1
|
Vargas Y, Castro Tron AE, Rodríguez Rodríguez A, Uribe RM, Joseph-Bravo P, Charli JL. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024; 14:302. [PMID: 38921437 PMCID: PMC11205479 DOI: 10.3390/metabo14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Cuernavaca 62210, Mexico; (Y.V.); (A.E.C.T.); (A.R.R.); (R.M.U.); (P.J.-B.)
| |
Collapse
|
2
|
Kolacz J, Kovacic KK, Porges SW. Traumatic stress and the autonomic brain-gut connection in development: Polyvagal Theory as an integrative framework for psychosocial and gastrointestinal pathology. Dev Psychobiol 2019; 61:796-809. [PMID: 30953358 DOI: 10.1002/dev.21852] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
A range of psychiatric disorders such as anxiety, depression, and post-traumatic stress disorder frequently co-occur with functional gastrointestinal (GI) disorders. Risk of these pathologies is particularly high in those with a history of trauma, abuse, and chronic stress. These scientific findings and rising awareness within the healthcare profession give rise to a need for an integrative framework to understand the developmental mechanisms that give rise to these observations. In this paper, we introduce a plausible explanatory framework, based on the Polyvagal Theory (Porges, Psychophysiology, 32, 301-318, 1995; Porges, International Journal of Psychophysiology, 42, 123-146, 2001; Porges, Biological Psychology, 74, 116-143, 2007), which describes how evolution impacted the structure and function of the autonomic nervous system (ANS). The Polyvagal Theory provides organizing principles for understanding the development of adaptive diversity in homeostatic, threat-response, and psychosocial functions that contribute to pathology. Using these principles, we outline possible mechanisms that promote and maintain socioemotional and GI dysfunction and review their implications for therapeutic targets.
Collapse
Affiliation(s)
- Jacek Kolacz
- Traumatic Stress Research Consortium at the Kinsey Institute, Indiana University, Bloomington, Indiana
| | - Katja K Kovacic
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stephen W Porges
- Traumatic Stress Research Consortium at the Kinsey Institute, Indiana University, Bloomington, Indiana.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Swartz EM, Holmes GM. Gastric vagal motoneuron function is maintained following experimental spinal cord injury. Neurogastroenterol Motil 2014; 26:1717-29. [PMID: 25316513 PMCID: PMC4245370 DOI: 10.1111/nmo.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical reports indicate that spinal cord injury (SCI) initiates profound gastric dysfunction. Gastric reflexes involve stimulation of sensory vagal fibers, which engage brainstem circuits that modulate efferent output back to the stomach, thereby completing the vago-vagal reflex. Our recent studies in a rodent model of experimental high thoracic (T3-) SCI suggest that reduced vagal afferent sensitivity to gastrointestinal (GI) stimuli may be responsible for diminished gastric function. Nevertheless, derangements in efferent signals from the dorsal motor nucleus of the vagus (DMV) to the stomach may also account for reduced motility. METHODS We assessed the anatomical, neurophysiological, and functional integrity of gastric-projecting DMV neurons in T3-SCI rats using: (i) retrograde labeling of gastric-projecting DMV neurons; (ii) whole cell recordings from gastric-projecting neurons of the DMV; and, (iii) in vivo measurements of gastric contractions following unilateral microinjection of thyrotropin-releasing hormone (TRH) into the DMV. KEY RESULTS Immunohistochemical analysis of gastric-projecting DMV neurons demonstrated no difference between control and T3-SCI rats. Whole cell in vitro recordings showed no alteration in DMV membrane properties and the neuronal morphology of these same, neurobiotin-labeled, DMV neurons were unchanged after T3-SCI with regard to cell size and dendritic arborization. Central microinjection of TRH induced a significant facilitation of gastric contractions in both control and T3-SCI rats and there were no significant dose-dependent differences between groups. CONCLUSIONS & INFERENCES Our data suggest that the acute, 3 day to 1 week post-SCI, dysfunction of vagally mediated gastric reflexes do not include derangements in the efferent DMV motoneurons.
Collapse
Affiliation(s)
| | - Gregory M. Holmes
- Corresponding author: Dr. Gregory M. Holmes, Department of Neural and Behavioral Sciences, Penn State College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033,
| |
Collapse
|
4
|
Viard E, Rogers RC, Hermann GE. Systemic cholecystokinin amplifies vago-vagal reflex responses recorded in vagal motor neurones. J Physiol 2011; 590:631-46. [PMID: 22155934 DOI: 10.1113/jphysiol.2011.224477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholecystokinin (CCK) is a potent regulator of visceral functions as a consequence of its actions on vago-vagal reflex circuit elements. This paper addresses three current controversies regarding the role of CCK to control gastric function via vago-vagal reflexes. Specifically: (a) whether CNS vs. peripheral (vagal afferent) receptors are dominant, (b) whether the long (58) vs. short (8) isoform is more potent and (c) whether nutritional status impacts the gain or even the direction of vago-vagal reflexes. Our in vivo recordings of physiologically identified gastric vagal motor neurones (gastric-DMN) involved in the gastric accommodation reflex (GAR) show unequivocally that: (a) receptors in the coeliac-portal circulation are more sensitive in amplifying gastric vagal reflexes; (b) in the periphery, CCK8 is more potent than CCK58; and (c) the nutritional status has a marginal effect on gastric reflex control. While the GAR reflex is more sensitive in the fasted rat, CCK amplifies this sensitivity. Thus, our results are in stark contrast to recent reports which have suggested that vago-vagal reflexes are inverted by the metabolic status of the animal and that this inversion could be mediated by CCK within the CNS.
Collapse
Affiliation(s)
- Edouard Viard
- Pennington Biomedical Research Centre, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
5
|
Stengel A, Goebel M, Luckey A, Yuan PQ, Wang L, Taché Y. Cold ambient temperature reverses abdominal surgery-induced delayed gastric emptying and decreased plasma ghrelin levels in rats. Peptides 2010; 31:2229-35. [PMID: 20817059 PMCID: PMC2967623 DOI: 10.1016/j.peptides.2010.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 02/01/2023]
Abstract
We investigated whether acute cold-induced vagal activation through brainstem thyrotropin-releasing hormone (TRH) signaling influences abdominal surgery-induced delayed gastric emptying (GE) in fasted rats. Laparotomy and cecal palpation or sham (short anesthesia alone) was performed 10 min before or 30 min after cold exposure (4-6°C) lasting 90 min. Non-nutrient GE was assessed during 70-90 min of cold exposure. Control groups remained at room temperature (RT). The stable TRH analog, RX-77368 (50 ng/rat) was injected intracisternally immediately before surgery and GE monitored 30-50 min postsurgery in rats maintained at RT. Plasma acyl (AG) and total ghrelin levels were assessed using the new RAPID blood processing method and radioimmunoassays. Desacyl ghrelin (DAG) was derived from total minus AG. In rats maintained at RT, abdominal surgery decreased GE by 60% compared to sham. Cold before or after surgery or RX-77368 normalized the delayed GE. In non-fasted rats, cold exposure increased plasma AG and DAG levels at 2 h (2.4- and 2.7-times, respectively) and 4 h (2.2- and 2.0-times, respectively) compared to values in rats maintained at RT. In fasted rats, abdominal surgery decreased AG and DAG levels by 2.4- and 2.1-times, respectively, at 90 min. Cold for 90 min after surgery normalized AG and DAG levels to those observed in sham-treated animals kept at RT. These data indicate that endogenous (cold exposure) and exogenous (TRH analog) activation of medullary TRH vagal signaling prevent abdominal surgery-induced delayed GE. The restoration of circulating AG levels inhibited by abdominal surgery may contribute to alleviate postoperative gastric ileus.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE/Digestive Diseases Research Center, Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care System, CA 90073, USA
| | | | | | | | | | | |
Collapse
|
6
|
Barnes MJ, Rogers RC, Van Meter MJ, Hermann GE. Co-localization of TRHR1 and LepRb receptors on neurons in the hindbrain of the rat. Brain Res 2010; 1355:70-85. [PMID: 20691166 DOI: 10.1016/j.brainres.2010.07.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 02/06/2023]
Abstract
We have reported a highly cooperative interaction between leptin and thyrotropin releasing hormone (TRH) in the hindbrain to generate thermogenic responses (Hermann et al., 2006) (Rogers et al., 2009). Identifying the locus in the hindbrain where leptin and TRH act synergistically to increase thermogenesis will be necessary before we can determine the mechanism(s) by which this interaction occurs. Here, we performed heat-induced epitope recovery techniques and in situ hybridization to determine if neurons or afferent fibers in the hindbrain possess both TRH type 1 receptor and long-form leptin receptor [TRHR1; LepRb, respectively]. LepRb receptors were highly expressed in the solitary nucleus [NST], dorsal motor nucleus of the vagus [DMN] and catecholaminergic neurons of the ventrolateral medulla [VLM]. All neurons that contained LepRb also contained TRHR1. Fibers in the NST and the raphe pallidus [RP] and obscurrus [RO] that possess LepRb receptors were phenotypically identified as glutamatergic type 2 fibers (vglut2). Fibers in the NST and RP that possess TRHR1 receptors were phenotypically identified as serotonergic [i.e., immunopositive for the serotonin transporter; SERT]. Co-localization of LepRb and TRHR1 was not observed on individual fibers in the hindbrain but these two fiber types co-mingle in these nuclei. These anatomical arrangements may provide a basis for the synergy between leptin and TRH to increase thermogenesis.
