1
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2025; 62:6998-7021. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Teng Y, Xue H, Deng X, Luo Y, Wu T. The role of phosphatidylethanolamine-binding protein (PEBP) family in various diseases: Mechanisms and therapeutic potential. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:102-113. [PMID: 40220872 DOI: 10.1016/j.pbiomolbio.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
This article focuses on the phosphatidylethanolamine-binding protein (PEBP) family proteins, detailing PEBP1 and PEBP4 due to limited information on PEBP2 and PEBP3, in cellular signaling pathways and research in a spectrum of pathologies, including diverse cancers, metabolic disorders, immunological diseases and a subset of organ-specific diseases. It outlines the mechanisms through which PEBP1 and PEBP4 regulate essential signaling pathways that are critical for cellular processes such as proliferation, apoptosis, and metastasis. Recent advancements have shown further understanding of these proteins' roles in pathophysiology and their potential as future therapeutic targets. The findings suggest that the impact of PEBP1 and PEBP4 on the course of different diseases has underscored their potential for more in-depth medical research and novel clinically targeted therapies.
Collapse
Affiliation(s)
- Yeying Teng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiping Xue
- Industrial Development Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoliang Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanqun Luo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2025; 72:501-514. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Tran VL, Liu P, Katsumura KR, Soukup AA, Kopp A, Ahmad ZS, Mattina AE, Brand M, Johnson KD, Bresnick EH. Dual mechanism of inflammation sensing by the hematopoietic progenitor genome. SCIENCE ADVANCES 2025; 11:eadv3169. [PMID: 40435239 PMCID: PMC12118549 DOI: 10.1126/sciadv.adv3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/03/2025] [Indexed: 06/01/2025]
Abstract
Genomes adapt dynamically to alterations in the signaling milieu, including inflammation that transiently or permanently disrupts genome function. Here, we elucidate how a progenitor cell genome senses and responds to inflammation when the developmental and transcriptional regulator GATA2 is limiting, which causes bone marrow failure in humans and mice and predisposes to leukemia in humans. GATA2low murine progenitors are hypersensitive to inflammatory mediators. We discovered that the hematopoietic transcription factor PU.1 conferred transcriptional activation in GATA2low progenitors in response to Interferon-γ and Toll-Like Receptor 1/2 agonists. In a locus-specific manner, inflammation reconfigured genome activity by promoting PU.1 recruitment to chromatin or tuning activity of PU.1-preoccupied chromatin. The recruitment mechanism disproportionately required IKKβ activity. Inflammation-activated genes were enriched in motifs for RUNX factors that cooperate with GATA factors. Contrasting with the GATA2-RUNX1 cooperativity paradigm, GATA2 suppressed and RUNX1 promoted PU.1 mechanisms to endow the progenitor genome with inflammation-sensing capacity.
Collapse
Affiliation(s)
- Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Audrey Kopp
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Zamaan S. Ahmad
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ashley E. Mattina
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
5
|
Wu M, Zhao Y, Yang J, Yang F, Dai Y, Wang Q, Chen C, Chu X. The role of ankyrin repeat-containing proteins in epigenetic and transcriptional regulation. Cell Death Discov 2025; 11:232. [PMID: 40350474 PMCID: PMC12066720 DOI: 10.1038/s41420-025-02519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Ankyrin repeat (AR) motif is one of the most abundant repeat motifs found in eukaryotic proteins. It functions in mediating protein-protein interactions and regulating numerous biological functions. Interestingly, some AR-containing proteins are involved in epigenetic and transcriptional events. Our review aims to characterize the structure and post-translational modification of AR, summarize the prominent role of AR-containing proteins in epigenetic and transcriptional events, emphasizing the crucial functions mediated by AR motifs.
Collapse
Affiliation(s)
- Meijuan Wu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulu Zhao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fangyuan Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yeyang Dai
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Cheng Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| |
Collapse
|
6
|
Ji LL. Nuclear factor κB signaling revisited: Its role in skeletal muscle and exercise. Free Radic Biol Med 2025; 232:158-170. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
7
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Bai L, Yi M, Xu B. Self-Assembly of Noncanonical Peptides: A New Frontier in Cancer Therapeutics and Beyond. Macromol Biosci 2025:e2500153. [PMID: 40260674 DOI: 10.1002/mabi.202500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/03/2025] [Indexed: 04/24/2025]
Abstract
In addition to the 20 standard amino acids that form the building blocks of proteins, nature employs alternative amino acids to create specialized "noncanonical peptides." These unique peptides, found in organisms from bacteria to humans, often exhibit unconventional structures and functionalities, playing critical roles in modulating cellular processes, particularly as antibiotics. Their potential has attracted significant interest for designing novel functional materials based on noncanonical peptides. This review highlights recent advances in the generation and application of noncanonical peptide assemblies. It begins with a definition of noncanonical peptides, including classic examples that showcase their distinct structures and useful biological activities. Then the applications of noncanonical peptide assemblies in developing anticancer therapeutics are discussed, focusing on recent and representative studies that demonstrate their efficacy and versatility in targeting tumor cells. Beyond oncology, it is explored how noncanonical peptide assemblies have been utilized in biomaterials, regenerative medicine, molecular imaging and catalysis. Finally, perspectives are offered on future directions in this rapidly evolving field, emphasizing exciting opportunities and remaining challenges that will drive continued innovation in designing and applying noncanonical peptide-based assemblies.
Collapse
Affiliation(s)
- Lin Bai
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| | - Meihui Yi
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| | - Bing Xu
- School of Chemistry, Brandeis University, 415 South St, Waltham, MA, 02453, USA
| |
Collapse
|
9
|
McLarnon T, Watterson S, McCallion S, Cooper E, English AR, Kuan Y, Gibson DS, Murray EK, McCarroll F, Zhang S, Bjourson AJ, Rai TS. Sendotypes predict worsening renal function in chronic kidney disease patients. Clin Transl Med 2025; 15:e70279. [PMID: 40147025 PMCID: PMC11949504 DOI: 10.1002/ctm2.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Senescence associated secretory phenotype (SASP) contributes to age-related pathology, however the role of SASP in Chronic Kidney Disease (CKD) is unclear. Here, we employ a variety of omic techniques to show that senescence signatures can separate CKD patients into distinct senescence endotypes (Sendotype). METHODS Using specific numbers of senescent proteins, we clustered CKD patients into two distinct sendotypes based on proteomic expression. These clusters were evaluated with three independent criteria assessing inter and intra cluster distances. Differential expression analysis was then performed to investigate differing proteomic expression between sendotypes. RESULTS These clusters accurately stratified CKD patients, with patients in each sendotype having different clinical profiles. Higher expression of these proteins correlated with worsened disease symptomologies. Biological signalling pathways such as TNF, Janus kinase-signal transducers and activators of transcription (JAK-STAT) and NFKB were differentially enriched between patient sendotypes, suggesting potential mechanisms driving the endotype of CKD. CONCLUSION Our work reveals that, combining clinical features with SASP signatures from CKD patients may help predict whether a patient will have worsening or stable renal trajectory. This has implications for the CKD clinical care pathway and will help clinicians stratify CKD patients accurately. KEY POINTS Senescent proteins are upregulated in severe patients compared to mild patients Senescent proteins can stratify patients based on disease severity High expression of senescent proteins correlates with worsening renal trajectories.
