potential vanilloid subfamily member 1 receptors, recent research has focused on its potential roles in treatment of obesity, metabolic disorders, cancer, cardiovascular disorders and gastro-intestinal disorders. Its toxicity profile has been reported to be much safe. The molecule, however, faces the challenge of low aqueous solubility and stability. It has been commercialized for its use as a weight loss supplement. However, the therapeutic potential of the compound which is much beyond boosting metabolism remains unexplored hitherto. This comprehensive review summarizes the studies demonstrating the therapeutic potential of capsiate in various pathological conditions. Discussed also are potential future directions for formulation strategies to develop efficient, safe and cost-effective dosage forms of capsiate to explore its role in various disease conditions. The databases investigated include Cochrane library, Medline, Embase, Pubmed and in-house databases. The search terms were "capsiate," "capsinoids," "thermogenesis," and their combinations. The articles were screened for relevance by going through their abstract. All the articles pertaining to physicochemical, physiological, pharmacological and therapeutic effects of capsiate have been included in the manuscript.
Collapse
Affiliation(s)
- Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
14
|
Mosqueda-Solís A, Lafuente-Ibáñez de Mendoza I, Aguirre-Urizar JM, Mosqueda-Taylor A. Capsaicin intake and oral carcinogenesis: A systematic review. Med Oral Patol Oral Cir Bucal 2021; 26:e261-e268. [PMID: 33609025 PMCID: PMC7980287 DOI: 10.4317/medoral.24570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Chili is the most heavily and frequently consumed spice, either as a flavouring or colouring agent, and it is also a major source of pro-vitamin A, vitamin E and C. The main capsinoidcapsaicinoid found in chili peppers is capsaicin. It has been demonstrated that capsaicin acts as a cancer-suppressing agent through its antioxidant and anti-inflammatory effects, by blocking several signal transduction pathways. Oral squamous cell carcinoma is one of the most prevalent cancer worldwide. It is noteworthy that in countries where populations of diverse ethnic groups co-exist, differences have been observed in terms of incidence of oral cancer. The variances in their diet could explain, at least in part, these differences. The objective of this systematic review is to explore if there is evidence of a possible relationship between capsaicin intake and the incidence of oral squamous cell carcinoma, and discuss such association.
Material and Methods A bibliographical search was made in PubMed, Scopus and Web of Science databases, and finally 7 experimental studies were included; OHAT risk of bias tool was used to assess their quality.
Results allAll the studies confirm that capsaicin is a chemopreventive agent that prevents the development of oral cancer, through inhibition of malignant cell proliferation and increase of apoptosis.
Conclusions More human studies are needed in order to clarify the real link between consumption of chili (capsaicin) and the prevalence of oral cancer. Key words:Chili, capsaicin, oral epithelial dysplasia, oral cancer, cell proliferation, apoptosis.
Collapse
Affiliation(s)
- A Mosqueda-Solís
- Health Care Department Autonomous Metropolitan University Xochimilco Mexico City, Mexico
| | | | | | | |
Collapse
|
15
|
Qingke β-glucan synergizes with a β-glucan-utilizing Lactobacillus strain to relieve capsaicin-induced gastrointestinal injury in mice. Int J Biol Macromol 2021; 174:289-299. [PMID: 33524482 DOI: 10.1016/j.ijbiomac.2021.01.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Capsaicin (CAP) is the main pungent component in capsicum fruits. Eating too much CAP leads to gastrointestinal injury. Previously, Qingke β-glucan combined with β-glucan-utilizing Lactobacillus plantarum S58 (LP.S58) ameliorated high fat-diet-induced obesity, but their effects on CAP-induced gastrointestinal injury have not been investigated. Our results showed that Qingke β-glucan reduced the CAP-induced gastrointestinal injury in Kunming mice. The serum levels of inflammatory cytokines and gastrointestinal hormones, and the localized inflammation and the expression of EGF, EGFR, VEGF, and ZO-1 in the gastrointestinal tissues in CAP-treated mice were partly restored by Qingke β-glucan. The CAP-induced increase in the abundances of proinflammatory intestinal bacteria was also reduced by Qingke β-glucan. More importantly, we found that these beneficial effects of Qingke β-glucan were markedly enhanced by β-glucan-utilizing LP.S58 supplementation. Our study indicated that Qingke β-glucan coupled with β-glucan-utilizing LP.S58 relieved CAP-induced gastrointestinal injury.
Collapse
|
16
|
Popescu GDA, Scheau C, Badarau IA, Dumitrache MD, Caruntu A, Scheau AE, Costache DO, Costache RS, Constantin C, Neagu M, Caruntu C. The Effects of Capsaicin on Gastrointestinal Cancers. Molecules 2020; 26:molecules26010094. [PMID: 33379302 PMCID: PMC7794743 DOI: 10.3390/molecules26010094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) cancers are a group of diseases with very high positions in the ranking of cancer incidence and mortality. While they show common features regarding the molecular mechanisms involved in cancer development, organ-specific pathophysiological processes may trigger distinct signaling pathways and intricate interactions with inflammatory cells from the tumoral milieu and mediators involved in tumorigenesis. The treatment of GI cancers is a topic of increasing interest due to the severity of these diseases, their impact on the patients' survivability and quality of life, and the burden they set on the healthcare system. As the efficiency of existing drugs is hindered by chemoresistance and adverse reactions when administered in high doses, new therapies are sought, and emerging drugs, formulations, and substance synergies are the focus of a growing number of studies. A class of chemicals with great potential through anti-inflammatory, anti-oxidant, and anti-tumoral effects is phytochemicals, and capsaicin in particular is the subject of intensive research looking to validate its position in complementing cancer treatment. Our paper thoroughly reviews the available scientific evidence concerning the effects of capsaicin on major GI cancers and its interactions with the molecular pathways involved in the course of these diseases.