Collapse
Affiliation(s)
- Maria J Barnes
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
7
|
López JM, Domínguez L, González A. Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles. J Chem Neuroanat 2008; 36:251-63. [DOI: 10.1016/j.jchemneu.2008.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 01/31/2023]
|
8
|
Hermann GE, Barnes MJ, Rogers RC. Leptin and thyrotropin-releasing hormone: cooperative action in the hindbrain to activate brown adipose thermogenesis. Brain Res 2006; 1117:118-24. [PMID: 16956588 DOI: 10.1016/j.brainres.2006.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Explanations of leptin induction of thermogenesis typically involve primary detection elements in the hypothalamus. In turn, these circuits control medullary raphe neurons that regulate spinal efferent sympathetic projections to heat-producing brown adipose tissue (BAT). The hindbrain may be capable of considerable thermoregulatory capacity independent of the hypothalamus, though little is known about the site(s), mechanism(s) of action, or the physiological consequences of leptin action in the hindbrain. Several reports describe the presence of leptin receptor in the solitary nucleus, and there is functional evidence that leptin can act in the dorsal medulla to suppress feeding. We examined the effects of leptin, applied to the dorsal medulla, on BAT thermogenesis. Leptin alone (< or =25 microg) had no independent effect on BAT thermogenesis. We hypothesized that, while leptin may not be capable of activating thermocontrol mechanisms in the hindbrain directly, it may modulate the efficacy of other neural signals involved in the control of thermogenesis such as thyrotropin-releasing hormone (TRH). We tested the hypothesis that leptin and TRH, acting in the hindbrain, co-regulate thermogenesis. As expected, TRH (0.1 microg), alone, produces a small increase (+0.75 degrees C) in BAT temperature. Co-application of leptin (5 mug) and TRH (0.1 microg) to the dorsal medulla produces an increase in BAT and core temperature more than 300% greater than TRH alone (+3.5 degrees C). This effect is undiminished in the acute decerebrate rat, suggesting that the effect is mediated entirely by the hindbrain.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd., Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
9
|
Taché Y, Yang H, Miampamba M, Martinez V, Yuan PQ. Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding. Auton Neurosci 2006; 125:42-52. [PMID: 16520096 PMCID: PMC8086327 DOI: 10.1016/j.autneu.2006.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 01/13/2006] [Accepted: 01/14/2006] [Indexed: 12/11/2022]
Abstract
Pavlov's pioneering work established that sham-feeding induced by sight or smell of food or feeding in dogs with permanent esophagostomy stimulates gastric acid secretion through vagal pathways. Brain circuitries and transmitters involved in the central vagal regulation of gastric function have recently been unraveled. Neurons in the dorsal vagal complex including the dorsal motor nucleus of the vagus (DMN) express thyrotropin-releasing hormone (TRH) receptor and are innervated by TRH fibers originating from TRH synthesizing neurons in the raphe pallidus, raphe obscurus and the parapyramidal regions. TRH injected into the DMN or cisterna magna increases the firing of DMN neurons and gastric vagal efferent discharge, activates cholinergic neurons in gastric submucosal and myenteric plexuses, and induces a vagal-dependent, atropine-sensitive stimulation of gastric secretory (acid, pepsin) and motor functions. TRH antibody or TRH-R1 receptor oligodeoxynucleotide antisense pretreatment in the cisterna magna or DMN abolished vagal-dependent gastric secretory and motor responses to sham-feeding, 2-deoxy-D-glucose, cold exposure and chemical activation of cell bodies in medullary raphe nuclei. TRH excitatory action in the DMN is potentiated by co-released prepro-TRH-(160-169) flanking peptide, Ps4 and 5-HT, and inhibited by a number of peptides involved in the stress/immune response and inhibition of food-intake. These neuroanatomical, electrophysiological and neuropharmacological data are consistent with a physiological role of brainstem TRH in the central vagal stimulation of gastric myenteric cholinergic neurons in response to several vagal dependent stimuli including sham-feeding.
Collapse
Affiliation(s)
- Y Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences and Women's Health, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
10
|
Yuan PQ, Yang H. Hypothyroidism increases Fos immunoreactivity in cholinergic neurons of brain medullary dorsal vagal complex in rats. Am J Physiol Endocrinol Metab 2005; 289:E892-9. [PMID: 15985455 DOI: 10.1152/ajpendo.00108.2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypo- or hyperthyroidism is associated with autonomic disorders. We studied Fos expression in the medullary dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarii (NTS), and area postrema (AP) in four groups of rats with different thyroid states induced by a combination of drinking water and daily intraperitoneal injection for 1-4 wk: 1) tap water and vehicle; 2) 0.1% propylthiouracil (PTU) and vehicle; 3) PTU and thyroxine (T4; 2 microg/100 g); and 4) tap water and T4 (10 microg/100 g). The numbers of Fos immunoreactive (IR) positive neurons in the DMV, NTS, and AP were low in euthyroid rats but significantly higher in the 4-wk duration in hypothyroid rats, which were prevented by simultaneous T4 replacement. Hyperthyroidism had no effect on Fos expression in these areas. There were significant negative correlations between T4 levels and the numbers of Fos-IR-positive neurons in the DMV (r = -0.6388, P < 0.008), NTS (r = -0.6741, P < 0.003), and AP (r = -0.5622, P < 0.004). Double staining showed that Fos immunoreactivity in the DMV of hypothyroid rats was mostly localized in choline acetyltransferase-containing neurons. Thyroid hormone receptors alpha1 and beta2 were localized in the observed nuclei. These results indicate that thyroid hormone influences the DMV/NTS/AP neuronal activity, which may contribute to the vagal-related visceral disorders observed in hypothyroidism.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE: Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA
| | | |
Collapse
|
11
|
Yuan PQ, Kimura H, Million M, Bellier JP, Wang L, Ohning GV, Taché Y. Central vagal stimulation activates enteric cholinergic neurons in the stomach and VIP neurons in the duodenum in conscious rats. Peptides 2005; 26:653-64. [PMID: 15752581 PMCID: PMC8082755 DOI: 10.1016/j.peptides.2004.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 11/12/2004] [Accepted: 11/17/2004] [Indexed: 11/23/2022]
Abstract
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE: Digestive Diseases Research Center, VA Greater Los Angeles Healthcare System, Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hermann GE, Nasse JS, Rogers RC. Alpha-1 adrenergic input to solitary nucleus neurones: calcium oscillations, excitation and gastric reflex control. J Physiol 2004; 562:553-68. [PMID: 15539398 PMCID: PMC1665513 DOI: 10.1113/jphysiol.2004.076919] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nucleus of the solitary tract (NST) processes substantial visceral afferent input and sends divergent projections to a wide array of CNS targets. The NST is essential to the maintenance of behavioural and autonomic homeostasis and is the source, as well as the recipient, of considerable noradrenergic (NE) projections. The significance of NE projections from the NST to other CNS regions has long been appreciated, but the nature of NE action on NST neurones themselves, especially on the alpha-1 receptor subtype, is controversial. We used a combination of methodologies to establish, systematically, the effects and cellular basis of action of the alpha-1 agonist, phenylephrine (PHE), to control NST neurones responsible for vago-vagal reflex regulation of the stomach. Immunocytochemical and retrograde tracing studies verified that the area postrema, A2, A5, ventrolateral medulla and locus coeruleus regions are sources of catecholaminergic input to the NST. In vivo electrophysiological recordings showed that PHE activates physiologically identified, second-order gastric sensory NST neurones. In vivo microinjection of PHE onto NST neurones caused a significant reduction in gastric tone. Finally, in vitro calcium imaging studies revealed that PHE caused dramatic cytosolic calcium oscillations in NST neurones. These oscillations are probably the result of an interplay between agonist-induced and inositol 1,4,5-trisphosphate (IP(3))-mediated intracellular calcium release and Ca(2+)-ATPase control of intracellular calcium storage pumps. The oscillations persisted even in perfusions of zero calcium-EGTA Krebs solution suggesting that the calcium oscillation is mediated principally by intracellular calcium release-reuptake mechanisms. Cyclical activation of the NST may function to increase the responsiveness of these neurones to incoming afferent input (i.e., elevate the "gain"). An increase in gain of afferent input may cause an amplification of the response part of the reflex and help explain the powerful effects that alpha-1 agonists have in suppressing gastric motility and producing anorexia.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
13
|
Rogers RC, Travagli RA, Hermann GE. Noradrenergic neurons in the rat solitary nucleus participate in the esophageal-gastric relaxation reflex. Am J Physiol Regul Integr Comp Physiol 2003; 285:R479-89. [PMID: 12714355 PMCID: PMC3062485 DOI: 10.1152/ajpregu.00155.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of esophageal mechanosensors excites neurons in and near the central nucleus of the solitary tract (NSTc). In turn, NSTc neurons coordinate the relaxation of the stomach [i.e., the receptive relaxation reflex (RRR)] by modulating the output of vagal efferent neurons of the dorsal motor nucleus of the vagus (DMN). The NSTc area contains neurons with diverse neurochemical phenotypes, including a large population of catecholaminergic and nitrergic neurons. The aim of the present study was to determine whether either one of these prominent neuronal phenotypes was involved in the RRR. Immunohistochemical techniques revealed that repetitive esophageal distension caused 53% of tyrosine hydroxylase-immunoreactive (TH-ir) neurons to colocalize c-Fos in the NSTc. No nitric oxide synthase (NOS)-ir neurons in the NSTc colocalized c-Fos in either distension or control conditions. Local brain stem application (2 ng) of alpha-adrenoreceptor antagonists (i.e., alpha1-prazosin or alpha2-yohimbine) significantly reduced the magnitude of the esophageal distension-induced gastric relaxation to approximately 55% of control conditions. The combination of yohimbine and prazosin reduced the magnitude of the reflex to approximately 27% of control. In contrast, pretreatment with either the NOS-inhibitor NG-nitro-l-arginine methyl ester or the beta-adrenoceptor antagonist propranolol did not interfere with esophageal distension-induced gastric relaxation. Unilateral microinjections of the agonist norepinephrine (0.3 ng) directed at the DMN were sufficient to mimic the transient esophageal-gastric reflex. Our data suggest that noradrenergic, but not nitrergic, neurons of the NSTc play a prominent role in the modulation of the RRR through action on alpha1- and alpha2-adrenoreceptors. The finding that esophageal afferent stimulation alone is not sufficient to activate NOS-positive neurons in the NSTc suggests that these neurons may be strongly gated by other central nervous system inputs, perhaps related to the coordination of swallowing or emesis with respiration.