Collapse
Affiliation(s)
- Thomas McLarnon
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Steven Watterson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Sean McCallion
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Eamonn Cooper
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Andrew R. English
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
- School of Health and Life SciencesTeesside University, Campus HeartMiddlesbroughUK
| | - Ying Kuan
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - David S. Gibson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Elaine K. Murray
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Frank McCarroll
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - Shu‐Dong Zhang
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Anthony J. Bjourson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Taranjit Singh Rai
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| |
Collapse
|
10
|
Kachaev ZM, Ghassah M, Musabirov AA, Shaposhnikov AV, Toropygin IY, Ulianova YA, Stepanov NG, Chmykhalo VK, Shidlovskii YV. The Enhanced activation of innate immunity in Drosophila S2 cells by Micrococcus luteus VKM Ac-2230 is mediated by Relish. J Invertebr Pathol 2025; 211:108315. [PMID: 40089097 DOI: 10.1016/j.jip.2025.108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The canonical model of immune response activation in Drosophila suggests that the IMD pathway is activated by Gram-negative (Gram (-)) bacteria, while the Toll pathway is activated by both Gram-positive bacteria (Gram (+)) and fungi. However, the mechanisms by which these pathogens promote cross-activation of these pathways remain controversial. In addition, the mechanisms of cross-activation in S2 cell culture remain unstudied. In this study, we investigated the role of two Gram (+) bacteria (Micrococcus luteus and Bacillus subtilis) and fungal spores (Metarhizium anisopliae) in activating the IMD pathway in S2 cell cultures. Cells were treated with Escherichia coli as a control to ensure the specificity of IMD pathway activation. Our results demonstrated a significant involvement of M. luteus in the activation of the IMD pathway in S2 cell cultures. This is evidenced by the marked activation of IMD pathway-dependent genes, as well as the proteolytic cleavage of the Relish protein, which serves as a key transcription factor for this pathway. We also observed a strong recruitment of Relish to the promoters of antimicrobial peptide (AMP) genes, along with a partial recruitment to the genes encoding peptidoglycan recognition proteins (PGRPs). Furthermore, RNA interference targeting Relish resulted in a significant reduction in the transcription levels of all AMP genes and most PGRPs. Similarly, we analyzed the contributions of B. subtilis and M. anisopliae to the cross-activation of the IMD pathway. Our data indicate that both B. subtilis and M. anisopliae also activate the IMD pathway, albeit to a lesser extent compared to M. luteus. At the same time, fungal spores exhibited minimal influence on the activation of the IMD pathway when compared to Gram (+) bacteria. Thus, we have investigated in detail the mechanisms of cross-activation of the immune response in S2 cell culture, suggesting that Relish may play a critical role in inducing a humoral immune response in Drosophila S2 cells, primarily against M. luteus and to a lesser extent against B. subtilis and M. anisopliae.
Collapse
Affiliation(s)
- Zaur M Kachaev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Mona Ghassah
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Anton A Musabirov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexander V Shaposhnikov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ilya Y Toropygin
- Center of Common Use "Human Proteome", V.I. Orekhovich Research Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yulia A Ulianova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nikita G Stepanov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
11
|
Tangavelou K, Jiang S, Dadras S, Hulse JP, Sanchez K, Bondu V, Villaseñor Z, Mandell M, Peabody J, Chackerian B, Bhaskar K. Pathological tau activates inflammatory nuclear factor-kappa B (NF-κB) and pT181-Qβ vaccine attenuates NF-κB in PS19 tauopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642500. [PMID: 40161741 PMCID: PMC11952447 DOI: 10.1101/2025.03.10.642500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Tau regulates neuronal integrity. In tauopathy, phosphorylated tau detaches from microtubules and aggregates, and is released into the extracellular space. Microglia are the first responders to the extracellular tau, a danger/damage-associated molecular pattern (DAMP), which can be cleared by proteostasis and activate innate immune response gene expression by nuclear factor-kappa B (NF-κB). However, longitudinal NF-κB activation in tauopathies and whether pathological tau (pTau) contributes to NF-κB activity is unknown. Here, we tau oligomers from human Alzheimer's disease brain (AD-TO) activate NF-κB in mouse microglia and macrophages reducing the IκBα via promoting its secretion in the extracellular space. NF-κB activity peaks at 9- and 11-months age in PS19Luc + and hTauLuc + mice, respectively. Reducing pTau via pharmacological (DOX), genetic ( Mapt -/- ) or antibody-mediated neutralization (immunization with pT181-Qβ vaccine) reduces NF-κB activity, and together suggest pTau is a driver of NF-κB and chronic neuroinflammation tauopathies. Summary Neuronal tau activates microglial NF-κB constitutively by secreting its inhibitor IκBα. NF-κB activation in PS19Luc + and hTauLuc + mice peaks at 9- and 11-months of age, respectively. Neutralizing pTau with pT181-Qβ vaccine (targeting phosphorylated threonine 181 tau) alleviates NF-κB activity in tauopathy mice.
Collapse
|
12
|
Chen Y, Yue S, Yu L, Cao J, Liu Y, Deng A, Lu Y, Yang J, Li H, Du J, Xia J, Li Y, Xia Y. Regulation and Function of the cGAS-STING Pathway: Mechanisms, Post-Translational Modifications, and Therapeutic Potential in Immunotherapy. Drug Des Devel Ther 2025; 19:1721-1739. [PMID: 40098909 PMCID: PMC11911240 DOI: 10.2147/dddt.s501773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Autoimmune diseases arise when the immune system attacks healthy tissues, losing tolerance for self-tissues. Normally, the immune system recognizes and defends against pathogens like bacteria and viruses. The cGAS-STING pathway, activated by pattern-recognition receptors (PRRs), plays a key role in autoimmune responses. The cGAS protein senses pathogenic DNA and synthesizes cGAMP, which induces conformational changes in STING, activating kinases IKK and TBK1 and leading to the expression of interferon genes or inflammatory mediators. This pathway is crucial in immunotherapy, activating innate immunity, enhancing antigen presentation, modulating the tumor microenvironment, and integrating into therapeutic strategies. Modulation strategies include small molecule inhibitors, oligonucleotide therapies, protein and antibody therapies, genetic and epigenetic regulation, cytokine and metabolite modulation, and nanoscale delivery systems. Post-translational modifications (PTMs) of the cGAS-STING pathway, such as phosphorylation, acetylation, ubiquitination, methylation, palmitoylation, and glycosylation, fine-tune immune responses by regulating protein activity, stability, localization, and interactions. These modifications are interconnected and collectively influence pathway functionality. We summarize the functions of cGAS-STING and its PTMs in immune and non-immune cells across various diseases, and explore potential clinical applications.
Collapse
Affiliation(s)
- Yuhan Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Si Yue
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jinghao Cao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Aoli Deng
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yajuan Lu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yongming Xia
- Department of Hematology, Yuyao People’s Hospital, Yuyao, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Wilson ET, Graham P, Eidelman DH, Baglole CJ. Transcriptomic changes in oxidative stress, immunity, and cancer pathways caused by cannabis vapor on alveolar epithelial cells. Cell Biol Toxicol 2025; 41:57. [PMID: 40056285 PMCID: PMC11890392 DOI: 10.1007/s10565-025-09997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
As legalization of cannabis increases worldwide, vaping cannabis is gaining popularity due to the belief that it is less harmful than smoking cannabis. However, the safety of cannabis vaping remains untested. To address this, we developed a physiologically relevant method for in vitro assessment of cannabis vapor on alveolar epithelial cell cultures. We compared the transcriptional response in three in vitro models of cannabis vapor exposure using A549 epithelial cells in submerged culture, pseudo-air liquid interface (ALI) culture, and ALI culture coupled with the expoCube™ advanced exposure system. Baseline gene expression in ALI-maintained A549 cells showed higher expression of type 2 alveolar epithelial (AEC2) genes related to surfactant production, ion movement, and barrier integrity. Acute exposure to cannabis vapor significantly affected gene expression in AEC2 cells belonging to pathways related to cancer, oxidative stress, and the immune response without being associated with a DNA damage response. This study identifies potential risks of cannabis vaping and underscores the need for further exploration into its respiratory health implications.