Collapse
Affiliation(s)
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Correspondence:
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
| | - Mihai-Daniel Dumitrache
- Departament of Pneumology IV, “Marius Nasta” Institute of Pneumophtysiology, 050159 Bucharest, Romania;
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Preclinical Sciences, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Daniel Octavian Costache
- Department of Dermatology, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
| | - Raluca Simona Costache
- Gastroenterology and Internal Medicine Clinic, “Carol Davila” Central Military Emergency Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
17
|
Capsaicin and Gut Microbiota in Health and Disease. Molecules 2020; 25:molecules25235681. [PMID: 33276488 PMCID: PMC7730216 DOI: 10.3390/molecules25235681] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Capsaicin is a widespread spice known for its analgesic qualities. Although a comprehensive body of evidence suggests pleiotropic benefits of capsaicin, including anti-inflammatory, antioxidant, anti-proliferative, metabolic, or cardioprotective effects, it is frequently avoided due to reported digestive side-effects. As the gut bacterial profile is strongly linked to diet and capsaicin displays modulatory effects on gut microbiota, a new hypothesis has recently emerged about its possible applicability against widespread pathologies, such as metabolic and inflammatory diseases. The present review explores the capsaicin–microbiota crosstalk and capsaicin effect on dysbiosis, and illustrates the intimate mechanisms that underlie its action in preventing the onset or development of pathologies like obesity, diabetes, or inflammatory bowel diseases. A possible antimicrobial property of capsaicin, mediated by the beneficial alteration of microbiota, is also discussed. However, as data are coming mostly from experimental models, caution is needed in translating these findings to humans.
Collapse
|
18
|
Gaafar AY, Yamashita H, Istiqomah I, Kawato Y, Ninomiya K, Younes A, Nakai T. Comparative immunohistological study on using capsaicin, piperine, and okadaic acid for the transepithelial passage of the inactivated viral and bacterial vaccines in fish. Microsc Res Tech 2020; 83:979-987. [PMID: 32282995 DOI: 10.1002/jemt.23491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
The practical difficulty of parenteral application of fish vaccines against devastating fish diseases diverted the interest toward oral vaccination. Search for effective methods to enhance the oral uptake of viral and bacterial vaccines is continuing. The current research focus on a new role of mucosal fish vaccine adjuvants inducing the antigen uptake by enhancing vascularity or increasing intestinal permeability. Some inflammatory substances cause reversible pathology to the intestinal epithelium, which could be employed for the transepithelial passage of vaccine particles. The natural inflammatory substances used were capsaicin, piperine, and okadaic acid as 1 mg, 2 mg, and 1 μg/fish, respectively. Two inactivated vaccines were used as antigens to test the effect of these inflammatory substances in two different fish hosts. Tested vaccines were inactivated redspotted grouper nervous necrosis virus vaccine in sevenband grouper (Epinephelus septemfasciatus) and inactivated Edwardsiella tarda vaccine in red sea bream (Pagrus major) fish models. The inflammatory substances and each vaccine were anally intubated to fish. Capsaicin proved to be effectively aiding the transepithelial passage of vaccine particles more than piperine, while okadaic acid had no detectable effect.
Collapse
Affiliation(s)
| | - Hirofumi Yamashita
- Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, Japan
| | - Indah Istiqomah
- Laboratory of Fish Diseases, Department of Fisheries, Faculty of Agriculture, Yogyakarta, Indonesia
| | - Yasuhiko Kawato
- National Research Institute of Fisheries Science, Fisheries Research Agency, Minamiise, Japan
| | - Kanae Ninomiya
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| | - Abdelgayed Younes
- Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
19
|
In vitro Anti-Helicobacter pylori Activity of Capsaicin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
20
|
Öztürk Y, Öztürk N. Plant- and Nutraceutical-based Approach for the Management of Diabetes and its Neurological Complications: A Narrative Review. Curr Pharm Des 2019; 25:3536-3549. [PMID: 31612820 DOI: 10.2174/1381612825666191014165633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Diabetes is an important metabolic disease affecting many organs and systems in the body. The nervous system is one of the body systems affected by diabetes and neuropathic complications are troublesome in diabetic patients with many consequences. As diabetes has deleterious influences almost on bodily systems, an integrative approach seems to be necessary accepting the body as a whole and integrating body systems with lifestyle and living environment. Like some traditional health systems such as Ayurveda, integrative approach includes additional modalities to overcome both diabetes and diabetic complications. In general, these modalities consist of nutraceuticals and plant products. Prebiotics and probiotics are two types of nutraceuticals having active ingredients, such as antioxidants, nutrient factors, microorganisms, etc. Many plants are indicated for the cure of diabetes. All of these may be employed in the prevention and in the non-pharmacological management of mildto- moderate diabetes. Severe diabetes should require appropriate drug selection. Being complementary, prebiotics, probiotics, plants and exercise may be additive for the drug therapy of diabetes. Similarly, there are complementary approaches to prevent and cure neurological and/or behavioral manifestations of diabetes, which may be included in therapy and prevention plans. A scheme is given for the prevention and therapy of comorbid depression, which is one of the most common behavioral complications of diabetes. Within this scheme, the main criterion for the selection of modalities is the severity of diseases, so that personalized management may be developed for diabetic patients using prebiotics and probiotics in their diets, plants and drugs avoiding possible interactions.