Collapse
Affiliation(s)
- R. C. Rogers
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808
| | - R. A. Travagli
- Departments of Internal Medicine-Gastroenterology and Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - G. E. Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808
| |
Collapse
|
14
|
Teijido O, Manso MJ, Anadón R. Distribution of thyrotropin-releasing hormone immunoreactivity in the brain of the dogfish Scyliorhinus canicula. J Comp Neurol 2002; 454:65-81. [PMID: 12410619 DOI: 10.1002/cne.10431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To improve knowledge of the peptidergic systems of elasmobranch brains, the distribution of thyrotropin-releasing hormone-immunoreactive (TRHir) neurons and fibers was studied in the brain of the small-spotted dogfish (Scyliorhinus canicula L.). In the olfactory bulbs, small granule neurons richly innervated the olfactory glomeruli. In the telencephalic hemispheres, small TRHir neurons were observed in the superficial dorsal pallium, whereas TRHir fibers were widely distributed in pallial and subpallial regions. In the preoptic region, TRHir neurons formed a caudal ventrolateral group in the preoptic nucleus. In the hypothalamus, the most conspicuous TRHir populations were associated with the lateral hypothalamic recess, but small TRHir populations were found in the posterior tubercle and ventral wall of the posterior recess. The preoptic region and hypothalamus exhibited rich innervation by TRHir fibers. TRHir fibers were observed coursing to the neurohypophysis and the neuroepithelium of the saccus vasculosus, but not to the neurohemal region of the median eminence. Some stellate-like TRHir cells were observed in a few cell cords of the neurointermediate lobe of the hypophysis. The thalamus, pretectum, and midbrain lacked TRHir neurons. Further TRHir neuronal populations were observed in the central gray and superior raphe nucleus of the isthmus, and a few TRHir cells were located in the nucleus of the trigeminal descending tract at the level of the rostral spinal cord. In the brainstem, the central gray, interpeduncular nucleus, secondary visceral region of the isthmus, rhombencephalic raphe, inferior olive, vagal lobe, and Cajal's commissural nucleus were all richly TRHir-innervated. Comparison of the distribution of TRHir neurons observed in the dogfish brain with that observed in teleosts and tetrapods reveals strong resemblance but also interesting differences, indicating the presence of both a conserved basic vertebrate pattern and a number of derived characters.
Collapse
Affiliation(s)
- Oscar Teijido
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | |
Collapse
|
15
|
Yang H, Taché Y, Ohning G, Go VLW. Activation of raphe pallidus neurons increases insulin through medullary thyrotropin-releasing hormone (TRH)-vagal pathways. Pancreas 2002; 25:301-7. [PMID: 12370543 DOI: 10.1097/00006676-200210000-00014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Pancreatic insulin secretion is regulated by the vagus nerve. Medullary thyrotropin-releasing hormone (TRH) containing projections from the raphe pallidus (Rpa) neurons innervate vagal preganglionic motor neurons in the dorsal vagal complex (DVC) and are involved in vagal regulation of gastric functions. AIM To investigate whether chemical stimulation of Rpa neurons influences circulating insulin levels through brain medullary TRH-vagal pathways. METHODOLOGY In fasted, pentobarbital-anesthetized rats, kainic acid (10 ng/50 nL) was microinjected into the Rpa, and serum insulin levels were measured. Gastric acid secretion was monitored as a control of vagally mediated visceral response. RESULTS Chemical stimulation of Rpa neuronal cell bodies significantly increased serum insulin levels. Values before and at 30, 60, and 90 minutes after the microinjection of kainic acid were 0.34 +/- 0.02, 0.54 +/- 0.06, 0.60 +/- 0.06, and 0.99 +/- 0.13 ng/mL, respectively. In the same rats, gastric acid secretion was stimulated (basal, 2.3 +/- 0.6, versus 26.1 +/- 8.6 micromol/15 min at 30 minutes). Microinjections outside of the Rpa had no effect. The Rpa stimulation-induced increase in serum insulin could be mimicked by DVC microinjection of TRH analog, completely prevented by bilateral cervical vagotomy, and significantly reduced by bilateral microinjection of TRH antibody into the DVC. CONCLUSION Chemical activation of Rpa neurons increases pancreatic insulin release through medullary TRH and vagal-mediated pathways.
Collapse
Affiliation(s)
- Hong Yang
- Center for Ulcer Research & Education, Veterans Affairs Greater Los Angeles Healthcare System, UCLA Department of Medicine, and Brain Research Institute, Los Angeles, California 90073, USA.
| | | | | | | |
Collapse
|
16
|
Díaz ML, Becerra M, Manso MJ, Anadón R. Distribution of thyrotropin-releasing hormone (TRH) immunoreactivity in the brain of the zebrafish (Danio rerio). J Comp Neurol 2002; 450:45-60. [PMID: 12124766 DOI: 10.1002/cne.10300] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The distribution of thyrotropin-releasing hormone (TRH) in the brain of the adult zebrafish was studied with immunohistochemical techniques. In the telencephalon, abundant TRH-immunoreactive (TRHir) neurons were observed in the central, ventral, and supra- and postcommissural regions of the ventral telencephalic area. In the diencephalon, TRHir neurons were observed in the anterior parvocellular preoptic nucleus, the suprachiasmatic nucleus, the lateral hypothalamic nucleus, the rostral parts of the anterior tuberal nucleus and torus lateralis, and the posterior tuberal nucleus. Some TRHir neurons were also observed in the central posterior thalamic nucleus and in the habenula. The mesencephalon contained TRHir cells in the rostrodorsal tegmentum, the Edinger-Westphal nucleus, the torus semicircularis, and the nucleus of the lateral lemniscus. Further TRHir neurons were observed in the interpeduncular nucleus. In the rhombencephalon, TRHir cells were observed in the nucleus isthmi and the locus coeruleus, rostrally, and in the vagal lobe and vagal motor nucleus, caudally. In the forebrain, TRHir fibers were abundant in several regions, including the medial and caudodorsal parts of the dorsal telencephalic area, the ventral and commissural parts of the ventral telencephalic area, the preoptic area, the posterior tubercle, the anterior tuberal nucleus, and the posterior hypothalamic lobe. The dorsal thalamus exhibited moderate TRHir innervation. In the mesencephalon, the optic tectum received a rich TRHir innervation between the periventricular gray zone and the stratum griseum centrale. A conspicuous TRHir longitudinal tract traversed the tegmentum and extended to the rhombencephalon. The medial and lateral mesencephalic reticular areas and the interpeduncular nucleus were richly innervated by TRHir fibers. In the rhombencephalon, the secondary gustatory nucleus received abundant TRHir fibers. TRHir fibers moderately innervated the ventrolateral and ventromedial reticular area and richly innervated the vagal lobe and Cajal's commissural nucleus. Some TRHir fibers coursed in the lateral funiculus of the spinal cord. Some TRHir amacrine cells were observed in the retina. The wide distribution of TRHir neurons and fibers observed in the zebrafish brain suggests that TRH plays different roles. These results in the adult zebrafish reveal a number of differences with respect to the TRHir systems reported in other adult teleosts but were similar to those found during late developmental stages of trout (Díaz et al., 2001).
Collapse
Affiliation(s)
- María Luz Díaz
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071 A Coruña, Spain
| | | | | | | |
Collapse
|
17
|
Varanasi S, Chi J, Stephens RL. Methiothepin attenuates gastric secretion and motility effects of vagal stimulants at the dorsal vagal complex. Eur J Pharmacol 2002; 436:67-73. [PMID: 11834248 DOI: 10.1016/s0014-2999(01)01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methiothepin, a nonselective 5-HT receptor antagonist was utilized to explore the 5-HT modulation of dorsal vagal complex-TRH (thyrotropin releasing hormone) analogue stimulated gastric functional parameters. Intracisternal methiothepin pretreatment (200, 0.1 nmol) produced significant inhibition (70%, 44%, respectively) of the TRH analogue [p-Glu-His-(3,3'-dimethyl)-Pro NH2; RX 77368 (12 pmol)]-induced gastric acid output compared to vehicle pretreatment. Intracisternal pretreatment with methysergide (nonspecific 5-HT receptor antagonist) or combined cyanopindolol (5-HT(1A and 1B) receptor antagonist)+ritanserin (receptor antagonist of the 5-HT(2) family) did not alter the dorsal vagal complex-RX 77368 response. Unilateral dorsal vagal complex pretreatment with methiothepin (50 nmol/50 nl) attenuated ipsilateral dorsal vagal complex-TRH analog (12 pmol) induced gastric secretory response by 57%. The gastric secretagogue response to stimulation of the raphe obscurus (mediated by TRH release into the dorsal vagal complex) was inhibited 50% by pretreatment with intracisternal dorsal medullary methiothepin (0.1 nmol/10 microl). Intracisternal methiothepin (200 nmol/20 microl) also attenuated (a) dorsal vagal complex-glutamate (60 nmol/30 nl) stimulated gastric acid secretion and (b) gastric motility stimulated by dorsal vagal complex-RX 77368 (12 pmol/30 nl). The data suggest that other properties of methiothepin, alone or in addition to its 5-HT receptor antagonist effect, mediate its inhibitory actions at the dorsal vagal complex.