Collapse
Affiliation(s)
- Emily T Wilson
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Percival Graham
- SCIREQ - Scientific Respiratory Equipment Inc, Montreal, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Fu S, Lin X, Lu X, Qu Y, Chen H, Zheng S, Li Z, Jiao Y, Wang Q, Yang C, Deng Y. NF-κB inhibitor PDTC involved in regulating the transplantation immunity in the pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110175. [PMID: 39909120 DOI: 10.1016/j.fsi.2025.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Nuclear factor kappa B (NF-κB) is involved in various important biological processes, such as inflammation, apoptosis, and cell proliferation. Here, we analyzed the function of NF-κB in transplantation immunity and pearl formation using its inhibitor, pyrrolidinedithiocarbamic acid (PDTC), in the pearl oyster Pinctada fucata martensii. The levels of pro-inflammatory factors (IL-17 and TNF-α) were lower and activity of antioxidant-related enzymes was higher in the transplanted pearl oysters pre-treated with PDTC than in transplanted pearl oysters pre-treated with phosphate-buffered saline (PBS). Transcriptomic analysis showed that PDTC pre-treatment alleviated the immune stimulation caused by transplantation, preserved normal expression of ribosome-related genes, and inhibited the activation of apoptosis and the NF-κB signaling pathway induced by transplantation. Additionally, RIG-I-like receptor, MAPK, Toll-like receptor and NOD-like receptor signaling pathways were inhibited after PDTC treatment. A 30-day pearl cultivation experiment demonstrated a significantly higher nucleus retention rate in transplanted pearl oysters that were pre-treated with PDTC compared to the control group. These results indicate that PDTC treatment suppressed immune-related pathways, thereby alleviating the immune rejection response caused by transplantation and potentially optimizing pearl production. Our results provide valuable information for optimizing pearl cultivation in P. f. martensii.
Collapse
Affiliation(s)
- Shirong Fu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xinyi Lin
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaowen Lu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Youmei Qu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongxi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shilin Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhihan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
15
|
Wang H, Fleishman JS, Wu S, Wang G, Du L, Li J, Du J. cGAS-STING targeting offers novel therapeutic opportunities in neurological diseases. Ageing Res Rev 2025; 105:102691. [PMID: 39954791 DOI: 10.1016/j.arr.2025.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that produces the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum-associated adaptor stimulator of interferon genes (STING) and activates the innate immune system to produce a type I interferon response. Besides sensing microbial DNA, cGAS can also be activated by self-DNA or endogenous DNA, including that derived from genotoxic extranuclear chromatin and mitochondrially released DNA, indicating that cGAS-STING is an important mechanism in sterile inflammatory responses, autoimmunity, and cellular senescence. However, aberrant activation of the cGAS-STING pathway results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving the pathogenesis of inflammation, implicating cGAS-STING signaling in neurological diseases. In this review, we first outline the principal elements of the cGAS-STING signaling cascade, summarizing recent research highlighting how cGAS-STING activation contributes to the pathogenesis of neurological diseases, including various autoimmune, autoinflammatory, and neurodegenerative diseases. Next, we outline selective small-molecule modulators that function as cGAS-STING inhibitors and summarize their mechanisms for treating multiple neurological diseases. Finally, we discuss key limitations of the current therapeutic paradigm and generate possible strategies to overcome them.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Guan Wang
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Lida Du
- Division of Neurobiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Jilai Li
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China.
| | - Jichen Du
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
16
|
Li Y, Zhang H, Ibáñez CF, Xie M. Characterization of subcutaneous and visceral de-differentiated fat cells. Mol Metab 2025; 93:102105. [PMID: 39884650 PMCID: PMC11848481 DOI: 10.1016/j.molmet.2025.102105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE The capacity of mature adipocytes to de-differentiate into fibroblast-like cells has been demonstrated in vitro and a few, rather specific in vivo conditions. A detailed comparison between de-differentiated fat (DFAT) cells and adipose stem and progenitor cells (ASPCs) from different adipose depots is yet to be conducted. Moreover, whether de-differentiation of mature adipocytes from classical subcutaneous and visceral depots occurs under physiological conditions remains unknown. METHODS Here, we used in vitro "ceiling culture", single cell/nucleus RNA sequencing, epigenetic anaysis and genetic lineage tracing to address these unknowns. RESULTS We show that in vitro-derived DFAT cells have lower adipogenic potential and distinct cellular composition compared to ASPCs. In addition, DFAT cells derived from adipocytes of inguinal origin have dramatically higher adipogenic potential than DFAT cells of the epididymal origin, due in part to enhanced NF-KB signaling in the former. We also show that high-fat diet (HFD) feeding enhances DFAT cell colony formation and re-differentiation into adipocytes, while switching from HFD to chow diet (CD) only reverses their re-differentiation. Moreover, HFD deposits epigenetic changes in DFAT cells and ASPCs that are not reversed after returning to CD. Finally, combining genetic lineage tracing and single cell/nucleus RNA sequencing, we demonstrate the existence of DFAT cells in inguinal and epididymal adipose depots in vivo, with transcriptomes resembling late-stage ASPCs. CONCLUSIONS These data uncover the cell type- and depot-specific properties of DFAT cells, as well as their plasticity in response to dietary intervention. This knowledge may shed light on their role in life style change-induced weight loss and regain.
Collapse
Affiliation(s)
- Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing 102206, China; School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17165, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China; Biosciences and Nutrition Unit, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14183, Sweden.
| |
Collapse
|
17
|
Wang Y, Zhang X, Wang W, Zhang Y, Fleishman JS, Wang H. cGAS-STING targeting offers therapy choice in lung diseases. Biol Direct 2025; 20:20. [PMID: 39920718 PMCID: PMC11806777 DOI: 10.1186/s13062-025-00611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Cyclic GMP/AMP (cGAMP) synthase (cGAS), along with the endoplasmic reticulum (ER)-associated stimulator of interferon genes (STING), are crucial elements of the type 1 interferon response. cGAS senses microbial DNA and self-DNA, labeling cGAS-STING as a crucial mechanism in autoimmunity, sterile inflammatory responses, and cellular senescence. However, chronic and aberrant activation of the cGAS-STING axis results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving inflammation-related diseases, including lung diseases. Insights into the biology of the cGAS-STING pathway have enabled the discovery of small-molecule agents which have the potential to inhibit the cGAS-STING axis in lung diseases. In this review, we first outline the principal components of the cGAS-STING signaling cascade. Then, we discuss recent research that highlights general mechanisms by which cGAS-STING contributes to lung diseases. Then, we focus on summarizing a list of bioactive small-molecule compounds which inhibit the cGAS-STING pathway, reviewing their potential mechanisms.These review highlights a novel groundbreaking therapeutic possibilities through targeting cGAS-STING in lung diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Xuan Zhang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Weixue Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Yi Zhang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, China.