Collapse
Affiliation(s)
- Yusuf Öztürk
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Tepebasi 26120, Eskisehir, Turkey
| | - Nilgün Öztürk
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26120, Tepebasi, Eskisehir, Turkey
| |
Collapse
|
21
|
Bayil Oğuzkan S. Extraction of Capsinoid and its Analogs From Pepper Waste of Different Genotypes. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19865673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pepper, a member of the Capsicum genus of the Solanaceae family, is an annual, cultivated plant that grows in temperate climates. The main analogs of capsinoids, which are the secondary metabolites of peppers, are capsaicin and dihydrocapsaicin. During process, calyxes and peduncles are considered to be waste. Levels of capsinoids in these tissues in not well known. An optimized method was used to extract bioactive materials from the waste products from C. annum L. genotypes. Calyxes and peduncles were collected and dried in the shade. Extractions were in MeOH solutions and the extracts were analyzed using high-performance liquid chromatography (HPLC) to quantify the total amount of capsinoid, capsaicin, and dihydrocapsaicin contents. Capsinoid, and its analogs, were identified in all genotypes at varying concentrations, and their capsaicin and dihydrocapsaicin contents evidenced with liquid chromatography-mass spectrometry (LC-MS). In conclusion, the highest amount of capsinoids was found in chili Samandağ peppers, whereas the lowest amount of capsinoids was found in the red sweet pepper sample. All pepper genotypes, the capsaicin amount was higher comparison to dihydrocapsaicin. Capsanoids and anologues obtained from waste pepper can be used as raw materials in production of value added products.
Collapse
Affiliation(s)
- Sibel Bayil Oğuzkan
- Department of Medical Services and Techniques, Vocational School of Health Services, University of Gaziantep, Turkey
| |
Collapse
|
22
|
Kamaruddin MF, Hossain MZ, Mohamed Alabsi A, Mohd Bakri M. The Antiproliferative and Apoptotic Effects of Capsaicin on an Oral Squamous Cancer Cell Line of Asian Origin, ORL-48. ACTA ACUST UNITED AC 2019; 55:medicina55070322. [PMID: 31261824 PMCID: PMC6681303 DOI: 10.3390/medicina55070322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Background and Objectives: The antitumor activities of capsaicin on various types of cancer cell lines have been reported but the effect of capsaicin on oral cancer, which is prevalent among Asians, are very limited. Thus, this study aimed to investigate the effects of capsaicin on ORL-48, an oral cancer cell line of Asian origin. Materials and Methods: Morphological changes of the ORL-48 cells treated with capsaicin were analyzed using fluorescence microscopy. The apoptotic-inducing activity of capsaicin was further confirmed by Annexin V-Fluorescein isothiocyanate / Propidium iodide (V-FITC/PI) staining using flow cytometry. In order to establish the pathway of apoptosis triggered by the compound on ORL-48 cells, caspase activity was determined and the mitochondrial pathway was verified by mitochondrial membrane potential (MMP) assay. Cell cycle analysis was also performed to identify the cell cycle phase of ORL-48 cells being inhibited by the capsaicin compound. Results: Fluorescence microscopy exhibited the presence of apoptotic features in capsaicin-treated ORL-48 cells. Apoptosis of capsaicin-treated ORL-48 cells revealed disruption of the mitochondrial-membrane potential, activation of caspase-3, -7 and -9 through an intrinsic apoptotic pathway and subsequently, apoptotic DNA fragmentation. The cell cycle arrest occurred in the G1-phase, confirming antiproliferative effect of capsaicin in a time-dependent manner. Conclusion: This study demonstrated that capsaicin is cytotoxic against ORL-48 cells and induces apoptosis in ORL-48 cells possibly through mitochondria mediated intrinsic pathway resulting in cell cycle arrest.
Collapse
Affiliation(s)
- Mohammad Firdaus Kamaruddin
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammad Zakir Hossain
- Department of Oral Physiology, Faculty of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Aied Mohamed Alabsi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, Mahsa University, Jenjarom 42610, Selangor, Malaysia
| | - Marina Mohd Bakri
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
23
|
Yang Y, Zhang J, Weiss NS, Guo L, Zhang L, Jiang Y, Yang Y. The consumption of chili peppers and the risk of colorectal cancer: a matched case-control study. World J Surg Oncol 2019; 17:71. [PMID: 30995922 PMCID: PMC6472026 DOI: 10.1186/s12957-019-1615-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Chili peppers have properties that plausibly could either increase or decrease a person’s risk of developing colorectal cancer, but their consumption in relation to disease risk has not been well studied. We sought to explore the association between chili peppers intake and the risk of colorectal cancer. Methods Eight hundred subjects (400 cases with colorectal cancer and 400 controls) were enrolled in this study. Cases were primarily colorectal cancer patients diagnosed by histopathology at the Department of Intestinal Surgery, Sichuan Cancer Hospital from July 2010 to May 2012. Controls were people receiving routine medical examinations from the Zhonghe Community Health Service Center during the same period of time. An in-person interview was used to collect demographic characteristics, lifestyle, and dietary habits of the subjects in reference to the 10 years prior to disease diagnosis. Conditional logistic regression was conducted to examine the possible association between the risk of colorectal cancer and chili peppers consumption. Results Compared with persons who consumed chili peppers ≤ 2 times per week, those who consumed chili peppers 3–7 times per week (OR = 1.2, 95% CI 0.75–2.0, P = 0.413) and > 7 times per week (OR = 1.4, 95% CI 0.84–2.2, P = 0.205) were not at an increased risk of colorectal cancer. Conclusions The results suggest that the consumption of chili peppers does not increase or decrease the risk of colorectal cancer. This question warrants being re-addressed in a study in which there is prospective ascertainment of dietary characteristics.