Collapse
Affiliation(s)
- Sridhar Varanasi
- 304 Hamilton Hall, 1645 Neil Avenue, Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Travagli RA, Rogers RC. Receptors and transmission in the brain-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits. Am J Physiol Gastrointest Liver Physiol 2001; 281:G595-601. [PMID: 11518671 PMCID: PMC3062478 DOI: 10.1152/ajpgi.2001.281.3.g595] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vago-vagal reflex circuits in the medulla are responsible for the smooth coordination of the digestive processes carried out from the oral cavity to the transverse colon. In this themes article, we concentrate mostly on electrophysiological studies concerning the extrinsic modulation of these vago-vagal reflex circuits, with a particular emphasis on two types of modulation, i.e., by "fast" classic neurotransmitters and by "slow" neuromodulators. These examples review two of the most potent modulatory processes at work within the dorsal vagal complex, which have dramatic effects on gastrointestinal function. The reader should be mindful of the fact that many more different inputs from other central nervous system (CNS) loci or circulating humoral factors add to this complex mix of modulatory inputs. It is likely that similar long-term modulations of synaptic transmission occur with other neurotransmitters and may represent an important mechanism for the integration and regulation of neuronal behavior. Of course, this fact strongly militates against the success of any single drug or approach in the treatment of motility disorders having a CNS component.
Collapse
Affiliation(s)
- R A Travagli
- Department of Gastroenterology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
19
|
Browning KN, Travagli RA. The peptide TRH uncovers the presence of presynaptic 5-HT1A receptors via activation of a second messenger pathway in the rat dorsal vagal complex. J Physiol 2001; 531:425-35. [PMID: 11230515 PMCID: PMC2278482 DOI: 10.1111/j.1469-7793.2001.0425i.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is well recognized that brainstem microinjections of 5-hydroxytryptamine (serotonin, 5-HT) and thyrotropin-releasing hormone (TRH) act synergistically to stimulate gastric function in vivo. Previous in vitro experiments have shown that this synergism does not occur at the level of the dorsal motor nucleus of the vagus (DMV) motoneurone. In order to determine the mechanism of this action, whole cell patch clamp recordings were made from identified gastric-projecting rat DMV neurones to investigate the effects of 5-HT and TRH on GABAergic inhibitory postsynaptic currents (IPSCs) evoked by stimulation of the nucleus of the tractus solitarius (NTS). 5-HT (30 microM) decreased IPSC amplitude by 26 +/- 2.5% in approximately 43% of DMV neurones. In the remaining neurones in which 5-HT had no effect on IPSC amplitude, exposure to TRH (1 microM) uncovered the ability of subsequent applications of 5-HT to decrease IPSC amplitude by 28 +/- 3%. Such TRH-induced 5-HT responses were prevented by the 5-HT1A antagonist NAN-190 (1 microM) and mimicked by the 5-HT1A agonist 8-OH-DPAT (1 microM). Increasing cAMP levels using the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX; 10 microM), the non-hydrolysable cAMP analogue 8-bromo-cAMP (1 mM), or the adenylate cyclase activator forskolin (10 microM), like TRH, uncovered the ability of 5-HT to decrease evoked IPSC amplitude (17 +/- 2.2 %, 28.5 +/- 5.3 % and 30 +/- 4.8%, respectively), in neurones previously unresponsive to 5-HT. Conversely, the adenylate cyclase inhibitor, dideoxyadenosine (10 microM) and the protein kinase A inhibitor, Rp-cAMP (10 microM), blocked the ability of TRH to uncover the presynaptic inhibitory actions of 5-HT. These results suggest that activation of presynaptic TRH receptors initiates an intracellular signalling cascade that raises the levels of cAMP sufficient to uncover previously silent 5-HT1A receptors on presynaptic nerve terminals within the dorsal vagal complex.
Collapse
Affiliation(s)
- K N Browning
- Neurogastroenterology Research, Henry Ford Health System, Detroit, MI, USA
| | | |
Collapse
|
20
|
Abstract
Bombesin is the first peptide shown to act in the brain to influence gastric function and the most potent peptide to inhibit acid secretion when injected into the cerebrospinal fluid (CSF) in rats and dogs. Bombesin responsive sites include specific hypothalamic nuclei (paraventricular nucleus, preoptic area and anterior hypothalamus), the dorsal vagal complex as well as spinal sites at T9-T10. The antisecretory effect of central bombesin encompasses a variety of endocrine/paracrine (gastrin, histamine) or neuronal stimulants. Bombesin into the CSF induces an integrated gastric response (increase in bicarbonate, and mucus, inhibition of acid, pepsin, vagally mediated contractions) enhancing the resistance of the mucosa to injury through autonomic pathways. The physiological significance of central action of bombesin on gastric function is still to be unraveled.
Collapse
Affiliation(s)
- V Martinez
- C.E.U. San Pablo, Veterinary School, Department of Physiology, 46113 Moncada, Valencia, Spain
| | | |
Collapse
|
21
|
Yang H, Yuan PQ, Wang L, Taché Y. Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Neuroscience 2000; 95:773-9. [PMID: 10670444 PMCID: PMC8086300 DOI: 10.1016/s0306-4522(99)00490-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurons synthesizing thyrotropin-releasing hormone, substance P and serotonin in the medullary caudal raphe nuclei project to the dorsal vagal complex and play a role in the central vagal regulation of gastric function. Neurons in the parapyramidal region in the ventral medulla share similar biochemical coding and projections as those in the caudal raphe nuclei. The role of the parapyramidal region in the autonomic regulation of gastric acid secretion was investigated in urethane-anesthetized rats. Unilateral microinjection of kainate into the parapyramidal region at 10, 15 and 20 ng induced a dose-related stimulation of gastric acid secretion (net increases: 22.2+/-11.2, 40.5+/-8.5 and 89.8+/-19.4 micromol/60 min, respectively), while injection of vehicle had no effect (net change: -0.1+/-1.4 micromol/60 min). Time-course studies showed a nine-fold peak increase over basal at 30 min after parapyramidal injection of kainate (20 ng) and acid secretion returned to basal level at 70 min. Microinjections of kainate (15-20 ng) outside the parapyramidal region or into the parapyramidal region in vagotomized rats had no effect. Exposure to cold (4 degrees C) for 2 h, which is known to induce vagally mediated gastric secretory and motor responses through medullary thyrotropin-releasing hormone pathways, increased the number of Fos-positive cells in the caudal, middle and rostral parts of the parapyramidal region to 4.3+/-0.4, 9.4+/-0.9 and 18.4+/-1.6/section, respectively, compared with 0.1+/-0. 1, 0.1+/-0.0 and 0.7+/-0.6/section, respectively, in rats maintained at room temperature. Most of the Fos-labeled cells co-expressed pro-thyrotropin-releasing hormone messenger RNA signal and/or were serotonin immunoreactive. These data show that chemical activation of neurons in the parapyramidal region results in a vagal-dependent stimulation of gastric acid secretion and that acute cold exposure activates parapyramidal neurons containing pro-thyrotropin-releasing hormone and/or serotonin, suggesting a potential role of the parapyramidal region, in addition to the caudal raphe nuclei, as medullary sites involved in the vagal regulation of gastric function.
Collapse
Affiliation(s)
- H Yang
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, UCLA, CA 90073, USA.
| | | | | | | |
Collapse
|
22
|
D�az ML, Becerra M, Manso MJ, Anad�n R. Development of thyrotropin-releasing hormone immunoreactivity in the brain of the brown troutSalmo trutta fario. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000108)429:2<299::aid-cne10>3.0.co;2-m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Affiliation(s)
- E A Nillni
- Department of Medicine, Brown University School of Medicine, Rhode Island Hospital, Providence 02903, USA.
| | | |
Collapse
|
24
|
Browning KN, Renehan WE, Travagli RA. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J Physiol 1999; 517 ( Pt 2):521-32. [PMID: 10332099 PMCID: PMC2269359 DOI: 10.1111/j.1469-7793.1999.0521t.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The electrophysiological properties of rat dorsal motor nucleus of the vagus (DMV) neurones (n = 162) were examined using whole cell patch clamp recordings from brainstem slices. Recordings were made from DMV neurones whose projections to the gastrointestinal tract had been identified by previously applying fluorescent retrograde tracers to the gastric fundus, corpus or antrum/pylorus, or to the duodenum or caecum. 2. The neuronal groups were markedly heterogeneous with respect to several electrophysiological properties. For example, neurones which projected to the fundus had a higher input resistance (400 +/- 25 Momega), a smaller and shorter after-hyperpolarization (16.7 +/- 0.49 mV and 63.5 +/- 3.9 ms) and a higher frequency of action potential firing (19.3 +/- 1.4 action potentials s-1) following injection of depolarizing current (270 pA) when compared with caecum-projecting neurones (302 +/- 22 Momega; 23. 5 +/- 0.87 mV and 81.1 +/- 5.3 ms; 9.7 +/- 1.1 action potentials s-1; P < 0.05 for each parameter). Differences between neuronal groups were also apparent with respect to the distribution of several voltage-dependent potassium currents. Inward rectification was present only in caecum-projecting neurones, for example. 3. Neurones (n = 82) were filled with the intracellular stain Neurobiotin allowing post-fixation morphological reconstruction. Neurones projecting to the caecum had the largest cell volume (5238 +/- 535 microm3), soma area (489 +/- 46 microm2) and soma diameter (24.6 +/- 1.24 microm) as well as the largest number of dendritic branch segments (23 +/- 2). 4. In summary, these results suggest that DMV neurones are heterogeneous with respect to some electrophysiological as well as some morphological properties and can be divided into subgroups according to their gastrointestinal projections.