| |
Collapse
|
18
|
Wang YF, Chen CY, Lei L, Zhang Y. Regulation of the microglial polarization for alleviating neuroinflammation in the pathogenesis and therapeutics of major depressive disorder. Life Sci 2025; 362:123373. [PMID: 39756509 DOI: 10.1016/j.lfs.2025.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Major depressive disorder (MDD), as a multimodal neuropsychiatric and neurodegenerative illness with high prevalence and disability rates, has become a burden to world health and the economy that affects millions of individuals worldwide. Neuroinflammation, an atypical immune response occurring in the brain, is currently gaining more attention due to its association with MDD. Microglia, as immune sentinels, have a vital function in regulating neuroinflammatory reactions in the immune system of the central nervous system. From the perspective of steady-state branching states, they can transition phenotypes between two extremes, namely, M1 and M2 phenotypes are pro-inflammatory and anti-inflammatory, respectively. It has an intermediate transition state characterized by different transcriptional features and the release of inflammatory mediators. The timing regulation of inflammatory cytokine release is crucial for damage control and guiding microglia back to a steady state. The dysregulation can lead to exorbitant tissue injury and neuronal mortality, and targeting the cellular signaling pathway that serves as the regulatory basis for microglia is considered an essential pathway for treating MDD. However, the specific intervention targets and mechanisms of microglial activation pathways in neuroinflammation are still unclear. Therefore, the present review summarized and discussed various signaling pathways and effective intervention targets that trigger the activation of microglia from its branching state and emphasizes the mechanism of microglia-mediated neuroinflammation associated with MDD.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
19
|
Gottfried Y, Lulu-Shimron C, Goldhirsh G, Fisher Y, Ziv T, Hoon DSB, Kravtsova-Ivantsiv Y, Ciechanover A. Vimentin is a ubiquitination and degradation substrate of the ubiquitin ligase KPC1. Biochem Biophys Res Commun 2025; 745:151231. [PMID: 39732122 DOI: 10.1016/j.bbrc.2024.151231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
The ubiquitin proteasome system (UPS), driven by ubiquitin as a degradation signal, eliminates, in a highly specific manner, 'abnormal' proteins and proteins that completed their function. This process involves a hierarchical cascade of E1, E2, and E3 enzymes. The E3 ubiquitin ligases, act as specific receptors that bind their cognate substrates. We have previously shown that the ubiquitin ligase KPC1 possesses a strong tumor-suppressive characteristic caused by the p50 subunit of the NF-κB transcription factor, which is generated by limited, KPC1-mediated processing of its p105 precursor. In this study, we identified vimentin as a novel substrate of the KPC1. We demonstrated that the ligase forms a complex with vimentin and modifies it by ubiquitination. Overexpression of KPC1 in HEK293T cells downregulates vimentin expression. Conversely, deletion of KPC1 in HAP1 cells results in upregulation of vimentin. Importantly, we revealed both in vitro and in a tumor model in mice that at least part of this effect is mediated through the downregulation of vimentin. Furthermore, in human clear cell renal cell carcinoma (ccRCC) samples, we found a negative correlation between KPC1 and vimentin expression. Overall, we demonstrate that the KPC1 ubiquitin E3 ligase downregulates vimentin expression, thereby reducing migration and tumorigenicity of cancer cells.
Collapse
Affiliation(s)
- Yossi Gottfried
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Chen Lulu-Shimron
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Yael Fisher
- Institue of Pathology, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint Johns Cancer Institute, PHS, Santa Monica, CA, 90025, USA
| | - Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel.
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel.
| |
Collapse
|
20
|
Zhang N, Wang M, Nambiar D, Iyer S, Kadakia P, Luo Q, Pang S, Qu A, Bharadwaj NS, Qiu P, Coskun AF. High cell throughput, programmable fixation reveals the RNA and protein co-regulation with spatially resolved NFκB pseudo-signaling. APL Bioeng 2024; 8:046108. [PMID: 39606710 PMCID: PMC11601099 DOI: 10.1063/5.0227054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA translation to protein is paramount to creating life, yet RNA and protein correlations vary widely across tissues, cells, and species. To investigate these perplexing results, we utilize a time-series fixation method that combines static stimulation and a programmable formaldehyde perfusion to map pseudo-Signaling with Omics signatures (pSigOmics) of single-cell data from hundreds of thousands of cells. Using the widely studied nuclear factor kappa B (NFκB) mammalian signaling pathway in mouse fibroblasts, we discovered a novel asynchronous pseudotime regulation (APR) between RNA and protein levels in the quintessential NFκB p65 protein using single molecule spatial imaging. Prototypical NFκB dynamics are successfully confirmed by the rise and fall of NFκB response as well as A20 negative inhibitor activity by 90 min. The observed p65 translational APR is evident in both statically sampled timepoints and dynamic response gradients from programmable formaldehyde fixation, which successfully creates continuous response measurements. Finally, we implement a graph neural network model capable of predicting APR cell subpopulations from GAPDH RNA spatial expression, which is strongly correlated with p65 RNA signatures. Successful decision tree classifiers on Potential of Heat-diffusion for Affinity-based Trajectory Embedding embeddings of our data, which illustrate partitions of APR cell subpopulations in latent space, further confirm the APR patterns. Together, our data suggest an RNA-protein regulatory framework in which translation adapts to signaling events and illuminates how immune signaling is timed across various cell subpopulations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aaron Qu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
21
|
Devaraja K, Singh M, Sharan K, Aggarwal S. Coley's Toxin to First Approved Therapeutic Vaccine-A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment. Biomedicines 2024; 12:2746. [PMID: 39767654 PMCID: PMC11726767 DOI: 10.3390/biomedicines12122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley's toxin-the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette- Guérin; Melacine-the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge-the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents.
Collapse
Affiliation(s)
- K. Devaraja
- Department of Head and Neck Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Manisha Singh
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Krishna Sharan
- Department of Radiation Oncology, K S Hegde Medical College, Nitte University, Mangalore 574110, India;
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Mao K, Liu C, Tang Z, Rao Z, Wen J. Advances in drug resistance of osteosarcoma caused by pregnane X receptor. Drug Metab Rev 2024; 56:385-398. [PMID: 38872275 DOI: 10.1080/03602532.2024.2366948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.
Collapse
Affiliation(s)
- Kunhong Mao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Chen J, Qu Y, Dong J, Xu W, Zhao Y, Cui J, Yu Z, Bao Z, Ma J, Han Y, Liu Y, Huang B, Wang X. A scallop IκB protein involved in innate immunity acts as a key regulator of NF-κB. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109897. [PMID: 39260530 DOI: 10.1016/j.fsi.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Chlamys farreri, a commercially important bivalve mollusk, is extensively cultivated in China. In recent years, the frequent occurrence of diseases has led to significant mortality in scallop farms. Despite this, our understanding of scallop's innate immune mechanisms remains limited. The NF-κB signaling pathway plays a crucial role in various biological processes, including cellular, developmental, and immune defense mechanisms. Inhibitors of NF-κB (IκB) proteins block the nuclear localization and DNA binding of NF-κB, thereby inhibiting its activity. However, the role of these proteins in invertebrates is not well understood. In this study, we identified a new homolog of the IκB gene in C. farreri, named CfIκB1. The open reading frame of CfIκB1 spans 1089 bp, encoding 362 amino acids. Through sequence comparison and phylogenetic analysis, CfIκB1 was classified as a member of the invertebrate IκB family. Quantitative real-time PCR revealed that CfIκB1 transcripts are present in all examined tissues, with the highest expression observed in hemocytes. Expression levels were significantly upregulated following exposure to lipopolysaccharide, peptidoglycan, and polyinosinic:polycytidylic acid. Co-immunoprecipitation studies confirmed that CfIκB1 interacts with NF-κB family proteins CfRel-1 and CfRel. Dual-luciferase reporter assays demonstrated that CfIκB1 inhibits CfRel-dependent activation of NF-κB, ISRE, IFNβ, and AP-1. These findings suggest that CfIκB1 plays a crucial role in regulating NF-κB activity, which is integral to the innate immunity of C. farreri. This research enhances our understanding of the innate immune system in invertebrates and provides a theoretical basis for developing disease-resistant scallops at the molecular level.