Collapse
Affiliation(s)
- Yalan Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Noel S Weiss
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Linwen Guo
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqi Jiang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfang Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Plant-derived medicines for neuropathies: a comprehensive review of clinical evidence. Rev Neurosci 2019; 30:671-684. [DOI: 10.1515/revneuro-2018-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Abstract
Neuropathy is defined as the damage to the peripheral or central nervous system accompanied by pain, numbness, or muscle weakness, which can be due to congenital diseases or environmental factors such as diabetes, trauma, or viral infections. As current treatments are not sufficiently able to control the disease, studies focusing on the identification and discovery of new therapeutic agents are necessary. Natural products have been used for a long time for the management of different neurological problems including neuropathies. The aim of the present study is to review the current clinical data on the beneficial effects of medicinal plants in neuropathy. Electronic databases including PubMed, Scopus, and Cochrane Library were searched with the keywords ‘neuropathy’ in the title/abstract and ‘plant’ or ‘extract’ or ‘herb’ in the whole text from inception until August 2017. From a total of 3679 papers, 22 studies were finally included. Medicinal plants were evaluated clinically in several types of neuropathy, including diabetic neuropathy, chemotherapy-induced peripheral neuropathy, carpal tunnel syndrome, and HIV-associated neuropathy. Some studies reported the improvement in pain, nerve function, nerve conduction velocity, and quality of life. Cannabis sativa (hemp), Linum usitatissimum (linseed oil), capsaicin, and a polyherbal Japanese formulation called Goshajinkigan had the most evidence regarding their clinical efficacy. Other investigated herbal medicines in neuropathy, such as Matricaria chamomilla (chamomile), Curcuma longa (turmeric), and Citrullus colocynthis (colocynth), had only one clinical trial. Thus, future studies are necessary to confirm the safety and efficacy of such natural medicines as a complementary or alternative treatment for neuropathy.
Collapse
|
25
|
Parashar P, Tripathi CB, Arya M, Kanoujia J, Singh M, Yadav A, Kaithwas G, Saraf SA. A synergistic approach for management of lung carcinoma through folic acid functionalized co-therapy of capsaicin and gefitinib nanoparticles: Enhanced apoptosis and metalloproteinase-9 down-regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:107-123. [PMID: 30668390 DOI: 10.1016/j.phymed.2018.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/04/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lung cancer is one of the most lethal cancers and lacks effective treatment strategy. Therapeutic efficacy can be improved through active targeting approach utilizing surface engineered nanoparticles (NPs) for cancer therapy. PURPOSE The present study envisioned development of Folic acid (FA) functionalized NPs for co-administration of gefitinib (Gnb) and capsaicin (Cap) respectively to enhance the therapeutic outcome by disabling the barriers related to tumors extracellular matrix. RESEARCH METHODS AND PROCEDURE The FA conjugated Gnb/Cap polymeric (PLGA-PEG) NPs were prepared using oil in water emulsion technique and methodically developed using Quality by Design (QbD) concept employing central composite design. The developed formulations were subjected to various in vitro (A549 cell lines) and in vivo evaluations in urethane-induced lung cancer. RESULTS The modified NPs displayed particle sizes of 217.0 ± 3.2 nm and 213.0 ± 5.2 nm and drug release of 85.65 ± 3.21% and 81.43 ± 4.32% for Gnb and Cap respectively. Higher cellular uptake and lower cell viability in A549 cell line was displayed by functionalized NPs compared to free drug. Co administration of Gnb and Cap NPs displayed significant targeting potential, reduction in tumor volume while restoring the biochemical parameters viz., SOD, catalase, TBARS and protein carbonyl, towards normal levels when compared with toxic group. Significant down regulation was observed for anti-apoptotic proteins (MMP-9) and up regulation of pro-apoptotic proteins (caspase-3, caspase-9 and MMP-9) with co-therapy of Gnb and Cap NPs, when compared with individual therapy through Gnb/Cap. CONCLUSION Potentiation of the action of Gnb when co administered with Cap NPs can be a promising breakthrough for developing safe, effective and targeted delivery for lung carcinoma therapy.
Collapse
Affiliation(s)
- Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Chandra Bhushan Tripathi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Abhishek Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
26
|
Cetó X, Serrano N, Aragó M, Gámez A, Esteban M, Díaz-Cruz JM, Núñez O. Determination of HPLC-UV Fingerprints of Spanish Paprika ( Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4479. [PMID: 30567367 PMCID: PMC6308838 DOI: 10.3390/s18124479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/02/2022]
Abstract
The development of a simple HPLC-UV method towards the evaluation of Spanish paprika's phenolic profile and their discrimination based on the former is reported herein. The approach is based on C18 reversed-phase chromatography to generate characteristic fingerprints, in combination with linear discriminant analysis (LDA) to achieve their classification. To this aim, chromatographic conditions were optimized so as to achieve the separation of major phenolic compounds already identified in paprika. Paprika samples were subjected to a sample extraction stage by sonication and centrifugation; extracting procedure and conditions were optimized to maximize the generation of enough discriminant fingerprints. Finally, chromatograms were baseline corrected, compressed employing fast Fourier transform (FFT), and then analyzed by means of principal component analysis (PCA) and LDA to carry out the classification of paprika samples. Under the developed procedure, a total of 96 paprika samples were analyzed, achieving a classification rate of 100% for the test subset (n = 25).
Collapse
Affiliation(s)
- Xavier Cetó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Miriam Aragó
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Alejandro Gámez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Miquel Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain.
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Av. Prat de la Riba 171, Edifici Recerca (Gaudí), E-08901 Santa Coloma de Gramanet, Barcelona, Spain.