Collapse
Affiliation(s)
- K N Browning
- Neurogastroenterology Research, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | |
Collapse
|
25
|
Li Y, Zhu J, Owyang C. Electrical physiological evidence for highand low-affinity vagal CCK-A receptors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G469-77. [PMID: 10444462 DOI: 10.1152/ajpgi.1999.277.2.g469] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have demonstrated that under physiological conditions CCK acts through vagal high-affinity CCK-A receptors to mediate pancreatic secretion. In this study, we evaluated the vagal afferent response to endogenous CCK in rats and defined the CCK-receptor affinity states and the vagal-receptive field responsive to CCK stimulation using electrophysiological studies. Experiments were performed on anesthetized rats prepared with bile-pancreatic fistula. Plasma CCK levels were elevated by diverting bile-pancreatic juice (BPJ). The single-unit discharge of sensory neurons supplying the gastrointestinal tract was recorded from the nodose ganglia. All units studied were either silent or they had a very low resting discharge frequency. Thirty-two single units were studied extensively; seven were shown to be stimulated by diversion of BPJ (2.6 +/- 2 impulses/min at basal to 40 +/- 12 impulses/min after diversion). Acute subdiaphragmatic vagotomy or perivagal capsaicin treatment abolished the response. The CCK-A-receptor antagonist CR-1409, but not the CCK-B antagonist L-365260, blocked the vagal response to endogenous CCK stimulation. Infusion of the low-affinity CCK-receptor antagonist CCK-JMV-180 completely blocked the vagal afferent response to the diversion of BPJ in three of seven rats tested but had no effect on the response in the remaining four. In a separate study, we demonstrated that gastric, celiac, or hepatic branch vagotomy abolished the response in different subgroups of neurons. In conclusion, under physiological conditions, CCK acts on both high- and low-affinity CCK-A receptors present on distinct vagal afferent fibers. The vagal CCK-receptor field includes the regions innervated by the gastric, celiac, and hepatic vagal branches. This study provides electrophysiological evidence that vagal CCK receptors are present on the vagal gastric, celiac, and hepatic branches and may occur in high- and low-affinity states.
Collapse
Affiliation(s)
- Y Li
- Gastroenterology Research Unit, Department of Internal Medicine, The University of Michigan Health System, Ann Arbor, Michigan 48109-0362, USA
| | | | | |
Collapse
|
26
|
Taché Y, Kaneko H, Kawakubo K, Kato K, Király Á, Yang H. Central and peripheral vagal mechanisms involved in gastric protection against ethanol injury. J Gastroenterol Hepatol 1998; 13:S214-S220. [PMID: 28976666 DOI: 10.1111/j.1440-1746.1998.tb01880.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation of medullary thyrotropin-releasing hormone (TRH), at a dose subthreshold to increase gastric acid secretion, protects the gastric mucosa against ethanol injury through vagal cholinergic pathways in urethane-anaesthetized rats. Peripheral mediators involve the efferent function of capsaicin-sensitive splanchnic afferents leading to calcitonin gene-related peptide (CGRP)- and nitric oxide (NO)-dependent gastric vasodilatory mechanisms. In addition, gastric prostaglandins participate in gastric protection through mechanisms independent of the stimulation of gastric mucosal blood flow and mucus secretion. Medullary TRH has physiological relevance in the vagal-dependent adaptive gastric protection induced by mild (acid or ethanol), followed by strong, irritants. Additional neuropeptides, namely peptide YY (PYY), somatostatin analogues, CGRP and adrenomedullin, also act in the brainstem to induce a vagal-dependent gastric protection against ethanol through interactions with their specific receptors in the medulla. Central PYY and adrenomedullin act through vagal cholinergic prostaglandins and NO pathways, while somatostatin analogue acts through vagal non-adrenergic, non-cholinergic vasoactive intestinal peptide and NO mechanisms. Although their biological relevance is still to be established, these peptides provide additional tools to investigate the multiple vagal-dependent mechanisms which increase the resistance of the gastric mucosa to injury.
Collapse
Affiliation(s)
- Y Taché
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| | - H Kaneko
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| | - K Kawakubo
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| | - K Kato
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| | - Á Király
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| | - H Yang
- CURE: Digestive Diseases Research Center, West Los Angeles VA Medical Center, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
27
|
Martinez V, Wu SV, Taché Y. Intracisternal antisense oligodeoxynucleotides to the thyrotropin-releasing hormone receptor blocked vagal-dependent stimulation of gastric emptying induced by acute cold in rats. Endocrinology 1998; 139:3730-5. [PMID: 9724024 DOI: 10.1210/endo.139.9.6195] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cold exposure increases TRH gene expression in hypothalamic and raphe nuclei and results in a vagal activation of gastric function. We investigated the role of medullary TRH receptors in cold (4-6 C, 90 min)-induced stimulation of gastric motor function in fasted conscious rats using intracisternal injections of TRH receptor (TRHr) antisense oligodeoxynucleotides (100 microg twice, -48 and -24 h). The gastric emptying of a methyl-cellulose solution was assessed by the phenol red method. TRH (0.1 microg) or the somatostatin subtype 5-preferring analog, BIM-23052 (1 microg), injected intracisternally increased basal gastric emptying by 34% and 47%, respectively. TRHr antisense, which had no effect on basal emptying, blocked TRH action but did not influence that of BIM-23052. Cold exposure increased gastric emptying by 64%, and the response was inhibited by vagotomy, atropine (0.1 mg/kg, i.p.), and TRHr antisense (intracisternally). Saline or mismatched oligodeoxynucleotides, injected intracisternally under similar conditions, did not alter the enhanced gastric emptying induced by cold or intracisternal injection of TRH or BIM-23052. These results indicate that TRH receptor activation in the brain stem mediates acute cold-induced vagal cholinergic stimulation of gastric transit, and that medullary TRH may play a role in the autonomic visceral responses to acute cold.
Collapse
Affiliation(s)
- V Martinez
- CURE: Digestive Diseases Research Center, West Los Angeles Veterans Administration Medical Center, and the Department of Medicine, University of California School of Medicine, 90073, USA
| | | | | |
Collapse
|
28
|
Yoneda M. Regulation of hepatic function by brain neuropeptides. World J Gastroenterol 1998; 4:192-196. [PMID: 11819273 PMCID: PMC4723454 DOI: 10.3748/wjg.v4.i3.192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/1998] [Revised: 05/15/1998] [Accepted: 06/02/1998] [Indexed: 02/06/2023] Open
|
29
|
Tamori K, Yoneda M, Nakamura K, Makino I. Effect of intracisternal thyrotropin-releasing hormone on hepatic blood flow in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G277-82. [PMID: 9486180 DOI: 10.1152/ajpgi.1998.274.2.g277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central neuropeptides play a role in many physiological regulatory processes through the autonomic nervous system. Thyrotropin-releasing hormone (TRH) is distributed in the central nervous system and acts as a neurotransmitter to regulate gastric functions through vagal-muscarinic pathways. The central effect of the TRH analog on hepatic blood flow was investigated in urethan-anesthetized rats. Hepatic blood flow was determined by the hydrogen gas clearance technique. Intracisternal injection of the stable TRH analog RX-77368 (5-100 ng) dose dependently increased hepatic blood flow with peak response at 15 min after the peptide was administered (net change from basal for vehicle and 5, 10, 100, and 500 ng RX-77368 was 2.0 +/- 0.2, 8.9 +/- 0.8, 19.4 +/- 2.6, 32.6 +/- 3.3, and 28.5 +/- 6.8 ml.min-1.100 g-1, respectively), and this stimulatory effect returned to baseline at 90 min. The stimulation of hepatic blood flow by the intracisternally administered TRH analog was abolished by atropine methyl nitrate (0.15 mg/kg ip), indomethacin (5 mg/kg ip), NG-nitro-L-arginine methyl ester (10 mg/kg iv), and hepatic branch vagotomy but not by cervical spinal cord transection (C6 level). Intravenous injection of RX-77368 did not have any effect on hepatic blood flow. These results indicate that TRH acts in the central nervous system to stimulate hepatic blood flow through vagal-muscarinic and indomethacin- and nitric oxide-dependent pathways.
Collapse
Affiliation(s)
- K Tamori
- Second Department of Medicine, Asahikawa Medical College, Japan
| | | | | | | |
Collapse
|
30
|
Holmes GM, Martau JM, Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. Nucleus raphe obscurus (nRO) regulation of anorectal motility in rats. Brain Res 1997; 759:197-204. [PMID: 9221937 DOI: 10.1016/s0006-8993(97)00249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous research has demonstrated that anorectal contractions in the rat are modulated by activation of spinal autonomic circuits. In the present study, anterograde tracing of descending pathways originating from the caudal nucleus raphe obscurus (nRO) revealed that this nucleus projects to cells within the intermediolateral (IML) cell column of the thoracic cord and the sacral parasympathetic nucleus (SPN). These anatomical studies suggested that the nRO may influence the regulation of spinal reflexes of the pelvic floor. In a second set of experiments, acute rat preparations were used to investigate changes in anorectal motility during electrical stimulation of the nRO. Anorectal contractions were measured by a fluid-filled manometer. Electrical stimulation of the nRO significantly reduced spontaneous anorectal activity when compared to baseline contractions recorded for 1 min prior to stimulation. Stimulation sites outside the nRO did not affect anorectal contractions when compared to either (a) the 1-min pre-stimulation baseline for that site or (b) the 1-min stimulation period for sites within the nRO. Stimulation of caudal portions of the nRO were more likely than the rostral nRO to reduce anorectal contractions. Given that the SPN contains preganglionic neurons which may be involved in control of anorectal contractions (mediated via the pelvic nerve), the studies presented here suggest a functional role for nRO regulation of preganglionic motoneurons innervating the distal gut of the rat.
Collapse
Affiliation(s)
- G M Holmes
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, Columbus 43210, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The influence of intracisternal (ic) TRH and the stable TRH analog, RX 77368, on gastric vagal efferent discharge (GVED) was investigated in urethane-anesthetized rats. Consecutive IC injections of TRH (3, 30, and 300 ng) at 60 min intervals stimulated dose dependently multi-unit GVED with a peak increase of 90 +/- 21%, 127 +/- 18% and 145 +/- 16% respectively. In two separate studies, IC injection of RX 77368 at 1.5 or 15 ng stimulated multi-unit GVED by 142 +/- 24% and 244 +/- 95% respectively. Saline injection IC had no effect on GVED. RX 77368 (1.5 ng, ic) action was long lasting (84 +/- 13 min) compared with TRH (3 ng: 44 +/- 7 min). Single-unit analysis also showed that 13 of 13 units responded to ic RX 77368 (1.5 ng) by an increase in activity. These data indicate that low doses of TRH injected ic stimulate vagal efferent outflow to the rat stomach and that RX 77368 action is more potent than TRH.