Collapse
Affiliation(s)
- Jiwen Chen
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yifan Qu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Juan Dong
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Wenwen Xu
- School of Fisheries, Ludong University, Yantai, 264025, China; Rushan Marine Economy and Development Center, Rushan, 264599, China
| | - Yue Zhao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jie Cui
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zhengjie Yu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zihao Bao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jilv Ma
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Baoyu Huang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
24
|
Msweli S, Pakala SB, Syed K. NF-κB Transcription Factors: Their Distribution, Family Expansion, Structural Conservation, and Evolution in Animals. Int J Mol Sci 2024; 25:9793. [PMID: 39337282 PMCID: PMC11432056 DOI: 10.3390/ijms25189793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The Nuclear Factor Kappa B (NF-κB) transcription factor family consists of five members: RelA (p65), RelB, c-Rel, p50 (p105/NF-κB1), and p52 (p100/NF-κB2). This family is considered a master regulator of classical biochemical pathways such as inflammation, immunity, cell proliferation, and cell death. The proteins in this family have a conserved Rel homology domain (RHD) with the following subdomains: DNA binding domain (RHD-DBD) and dimerization domain (RHD-DD). Despite the importance of the NF-κB family in biology, there is a lack of information with respect to their distribution patterns, evolution, and structural conservation concerning domains and subdomains in animals. This study aims to address this critical gap regarding NF-κB proteins. A comprehensive analysis of NF-κB family proteins revealed their distinct distribution in animals, with differences in protein sizes, conserved domains, and subdomains (RHD-DBD and RHD-DD). For the first time, NF-κB proteins with multiple RHD-DBDs and RHD-DDs have been identified, and in some cases, this is due to subdomain duplication. The presence of RelA/p65 exclusively in vertebrates shows that innate immunity originated in fishes, followed by amphibians, reptiles, aves, and mammals. Phylogenetic analysis showed that NF-κB family proteins grouped according to animal groups, signifying structural conservation after speciation. The evolutionary analysis of RHDs suggests that NF-κB family members p50/p105 and c-Rel may have been the first to emerge in arthropod ancestors, followed by RelB, RelA, and p52/p100.
Collapse
Affiliation(s)
- Siphesihle Msweli
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| | - Suresh B. Pakala
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500-046, India
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa; (S.M.); (S.B.P.)
| |
Collapse
|
25
|
Campbell CA, Calderon R, Pavani G, Cheng X, Barakat R, Snella E, Liu F, Peng X, Essner JJ, Dorman KS, McGrail M, Gadue P, French DL, Espin-Palazon R. p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation. Nat Commun 2024; 15:7787. [PMID: 39242546 PMCID: PMC11379711 DOI: 10.1038/s41467-024-51922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Most gene functions have been discovered through phenotypic observations under loss of function experiments that lack temporal control. However, cell signaling relies on limited transcriptional effectors, having to be re-used temporally and spatially within the organism. Despite that, the dynamic nature of signaling pathways have been overlooked due to the difficulty on their assessment, resulting in important bottlenecks. Here, we have utilized the rapid and synchronized developmental transitions occurring within the zebrafish embryo, in conjunction with custom NF-kB reporter embryos driving destabilized fluorophores that report signaling dynamics in real time. We reveal that NF-kB signaling works as a clock that controls the developmental progression of hematopoietic stem and progenitor cells (HSPCs) by two p65 activity waves that inhibit cell cycle. Temporal disruption of each wave results in contrasting phenotypic outcomes: loss of HSPCs due to impaired specification versus proliferative expansion and failure to delaminate from their niche. We also show functional conservation during human hematopoietic development using iPSC models. Our work identifies p65 as a previously unrecognized contributor to cell cycle regulation, revealing why and when pro-inflammatory signaling is required during HSPC development. It highlights the importance of considering and leveraging cell signaling as a temporally dynamic entity.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Fang Liu
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Xiyu Peng
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology; Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
Chen Z, Lang G, Xu X, Liang X, Han Y, Han Y. The role of NF-kappaB in the inflammatory processes related to dental caries, pulpitis, apical periodontitis, and periodontitis-a narrative review. PeerJ 2024; 12:e17953. [PMID: 39221277 PMCID: PMC11366231 DOI: 10.7717/peerj.17953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Tooth-related inflammatory disorders, including caries, pulpitis, apical periodontitis (AP), and periodontitis (PD), are primarily caused by resident oral microorganisms. Although these dental inflammatory conditions are typically not life-threatening, neglecting them can result in significant complications and greatly reduce an individual's quality of life. Nuclear factor κB (NF-κB), a family formed by various combinations of Rel proteins, is extensively involved in inflammatory diseases and even cancer. This study reviews recent data on NF-κB signaling and its role in dental pulp stem cells (DPSCs), dental pulp fibroblasts (DPFs), odontoblasts, human periodontal ligament cells (hPDLCs), and various experimental animal models. The findings indicate that NF-κB signaling is abnormally activated in caries, pulpitis, AP, and PD, leading to changes in related cellular differentiation. Under specific conditions, NF-κB signaling occasionally interacts with other signaling pathways, affecting inflammation, bone metabolism, and tissue regeneration processes. In summary, data collected over recent years confirm the central role of NF-κB in dental inflammatory diseases, potentially providing new insights for drug development targeting NF-κB signaling pathways in the treatment of these conditions. Keywords: NF-κB, dental caries, pulpitis, apical periodontitis, periodontitis.
Collapse
Affiliation(s)
- Zhonglan Chen
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Guangping Lang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Xi Xu
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Xinghua Liang
- Zunyi Medical University, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, Guizhou, China
| | - Yalin Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| | - Yingying Han
- Zunyi Medical University, Special Key Laboratory of Oral Diseases Research, Hospital/School of Stomatology, Zunyi, Guizhou, China
| |
Collapse
|
27
|
Li F, Sun X, Sun K, Kong F, Jiang X, Kong Q. Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regen Res 2024; 19:1802-1811. [PMID: 38103247 PMCID: PMC10960275 DOI: 10.4103/1673-5374.389302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00034/figure1/v/2023-12-16T180322Z/r/image-tiff Spinal cord injury-induced motor dysfunction is associated with neuroinflammation. Studies have shown that the triterpenoid lupenone, a natural product found in various plants, has a remarkable anti-inflammatory effect in the context of chronic inflammation. However, the effects of lupenone on acute inflammation induced by spinal cord injury remain unknown. In this study, we established an impact-induced mouse model of spinal cord injury, and then treated the injured mice with lupenone (8 mg/kg, twice a day) by intraperitoneal injection. We also treated BV2 cells with lipopolysaccharide and adenosine 5'-triphosphate to simulate the inflammatory response after spinal cord injury. Our results showed that lupenone reduced IκBα activation and p65 nuclear translocation, inhibited NLRP3 inflammasome function by modulating nuclear factor kappa B, and enhanced the conversion of proinflammatory M1 microglial cells into anti-inflammatory M2 microglial cells. Furthermore, lupenone decreased NLRP3 inflammasome activation, NLRP3-induced microglial cell polarization, and microglia pyroptosis by inhibiting the nuclear factor kappa B pathway. These findings suggest that lupenone protects against spinal cord injury by inhibiting inflammasomes.