- Serra Hunter Fellow, Generalitat de Catalunya, Spain.
| |
Collapse
|
27
|
M S, Chhapekar SS, Ahmad I, Abraham SK, Ramchiary N. Analysis of bioactive components in Ghost chili (Capsicum chinense) for antioxidant, genotoxic, and apoptotic effects in mice. Drug Chem Toxicol 2018; 43:182-191. [DOI: 10.1080/01480545.2018.1483945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sarpras M
- Laboratory of Translational & Evolutionary Genomics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Genetic Toxicology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sushil Satish Chhapekar
- Laboratory of Translational & Evolutionary Genomics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- Laboratory of Translational & Evolutionary Genomics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suresh K. Abraham
- Genetic Toxicology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- Laboratory of Translational & Evolutionary Genomics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
|
29
|
Azevedo M, Leite IB, Queiroz C, Fialho E. Spiced risotto: cooking processing and simulated in vitro digestion on curcuminoids, capsaicin and piperine. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2018. [DOI: 10.1080/15428052.2018.1429973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Marcelo Azevedo
- Gastronomia, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Iris Batista Leite
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Christiane Queiroz
- Departamento de Nutrição, Universidade Federal do Paraná, Curitiba, Brasil
| | - Elaine Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
30
|
Güler S, Zik B. Effects of capsaicin on ovarian granulosa cell proliferation and apoptosis. Cell Tissue Res 2018; 372:603-609. [PMID: 29455258 DOI: 10.1007/s00441-018-2803-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
Abstract
Capsaicin is the pungent ingredient in red peppers. Due to the effects on the sensory nerve fibers, capsaicin has been used to treat pain and inflammation associated with a variety of diseases including rheumatoid arthritis and diabetic neuropathy, obesity, and cardiovascular and gastrointestinal conditions. Despite the extensive publications on different systems, the studies of the effects on the ovary are very limited. The present study was conducted to examine the possible proliferative and/or apoptotic effects of various doses of capsaicin on primarily derived granulosa cells. In accordance with this purpose, ovarian granulosa cells were exposed to different doses of capsaicin for 24 and 48 h. The proliferative effects of capsaicin were examined by immunocytochemistry, immunofluorescence, and western blot using an antibody against proliferating cell nuclear antigen (PCNA) and cell viability assay (MTT). The effects on apoptosis were determined by immunocytochemistry and immunofluorescence using antibodies against cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). We showed that the number of apoptotic cells increased in a capsaicin dose and time-dependent manners. We found that a low dose of CAP in 24 h administration was more effective on granulosa cell proliferation. Our results suggest that low-dose and short-term administration of CAP may have a positive effect on ovarian folliculogenesis.
Collapse
Affiliation(s)
- Sabire Güler
- Department of Histology Embryology, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey.
| | - Berrin Zik
- Department of Histology Embryology, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| |
Collapse
|
31
|
Bansal M, Singh N, Pal S, Dev I, Ansari KM. Chemopreventive Role of Dietary Phytochemicals in Colorectal Cancer. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00004-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Zhou G, Wang L, Xu Y, Yang K, Luo L, Wang L, Li Y, Wang J, Shu G, Wang S, Gao P, Zhu X, Xi Q, Sun J, Zhang Y, Jiang Q. Diversity effect of capsaicin on different types of skeletal muscle. Mol Cell Biochem 2017; 443:11-23. [PMID: 29159769 DOI: 10.1007/s11010-017-3206-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022]
Abstract
Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.
Collapse
Affiliation(s)
- Gan Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yaqiong Xu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Kelin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lv Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Leshan Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
33
|
Zhang S, Ma X, Zhang L, Sun H, Liu X. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2323-2330. [PMID: 28230360 DOI: 10.1021/acs.jafc.7b00132] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chili peppers exhibit antiobesity, anticancer, antidiabetic, and pain- and itch-relieving effects on animals and humans; these effects are due to capsaicin, which is the main pungent and biologically active component of pepper. Capsiate, a nonpungent capsaicin analogue, is similar to capsaicin in terms of structure and biological activity. In this study, we investigated whether capsaicin and capsiate exhibit the same hypoglycemic effects on rats with type 1 diabetes (T1D). Experimental rats were categorized into four groups: control, model, capsaicin, and capsiate groups. The two treatment groups were treated orally with 6 mg/kg bw capsaicin and capsiate daily for 28 days. Treatment with capsaicin and capsiate increased body weight, increased glycogen content, and inhibited intestinal absorption of sugar in T1D rats. Particularly, insulin levels were increased from 14.9 ± 0.76 mIU/L (model group) to 22.4 ± 1.39 mIU/L (capsaicin group), but the capsiate group (16.7 ± 0.79 mIU/L) was increased by only 12.2%. Analysis of the related genes suggested that the transient receptor potential vanilloid 1 (TRPV1) receptor was activated by capsaicin. Liver X receptor and pancreatic duodenum homeobox 1 controlled the glycometabolism balance by regulating the expression levels of glucose kinase, glucose transport protein 2 (GLUT2), phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase, leading to reduced blood glucose levels in T1D rats. Meanwhile, the hypoglycemic effect was enhanced by the down-regulated expression of sodium glucose cotransporter 1, GLUT2, and GLUT5 in the intestine. The results showed that the spicy characteristics of capsaicin might be the root of its ability to decrease blood glucose.
Collapse
Affiliation(s)
- Shiqi Zhang
- College of Food Science, Southwest University , Tiansheng Road 2, Chongqing 400715, People's Republic of China
| | - Xiaohan Ma
- College of Food Science, Southwest University , Tiansheng Road 2, Chongqing 400715, People's Republic of China
| | - Lei Zhang
- College of Life Science, Chongqing Normal University , Chongqing 401331, People's Republic of China
| | - Hui Sun
- College of Food Science, Southwest University , Tiansheng Road 2, Chongqing 400715, People's Republic of China
| | - Xiong Liu
- College of Food Science, Southwest University , Tiansheng Road 2, Chongqing 400715, People's Republic of China
| |
Collapse
|
34
|
An updated review on molecular mechanisms underlying the anticancer effects of capsaicin. Food Sci Biotechnol 2017; 26:1-13. [PMID: 30263503 DOI: 10.1007/s10068-017-0001-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
The quest for developing anticancer principles from natural sources has a long historical track record and remarkable success stories. The pungent principle of hot chili pepper, capsaicin, has been a subject of research for anticancer drug discovery for more than three decades. However, the majority of research has revealed that capsaicin interferes with various hallmarks of cancer, such as increased cell proliferation, evasion from apoptosis, inflammation, tumor angiogenesis and metastasis, and tumor immune escape. Moreover, the compound has been reported to inhibit carcinogen activation and chemically induced experimental tumor growth. Capsaicin has also been reported to inhibit the activation of various kinases and transcription that are involved in tumor promotion and progression. The compound activated mitochondria-dependent and death receptor-mediated tumor cell apoptosis. Considering the growing interest in capsaicin, this review provides an update on the molecular targets of capsaicin in modulating oncogenic signaling.