Collapse
Affiliation(s)
- T J O-Lee
- CURE/UCLA Digestive Disease Center, West Los Angeles Veterans Administration Medical Center 90073, USA
| | | | | |
Collapse
|
32
|
Abstract
Considerable progress has been made in the understanding of the formation of gastric erosions by the use of animals. The role of gastric acid secretion in their pathogenesis has been clarified. Gastric erosions are associated with the presence of acid in the stomach and slow gastric contractions. With several different experimental procedures, the animal's body temperature falls; preventing the fall averts erosions. A fall in body temperature or exposure to cold are associated with the secretion of thyrotropin-releasing hormone (TRH), and both increased and decreased concentration of corticotropin-releasing factor (CRH) in discrete regions of rat brains. Thyrotropin-releasing hormone when injected into specific sites in the brain produces gastric erosions and increases acid secretion and slow contractions, whereas CRH has the opposite effects. One of the major sites of interaction of the two peptides is in the dorsal motor complex of the vagus nerve. Thyrotropin-releasing hormone increases serotonin (5-HT) secretion into the stomach. Serotonin counter-regulates acid secretion and slow contractions. Many other peptides injected into discrete brain sites stimulate or inhibit gastric acid secretion.
Collapse
Affiliation(s)
- H Weiner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, School of Medicine 90095, USA
| |
Collapse
|
33
|
Wang L, Cardin S, Martínez V, Taché Y. Intracerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats. Brain Res 1996; 736:44-53. [PMID: 8930307 DOI: 10.1016/0006-8993(96)00726-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acute exposure to cold-restraint induces vagal-dependent gastric erosions associated with activation of neurons in the dorsal motor nucleus of the vagus (DMN) in rats. The influence of intracerebroventricular (i.c.v.) injection of corticotropin-releasing factor (CRF) (10 micrograms) on c-fos expression in the brain and gastric erosions induced by 3 h cold-restraint was investigated in conscious rats. In cold-restraint exposed rats, CRF injected i.c.v. inhibited gastric erosions and the number of Fos positive neurons in the DMN by 93 and 72%, respectively, while Fos labelling in the nucleus tractus solitarius (NTS) was increased by 5-fold compared with vehicle group. c-fos expression was also induced in the central amygdala by i.c.v. CRF, unlike the vehicle-injected group exposed to cold-restraint. c-fos expression induced by cold-restraint in the raphe pallidus (Rpa) and paraventricular nucleus of the hypothalamus was not altered by i.c.v. CRF. These data indicate that central CRF-induced gastric protection results from the inhibition of DMN neuronal activity enhanced by cold-restraint. CRF action on DMN neurons may be related to the increase in the NTS and central amygdala inputs leading to inhibition of DMN neurons rather than to the decrease in the excitatory input from the caudal raphe projections to the DMN.
Collapse
Affiliation(s)
- L Wang
- CURE/Digestive Disease Research Center, West Los Angeles VA Medical Center, USA
| | | | | | | |
Collapse
|
34
|
Rogers RC, McTigue DM, Hermann GE. Vagal control of digestion: modulation by central neural and peripheral endocrine factors. Neurosci Biobehav Rev 1996; 20:57-66. [PMID: 8622830 DOI: 10.1016/0149-7634(95)00040-l] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vago-vagal reflex control circuits in the dorsal vagal complex of the brainstem provide overall coordination over digestive functions of the stomach, small intestine and pancreas. The neural components forming these reflex circuits are under significant descending neural control. By adjusting the excitability of the different components of the reflex, alterations in digestion control can be produced by the central nervous system. Additionally, the dorsal vagal complex is situated within a circumventricular region without an effective "blood-brain barrier". As a result, vago-vagal reflex circuitry is also exposed to humoral influences which profoundly alter digestive functions by acting directly on brainstem neurons. Behavioral and endocrine physiological observations suggest that this "humoral afferent pathway" may significantly alter the regulation of food intake.
Collapse
Affiliation(s)
- R C Rogers
- Department of Physiology, Ohio State University, College of Medicine, Columbus 43210, USA
| | | | | |
Collapse
|
35
|
Nemoto T, Konno A, Chiba T. Synaptic contact of neuropeptide-and amine-containing axons on parasympathetic preganglionic neurons in the superior salivatory nucleus of the rat. Brain Res 1995; 685:33-45. [PMID: 7583252 DOI: 10.1016/0006-8993(95)00409-j] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parasympathetic preganglionic neurons in the superior salivatory nucleus (SSNNs) projecting to the pterygopalatine ganglion were labeled by retrograde transport of cholera toxin B subunit (CTB) in the rat. Morphological interactions between SSNNs and afferent fibers immunoreactive (IR) for neuropeptide and amine were examined with light and electron microscopes by double-immunostaining techniques. SSNNs were found in the ipsilateral ventrolateral part of the rostral medulla oblongata. Around SSNNs, substance P-, enkephalin-, neuropeptide Y-and somatostatin-IR nerve fibers were very rich and tyrosine hydroxylase (TH)-, serotonin (5-HT)-, vasoactive intestinal polypeptide- and calcitonin gene-related peptide (CGRP)-IR axons showed moderate density. Thyrotropin-releasing hormone-containing axons were scarce in this region. The electron microscopic examinations revealed that CTB-IR structures directly received synaptic input from axon varicosities IR for TH, 5-HT and all neuropeptides except for CGRP. These findings suggest that catecholamine, 5-HT and the neuropeptides directly influence the activity of SSNNs and are concerned with the autonomic regulation of nasal and palatal mucosa, lacrimal glands and cerebral blood vessels of the rat.
Collapse
Affiliation(s)
- T Nemoto
- Department of Otorhinolaryngology, Chiba University School of Medicine, Japan
| | | | | |
Collapse
|
36
|
Abstract
Subpopulations of raphe pallidus (Rpa) and raphe obscurus (Rob) neurons containing TRH, serotonin (5-HT), and substance P contribute projections to the dorsal vagal complex (DVC). Activation of Rpa and Rob neurons induces a vagal cholinergic-dependent stimulation of gastric secretory and motor function and modulates resistance of the gastric mucosa to gastric injury in rats and cats. The caudal raphe nuclei-DVC pathways containing TRH/5-HT are involved in mediating cold-induced vagal stimulation of gastric function and erosion formation. These results suggest that Rpa/Rob-DVC projections containing TRH/5-HT may be an important pathways in the medullary regulation of vagal activity to the viscera.
Collapse
Affiliation(s)
- Y Taché
- CURE/Gastroenteric Biology Center, Department of Medicine, UCLA 90073, USA
| | | | | |
Collapse
|
37
|
Yang H, Wu SV, Ishikawa T, Taché Y. Cold exposure elevates thyrotropin-releasing hormone gene expression in medullary raphe nuclei: relationship with vagally mediated gastric erosions. Neuroscience 1994; 61:655-63. [PMID: 7969936 DOI: 10.1016/0306-4522(94)90442-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stimulation of thyrotropin release by cold is associated with an increase in thyrotropin-releasing hormone gene expression in the paraventricular nucleus of the hypothalamus. Cold exposure also stimulates autonomic outflow to viscera. There is evidence that caudal raphe nuclei are involved in autonomic regulation through thyrotropin-releasing hormone projections to the dorsal vagal complex and spinal cord. To determine whether cold modulates thyrotropin-releasing hormone gene expression in the caudal raphe nuclei, the effect of cold exposure on thyrotropin-releasing hormone messenger RNA levels in the rat lower brainstem was examined by quantitative Northern blot analysis and thyrotropin-releasing hormone messenger RNA was localized by in situ hybridization. The gastric responses to cold exposure were also assessed in sham or vagotomized rats with pylorus ligation. Thyrotropin-releasing hormone messenger RNA signal was detected in the RNA extracted from the medulla and hypothalamus but not from the amygdala, periaqueductal gray or cerebellum. Cold exposure (4 degrees C) for 1 or 3 h increased thyrotropin-releasing hormone messenger RNA levels in the medulla by 77 +/- 37 and 142 +/- 39% respectively. In situ hybridization histochemistry showed that the increase in silver grain density occurred exclusively in the raphe pallidus and raphe obscurus. Exposure to cold stress for 2 h stimulated gastric acid secretion and resulted in gastric lesion formation in sham but not vagotomized rats. There are established thyrotropin-releasing hormone projections from the raphe pallidus and obscurus to the dorsal vagal complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Yang
- VA Wadsworth Medical Center, Department of Medicine, Los Angeles, CA
| | | | | | | |
Collapse
|
38
|
Bonaz B, Taché Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion. Brain Res 1994; 652:56-64. [PMID: 7953723 DOI: 10.1016/0006-8993(94)90316-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cold-restraint alters gastrointestinal function through vagal pathways. Immunohistochemical detection of the nuclear phosphoprotein Fos (Fos-IR) was used to map brain neuronal pathways activated by cold exposure for 3 h in fasted rats maintained individually in semi-cylindrical restraining cages. Gastric lesions and fecal pellet output were also monitored. In rats exposed to cold (4 degrees C) restraint for 3 h, numerous Fos-positive nuclei were observed in the dorsal motor nucleus of the vagus, raphe pallidus, locus coeruleus, and paraventricular nucleus of the hypothalamus, and, to a lesser extent, in the raphe obscurus, parapyramidal region, and medullary noradrenergic region, bed nucleus of the stria terminalis and septum. Fecal pellet output was increased by 8 fold and gastric lesions covered 19.5 +/- 1.1% of the corpus mucosa. Rats restrained at room temperature under otherwise same conditions had little or no Fos-positive cells in these brain nuclei, no gastric erosion and a low pellet output (1.3 +/- 0.5 nb/3 h). These data, in addition to previous functional studies, provide anatomic support for the involvement of neurons in the caudal raphe nuclei, dorsal motor nucleus of the vagus and paraventricular nucleus of the hypothalamus in the autonomic and endocrine responses to cold-restraint.