Collapse
Affiliation(s)
- Fudong Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Feng Z, Yu T, Li M, Hu J, Zhang H, Xu X, Zhu X, Mao H, Hu C. Grass carp (Ctenopharyngodon idella) NIK up-regulates the expression of IL-8 by activating the NF-κB canonical pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109647. [PMID: 38797335 DOI: 10.1016/j.fsi.2024.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
NIK (NF-κB inducing kinase) belongs to the mitogen-activated protein kinase family, which activates NF-κB and plays a vital role in immunology, inflammation, apoptosis, and a series of pathological responses. In NF-κB noncanonical pathway, NIK and IKKα have been often studied in mammals and zebrafish. However, few have explored the relationship between NIK and other subunits of the IKK complex. As a classic kinase in the NF-κB canonical pathway, IKKβ has never been researched with NIK in fish. In this paper, the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) NIK (CiNIK) was first cloned and identified. The expression level of CiNIK in grass carp cells was increased under GCRV stimuli. Under the stimulation of GCRV, poly (I:C), and LPS, the expression of NIK in various tissues of grass carp was also increased. This suggests that CiNIK responds to viral stimuli. To study the relationship between CiNIK and CiIKKβ, we co-transfected CiNIK-FLAG and CiIKKB-GFP into grass carp cells in coimmunoprecipitation and immunofluorescence experiments. The results revealed that CiNIK interacts with CiIKKβ. Besides, the degree of autophosphorylation of CiNIK was enhanced under poly (I:C) stimulation. CiIKKβ was phosphorylated by CiNIK and then activated the activity of p65. The activity change of p65 indicates that NF-κB downstream inflammatory genes will be functioning. CiNIK or CiIKKβ up-regulated the expression of IL-8. It got higher when CiNIK and CiIKKβ coexisted. This paper revealed that NF-κB canonical pathway and noncanonical pathway are not completely separated in generating benefits.
Collapse
Affiliation(s)
- Zhiqing Feng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Tingting Yu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Miaomiao Li
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Jihuan Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Hongying Zhang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xuechun Zhu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Huiling Mao
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
29
|
Chen H, Wang F, Wu X, Yuan S, Dong H, Zhou C, Feng S, Zhao Z, Si L. Chronic Heat Stress Induces Oxidative Stress and Induces Inflammatory Injury in Broiler Spleen via TLRs/MyD88/NF-κB Signaling Pathway in Broilers. Vet Sci 2024; 11:293. [PMID: 39057977 PMCID: PMC11281475 DOI: 10.3390/vetsci11070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The spleen is the largest peripheral immune organ of the organism, accounting for 25% of the total lymphoid tissue of the body. During HS, the spleen is damaged due to the elevated environment, which seriously affects life performance and broilers' health. This study aimed to investigate the mechanism of chronic HS damage to broiler spleen tissues. The broilers were typically raised until they reached 21 days of age, after which they were arbitrarily allocated into two groups: an HS group and a cntrol group. The HS group was subjected to a temperature of 35 °C for 10 h each day, starting at 21 days of age. At 35 and 42 days of age, spleen and serum samples were obtained from the broilers. The results showed that after HS, a significant decrease in productive performance was observed at 42 days of age (p < 0.01), and the spleen index, and bursa index were significantly decreased (p < 0.01). T-AOC of the organism was significantly decreased (p < 0.05), GSH-PX, SOD, and CAT antioxidant factors were significantly decreased (p < 0.01), and MDA was significantly elevated (p < 0.01). HS also led to a significant increase in cytokines IL-6, TNF-α, and INF-γ and a significant decrease in IL-4 in the spleen. The histopathologic results showed that the spleen's red-white medulla was poorly demarcated. The cells were sparsely arranged after HS. After HS, the expression of TLRs, MYD88, and NF-κB genes increased significantly. The expression of HSP70 increased significantly, suggesting that HS may induces an inflammatory response in broiler spleens through this signaling pathway, which may cause pathological damage to broiler spleens, leading to a decrease in immune function and progressively aggravating HS-induced damage with the prolongation of HS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lifang Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
30
|
Guo Q, Jin Y, Lin M, Zeng C, Zhang J. NF-κB signaling in therapy resistance of breast cancer: Mechanisms, approaches, and challenges. Life Sci 2024; 348:122684. [PMID: 38710275 DOI: 10.1016/j.lfs.2024.122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Breast cancer is the most common type of cancer and is the second leading cause of cancer-related mortality in women. Chemotherapy, targeted therapy, endocrine therapy, and radiotherapy are all effective in destroying tumor cells, but they also activate the defense and protection systems of cancer cells, leading to treatment resistance. Breast cancer is characterized by a highly inflammatory tumor microenvironment. The NF-κB pathway is essential for connecting inflammation and cancer, as well as for tumor growth and therapy resistance. An increase in NF-κB signaling boosts the growth potential of breast cancer cells and facilitates the spread of tumors to bone, lymph nodes, lungs, and liver. This review focuses on the mechanisms by which chemotherapy, targeted therapy, endocrine therapy, and radiotherapy induce breast cancer resistance through NF-κB signaling. Additionally, we investigate therapeutic regimens, including single agents or in combination with target inhibitors, plant extracts, nanomedicines, and miRNAs, that have been reported in clinical trials, in vivo, and in vitro to reverse resistance. In particular, NF-κB inhibitors combined with tamoxifen were shown to significantly increase the sensitivity of breast cancer cells to tamoxifen. Combination therapy of miRNA-34a with doxorubicin was also found to synergistically inhibit the progression of doxorubicin-resistant breast cancer by inhibiting Notch/NF-κB signaling.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
32
|
Khai NX, Huy DQ, Trang DT, Minh NT, Tien TD, Phuong NV, Dung NV, Hang NT, Khanh LV, Hoang NH, Xuan NT, Mao CV, Tong HV. Expression of SUMO and NF-κB genes in hepatitis B virus-associated hepatocellular carcinoma patients: An observational study. Medicine (Baltimore) 2024; 103:e38737. [PMID: 38941371 PMCID: PMC11466154 DOI: 10.1097/md.0000000000038737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024] Open
Abstract
Alterations in signaling pathways and modulation of cell metabolism are associated with the pathogenesis of cancers, including hepatocellular carcinoma (HCC). Small ubiquitin-like modifier (SUMO) proteins and NF-κB family play major roles in various cellular processes. The current study aims to determine the expression profile of SUMO and NF-κB genes in HCC tumors and investigate their association with the clinical outcome of HCC. The expression of 5 genes - SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 - was quantified in tumor and adjacent non-tumor tissues of 58 HBV-related HCC patients by real-time quantitative PCR and was analyzed for the possible association with clinical parameters of HCC. The expression of SUMO2 was significantly higher in HCC tumor tissues compared to the adjacent non-tumor tissues (P = .01), while no significant difference in SUMO1, SUMO3, NF-κB p65, and NF-κB p50 expression was observed between HCC tumor and non-tumor tissues (P > .05). In HCC tissues, a strong correlation was observed between the expression of SUMO2 and NF-κB p50, between SUMO3 and NF-κB p50, between SUMO3 and NF-κB p65 (Spearman rho = 0.83; 0.82; 0.772 respectively; P < .001). The expression of SUMO1, SUMO2, SUMO3, NF-κB p65, and NF-κB p50 was decreased in grade 3 compared to grades 1 and 2 in HCC tumors according to the World Health Organization grades system. Our results highlighted that the SUMO2 gene is upregulated in tumor tissues of patients with HCC, and is related to the development of HCC, thus it may be associated with the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nguyen Xuan Khai
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Duong Quang Huy
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngo Tuan Minh
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Truong Dinh Tien
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Viet Phuong
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ngo Thu Hang
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Can Van Mao
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Tong
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
33
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
34
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Serum NF-κB in Epstein-Barr Virus-Related Oropharyngeal Carcinoma Diagnostic Usability. Cancers (Basel) 2024; 16:2328. [PMID: 39001390 PMCID: PMC11240430 DOI: 10.3390/cancers16132328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Early diagnosis and effective therapy are the fundamental challenge for modern oncology. Hence, many researchers focus on the search for new or improved biomarkers. Due to the great importance of nuclear factor kappa B (NF-κB) in physiological and pathological processes, we focused on assessing its usefulness as a biomarker in OPSCC. The purpose of the research presented here was to evaluate the prevalence and the level of NF-κB in the serum of OPSCC patients (ELISA). Serum NF-κB levels were also assessed depending on the degree of histological differentiation of the tumor and TN classification. Additionally, we considered the existence of a correlation between the concentration of NF-κB and EBV antibody titers, viral load and selected MMPs-MMP3 and MMP9. Taken together, the obtained results demonstrated that NF-κB level was significantly higher among patients with EBV-related OPSCC than among those without EBV. In addition, the level of NF-κB was significantly higher in more advanced clinical stages. Moreover, a positive correlation was found between the concentration of NF-κB and the level of selected EBV antibodies, viral load and both tested MMPs. The diagnostic accuracy of NF-κB was confirmed by ROC analysis.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, Casemiro Pulaski Radom University, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
35
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
36
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Jones IH, Collins JE, Hall NJ, Heinson AI. Transcriptomic analysis of the effect of remote ischaemic conditioning in an animal model of necrotising enterocolitis. Sci Rep 2024; 14:10783. [PMID: 38734725 PMCID: PMC11088709 DOI: 10.1038/s41598-024-61482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸβ2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.