Collapse
|
35
|
Liu T, Wang G, Tao H, Yang Z, Wang Y, Meng Z, Cao R, Xiao Y, Wang X, Zhou J. Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 2016; 16:790. [PMID: 27729033 PMCID: PMC5059898 DOI: 10.1186/s12885-016-2831-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/05/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the tumors most refractory to chemotherapy to date. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin (CPS), a natural active ingredient of green and red peppers, and a ligand of transient receptor potential vanilloid type 1 (TRPV1), has been showed potential in suppression of tumorigenesis of several cancers. Nonetheless, the anti-cancer activity of CPS has never been studied in human RCC. METHODS CCK8 analysis, LDH release activity and ROS generation analysis, flow cytometry analysis, and nuclear staining test were performed to test the influence of CPS in cultured cells in vitro, meanwhile western blot was done to uncover the precise molecular mechanisms. 786-O renal cancer xenografts were builded to investigate the antitumor activity of CPS in vivo. RESULTS We found treatment of CPS reduced proliferation of renal carcinoma cells, which could be attenuated by TRPV1 representative antagonist capsazepine (CPZ). CPS induced obvious apoptosis in renal carcinoma cells. These events were associated with substantial up-regulation of pro-apoptotic genes including c-myc, FADD, Bax and cleaved-caspase-3, -8, and -9, while down-regulation of anti-apoptotic gene Bcl2. Besides, CPS-treatment activated P38 and JNK MAPK pathways, yet P38 and JNK inhibitors afforded protection against CPS-induced apoptosis by abolishing activation of caspase-3, -8, and -9. Furthermore, CPS significantly slowed the growth of 786-O renal cancer xenografts in vivo. CONCLUSIONS Such results reveal that CPS is an efficient and potential drug for management of human RCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huangheng Tao
- Department of Endodontics, Stomatology of Wuhan University, Wuhan, 430079, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongzhi Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jiajie Zhou
- Department of Urology, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
36
|
Wang F, Zhao J, Liu D, Zhao T, Lu Z, Zhu L, Cao L, Yang J, Jin J, Cai Y. Capsaicin reactivates hMOF in gastric cancer cells and induces cell growth inhibition. Cancer Biol Ther 2016; 17:1117-1125. [PMID: 27715462 DOI: 10.1080/15384047.2016.1235654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Capsaicin (CAP) is the major pungent component of chili pepper and is being evaluated for use against numerous types of tumors. Although CAP is indicated to target multiple signaling pathways, exact mechanisms of how it disturb cancer cell metablism remain obscure. Recent studies revealed Sirtuin 1 (SIRT1) serves as a potential target of CAP in cancer cells, indicating a direct regulation of cancer cell histone acetylation by capsaicin. The present study evaluated the effect of CAP on gastric cancer (GC) cell lines to understand the mechanism of cell growth inhibition. The results showed that CAP could significantly suppress cell growth, while altering histone acetylation in GC cell lines. Further studies found that hMOF, a major histone acetyltranferase for H4K16, is central to CAP-induced epigenetic changes. Reduced hMOF activity was detected in GC tissues, which could be restored by CAP both in vivo and in vitro. These findings revealed an important role of hMOF-mediated histone acetylation in CAP-directed anti-cancer processes, and suggested CAP as a potential drug for use in gastric cancer prevention and therapy.
Collapse
Affiliation(s)
- Fei Wang
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Jiayao Zhao
- b School of Pharmacy , Changchun University of Traditional Chinese Medicine , Changchun, Jilin , P.R. China
| | - Da Liu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,b School of Pharmacy , Changchun University of Traditional Chinese Medicine , Changchun, Jilin , P.R. China
| | - Tong Zhao
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Zeming Lu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Lin Zhu
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China
| | - Lingling Cao
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,c The Bethune Institute of Epigenetic Medicine, The First Bethune Hospital of Jilin University , Changchun, Jilin , P.R. China
| | - Jiaxing Yang
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,d Department of Gastrointestinal Surgery , The First Bethune Hospital of Jilin University , Changchun, Jilin , P.R. China
| | - Jingji Jin
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,e National Engineering Laboratory for AIDS Vaccine , P.R. China.,f Key Laboratory for Molecular Enzymology and Engineering , The Ministry of Education, Jilin University , Changchun, Jilin , P.R. China
| | - Yong Cai
- a School of Life Sciences , Jilin University , Changchun, Jilin , P.R. China.,e National Engineering Laboratory for AIDS Vaccine , P.R. China.,f Key Laboratory for Molecular Enzymology and Engineering , The Ministry of Education, Jilin University , Changchun, Jilin , P.R. China
| |
Collapse
|
37
|
Geng S, Zheng Y, Meng M, Guo Z, Cao N, Ma X, Du Z, Li J, Duan Y, Du G. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6203-6211. [PMID: 27436516 DOI: 10.1021/acs.jafc.6b02480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P < 0.01) and 50% and 10.8 ± 3.1 in the 6-gingerol group (P < 0.01). The combination of 6-gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P < 0.001). The cancer-promoting effect of capsaicin was due to increased epidermal growth-factor receptor (EGFR) level by decreased transient receptor potential vanilloid type-1 (TRPV1) level (P < 0.01) . The capsaicin-decreased EGFR level subsequently reduced levels of nuclear factor-κB (NF-κB) and cyclin D1 that favored enhanced lung epithelial proliferation and epithelial-mesenchymal transition (EMT) during lung carcinogenesis (P < 0.01). In contrast, 6-gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.