Collapse
Affiliation(s)
- B Bonaz
- CURE/Gastroenteric Biology Center, VA Wadsworth Medical Center, Los Angeles, CA
| | | |
Collapse
|
39
|
Taché Y, Yoneda M, Kato K, Király A, Sütö G, Kaneko H. Intracisternal thyrotropin-releasing hormone-induced vagally mediated gastric protection against ethanol lesions: central and peripheral mechanisms. J Gastroenterol Hepatol 1994; 9 Suppl 1:S29-35. [PMID: 7881015 DOI: 10.1111/j.1440-1746.1994.tb01298.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The vagus is involved in mediating gastric cytoprotection and adaptive cytoprotection. However, the central and peripheral mechanisms through which the vagus expresses its action are still poorly known. Medullary thyrotropin-releasing hormone (TRH) plays an important role in the vagal regulation of gastric function. The stable TRH analogue, RX 77368, micro-injected into the cisterna magna or the dorsal motor nucleus (DMN) of the vagus at a dose that did not influence gastric acid secretion prevented gastric injury induced by intragastric administration of 60% ethanol in conscious or urethane-anaesthetized rats. The cytoprotective action of TRH is mediated through vagal cholinergic release of prostaglandin E2 (PGE2). Prostaglandin E2 action is unrelated to changes in gastric mucosal blood flow (GMBF). In addition, other peripheral mechanisms involve calcitonin gene-related peptide (CGRP) contained in capsaicin sensitive afferent fibres and nitric oxide, both of which mediate the associated increase in GMBF induced by intracisternal injection of RX 77368. These data indicate that medullary TRH induces vagally mediated gastric protection against ethanol lesions. Its action is expressed through the muscarinic dependent release of PGE2 and nitric oxide, and efferent function of capsaicin-sensitive afferent fibres releasing CGRP.
Collapse
Affiliation(s)
- Y Taché
- CURE/VA-UCLA Gastroenteric Biology Center, VA Wadsworth Medical Center, Los Angeles, CA 90073
| | | | | | | | | | | |
Collapse
|
40
|
Livingston CA, Berger AJ. Response of neurons in the dorsal motor nucleus of the vagus to thyrotropin-releasing hormone. Brain Res 1993; 621:97-105. [PMID: 8221078 DOI: 10.1016/0006-8993(93)90302-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Autonomic motoneurons in the dorsal motor nucleus of the vagus (DMX) were recorded intracellularly in an in vitro slice preparation of the guinea pig brainstem. Bath-applied thyrotropin releasing hormone (TRH) (1-10 microM) induced a reversible depolarization of neurons that was typically accompanied by an increase in the spontaneous firing of the cells. In some cells, TRH induced rhythmic bursting activity. The TRH-induced depolarization occurred also in the presence of reduced Ca2+ and TTX. The response was dose-dependent over TRH concentrations of 0.1-10 microM. The TRH-induced depolarization was accompanied by an increase in input resistance. The reversal potential of this effect corresponded to that of K+. Our results indicate that TRH increases the excitability of DMX neurons by reducing a resting K+ conductance.
Collapse
Affiliation(s)
- C A Livingston
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
41
|
Seligsohn EE, Bill A. Effects of NG-nitro-L-arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin-releasing hormone. Br J Pharmacol 1993; 109:1219-25. [PMID: 8401932 PMCID: PMC2175768 DOI: 10.1111/j.1476-5381.1993.tb13752.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. The effects of 300 mg kg-1 of the nitric oxide (NO) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on the regional blood flow, on the flow response to 1 mg kg-1 of thyrotropin-releasing hormone (TRH) and on cerebral blood flow autoregulation were studied in urethane anesthetized rabbits subjected to unilateral sectioning of the cervical sympathetic claim. The blood flow measurements were performed by the tracer microspheres method. 2. The cerebral arteriovenous difference in oxygen saturation (CAVOD) was measured before and after the administration of L-NAME and TRH in order to ascertain whether the effects on cerebral blood flow that were observed were secondary to changes in cerebral metabolism. 3. L-NAME caused a significant decrease in blood flow in several cerebral regions; CBFtot decreased to 72 +/- 4% of control (P < 0.001). An increase in blood pressure and a concurrent decrease in heart rate and cardiac output were noted. 4. In the eye, L-NAME caused a reduction in uveal blood flow which was more pronounced on the sympathetically intact side; in the retina the blood flow decreased to 50% of control on both sides. 5. The administration of TRH in animals pretreated with L-NAME caused a significant increase in blood pressure and cerebral blood flow. 6. In L-NAME-treated animals the CBF was not affected when the mean arterial blood pressure was increased by ligation of the abdominal aorta. 7. The CAVOD increased from 56.0 +/- 5.2 to 73.6 +/- 3.5%, 20 min after the administration of L-NAME. In animals given 1 mg kg-1 TRH after L-NAME the CAVOD decreased to 54.6 +/- 4.6%, 5 min after the injection of TRH.8. The results of the present study indicate that endogenous NO is involved in the regulation of regional blood flow and blood pressure in the anaesthetized rabbit. The reduction in cerebral blood flow that was caused by L-NAME was not due to a reduction in cerebral metabolism. An interaction between the NO synthesis/release/effect and the sympathetic nervous system was found in the uvea. There was no evidence for a major involvement of NO in the cardiovascular responses to TRH and autoregulation of cerebral blood flow was not abolished by L-NAME.
Collapse
Affiliation(s)
- E E Seligsohn
- Department of Physiology and Medical Biophysics, University of Uppsala, Sweden
| | | |
Collapse
|
42
|
Manaker S, Zucchi PC. Effects of vagotomy on neurotransmitter receptors in the rat dorsal vagal complex. Neuroscience 1993; 52:427-41. [PMID: 8383819 DOI: 10.1016/0306-4522(93)90169-g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The dorsal vagal complex contains many different neurotransmitter receptors. The cyto-architectural localizations of some of these receptors remain largely unknown. In rats, vagotomy was performed to destroy vagal afferents terminating in the nucleus of the solitary tract and to produce chromatolysis of preganglionic motoneurons in the dorsal motor nucleus of the vagus. Quantitative receptor autoradiography was then employed to determine the effect of vagotomy upon the distribution of receptors for thyrotropin-releasing hormone, substance P, and serotonin within individual regions and subnuclei of the entire dorsal vagal complex. Vagotomy reduced the concentrations of thyrotropin-releasing hormone and substance P, but not serotonin1A, or serotonin1B, receptors in the dorsal motor nucleus of the vagus. Within the nucleus of the solitary tract, substance P receptors were reduced in only the medial and central subnuclei after vagotomy. In contrast, no effect was observed upon the concentrations of thyrotropin-releasing hormone, serotonin1A, or serotonin1B receptors in any subnuclei of the solitary tract following vagotomy. These results suggest that in the dorsal motor nucleus of the vagus, thyrotropin-releasing hormone and substance P receptors are localized upon vagal preganglionic motoneurons, while serotonin1A and serotonin1B receptors are present upon interneurons or other neuronal elements. These results also suggest that thyrotropin-releasing hormone, substance P, serotonin1A, and serotonin1B receptors in the nucleus of the solitary tract are localized upon internuncial neurons in the nucleus of the solitary tract.
Collapse
Affiliation(s)
- S Manaker
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-4283
| | | |
Collapse
|
43
|
Seligsohn EE. Adrenergic and non-adrenergic cardiovascular effects of thyrotropin-releasing hormone (TRH) in the anaesthetized rabbit. ACTA ACUST UNITED AC 1992; 146:107-17. [PMID: 1359733 DOI: 10.1111/j.1748-1716.1992.tb09398.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of thyrotropin-releasing hormone (TRH) on regional blood flows were studied in urethane-anaesthetized rabbits. Experiments were performed both with and without adrenergic antagonist pretreatment. The tracer microsphere method was used to measure blood flow. TRH (0.1 mg kg-1) caused an increase in mean arterial blood pressure (MAP) from 9.8 +/- 1 to 11.8 +/- 0.8; a higher dose (1 mg kg-1) increased the blood pressure to 15.2 +/- 1 kPa (P less than 0.001). Total cerebral blood flow (CBFtot) increased to 137 +/- 10% (P less than 0.05) of control at the lower dose and to 214 +/- 16% (P less than 0.001), at the higher dose. A reduction in blood flow at both doses of TRH in several peripheral organs indicates that the pressor effect was mainly due to an effect on the peripheral vascular resistance. In prazosin-pretreated animals in which the MAP was normalized by ligation of the thoracic aorta, TRH elicited an increase in the CBFtot to 131 +/- 12% (P less than 0.05) of control. In the iris, TRH caused vasodilation in prazosin-pretreated animals. In experiments with combined alpha- and beta-adrenergic blockade, a non-adrenergic vasoconstricting effect of TRH was seen in some peripheral organs. The results indicate that TRH activates the sympathetic nervous system thus causing an increased vascular resistance and MAP; these effects are mediated mainly by an alpha 1-adrenergic mechanism. In the spleen, the gastric mucosa and the adrenal glands, the vasoconstriction caused by TRH was partly non-adrenergic. The vasodilation seen in the small intestine and the anterior uvea after TRH treatment and adrenoceptor blockade may be explained by effects on the parasympathetic nervous system. The vasodilating effect of TRH in the brain does not seem to involve alpha 1- or beta-adrenergic mechanisms.