Collapse
Affiliation(s)
- Ian Howard Jones
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK.
| | - Jane Elizabeth Collins
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton, UK
| | - Nigel John Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Southampton Children's Hospital, Tremona Road, Southampton, UK
| | - Ashley Ivan Heinson
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical Informatics Research Unit, Cancer Sciences, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
38
|
Shi RR, He TQ, Lin MS, Xu J, Gu JH, Xu H. O-GlcNAcylation in ischemic diseases. Front Pharmacol 2024; 15:1377235. [PMID: 38783961 PMCID: PMC11113977 DOI: 10.3389/fphar.2024.1377235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.
Collapse
Affiliation(s)
- Rui-Rui Shi
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Tian-Qi He
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Meng-Si Lin
- Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jian Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Jin-Hua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
- Department of Pharmacy, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, China
| |
Collapse
|
39
|
Agam G, Atawna B, Damri O, Azab AN. The Role of FKBPs in Complex Disorders: Neuropsychiatric Diseases, Cancer, and Type 2 Diabetes Mellitus. Cells 2024; 13:801. [PMID: 38786025 PMCID: PMC11119362 DOI: 10.3390/cells13100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Stress is a common denominator of complex disorders and the FK-506 binding protein (FKBP)51 plays a central role in stress. Hence, it is not surprising that multiple studies imply the involvement of the FKBP51 protein and/or its coding gene, FKBP5, in complex disorders. This review summarizes such reports concentrating on three disorder clusters-neuropsychiatric, cancer, and type 2 diabetes mellitus (T2DM). We also attempt to point to potential mechanisms suggested to mediate the effect of FKBP5/FKBP51 on these disorders. Neuropsychiatric diseases considered in this paper include (i) Huntington's disease for which increased autophagic cellular clearance mechanisms related to decreased FKBP51 protein levels or activity is discussed, Alzheimer's disease for which increased FKBP51 activity has been shown to induce Tau phosphorylation and aggregation, and Parkinson's disease in the context of which FKBP12 is mentioned; and (ii) mental disorders, for which significant association with the single nucleotide polymorphism (SNP) rs1360780 of FKBP5 intron 7 along with decreased DNA methylation were revealed. Since cancer is a large group of diseases that can start in almost any organ or tissue of the body, FKBP51's role depends on the tissue type and differences among pathways expressed in those tumors. The FKBP51-heat-shock protein-(Hsp)90-p23 super-chaperone complex might function as an oncogene or as a tumor suppressor by downregulating the serine/threonine protein kinase (AKt) pathway. In T2DM, two potential pathways for the involvement of FKBP51 are highlighted as affecting the pathogenesis of the disease-the peroxisome proliferator-activated receptor-γ (PPARγ) and AKt.
Collapse
Affiliation(s)
- Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Bayan Atawna
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, The Zlotowski Center for Neuroscience and Zelman Center—The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (B.A.); (O.D.)
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
40
|
Lampson BL, Ramίrez AS, Baro M, He L, Hegde M, Koduri V, Pfaff JL, Hanna RE, Kowal J, Shirole NH, He Y, Doench JG, Contessa JN, Locher KP, Kaelin WG. Positive selection CRISPR screens reveal a druggable pocket in an oligosaccharyltransferase required for inflammatory signaling to NF-κB. Cell 2024; 187:2209-2223.e16. [PMID: 38670073 PMCID: PMC11149550 DOI: 10.1016/j.cell.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ana S Ramίrez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lixia He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Vidyasagar Koduri
- Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jamie L Pfaff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yanfeng He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
41
|
Gromova OA, Filimonova MV, Torshin IY, Frolova DЕ. [Study of antitumor effects of human placenta hydrolysate on PC-3, OAW-42, BT-474 cell cultures]. TERAPEVT ARKH 2024; 96:266-272. [PMID: 38713042 DOI: 10.26442/00403660.2024.03.202624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
AIM To investigate the antitumor effects of human placenta hydrolysate (HPH) peptides on three hormone-dependent human cell lines: prostate adenocarcinoma, breast carcinoma, and ovarian cancer by metabolic analysis of cell cultures. MATERIALS AND METHODS The effect of HPH on tumor and control tumor cell lines was evaluated. Study stages: (A) de novo peptide sequencing by collision-induced dissociation mass spectrometry; (B) detection of peptides with anti-tumor properties; (C) expert analysis of the obtained lists of peptides. RESULTS Dose-dependent cytotoxic effects of HPH on three tumor cell lines are shown: PC-3 (human prostate adenocarcinomas), OAW-42 (human ovarian cancer), BT-474 (human breast carcinomas), and IC50 constants (1.3-2.8 mg/ml) were obtained. The analysis of the HPH peptide fraction showed more than 70 peptides with antitumor properties in the composition of this HPH, including kinase inhibitors: mitogen-activated protein kinases, kappa-bi nuclear factor inhibitor kinase, AKT serine/threonine kinase 1, protein kinase C zeta, interleukin-1 receptor-associated kinase 4 and cyclin-dependent kinase 1. CONCLUSION The results of the study indicate not only the oncological safety of the HPH used in therapy but also the mild antitumor effects of this HPH at high concentrations.
Collapse
Affiliation(s)
- O A Gromova
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
| | - M V Filimonova
- National Medical Research Radiological Centre
- Tsyb Medical Radiological Research Center - branch of the National Medical Research Radiological Centre
| | - I Y Torshin
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
| | - D Е Frolova
- Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences
- Ivanovo State Medical University
| |
Collapse
|
42
|
Ahmad B, Tian C, Tang JX, Dumbuya JS, Li W, Lu J. Anticancer activities of natural abietic acid. Front Pharmacol 2024; 15:1392203. [PMID: 38633616 PMCID: PMC11021724 DOI: 10.3389/fphar.2024.1392203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
43
|
Yin J, Diao N, Tian T, Wang Q, Ma S, He N, Zhou H, Zhou Z, Jia W, Wang X, Shi K, Du R. ARHGEF18 can promote BVDV NS5B activation of the host NF-κB signaling pathway by combining with the NS5B-palm domain. Vet Microbiol 2024; 291:109911. [PMID: 38367539 DOI: 10.1016/j.vetmic.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 02/19/2024]
Abstract
Rho guanine nucleotide exchange factor 18 (ARHGEF18) is a member of the Rho guanine nucleotide exchange factor (RhoGEF) family. RhoGEF plays an important role in the occurrence of tumors and neurological diseases; however, its involvement in host cell resistance against pathogenic microorganisms is mostly unknown. Herein, we report that bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) can activate the nuclear factor kappa B (NF-κB) signaling pathway to induce an immune response. To clarify the functional domains of NS5B that activate NF-κB signaling, the six structural domains of NS5B were expressed separately: NS5B-core, NS5B-finger, NS5B-palm, NS5B-thumb, NS5B-N and NS5B-c domain. We preliminarily determined that the functional domains of NS5B that activate NF-κB signaling are the finger and palm domains. We used a bovine kidney cell cDNA library and yeast two-hybrid technology to identify that the host protein ARHGEF18 interacts with NS5B. Co-immunoprecipitation assays showed that ARHGEF18 interacts strongly with NS5B-palm. Interestingly ARHGEF18 could promote NF-κB signaling activation by BVDV NS5B. In addition silencing ARHGEF18 significantly inhibited NS5B-palm activation of NF-κB signaling. We concluded that ARHGEF18 can bind to BVDV NS5B through the palm domain to activate the NF-κB pathway. These findings provide direct evidence that BVDV NS5B induces immune responses by activating NF-κB signaling.