Collapse
Affiliation(s)
- Shengnan Geng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yaqiu Zheng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Mingjing Meng
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Ning Cao
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Xiaofang Ma
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Zhenhua Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| | - Yongjian Duan
- Department of Oncology, The First Hospital Affiliated to Henan University , Kaifeng, Henan 475001, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming District, Kaifeng, Henan 475004, China
| |
Collapse
|
38
|
Fattori V, Hohmann MSN, Rossaneis AC, Pinho-Ribeiro FA, Verri WA. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016; 21:E844. [PMID: 27367653 PMCID: PMC6273101 DOI: 10.3390/molecules21070844] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.
Collapse
Affiliation(s)
- Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Miriam S N Hohmann
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid KM480 PR445, Caixa Postal 10.011, 86057-970 Londrina, Paraná, Brazil.
| |
Collapse
|
39
|
Chitravathi K, Chauhan O, Raju P. Influence of modified atmosphere packaging on shelf-life of green chillies (Capsicum annuum L.). Food Packag Shelf Life 2015. [DOI: 10.1016/j.fpsl.2015.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Ferreira AK, Tavares MT, Pasqualoto KFM, de Azevedo RA, Teixeira SF, Ferreira-Junior WA, Bertin AM, de-Sá-Junior PL, Barbuto JAM, Figueiredo CR, Cury Y, Damião MCFCB, Parise-Filho R. RPF151, a novel capsaicin-like analogue: in vitro studies and in vivo preclinical antitumor evaluation in a breast cancer model. Tumour Biol 2015; 36:7251-67. [DOI: 10.1007/s13277-015-3441-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/11/2015] [Indexed: 12/01/2022] Open
|
41
|
Capsaicin-induced genotoxic stress does not promote apoptosis in A549 human lung and DU145 prostate cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 779:23-34. [DOI: 10.1016/j.mrgentox.2015.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
|
42
|
Korkutata NF, Kavaz A. A Comparative Study of Ascorbic Acid and Capsaicinoid Contents in Red Hot Peppers (Capsicum annumL.) Grown in Southeastern Anatolia Region. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2013.850507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Ma X, Ji W, Chen L, Wang X, Liu J, Wang X. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers. J Sep Sci 2014; 38:100-7. [DOI: 10.1002/jssc.201400911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Xiuli Ma
- College of Food Science and Engineering; Shandong Agricultural University; Tai an China
| | - Wenhua Ji
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan China
| | - Lingxiao Chen
- College of Food Science and Engineering; Shandong Agricultural University; Tai an China
| | - Xiao Wang
- College of Food Science and Engineering; Shandong Agricultural University; Tai an China
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan China
| | - Jianhua Liu
- Shandong Analysis and Test Center; Shandong Academy of Sciences; Jinan China
| | - Xueyong Wang
- College of Chinese Materia medica; Beijing University of Chinese Medicine; Beijing China
| |
Collapse
|
44
|
Hong Q, Xia C, Xiangying H, Quan Y. Capsinoids suppress fat accumulation via lipid metabolism. Mol Med Rep 2014; 11:1669-74. [PMID: 25421144 PMCID: PMC4270323 DOI: 10.3892/mmr.2014.2996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022] Open
Abstract
Capsaicin, found in red peppers, has been reported to have anti‑obesity, anti‑hypertension, anti‑diabetes and anti‑inflammatory functions. In the present study, we determined the effect of non‑pungent capsinoids on the metabolism of adipocytes. We demonstrated that capsinoids suppressed fat accumulation in vivo and in vitro in mice. Liver, the main tissue of lipid metabolism, was treated by capsinoids, and HMG‑CoA reductase, CPT‑1, FAT/CD36 and GLUT4 were found to be increased significantly, which demonstrated promotion of the lipid metabolism in liver and adipose tissues. In addition, by adding capsinoids, the induced adipocytes also demonstrated significantly increased levels of HMG‑CoA reductase, CPT‑1, FAT/CD36 and GLUT4. Oil red O staining also demonstrated that capsinoids decreased fat accumulation in the adipocytes. In conclusion, these results indicate that capsinoids may be worth investigating as a potential cure for obesity.
Collapse
Affiliation(s)
- Qin Hong
- Department of Nutrition and Food Hygiene, School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chen Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hu Xiangying
- Department of Nutrition and Food Hygiene, School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuan Quan
- Department of Nutrition and Food Hygiene, School of Public Health, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
45
|
Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res 2014; 38:512-21. [PMID: 25231341 DOI: 10.1007/s12272-014-0481-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 01/21/2023]
Abstract
This study innovatively prepared an effective capsaicin-loaded liposome, a nanoformulation with fewer irritants, for oral administration. The in vitro and in vivo properties of the liposomal encapsulation were investigated and the potential possibility of oral administration evaluated. The liposomal agent composed of phospholipid, cholesterol, sodium cholate and isopropyl myristate was prepared using film-dispersion method. A level A in vitro-in vivo correlation (IVIVC) was established for the first time, which demonstrated an excellent IVIVC of both formulated and free capsaicin in oral administration. Physicochemical characterizations including mean particle size, zeta (ζ) potential and average encapsulation efficiency of capsaicin-loaded liposome were found to be 52.2 ± 1.3 nm, -41.5 ± 2.71 mv and 81.9 ± 2.43 %, respectively. In vivo, liposomal encapsulation allowed a 3.34-fold increase in relative bioavailability compared to free capsaicin. The gastric mucosa irritation studies indicated that the liposomal system was a safe carrier for oral administration. These results support the fact that capsaicin, an effective drug for the treatment of neuropathic pain, could be encapsulated in liposome for improved oral bioavailability. The excellent IVIVC of capsaicin-loaded liposome could also be a promising tool in liposomal formulation development with an added advantage of reduced animal testing.