Collapse
Affiliation(s)
- E E Seligsohn
- Department of Physiology and Medical Biophysics, Uppsala University, Sweden
| |
Collapse
|
44
|
Iwase M, Shioda S, Nakai Y, Iwatsuki K, Homma I. TRH regulation of tracheal tension through vagal preganglionic motoneurons. Brain Res Bull 1992; 29:821-9. [PMID: 1282078 DOI: 10.1016/0361-9230(92)90150-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TRH-immunoreactive nerve terminals innervate the ambiguous nucleus in the rabbit. Vagal preganglionic motoneurons that innervate the trachea, were revealed by HRP histochemistry in the rostral part of the ambiguous nucleus and the dorsal motor nucleus of the vagus. HRP histochemistry plus TRH immunocytochemistry revealed that TRH-immunoreactive axon terminals synapsed on ambiguous nucleus neurons retrogradely labeled by HRP injection into tracheal smooth muscle and the superior laryngeal nerve. Microinjection of 50 ng TRH into the rostral ambiguous nucleus caused slight dilation followed by constriction, which was inhibited by atropine and vagotomy. Results show that central TRH-containing neurons regulate tracheal tension through synapses on vagal preganglionic motoneurons that innervate tracheal smooth muscle.
Collapse
Affiliation(s)
- M Iwase
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
Garrick T, Yang H, Trauner M, Livingston E, Taché Y. Thyrotropin-releasing hormone analog injected into the raphe pallidus and obscurus increases gastric contractility in rats. Eur J Pharmacol 1992; 223:75-81. [PMID: 1478259 DOI: 10.1016/0014-2999(92)90820-t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was performed to investigate the influence of the chemical stimulation of medullary raphe nuclei by the stable TRH (thyrotropin-releasing hormone) analog, RX 77368, on gastric contractility. Urethane-anesthetized rats were acutely implanted with miniature strain gauge force transducers on the corpus of the stomach for continuous recording of gastric contractility. Traces were analyzed by computer. Microinjections of vehicle or RX 77368 into the raphe pallidus or raphe obscurus were performed using pressure injection of 50 nl through glass micropipettes 30 min following basal recording of gastric contractility. RX 77368 (0.7-77 pmol) dose dependently stimulated gastric contractility when microinjected into the raphe pallidus and raphe obscurus. The stimulation of gastric contractions induced by microinjection of RX 77368 (77 pmol) into these raphe nuclei was completely blocked by vagotomy and prevented (raphe obscurus) or reduced (raphe pallidus) by atropine. RX 77368 (7.7-77 pmol) microinjected into the inferior olive, pyramidal tract, medial lemiscus was ineffective. These results demonstrate that chemical stimulation of the raphe pallidus and obscurus by RX 77368 stimulates gastric contractility through vagal and muscarinic pathways. These data suggest a role for medullary raphe nuclei in the central vagal regulation of gastric contractility.
Collapse
Affiliation(s)
- T Garrick
- Department of Psychiatry, West Los Angeles Veterans Affairs Medical Center, CA 90073
| | | | | | | | | |
Collapse
|
46
|
McTigue DM, Rogers RC, Stephens RL. Thyrotropin-releasing hormone analogue and serotonin interact within the dorsal vagal complex to augment gastric acid secretion. Neurosci Lett 1992; 144:61-4. [PMID: 1436715 DOI: 10.1016/0304-3940(92)90716-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of serotonin (5HT) and a thyrotropin-releasing hormone (TRH) analogue, RX77368, on vagal control of gastric acid secretion were studied. Microinjection of RX77368 (0.66 pmol in 10 nl), but not 5HT (8 pmol in 10 nl), into the dorsal vagal complex (DVC) evoked a significant increase in acid output. When the same doses of RX77368 and 5HT were co-injected, the amount of acid secreted was significantly greater than that due to RX77368 alone. Thus, 5HT and the TRH analogue interact within the DVC to enhance vagal stimulation of acid secretion. The study suggests a possible functional significance of raphe TRH/serotonergic tracts projecting to the DVC.
Collapse
Affiliation(s)
- D M McTigue
- Department of Physiology, Ohio State University, College of Medicine, Columbus 43210
| | | | | |
Collapse
|
47
|
Johnson SM, Getting PA. Excitatory effects of thyrotropin-releasing hormone on neurons within the nucleus ambiguus of adult guinea pigs. Brain Res 1992; 590:1-5. [PMID: 1422826 DOI: 10.1016/0006-8993(92)91074-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The electrophysiological effects of thyrotropin-releasing hormone (TRH) on neurons within the nucleus ambiguus (NA) of adult guinea pigs were studied using an in vitro brain stem slice preparation. In 0.01-1.0 micron TRH, NA neurons depolarized (25/39), expressed enhanced postinhibitory rebound (8/8 tested), or exhibited oscillations of the membrane potential (17/39). Because the amplitude of postinhibitory rebound in tetrodotoxin (TTX) at various membrane potentials was not altered by TRH, it suggests that TRH enhanced postinhibitory rebound indirectly by depolarizing the cell membrane. The membrane potential oscillations in NA neurons were persistent in TTX and their frequency was dependent on the membrane potential, suggesting that these oscillations were due to intrinsic membrane properties and not to synaptic inputs. The excitation of NA neurons in vitro by TRH suggests that endogenous TRH may modulate the activity of neurons involved in the regulation of respiratory and autonomic function.
Collapse
Affiliation(s)
- S M Johnson
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242
| | | |
Collapse
|
48
|
Yoneda M, Taché Y. Central thyrotropin-releasing factor analog prevents ethanol-induced gastric damage through prostaglandins in rats. Gastroenterology 1992; 102:1568-74. [PMID: 1568566 DOI: 10.1016/0016-5085(92)91715-g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of intracisternal injection of the stable thyrotropin-releasing factor (TRH) analog RX 77368 on gastric lesions induced by 60% ethanol and gastric prostaglandin E2 (PGE2) release were studied in rats. RX 77368 (1.0 and 1.5 ng) injected intracisternally inhibited (by 58% and 78%, respectively) macroscopic gastric damage induced by ethanol. Higher doses (3 and 300 ng) inhibited ethanol-induced gastric injury only in rats pretreated with omeprazole (20 mg/kg SC). Gastric acid output measured in conscious rats 2 hours after pylorus ligation was not modified by intracisternal injection of RX 77368 at 1.5 ng but was significantly increased by 54% at the 3-ng dose. The protective effect of TRH analog (1.5 ng) was completely abolished by indomethacin (5 mg/kg IP) and atropine (2 mg/kg SC) pretreatment. In pylorus-ligated rats, intracisternal RX 77368 (1.5 ng) inhibited ethanol-induced gastric lesions by 64%. Intracisternal injection of RX 77368 (1.5 ng) increased PGE2 levels measured in the effluent of dialysis fibers implanted into the corpus submucosa of urethane-anesthetized rats. Peripheral administration of omeprazole, atropine, indomethacin, or RX 77368 (1.5 ng IV) did not influence gastric damage induced by ethanol. These data show that the stable TRH analog, RX 77368, injected intracisternally at low non-secretory doses acts in the brain to protect against ethanol lesions through prostaglandin and cholinergic pathways. These findings suggest that central vagal activation induced by TRH may play a role in the control of mucosal integrity against ethanol through cholinergic prostaglandin release.
Collapse
Affiliation(s)
- M Yoneda
- Center for Ulcer Research and Education, Veterans Administration Medical Center, Los Angeles, California
| | | |
Collapse
|
49
|
Abstract
The cardiovascular effects of IV naloxone and a subsequent administration of TRH IV were studied in the rabbit. Naloxone caused a vasodilation in the myocardium and adrenal glands. Naloxone elicited an increment in cerebral blood flow in several regions which attenuated the cerebrovasodilating effect of TRH in a few regions. The blockade of endogenous opioids with naloxone did not modify the peripheral vasoconstricting effect of TRH or affect the vascular effects of TRH mediated by the peripheral sympathetic nerves. The results indicate that naloxone has a vasodilating effect in the myocardium and CNS in anesthetized rabbits. The major part of the cardiovascular effect of TRH is not dependent on mechanisms sensitive to naloxone.
Collapse
Affiliation(s)
- L O Koskinen
- Department of Physiology and Medical Biophysics, University of Uppsala, Sweden
| |
Collapse
|
50
|
Heitkemper MM, Bond EF. Morphine inhibits TRH-induced gastric contractile activity. REGULATORY PEPTIDES 1991; 36:99-109. [PMID: 1796184 DOI: 10.1016/0167-0115(91)90198-p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study investigated the effect of centrally and peripherally administered thyrotropin releasing hormone (TRH) on gastric contractile activity of rats 14, 21, 28 and adult (greater than or equal to 50) days (D) of age, and the effect of morphine pretreatment on that response. Rats were anesthetized with urethane, then a tension transducer was implanted on the anterior gastric corpus. Following baseline recording, rats were pretreated with intraperitoneal morphine (2 mg/kg). TRH (5 micrograms) in saline or saline alone (0.6 microliters) was then injected into the cisternum magnum. Additionally, dose response to TRH was examined in 14- and 50-day-old rats. Intracisternal TRH induced a dose-related increase in gastric contractile activity in both 14- and 50-day-old rats. Higher doses of TRH (10 and 30 micrograms) prolonged the response as compared to low doses. Peripheral morphine pretreatment blocked the TRH-induced increase in gastric contractile activity in all age groups although a higher morphine dose (10 mg/kg) was needed to block the effect in 28D rats. Intravenous TRH (5, 10, 30 micrograms) produced an increase in gastric contractile activity in 14D rats which was blocked by vagotomy.
Collapse
Affiliation(s)
- M M Heitkemper
- Department of Physiological Nursing, University of Washington, Seattle 98195
| | | |
Collapse
|