Collapse
Affiliation(s)
- Jiying Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tian Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shuqi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ning He
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongming Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zehui Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenyi Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaonan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
44
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 427] [Impact Index Per Article: 427.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Hasanoor Reja AH, De A, Chakraborty D, Singh S, Sarda A, Das S. A Cross-Sectional Study to Evaluate the Role of the Nuclear Factor Kappa B (Nf-κB) Pathway in Regulating the Cytokine Cascade and as a Potential Therapeutic Target in Leprosy. Indian J Dermatol 2024; 69:165-170. [PMID: 38841230 PMCID: PMC11149790 DOI: 10.4103/ijd.ijd_443_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Pattern recognition receptors (PRRs), which are found in microorganisms but not in hosts, allow Leprae bacilli to be recognized as foreign. Several kinds of pattern recognition receptors, such as toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-1-like receptors (RLRs), are present in the innate immune system. Sen and Baltimore (1986) discovered the transcription factor nuclear factor kappa-B (NF-B), employed by eukaryotic cells to regulate immunity, cell differentiation and proliferation. This study aimed to evaluate the role of the nuclear factor kappa B (NF-B) pathway in controlling the cytokine cascade in leprosy due to a lack of understanding of the link between cytokines and the severity of leprosy. Clinically suspected Hansen's patients were analysed for 4 years. Newly diagnosed leprosy patients were considered to have leprosy disease control (LDC). The cases with active or new lesions and an increase in BI by at least 2+, 12 months after completion of MDT were considered leprosy disease relapse (LDR) cases. Age- and sex-matched healthy individuals served as our control group (HC). An ELISA was performed to measure the concentration of five human cytokines. By qRT-PCR, the quantitative expression of receptor genes (NOD1 and NOD2), cytokine genes and the expression of the transcription factor NFκβ were evaluated. This was followed by a transcription factor NFκβ assay to see its expression in the monocytes of study subjects. Nuclear factor NF-κβ was found to have a pronounced response in monocytes of HC and LDC patients and LDR cases when treated with NOD1 and NOD2 ligands. Our study concludes that the NF-kB pathway is involved in the induction and regulation of the cytokine cascade that contributes to chronic inflammation in leprosy.
Collapse
Affiliation(s)
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Disha Chakraborty
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Sushil Singh
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Aarti Sarda
- Department of Dermatology, Wizderm, Kolkata, West Bengal, India
| | - Sudip Das
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| |
Collapse
|
46
|
Li L, Gong S. The discovery of a novel IκB kinase β inhibitor based on pharmacophore modeling, virtual screening and biological evaluation. Future Med Chem 2024; 16:531-544. [PMID: 38385164 DOI: 10.4155/fmc-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 02/23/2024] Open
Abstract
Background: IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. Materials & methods: The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. Results: Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC50 = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage in vivo. Conclusion: The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Luyao Li
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Shouping Gong
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| |
Collapse
|
47
|
Dao L, Liu H, Xiu R, Yao T, Tong R, Xu L. Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155325. [PMID: 38295663 DOI: 10.1016/j.phymed.2023.155325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.
Collapse
Affiliation(s)
- Ling Dao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Ruizhen Xiu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tianbao Yao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Beijing 100020, China.
| | - Longwei Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China.
| |
Collapse
|
48
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
49
|
Ebrahimi N, Abdulwahid AHRR, Mansouri A, Karimi N, Bostani RJ, Beiranvand S, Adelian S, Khorram R, Vafadar R, Hamblin MR, Aref AR. Targeting the NF-κB pathway as a potential regulator of immune checkpoints in cancer immunotherapy. Cell Mol Life Sci 2024; 81:106. [PMID: 38418707 PMCID: PMC10902086 DOI: 10.1007/s00018-023-05098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 03/02/2024]
Abstract
Advances in cancer immunotherapy over the last decade have led to the development of several agents that affect immune checkpoints. Inhibitory receptors expressed on T cells that negatively regulate the immune response include cytotoxic T‑lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD1), which have been studied more than similar receptors. Inhibition of these proteins and other immune checkpoints can stimulate the immune system to attack cancer cells, and prevent the tumor from escaping the immune response. However, the administration of anti-PD1 and anti-CTLA4 antibodies has been associated with adverse inflammatory responses similar to autoimmune diseases. The current review discussed the role of the NF-κB pathway as a tumor promoter, and how it can govern inflammatory responses and affect various immune checkpoints. More precise knowledge about the communication between immune checkpoints and NF-κB pathways could increase the effectiveness of immunotherapy and reduce the adverse effects of checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Atena Mansouri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Karimi
- Department of Biology, Faculty of Basic Science, Islamic Azad University Damghan Branch, Damghan, Iran
| | | | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Vafadar
- Department of Orthopeadic Surgery, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
50
|
Wan Q, Tavakoli L, Wang TY, Tucker AJ, Zhou R, Liu Q, Feng S, Choi D, He Z, Gack MU, Zhao J. Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nat Commun 2024; 15:1442. [PMID: 38365882 PMCID: PMC10873312 DOI: 10.1038/s41467-024-45852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and multiple types of B cell malignancies. Emerging evidence demonstrates that KSHV reprograms host-cell central carbon metabolic pathways, which contributes to viral persistence and tumorigenesis. However, the mechanisms underlying KSHV-mediated metabolic reprogramming remain poorly understood. Carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) is a key enzyme of the de novo pyrimidine synthesis, and was recently identified to deamidate the NF-κB subunit RelA to promote aerobic glycolysis and cell proliferation. Here we report that KSHV infection exploits CAD for nucleotide synthesis and glycolysis. Mechanistically, KSHV vCyclin binds to and hijacks cyclin-dependent kinase CDK6 to phosphorylate Ser-1900 on CAD, thereby activating CAD-mediated pyrimidine synthesis and RelA-deamidation-mediated glycolytic reprogramming. Correspondingly, genetic depletion or pharmacological inhibition of CDK6 and CAD potently impeded KSHV lytic replication and thwarted tumorigenesis of primary effusion lymphoma (PEL) cells in vitro and in vivo. Altogether, our work defines a viral metabolic reprogramming mechanism underpinning KSHV oncogenesis, which may spur the development of new strategies to treat KSHV-associated malignancies and other diseases.
Collapse
Affiliation(s)
- Quanyuan Wan
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Leah Tavakoli
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Andrew J Tucker
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Ruiting Zhou
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Qizhi Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- State Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, China
| | - Shu Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Dongwon Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Jun Zhao
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|