Collapse
|
46
|
Chen F, Zhai X, Zhu C, Lu Y. Effects of capsaicin on pharmacokinetics of pitavastatin in rats. Xenobiotica 2014; 45:171-6. [DOI: 10.3109/00498254.2014.956848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
47
|
Protective effect of (-)-epigallocatechin-3-gallate on capsaicin-induced DNA damage and oxidative stress in human erythrocyes and leucocytes in vitro. Cytotechnology 2014; 67:367-77. [PMID: 24728932 DOI: 10.1007/s10616-014-9695-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/24/2014] [Indexed: 01/10/2023] Open
Abstract
The aim of this study is to show that protective effects of the main catechin (-)-epigallocatechin-3-gallate (EGCG) against capsaicin (CAP) induced oxidative stress and DNA damage in human blood in vitro. Superoxide dismutase, catalase, glutathione peroxidase and malondialdehyde (MDA) level were studied in erythrocytes and leucocytes with increased concentrations of CAP. DNA damage in leucocytes was measured by the comet assay. Human blood cells have been administered with doses between 0 and 200 μM of CAP and/or EGCG (20 μM) for an hour at 37 °C. Treatment with CAP alone has increased the levels of MDA and decreased antioxidant enzymes in human blood cells. A significant increase in tail DNA%, mean tail length and tail moment indicating DNA damage has been observed at the highest dose of CAP treatment when compared to controls. Treatment of cells with CAP plus EGCG prevented CAP-induced changes in antioxidant enzyme activities and MDA level and mean tail lenght indicating DNA damage. A significant increase in mean tail lenght was observed at high doses of CAP. These data suggest that EGCG can prevent toxicity to human erythrocytes and leucocytes caused by CAP, only at low doses.
Collapse
|
48
|
Meral O, Alpay M, Kismali G, Kosova F, Cakir DU, Pekcan M, Yigit S, Sel T. Capsaicin inhibits cell proliferation by cytochrome c release in gastric cancer cells. Tumour Biol 2014; 35:6485-92. [PMID: 24682934 DOI: 10.1007/s13277-014-1864-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/18/2014] [Indexed: 12/20/2022] Open
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the principal pungent component in hot peppers. The role of capsaicin in carcinogenesis is quite controversial. Although some investigators suspect that capsaicin is a carcinogen, co-carcinogen, or tumor promoter, others have reported that it has chemopreventive and chemotherapeutic effects. The present study aimed to evaluate the cytotoxicity and chemosensitizing activities of capsaicin alone and on 5-flourouracil (5-FU)-treated gastric cancer cells. In this study, the gastric cancer cell line HGC-27 was used and capsaicin used as a chemosensitizer and 5-flourouracil (5-FU) was used as chemotherapeutic. Cytotoxicity and chemosensitizing activities were analyzed with MTT assay; supernatant levels of LDH and glucose were detected as biochemical markers of cell viability; cytochrome c and AIF were evaluated with western blot; and additionally, wound-healing assays were employed. Results suggested that capsaicin had significant anticancer abilities; such capsaicin were capable of causing multifold decreases in the half maximal inhibitory concentration IC50 value of 5-FU. The continuing controversy surrounding consumption or topical application of capsaicin clearly suggests that more well-controlled epidemiologic studies are needed to evaluate the safety and efficacy of capsaicin use. In summary, the present study demonstrated that capsaicin has the potential to be used for treating gastric carcinoma with 5-FU in vitro.
Collapse
Affiliation(s)
- Ogunc Meral
- Faculty of Veterinary Medicine, Department of Biochemistry, Ankara University, Ankara, 06110, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wallace M, Pappagallo M. Qutenza®: a capsaicin 8% patch for the management of postherpetic neuralgia. Expert Rev Neurother 2014; 11:15-27. [DOI: 10.1586/ern.10.182] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Kim HA, Kim MS, Kim SH, Kim YK. Pepper seed extract suppresses invasion and migration of human breast cancer cells. Nutr Cancer 2013; 66:159-65. [PMID: 24341783 DOI: 10.1080/01635581.2014.853814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was performed to determine the antimetastatic activities of chili pepper seed on human breast cancer cells. The water extract of chili pepper seeds was prepared and it contained a substantial amount of phenols (131.12 mg%) and no capsaicinoids. Pepper seed extract (PSE) suppressed the proliferation of MDA-MB-231 and MCF-7 cells at the concentration of 10, 25, and 50 μg/ml (MDA-MB-231: IC50 = 20.1 μg/ml, MCF-7: IC50 = 14.7 μg/ml). PSE increased the expression level of E-cadherin up to 1.2-fold of the control in MCF-7 cells. PSE also decreased the secretion of matrix metalloproteinase (MMP)-2 and MMP-9 in MDA-MB-231 and MCF-7 cells at the concentration of 25 and 50 μg/ml. PSE treatment significantly suppressed the invasion of MDA-MB-231 and MCF-7 cells in a dose-dependent manner. The motility of cancer cells was apparently retarded in the wound healing assay by the PSE treatment. Although our data collectively demonstrate that PSE inhibits invasion and migration of breast cancer cells, further study is needed to identify specific mechanisms and bioactive components contributing to antimetastatic effects of chili pepper seed.
Collapse
Affiliation(s)
- Hyeon-A Kim
- a Department of Food & Nutrition , Mokpo National University , Jeonnam , Korea
| | | | | | | |
Collapse
|